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Abstract

In this paper we present a new representation for polyhedral
objects which is a continuous generalization of multiview represen-
tations. That is, we show how to represent views or images of an
object (i.e. the appearance of the object) continuously over all view-
points. We then show how this representation overcomes some of
the drawbacks of multiview representation for object recognition,
namely, that the image to be recognized will usually not match one
of the stored images exactly, that the representation contains no
information about how to interpolate between views, and that the
representation is large.
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1. Introduction

Of the many different object representations in use for 3D recognition, most are object-centered
in the sense that they represent the volume of object space that the object occupies in some
manner. Polyhedral representations such as winged-edge polyhedra [Baumgart, 1972] represent
this volume by representing the boundaries of the volume. Generalized cylinders [Binford, 1971;
Agin, 1977] represent the volume as the sweep of a cross-sectional area. Volumetric
representations such as octrees [Jackins and Tanimoto, 1980] and constructive solid geometry
[Requicha, 1980] represent the volume as a combination of simpler volumes.

However, in 3D object recognition we are concerned with the appearance of an object rather than
the volume of space that it fills, and the computation of its appearance from various viewpoints
is relatively time-consuming when the representation in use is object-centered. Another
approach that has been explored recently addresses this problem by representing an object “in
3D” as several different 2D views of the object. This approach is often called multiview object
representation. Since multiview representations represent the appearance of an object rather
than the volume of space that it fills, they are viewer-centered representations.

There are some problems with this kind of approach. First, it is not very likely that any
particular image of an object will exactly match one of the stored views. Another problem is the
size of the representatlon Researchers have proposed multiview object representations with

size as large as O(m3) for convex objects and Om®) for non-convex objects of n faces. Yet another
problem with this sort of representation is that there is no information relating the different
views of the object; the algorithms could as well be processing views of different objects. It would
be nice to be able to interpolate between views, or to use the representation to suggest a new
viewpoint from which to look at the object in order to get more information.

In this paper we introduce a new representation for polyhedral objects and scenes, the aspect
representation or asp, which has all the advantages of multiview representations with fewer
disadvantages. In this representation, we still represent the appearance of an object rather than
the volume of space that it fills, so the representation is viewer-centered rather than
object-centered. However, we represent the appearance as a continuous function of viewpoint, so
that we can efficiently recover the appearance of the object from any viewpoint, and we can
search for viewpoints with a particular appearance. And somewhat surprisingly, while the
aspect representation can still be large for highly non-convex objects, it turns out to have
considerably smaller size than multiview representations which attempt to represent

appearance over the same range of viewpoints.

In Section 2 we discuss multiview object representation. In Section 3 we define the aspect
representation and give examples of asps. We discuss various properties of asps in Section 4 and
show how to represent them. In Section 5 we discuss using the aspect representation for object
recognition, and in Section 6 we present algorithms for constructing asps and taking unions,
intersections, and differences.

2. Multiview Object Representation

Multiview representations come in several flavors. For example, Lieberman [1979] computes
silhouettes of objects from stable orientations, assuming that there are only a few. Wallace et al.
[1981] compute properties of the silhouettes of aircraft from a fixed number of viewpoints.



Fekete and Davis [1984] introduce the idea of property spheres. The property sphere for an object
represents properties of the object (in this case the silhouette) from 320 discrete viewpoints
around the sphere.

Koenderink and van Doorn [1979] made possible a more systematic approach to multiple view
representations when they introduced the ideas of aspect and the visual potential for an object.
They define aspect to be the topological appearance of an object from a particular viewpoint.
From most viewpoints, the topological appearance of the object remains constant over small
changes in viewpoint, since no faces appear or disappear. The topology remains constant even
though edges may change in size and location. Thus the aspect remains constant for regions of
viewpoints. Viewpoints at which the aspect changes are called events. The visual potential
graph (which is also called the aspect graph) has vertices corresponding to these regions of
viewpoints of constant aspect, and two vertices are connected if the corresponding regions of
viewpoints are connected by events.

Using these ideas, researchers are able to choose viewpoints for a multiview representation in a
more systematic and efficient way, since they can avoid topologically equivalent images. They
can represent a single view from each of a number of aspects or one from every aspect.
Chakravarty and Freeman [1982] assume that objects appear only in one of a relatively small
number of stable positions and represent one view of the object for each aspect corresponding to
a stable position. For other views in an aspect they use linear transformations of the given view.
Korn and Dyer [1985] grow regions of feature equivalence, storing one representative view of
each region. Castore [1983], Castore and Crawford [1984], and Crawford [1985] store views for
every aspect in the aspect graph.

There are some problems with this kind of approach. First, it is unlikely that any particular
image of an object will exactly match one of the stored views; in fact, one can only guarantee
topological correspondence to one of the stored views, and that only by storing an image for
every vertex in the aspect graph. This leads to the second problem: the size of the
representation. Plantinga and Dyer [1986] have shown that the maximum number of vertices in
the aspect graph is O(n?) for convex objects and O(n?) for general objects with n faces under
orthographic projection— more under perspective projection. Since an image of such a scene can
have size O(n?) in the non-convex case, the respective worst-case sizes of a representation storing
an image from every aspect are O(n®) and O(n®) even under orthographic projection. Another
problem with this sort of representation is that there is no information relating the different
views of the object; the algorithms could as well be processing views of different objects. It would
be nice to be able to interpolate between views, or to use the representation to suggest a new
viewpoint from which to look at the object in order to get more information.

The aspect representation is similar to multiview representations in that it represents the
appearance of an object. However, it represents appearance from ranges of viewpoints
continuously, so it does not have the same drawbacks as multiview representations. We can
efficiently recover appearance from any viewpoint. More importantly, we can search for a
viewpoint with a particular appearance. And somewhat surprisingly, while the aspect
representation can still be large for highly non-convex objects, it is smaller than corresponding
multiview representations. Multiview representations that store an image for every aspect have
worst-case size of Om?) in the convex case and Om®) in the general case, but the aspect
representation has size O(n) in the convex case and O(n?) in the general case.

