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Abstract

Pyramid-like parallel hierarchical structures have been shown to be suitable
for many computer vision tasks, and to have the potential for achieving the
speeds needed for the real-time processing of real-world images. We are
developing algorithms to explore the pyramid’s massively parallel and shallowly
serial-hierarchical computing ability in an integrated system that combines both
low level and higher level vision tasks.

Micro-modular transforms are used to embody the program’s knowledge of
the different objects it must recognize. This paper describes pyramid vision
programs that, starting with the image, use transforms that assess key features
to dynamically imply other feature-detecting and characterizing transforms, and
additional top-down, model-driven processes to apply. Program performance is
presented for four real-world images of buildings.

The use of key features in pyramid vision programs and the related search
and control issues are discussed. To expedite the detection of various key features,
feature-adaptable windows are developed. In addition to image-driven bottom-up
and model-driven top-down processing, lateral search is used, and is shown to be
helpful, efficient, and feasible. The results indicate that, with the use of key
features and the combination of a variety of powerful search patterns, the
pyramid-like structure is effective and efficient for supporting parallel and
hierarchical object recognition algorithms.

This research was partially supported by NSF Grant DCR-8302397 to L. Uhr. To appear in Systems,
Man and Cybernetics, in press.






1. Introduction

The importance of highly parallel but also hierarchical descriptions of image data has been
emphasized by many computer vision researchers. In one of their early papers [15], Marr
and Nishihara illustrated a good hierarchical organization of shape information in a 3-D
model description. In recent years, neuroanatomists and neurophysiologists have provided
extensive evidence demonstrating the hierarchical processing of sensory information in the
visual cortex of animals [6, 7, 9]. The recognition cone proposed by Uhr [29, 30] loosely
models human and animal vision systems in the form of a layered hierarchical structure.
Features for object recognition are extracted and aggregated at levels of increasing
abstraction, globality, and generality, and decreasing resolution and detail. In addition to
its hierarchical nature, the recognition cone also incorporates the massive parallelism of
local array processes which is another characteristic of human and animal vision systems.
This kind of parallelism can be realized by micro-modular parallel processors; hence it is

well suited for fast and efficient VLSI multi-computers.

The pyramid structure introduced by Tanimoto and Pavlidis [27] incorporates the
same multi-resolution and hierarchical representation of image data. It has been shown
[4,8,17,23,26, 28] that, using local windows and parallel computation, pyramid-like
structures are very efficient for low level image processing, e.g., averaging, histograming,
edge detection, median filtering, image segmentation. Several programs [8, 19, 24, 25, 30]
have also used pyramid-like structures for object recognition. Pyramid programs are,
potentially, extremely fast when ezecuted by appropriate pyramid-of-arrays multi-

computers.

Various observations have presented evidence of behavior and mechanisms for "focus
of attention’ in human vision [16, 34]. Since a picture that is presented using only a one
millisecond flash of light is perfectly recognizable, and recognition takes only a few
hundred milliseconds, there is no time for glancing around or focusing attention. But the

way people examine images when they are presented for longer periods is suggestive of



how processing might be organized in briefer periods as well. Human perceivers usually
do not stare at the entire area with the same intensity. Rather, after a rough scan they
focus on the ‘interesting’ portion of a scene. This is one of the factors which make the
human vision system so effective. To emulate this, there are needs for: (1) a well-defined
mechanism for the generation and use of 'focus of attention’ in vision systems, (2) an
efficient hardware structure that makes the approach feasible. Key Features are used in
our program. The concept of key feature is not original. Similar concepts have been used
by other researchers in computer vision. An interesting implementation of a 'Local-
Feature-Focus” method is described by Bolles and Cain [3], where one local feature in an
image is found, and is thereafter used to predict a few nearby features to look for. In the
systems described in the present paper, key features are used as the central initiating
threads for the control process. They embed naturally into the hierarchical pyramid
structure, organizing image-driven bottom-up and model-driven top-down processes into

what appears to be a reasonably well-integrated total structure.