Note that when we speak of aspect in this paper, we will use the term in a slightly different way
from Koenderink and van Doorn. We define aspect as geometric appearance, not topological
appearance. The difference is that by our definition, the aspect changes with every change in
viewpoint: there are no regions of constant aspect. Furthermore, the term viewer-centered is
usually used to refer to representations that represent an object with images from a discrete set
of viewpoints. We extend the notion to include representing the appearance of an object from a



continuous range of viewpoints. The aspect representation takes the idea of viewer-centered
representation to its logical end: it represents the appearance of objects from every viewpoint as
a continuous, unified whole.

3. The Aspect Representation

The aspect representation represents the appearance of an object over all viewpoints, that is,
image space for all viewpoints. Thus, it represents the volume of a different space that the object
fills, image space cross the space of viewpoints, which we call aspect space. One can picture this
by picturing a video camera and a TV monitor. The coordinates of a point in image space are its
coordinates on the TV monitor. Viewpoint space is the space of directions in which the camera
can point. The cross product of these spaces is aspect space. The aspect representation for an
object is the set of all points in aspect space that the object occupies— every point in the image of
the object on the TV monitor for each camera direction.

We first define formally viewpoints andviewpoint space. In this paper we will use orthographic
projection in constructing images from three-dimensional objects or scenes. Since under
orthographic projection the distance from the camera to the scene is not significant, we can
define viewpoints as points on a unit sphere centered on the object. A vector from a point on the
sphere (i.e. a viewpoint) to the center of the sphere is the viewing direction corresponding to that
viewpoint. We will speak of viewpoints, points on the sphere of viewpoints, and viewing
directions interchangeably. Note that under orthographic projection one must think of sphere
as being infinitely large if one wishes to think of the viewpoints as endpoints of lines of sight.

Viewpoint space is the space of points on the unit sphere. Specifically, we define the viewpoint
(6,9) to be the point on the unit sphere as shown in Figure 1. That is, if the point (0,0,1)
corresponds to the viewing direction “straight ahead” (i.e. some reference viewing direction)
then that point rotated by 6 clockwise about the y-axis and then by ¢ clockwise about the x-axis
corresponds to the viewing direction (0,). For example, (6=0,06=0) corresponds to looking
parallel to the z-axis in the -z direction; increasing 6 corresponds to points that are increasingly
“to the east” on the unit sphere and increasing ¢ corresponds to points on the sphere that are
further “south” when ¢ <180°,

z

Figure 1. THe Viewpoint (6,0) on the unit sphere

An image of an object is in effect a projection of the object onto a two-dimensional viewing
plane, with hidden lines and surfaces removed. We call this viewing plane image space and
denote it by (u,v). The aspect representation for an object is a representation of the volume of



aspect space that the object occupies, where aspect space is defined to be (6,4,u,v)—that is, the
object's projection into the viewing plane (u,v) for any viewpoint (8,¢). Topologically, aspect
space is the cross product of a plane and a sphere, so it is a well-understood and well-behaved
space. The aspect representation then represents every point (8,,6,,u,,v,) of aspect space that the
object occupies— that is, every point (u,,v,) in the image of the object from viewpoint (6,,4,).

In order to facilitate understanding the aspect representation, we will present some examples of
asps for various objects. The first example is the asp for a point at location (x,,y,.z,) in some
fixed coordinate system. At (6=0,¢=0) the point appears at the position (x,,y,) in the image; as 6
and ¢ vary, the point moves in the image according to the equations for rotation and projection
into the image plane:

cosO OsmoO|| I 0O 0 Project
[Xxpsypo2zll O 1 0 0 cosd -sin¢ | | onto =

-sin@® 0 cosB{| 0 sin ¢ cos ¢ z=0 plane

[ XpcosO - zosin@, xsin Bsin ¢ + y (cos ¢ + zcosOHsin ¢, 0]

Thus, the aspect representation of a point in 3-space is the 2-dimensional surface in aspect space
given by

u=X,Cos0-2z,sin6 (1)
V=X, sin 0 sin ¢ +y, cos ¢ +z, cos 6 sin ¢ (2)

Note that in order to represent this surface, it is only necessary to store the three coordinates of
the point, (x,,y,.24), since the equation of the surface is known a priori to within those three
constants.

The asp for a line segment is a 3-dimensional surface in aspect space bounded by 2-surfaces.
Alternatively, it can be written down directly by substituting parametric equations for a line
segment into the point equations. Here we use a parametric representation for the line segment
from (x4,y4.20) 10 (x;.y;.2,), with parameter s varying from O to 1. We let a, =x;-x,, b, =y,-y,, and
C; =22y

x{s)=x1+a1s
vis)=y,+b; s (3)
z(s)=zl+cls

The point equations then become

u=(x; +a,s)cos0-(z +c,s)sind (4)
v=[x,+a;s)sinbsin¢+y, +b;s)cos¢ +{z, +c, s)cosHsing (5)

This is a 3-dimensional surface in aspect space. The bounding 2-faces are given by Egs. (1) and
(2) above for the points (x,,y,.2,) and (x,.y;,2,). Note that in order to represent this surface it is
only necessary to store the the coordinates of the endpoints of the line segment, (x;,y,.z,) and
(x,,y,.2,), since the equation for the surface is known.



The asp for a triangle consists of the asps for the bounding sides and vertices as above together
with connectivity information, i.e., links from the asps for bounding sides to the asps for the
adjacent vertices, and so on. Figure 2 shows the asp for the triangle (1,1,0), (2,1,0), (1,2,0) in
object space. Since it is difficult to represent a four-dimensional manifold in a
two-dimensional figure, the figure shows several different three-dimensional cross-sections of
the asp at various fixed values of ¢. The two-dimensional cross-sections of the asp in each
three-dimensional cross-section are the images of the triangle for the corresponding values of 6

and ¢. The asp represents all of these cross-sections continuously by representing the equations
of the bounding surfaces.

z

Figure 2a. The triangle (1,1,0), (2,1,0), (1,2,0) in object space.

0 0
Figure 2b. A cross-section of the asp for the triangle (1,1,0), (2,1,0), (1,2,0) for ¢ = 0",
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Figure 2c. A cross-section of the asp for the triangle (1,1,0), (2,1,0), (1,2,0) for ¢ = 15",
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Figure 2d. A cross-section of the asp for the triangle (1,1,0), (2,1,0), (1,2,0) for ¢ = 30°.
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Figure 2e. A cross-section of the asp for the triangle (1,1,0), (2,1,0), (1,2,0) for ¢ = 45"
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Figure 2f. A cross-section of the asp for the triangle (1,1,0), (2,1,0), (1,2,0) for ¢ = 60°.
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Figure 2g. A cross-section of the asp for the triangle (1,1,0), (2,1,0), (1,2,0) for ¢ = 75".
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Figure 2h. A cross-section of the asp for the triangle (1,1,0), (2,1,0), (1,2,0) for ¢ = 90".




4. Properties of Asps

In this section we discuss various properties of asps. We first discuss the structural similarity
between asps and polytopes. We then show that occlusion in object space corresponds to set
subtraction in aspect space. We also discuss how to represent asps and present bounds on the size
of asps.

4.1. Asps as Polytopes

We represent an asp by representing the volume of aspect space that the it occupies; specifically,
by representing the 3-surfaces that bound the four-dimensional cells of aspect space.
Unfortunately, the surfaces are not in general planar, so the object is not a polytope. However,
every (u,v)-cross section of the object is made up of polygons since the appearance of a
polyhedron from any viewpoint is polygonal. Also, every arc in the projection of an asp onto
viewpoint space, (6,4), is an arc of a great circle. To see this, imagine the shadow of an edge cast
on a large sphere by some point light source. The shadow gets closer to the arc of a great circle as
the sphere becomes larger. Thus, in the limit, the shadow is an arc of a great circle, and the
projection of the asp onto (6,¢) or any (6,4)-cross section of the asp is spherical polygonal.

For these and other reasons, the surfaces that arise in the aspect representation for a polyhedon
are well-behaved, and we can work with them in much the same manner as we would work with
lines and planes in a polyhedron. For example, there is only one surface of intersection of two
aspect surfaces in which we are interested (and its polar opposite), and we can easily calculate
what it is. We show how to work with these surfaces below. Thus, while the asp is not a polytope,
we will speak of it as if it were. Specifically, we will refer to the 3-surfaces that bound the asp as
“facets,” a term one would normally use for the 3-dimensional faces bounding a 4-polytope. We
will refer to the 2-surfaces that bound the facets as “ridges” and the 1-surfaces or curves as
“edges.” A 4-dimensional volume of aspect space bounded by facets will be referred to as a “cell.”
In general, the asp will consist of a region or regions of aspect space partitioned into cells; these
cells correspond to polygons in the image of the object and the facets bounding the cells
correspond to edges.

Thus, the aspect representation is very much like a polyhedral representation except that we
must store the equation for each “face,” since it is a curved surface. We will show below how to
represent the asp with a data structure similar to that of a polyhedron, except of course that the
asp is four-dimensional rather than three and the four-dimensional volume of the asp is
partitioned into four-dimensional cells. In this manner, we can work with asps much as we
would with polyhedra. For example, we can determine whether two asps intersect by
determining whether some face of one intersects some face of the other, and if not, whether one
is completely inside the other.

4.2. Asps and Visibility

Consider again the asp for a point. Egs. (1) and (2) for the asp for that point are defined for all
values of 8 and ¢, as one would expect, since a point is normally visible from any viewing
direction. But we can also represent a point which is not visible from every viewing direction,
say a point which is occluded from some directions by a polygon, by putting bounds on the values
of 8 and ¢ for Egs. (1) and (2) above. That is, if we represent only a part of the surface for the point
in aspect space, rather than the whole surface, we have the aspect representation for a point
which is visible from only some viewpoints.



In fact, since the aspect representation for an object represents the volume of aspect space that
the object occupies, if a polygon p,, is in front of the plane containing another polygon p,, the set
subtraction of the asp for p, from the asp for p, represents the volume of aspect space where p, is
visible, i.e. not occluded by p,. That is, the point (8,,¢,,1,,v,) is in the asp whenever (u,,v,} is a
point in the image of p, from viewpoint (8,,¢,) but not in the image of p,. We will call this the asp
for p, as obstructed by p,. In Figure 3 we show the asps for two triangles in object space, p, and p,,
The difference between p, and p,, is that p, (on the left) is in the z=0-plane, while p, is in the
z=1-plane. Figure 4 shows the subtraction of the asp for p, from the asp for p,, which is the asp
for p, as obstructed by p,,.

v \%

0
Figure 3. Asps for triangles p, and p,,.
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Figure 4. The subtraction of the asp for p, from the asp for p,, which is the asp for p, as
obstructed by p,,

Note that if we take the cross-section of the asp for p, as obstructed by p, for a fixed value of (6,¢),
we get the image of p, as obstructed by p,, at that viewpoint—namely, that part of p, which is not
behind p,. Therefore the cross sections of the asp in Figure 4 are the visible parts of p,. Also, if
we take the projection of the asp for p, as obstructed by p, onto viewpoint space, we get exactly
the region of viewpoint space in which some point of p, is visible. Thus, given a polyhedron, we
can find the region of viewpoint space in which some face f of the polyhedron is visible by
subtracting the asp for every other face from the asp for f and taking the projection of that asp
onto (8,9).

Thus, occlusion in object space corresponds to set subtraction in aspect space. This is an
important and interesting property of aspect space, which has many implications. For example,



10

if we construct the aspect representation for a polyhedral scene in the proper manner, any
cross-section of the asp from some viewpoint is an image of the scene from that viewpoint with
hidden surfaces removed. In that sense we can pre-compute hidden-line removal information
for a scene from all viewpoints.

In order to better understand the aspect representation, we will point out some relationships
between features of the appearance of the object and features of the asp. Imagine looking at a
feature of the object and varying the viewpoint slightly, noting what happens to the feature in
the image of the object. By noting what happens to the feature we can determine the dimension
of the corresponding asp feature. For example, suppose two vertices of a polyhedron appear at
the same point in the image from some particular viewpoint. If the viewpoint is changed
slightly in any direction, the “feature” will disappear, that is, the two vertices will no longer
appear at the same image point. Thus the asp feature that corresponds to a pair of coincident
points in an image is zero-dimensional— it has no extent in viewpoint space. Since the feature is
also zero-dimensional in the image, the resulting feature of the asp is zero-dimensional, i.e. a
vertex.

Suppose that from some viewpoint two edges of the polyhedron appear to intersect. If the
viewpoint changes in any direction by a small amount, the edges will still appear to intersect in
general, although perhaps at a different location in the irnage. Then the feature (the point of
intersection in the image of the two lines) has extent in both 6 and ¢. The feature is
zero-dimensional in the image, so the corresponding feature of the asp is a 2-dimensional
surface or a ridge.

With considerations such as this in mind, we present a table of features in the image of the object
and corresponding features in the asp (see Table 1). For example, if four edges of the object
appear to intersect in some image, then there is a corresponding vertex in the asp.

Image feature Asp feature
point ridge (2D)
edge facet (3D)
polygon cell (4D)
apparent intersection point of two edges ridge
apparent intersection of edge and vertex edge (1D)
apparent intersection of three edges edge
apparent intersection of two vertices vertex
apparent intersection of two edges and a vertex vertex
apparent intersection of four edges vertex

Table 1. Image features and corresponding asp features

4.3 Aspect Surfaces

In this section we characterize the surfaces that arise in aspect representations and show how to
represent them efficiently. We also show how to find intersections of pairs of such surfaces and
describe a data structure that can be used to represent asps.
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We derived in Section 3.1 the equations for a 3-dimensional aspect surface corresponding to an
edge in the polyhedron. With t, substituted for s, they are:

u=(x,+a;t)cos6-(z, +c;t)sind (6)
v=(x, +a;t)sinBsin¢+(y, +b;t)cosd+(z, +¢,t,)cosOsing (7)

This is the general form of the 3-surfaces that arise in aspect representations for polyhedral
objects. Note that since the form of the surface is known a priori, in order to represent the
surface it is only necessary to store the six constants in the equations—x,,y,, z;, a;, by, and c,.
Also, since a, =x, -x,, b, =y, -y,;, and ¢, =2, -z, it is in fact only necessary to store the
endpoints of a line segment in order to characterize the corresponding aspect 3-surface.

Thus, we can represent a line in object space and a corresponding 3-surface in aspect space with
the same six constants; however, a facet of the asp is only a subset of that 3-surface bounded by
2-surfaces just as a polygon is a portion of a plane bounded by edges. In order to represent a facet,
we must represent the 3-surface on which it lies and the 2-surfaces that bound it. The boundaries
of a facet occur at the intersection of two 3-surfaces, so in order to store a facet we must store the
ridges that bound it, and in order to do that, we must characterize the types of 2-surfaces that
arise.

Since 2-surfaces arise as the intersection of two 3-surfaces, we must determine the intersection
of two general 3-dimensional aspect surfaces. Let the first be given by Egs. (6) and (7) above and
the second by

u=(x,+a,t,) cos0-(z,+c,t,)sind (8)
v=(x, +a,t,) sinOsin¢ + (y, + byty) cos ¢ + (z, + ¢y t,) cos O sin (9

Solving these four equations for t, and eliminating u, v, and t,, we get:
d, sin® +d, cos 6 +d; tan ¢

t,= - (10)
d, sin 0 + dg cos 6 + dg tan ¢

where

dl=c2 (y2 -y1) -b2 (22 -~ z1)
d2 =02 x2 -x1) -a2 y2 -yl)
d3 =c2 (x2 -x1) -a2 (z2 ~z1)
d4=blc2-b2cl
d5=alb2-a2bl
dé=alc2-a2cl

Now we can get the equations for a general 2-surface in the aspect representation of a polyhedron
by substituting Eq. (10) into Egs. (6) and (7). Note that twelve constants characterize a general
2-surface of the aspect representation for a polyhedron. A sufficient set of twelve constants to
characterize an asp 2-surface is x,, ;. z;, 2, by, ¢;, dy, . . ., dg. However, we can get all of these
constants from the endpoints of the two line segments that gave rise to the asp, so in order to
represent an asp 2-surface we need only store pointers to the two object edges that give rise to the
2-surface.

One-dimensional surfaces or curves in the aspect representation arise as the intersection of
three 3-surfaces or a 3-surface and a 2-surface. Since a 2-surface arises as the intersection of two
3-surfaces, these cases are equivalent. In order to characterize the types of 1-surfaces that arise,
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then, it is sufficient to find the intersection of a general 3-surface and 2-surface. Again, the three
object edges that give rise to the 1-surface characterize it; it is sufficient to store pointers to the
three edges. However, in order to find unions and intersections of asps, we will need to
determine things like whether a point is in an edge on a curve; to solve problems like this we
need an explicit parametric representation of the curve. We can calculate this representation for
a general aspect curve in closed form, but the result is somewhat long and complicated. Instead,
we present a procedure for obtaining this representation in specific cases.

In order to derive a procedure for finding a parametric representation of an aspect 1-surface or
curve, recall that they arise as the intersection of three 3-surfaces in aspect space. The
intersection of three 3-surfaces in aspect space is equivalent to the apparent intersection of
three line segments in image space, which in turn is equivalent to being able to draw a line
through three line segments in object space. Thus we can characterize a 1-surface in aspect space
by characterizing all of the lines through three edges in the object, e, e,, and e;. We calculate this
by postulating a viewing line 1 through the three object edges. We will assume that 1is
represented parametrically in a parameter s and that 1 intersects e, at s=0 and e, at s=1. The
result is a set of 9 equations in 10 unknowns. From there it is easy to solve for 1in terms of the
parameter of e, using the quadratic equation. From1it is easy to calculate 6,0,1,v) in terms of
that parameter.

Finally, a vertex in the asp results from the intersection of four 3-surfaces, two 3-surfaces and a
2-surface, two 2-surfaces, or a 3-surface and a 1-surface. Again, it is sufficient to represent the
vertex with pointers to the generating edges of the object. We can calculate the vertex explicitly
using a procedure similar to that for the curve case above; the only difference is that we must
find a line through four object edges instead of three. The result is a point of aspect space, and
the solution requires the use of the cubic equation.

In summary, we can represent the surfaces in the aspect representation for an object according
to how they arise. For example, asp 3-surfaces arise from edges of the object; thus, we can
represent them with pointers to the appropriate edge. Similarly, a 2-surface arises as the
intersection of two 3-surfaces; thus we can represent a 2-surface by pointers to the two object
edges. In working with faces of asps, we will need explicit parametric representations of the
surfaces. We have presented these for 3- and 2-surfaces, and we have presented procedures for
calculating explicit representations of curves and surfaces.

Note that the surfaces characterized here can be calculated by solving polynomials of at most
third order, without any transcendental functions. The transcendental functions arise in
converting from a parametric set of lines which represent viewing directions to the (6,6,u,v)
representation. This is desirable because polynomials are easier to work with than complicated
transcendental functions.

4.4. Representing Asps

We can represent an asp in a hierarchical structure similar to a polyhedron or polytope. We can
represent a polyhedral subdivision of E3 as a list of cells or polyhedra, each polyhedron as
pointers to bounding faces, each face as pointers to bounding edges, and each edge as a pair of
bounding points. In a similar way, we can represent an asp as a list of cells of aspect space, each
cell by pointers to the bounding facets, each facet by pointers to the bounding ridges, each ridge
by pointers to the bounding edges, and each edge by the two bounding vertices.

In the case of the polyhedron, the line on which a line segment lies is stored implicitly. It is the
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line which intersects both endpoints. Similarly, it is not necessary to represent the plane on
which a face lies since it is the plane defined by any three endpoints of edges bounding the face.
This is also true of the aspect representation when aspect surfaces are represented by pointers to
the edges of the object which give rise to the aspect surfaces. For example, suppose two endpoints
of an edge of an asp are each represented by pointers to the four object edges which give rise to
that point. The two points must have three of their four generating object edges in common if
they lie on the same 1-surface, and these three edges define the 1-surface on which the curve lies.
Similarly, two edges bounding a ridge have two of their three generating object-edges in
common; these two edges define the surface that the ridge lies on.

In order to construct efficient algorithms for dealing with asps, however, we want quicker access
to adjacency information in the asp than that possible in the data structure defined so far. For
example, we want to be able to find the two cells separated by a facet in constant time. In order to
be able to retrieve adjacency information efficiently, we make the pointers in the data structure
bidirectional. Cells have pointers to the bounding facets and facets have pointers to the cells
they separate. Facets have pointers to the bounding ridges and ridges have pointers to the
incident facets. Ridges have pointers to bounding edges, edges to bounding vertices, and vice
versa.

In a four dimensional space, a data structure like this is not necessarily of linear size in the
number of faces of a polytope as it would be in three dimensions. However, in the case of the
aspect representation, it turns out that it does have linear size because of the close connection
with a polyhedron [Plantinga & Dyer, 1987].

4.5. Size of Asps

In the case of a convex polyhedron, the asp has size O(n) for an object with n faces, since there is a
face in the polyhedron for every facet in the asp, and the size of the facets in the asp correspond
directly to the size of the faces in the polyhedron. However, in the non-convex case the cross
section of an asp at any value of (6,9) is a view of the corresponding object with hidden lines
removed. Thus we have an immediate lower bound of Q(n?) size, since the image of a scene (or
polyhedron) with hidden lines removed can have Q(n?) line segments. Just how much bigger
than O(n?) can the asp be?

In order to bound the size of a four-dimensional polytope, it is not sufficient to bound the
number of vertices or facets. 4-polytopes that have n vertices can have O(n?) 2-faces. So let us
determine a bound on the number of 2-faces that the asp can have for a polyhedral object with n
vertices. 2-faces of the asp result from two-dimensional features of the

appearance— two-dimensional image features visible at a single viewpoint, one-dimensional
appearance features visible over a one-dimensional range of viewpoints, or zero-dimensional
image features visible over a range of viewpoints. Since there are more zero-dimensional
appearance features than one- or two-dimensional ones, we will restrict our attention to them.
The different possible zero-dimensional features are vertices, the apparent intersection of a
vertex and an edge, and the apparent intersection of two edges. There are thus O(n?) different
features from which asp 2-faces can arise.

However, each image feature may give rise to a number of different asp 2-faces if it is visible in a
number of different regions of viewpoint space. In how many different regions of viewpoint

space can a feature be visible? Consider what bounds these regions. In the case of two edges
which appear to intersect, the boundary is the line of viewpoints such that the endpoint of one of
the edges appears to lie on the other edge. In the case of the apparent intersection of a vertex and
an edge, the boundaries occur at the viewpoint where the vertex “lines up with” the endpoints of
the edge. In all, there are O(n?) different possible boundaries. Therefore, there are at most Om?
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2-faces in the asp and its total size is On%).

It is easier to find bounds on the number of vertices in the asp, however. A vertex is formed by
the apparent intersection of four edges in an image, so there are O(n?) vertices in the asp. It is
possible to determine various other bounds on the number of vertices by examing Table 1 above.
In Table 1 we see that there are actually three different ways in which a vertex in the asp can
occur, i.e. when four different edges appear to intersect in the same point: when two vertices in
the polyhedron appear at the same point in the image, when a vertex and two unconnected edges
appear at the same point in an image, and when four unconnected edges appear to intersect in the
same point. Observe that the number of ways two different vertices in the object can appear at
the same point is O(n?), the number of ways a vertex and two edges can appear to intersect in the
same point is O(n3), and the number of ways four edges can appear to intersect in the same point
is O(n*). Thus, if the object is simple enough that the number of ways four unconnected edges can
appear to intersect in the same point is bounded by Om®), then we can immediately say that the
size of the asp for that object is bounded by O(n®). Also, if the number of ways two edges and a
point can appear to intersect in a point is bounded by On?), then the size of the asp for that object
is bounded by O(n?). These bounds are summarized in Table 2.

type of polyhedron bound on size of asp
general Om?
number of ways four edges can appear to intersect in Om3)

a point is bounded by Om3) (e.g. no grid behind a grid,
but a picket fence behind a grid is acceptable)

number of ways two edges and a vertex can appear to Omn?)
intersect in a point is bounded by Om?) (e.g. no picket
fence behind a grid, but a grid is acceptable)

convex O(n)

Table 2. Bounds on the size of the asp

Some of these restrictions are not at all unrealistic. For example, the only way to get an asp of
size Q(n? is to have that many cases where four edges overlap in an image. An example of such a
situation is a pair of grids, one behind the other (see Figure 5). This sort of situation doesn't
occur often in common images. Note also that in images with many faces, the reason for the
large number of faces is often that they are simulating some sort of smooth surface. In this case,
the complexity of the asp is much less than the worst case, since large numbers of faces are on
convex surfaces and the number of ways that four object edges can appear to intersect in the
image is relatively small.
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Figure 5. An example of an object for which the asp has size O(n?).

5. Using the Aspect Representation for Object Recognition

At first it may seem as though the major benefit of the aspect representation over multiview
representations for object recognition is that it represents the appearance of the object from all
viewpoints instead of a discrete few. That is indeed a benefit; matching an image to one of the
views in a multiview representation will have to tolerate more error than matching to the asp,
since the test image will generally not match any of the stored images exactly.

However, there are other important benefits. The standard way of using a multiview
representation for object recognition is to compare each stored image with the image to be
recognized. In effect, this amounts to hypothesizing a viewpoint and testing whether the given
image is an image of the object from the hypothesized viewpoint. This is very time-consuming,
and worse still, chances are we will never guess exactly the right viewpoint.

The aspect representation suggests a different approach. Rather than hypothesizing a viewpoint
and checking whether the images match, we hypothesize a match of features of the image and the
asp and calculate the viewpoints from which that match would occur, if any. For example,
suppose that the object we are trying to recognize will not be occluded by anything else, although
there may be self-occlusion. Consider a pair of intersecting lines in a given image of the object,
i.e. a corner together with edge lengths. This image feature corresponds to two facets of the asp
intersecting at a ridge. ’

Hypothesize a match of the corner in the object to all similar features of the asp gives us enough
information to calculate the viewpoints where the image would have the given feature, if any. If
there are any such viewpoints, there will only be one or a small constant number of them, not a
continuous range of viewpoints. If there is a possible viewpoint, we can test it by finding other
nearby features in the asp that should appear in the image from that viewpoint, and checking
whether they do in fact appear.

This object recognition algorithm is more precise than algorithms for multiview
representations, since it looks for exact matches rather than close matches or topologically
equivalent images. It also requires less runtime than algorithms for multiview
representations, since it only compares a corner of the object with all corners of the asp, rather
than comparing an image of an object with all of the views of a multiview representation. There
are fewer corners of an asp than topologically distinct images of an object and comparing two
corners takes less time than comparing two images.
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The benefit of using the asp for an algorithm like this over using a standard polyhedral
representation is that self-occlusion is automatically taken care of. That is, if we were to
redesign this algorithm to use a standard polyhedral representation, edge length information
would be of less value since the image edge may be only part of an object edge due to self
occlusion. However, the asp has occlusion edges built in. For objects with no self occlusion, the
algorithms would be the same.

Another benefit of the aspect representation over multiview representations is size. The asp for
an object over a range of viewpoints is smaller that multiview representations which store all
topologically distinct images of the object over the same range of viewpoints. It may seem
counterintuitive that the asp should be smaller when it stores the appearance of the object from
all viewpoints, but the difference is one of efficiency. In the multiview representation, a whole
new image is necessary to represent one topological change in the appearance of the object. In
the aspect representation, just the change is represented.

In the convex case, the size of the asp for an object is linear in the size of the object. However,
since there are O(n?) topologically distinct views of a convex object [Plantinga and Dyer, 1986b],
the multiview representation may require as much as O(n3) space. In the non-convex case, there
are O(n?%) topologlcally distinct views of an object in the worst case. Furthermore, each view can
have size O(n }. Thus the size of a multiview representatmn for a non-convex object can be as
much as Om®). The size of the asp for an object is O(n?) in the worst case. While this is better than
the multiview representation, it is still a bad worst-case. However, the worst case is only
realized for highly non-convex objects; most natural objects are visually much less complex.

Another problem with multiview representations is that there is generally no information
stored about how the different views of the object relate to one another. They might as well be
views of different objects. This fact makes it impossible to use multiview representations to
predict what will happen to the image if we vary the viewpoint slightly or suggest a new, nearby
viewpoint with a certain property, say, that a certain feature is visible. This kind of
computation is easily done with the aspect representation.

6. Algorithms for Asps

In this section we present algorithms for working with asps. The first algorithm constructs the
aspect representation for polyhedral objects. Then we present algorithms for the intersection,
union, and difference of asps, which are useful for constructing the volume of aspect space in
which two features of an object are both visible at the same point, one or the other is visible at
some point, or one in particular is visible.

6.1. Constructing the Asp

We have already shown the aspect representation for a line segment in Eqgs. (4) and (5) above. In
order to construct the asp for a polygonal face, we need only construct the asps for the edges of
the face and the vertices, and add connectivity information. That is, we use a data structure of
asps for line segments which specifies adjacency relationships.

We construct the aspect representation for more complex objects, such as polyhedra or
polyhedral scenes, out of the asps for the faces. However, we must be careful about faces which
overlap in the image plane from some viewpoint. One of these faces will be in front of the other
one and thus occlude it; therefore the asp for the other one should be reduced in aspect volume
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appropriately to reflect the fact that parts of the face are not visible from some viewpoints.

We do this for each face individually. For some face f of the polyhedron we first find all of the
faces that are in front of it. That is, we find the faces that are on the outside of the plane
containing f. Some faces may cut the plane of f, and these we cut into two pieces (or as many
pieces as necessary) at the intersection line with the plane of f. Each of these faces and face
pieces obstructs the view of f from some viewpoints; the faces behind the plane containing f do
not obstruct the view of f from any viewpoint.

We find the asp for the face f as obstructed by the other faces by taking the volume of aspect space
occupied by the asp for f and subtracting the volume of aspect space occupied by the asps for the
faces in front of f. Subtraction is the appropriate operation here since for the viewpoints in
which the images of the object overlap, the other faces will be in front of f and will thus be
obstructing the view of f. We present the algorithm for subtracting one asp from another below.

The asp for a polyhedron or a set of polyhedra is the union of the asps for the faces. In other
words, we construct the asp for a face by subtracting the asps for all of the faces in front of it, and
we construct the asp for a polyhedron by taking the union of the asps for the faces.

6.2. Finding the Difference of Asps

Given the asp for two objects, the difference of these asps is the region of aspect space where the
second asp does not intersect the first. For any cross section for a given value of (0,9), then, the
difference is the region of the image plane where the image of the second object does not overlap
the image of the first. If we knew that the second object were in front of the first, so that it would
occlude the first at any point where they overlapped, then the difference would be the region of
aspect space where the first object is visible (i.e. not occluded by the second). This operation is
important in the construction of the asp for polyhedral objects since constructing the asp
involves subtracting the asps for all of the faces in front of a given face f from the asp for f.

We find the difference of two asps by taking the intersection of the first asp with the complement
of the second. The complement of an asp is the asp with inside/outside information reversed.
We give an algorithm for finding the intersection of asps below.

6.3. Finding the Intersection of Asps

The intersection of two asps corresponds to the region of aspect space where both objects occur at
the same point in the image. For example, if we construct the aspect representations for two
features of an object and take their intersection, we are left with the region of aspect space where
they appear to overlap. All of the algorithms we describe for working with asps are based on the
intersection algorithm described here. Note that this algorithm is defined for “polytopes” in
aspect space, not subdivisions, i.e. a single cell (possibly with holes).

The algorithm for constructing the intersection of two asps is essentially the standard naive
algorithm for constructing intersections. It involves testing every facet from one of the asps for
intersection with the other asp. Whenever we find an intersection, we cut the facet into pieces
along the surface of intersection so that we are left with two faces connected by ridges. We repeat
this procedure for every facet of one of the asps and then for every facet of the other asp. When we
have finished, we join equal faces in the two asps. That is, we modify our data structures so that
the faces are shared by both asps. See Figures 6 and 7 for the two-dimensional analog.



Figure 6. Overlapping polygons

Figure 7. Finding the intersection points

‘When we are done with this step, we are left with an asp-like data structure which contains both
asps and the common intersection points, edges, and ridges. We then “cut away the outer faces”
from this data structure. That is, whenever facets of both asps meet at a ridge, we cut away the
outer ones and leave the inner ones. We can determine which are the outer ones and which are
the inner ones since we know which side of each facet was outside the asp and which was inside.
What remains after cutting away the outer faces is the intersection of the two asps. See Figure 8
for the two-dimensional analog.

Figure 8. Cutting away the outer structure leaves the intersection

This discussion assumes that we know how to find the intersection of pairs of faces of the asps in
order to find the intersection of the whole asps. It is not immediately obvious how to find these
intersections, however. In fact, the problem is very similar to the original problem, except that
the dimension of the problem is less. Therefore, we will consider how to solve lower-
dimensional intersection problems first.

In any intersection problem, we first find the intersection of the spaces in which the faces lie.

For example, if we want to find the intersection of a ridge and a facet in aspect space, we first find
the intersection of the 2-surface and 3-surface containing the respective faces, since the
intersection must lie in that subspace. Once we have found the intersection, we must find the
part of each face that lies in it. Finding the part of a face in a subspace is a lower-dimensional
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intersection problem and can be handled recursively. In the example above, the intersection
will be a 1-surface in general.

Next, we determine the intersection of the faces according to the dimension of the problem. If

the resulting space is 1-dimensional, we have one of three cases: two points on a curve, a point
and a segment on a curve, and two segments on a curve. In order to determine the intersection,
we need to be able to determine ordering on the curve. We do this by calculating the parametric
representation for the curve as discussed in Section 4.3 and finding the value of the parameter
for the points in question. The solutions are then obvious.

If intersection of the spaces containing the faces is 2-dimensional, we then have an intersection
of two O0-, 1-, or 2-dimensional faces. If the faces are not both 2-dimensional, we again find the
intersections of the surfaces containing the faces and solve the lower-dimensional intersection
problem. If they are both 2-dimenisonal, we find the intersection of every pair of edges of the
faces, and where faces intersect we split the edges and add vertices as in Figures 5-7 above. We
find the resulting intersection by “cutting away the outer structure,” that is, looking for vertices
with four adjacent edges and removing the outer ones.

If the intersection of the spaces containing the faces is 3-dimensional, we again check to make
sure that both faces are 3-dimensional; if not, we find the intersection of the new containing
spaces and solve the lower-dimensional problem. If both faces are 3-dimensional, we find the
intersection of each 2-face bounding one of the 3-faces with the other 3-face and split the 2-faces
accordingly. We repeat the procedure for all of the 2-faces of both 3-faces, and then join equal
faces of the two 3-faces. We then cut away the outer faces; what results is the intersection.

6.4. Finding the Union of Asps

The union of two asps corresponds to the region of aspect space where either one or both of the
objects are visible at some point in the image. For example, if we construct the aspect
representations for two features of an object and take their union, we are left with the region of
aspect space where at least one of the features appears.

Figure 9. Cutting away the inner structure leaves the union

The union of two asps is constructed exactly the same way that the intersection is constructed,
except that during the “cutting away” step we discard the inner faces rather than the outer ones.
See Figure 9 for the two-dimensional analog.
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6.5. Algorithm Runtimes

All of these algorithms are based on the intersection algorithm and require the same runtime.
In the case of the intersection algorithm, the first step involves finding the intersection of each
face of one asp with all of the faces of the other asp. This requires a total of O(nm) time for two
asps with n and m faces respectively. The second step is the “cutting away process,” which
involves counting the number of facets at each ridge and deleting the external ones. Since this
involves checking each ridge-facet incidence at most once, and since the number of facets at a
ridge is constant, this step takes time linear in the size of the intersection. Therefore, the
algorithms take time O(nm), as one would expect for a naive intersection algorithm.

7. Conclusion

The aspect representation is the first example of a continuous viewer-centered object
representation. Using such a representation we can work with the appearance of an object
rather than the volume of space that it fills. We have shown that this is advantageous for object
recognition, and we also expect that techniques of the sort developed here will prove useful in
other problems, such as computer graphics. In fact, we believe that one of the main results of
this paper is a better understanding of how to work with the appearance of an object over a
continuous range of viewpoints. This paper elucidates these ideas by answering questions about
aspect itself, such as how we can calculate and represent appearance over a range of viewpoints,
what the connections between different views of an object are and how we can represent them,
and how we can search for viewpoints with a particular appearance or property.

The aspect representation has something in common with multiview object representations
since any appropriate cross-section of the asp is a view of the object. However, it clearly goes
beyond the multiview idea since it represents the appearance of the object from all viewpoints
continuously. Another difference is that multiview representations do not store any
information about how different views relate to one another. The aspect representation makes
clear exactly how “different views” of an object from different viewpoints (i.e. cross-sections of
the asp) relate to one another.

Another significant advantage of the aspect representation is that it makes it easier to answer
queries asking at which viewpoints a particular visual event occurs, for example, at which
viewpoints a certain feature is visible. Using standard representations such queries involve
computing the rotation of the object necessary for the event to occur. However, using the aspect
representation, answering the query reduces to searching the asp for the given feature. Resulting
algorithms may even turn out the same using both approaches except that constructing the asp
solves most of the problem during preprocessing,

The aspect representation is large for highly non-convex objects because in a sense it contains
every hidden-surfaces-removed image of the object. In return for the space requirements,
though, the asp makes explicit a great deal of information about the object or the scene. For that
reason, the asp is a natural choice for use in parallel algorithms and algorithms for problems
which are difficult to compute.

Marr [1978, 1982] argues that object-centered representations are preferable over
viewer-centered representations. His argument is essentially that object-centered
representations are more concise, and humans can recognize objects from a wide variety of
views and against a wide variety of backgrounds. However, the aspect representation is quite
different from multiview representations and has significant advantages over them. First, the
asp is not really any more “viewer-centered” than volumetric representations in his sense of the
word~ it doesn't depend on the location of the viewer. Second, it represents the object from all
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viewpoints, not just a discrete few. Furthermore, Marr's argument does not take into account the
advent of plentiful memory. If we have precomputing time and plentiful space available,
representations which have many different parts but the processing for each part is easier may
be just what we are looking for, especially if we can design efficient parallel algorithms to
process the representation,

Some open problems relating to the aspect representation are the following: what happens to
aspect space and the aspect representation under perspective rather than orthographic
projection? Is it possible to define an approximation to the asp which has smaller size, perhaps
by constructing the asp for various levels of a hierarchical representation of an object? How
does the asp generalize to objects with curved surfaces, for example, generalized cylinders? Can
we represent the effect of a point light source in aspect space, so that shadows in an image are
explicitly stored? Can we define the asp procedurally, as we can represent an object in E3
procedurally, in a manner similar to constructive solid geometry?
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