The overall structure of the present program is that of a pyramid of arrays.
Successively smaller two-dimensional arrays are stacked and linked via a tree to one
another. An image is input to the large ‘retinal’ array of computers at the pyramid's base
and stored in an image plane of its memory. Each pixel (or if the image array is larger
than the computer array, each sub-array of pixels) is stored in the memory of the
corresponding processor. Computers are linked to neighbors (typically the 4 or 8 near-
neighbors). They are also linked in logarithmically converging tree-like fashion to parents
(typically a 2-by-2 array of children link to each parent) in the next-higher array. All
processors work in parallel, computing functions on information stored in their own and
in near-neighbors’ memories. Results can either be stored in a designated location of the
processors’ own memories, or passed (and converged) to parents or to children. Thus each
layer can execute typical array operations of the sort executed by the CLIP [5], DAP [20],
MPP [2], and also pyramid operations that converge, combine, and disseminate information

[31].

v



Our program runs on a simulated pyramid machine (Table 1).

Level Size Local Memory (bit)
0 1X1 2048
1 2X2 2048
2 4x4 2048
3 8§ X8 2048
4 16 X 16 2048
5 32x32 2048
6 64 X 64 1024
7 128 X128 256
8 256 X256 64
9 512 X512 16

Table 1 Configuration of the Simulated Pyramid Machine

The basic pyramid structure has n levels, each level k (0 Sk <n ) has 2% * 2% nodes (each
a simple processor with its own memory). Each node at level k is hard-wired to its 13

neighbors, i.e., 1 parent, 8 siblings and 4 children.

The connectivity between layers of nodes in the pyramid structure makes the
hierarchical data flow (bottom-up and/or top-down) very efficient. The results of our
program indicate that the pyramid-like structure is successful in facilitating the

development of mechanisms for "focus of attention’.

Micro-modular ‘transforms’ [29, 30] are used to execute processes. Transforms are
IF...THEN... production-like constructs that consist of a number of conditions to look for
(e.g., a two-dimensional mask of features), each with an associated weight, a threshold
with which to determine whether the transform has succeeded, and a number of implied
results (e.g., features, parts of objects, objects, additional transforms to apply). A
transform computes a relatively local probabilistic brain-like window-matching or
combining function [32]. Successive transforms are applied in a parallel and hierarchical
manner. This serves to embed the very complex set of processes needed to recognize real-

world objects into a potentially very fast and efficient highly parallel process, and also to



model living visual systems, with their neurons organized in converging layers in the

retina, lateral geniculate, and visual cortexes.

Transforms compute values or search for features in a set of cells in one level, and
then output the values or implied features (or objects) into the same or an adjacent level.
‘When an operation involves nodes in more than one level, it is called a pyramid operation .
Sometimes, an array operation is also used. in which only nodes in the same level are
involved. Transforms can imply features and characteristics, sub-objects and objects, and
also additional transforms to apply and particular things to look for. Hence they have the
advantage of being ‘procedural’. On the other hand, since transforms are often coded to

find certain patterns (features or objects), they also embody ‘declarative’ and ‘structural’
aspects.

Section 2 discusses search and control mechanisms for pyramid vision programs.
Section 3 presents the program’s results in analyzing house and building images. Section 4

contains a brief summary and discussion.
2. Search and Control in Pyramids
2.1. Searches in the Conceptual Hierarchy and Recognition Tree

In this paper images of building scenes are used as test images. Being man-made objects,
buildings may have more obvious hierarchical structures than many natural objects. To
describe them, part-of and geometrical relations are extensively used. This kind of
hierarchy is sometimes referred to as conceptual hierarchy [1]. A graph can be constructed
to depict the conceptual hierarchy, in which nodes represent objects with their own feature
properties, upward arrows represent the 'part-of” relations and horizontal arrows represent
geometrical relations (above, below, next-to, in, contain, ...) between parts in the image

[11].

Features in images are characterized as global or local, size invariant or size variant.

The implication of this is that the pyramid is a convenient structure for instantiating and



looking for objects, for example using conceptual hierarchies; but now different features
should more appropriately be extracted at different levels in the pyramid. Geometrical
relations are handled in whatever precision required by using the actual implicit relations
between several pieces of information stored in the image array. Thus the system can
make use of both the implicit iconic structure of the images and successively abstracted
images, and also the explicit information that it extracts and stores. Coarse relations can
be obtained at high levels of the pyramid, successively more detailed relations at lower
levels. With multi-computer pyramid hardware and transformed images that are stored
into memories at the appropriate hardware level to represent the different levels of
abstraction, features can be extracted and combined at many levels simultaneously; they
will be scattered around in nodes at different levels. From a structural point of view,
these features form a recognition tree in the pyramid for each existing object. Hence a
major process of object recognition can also be viewed as a search that applies ‘recognition
trees’ to look for the objects they represent and model. The recognition trees for all the
different objects about which the program has knowledge are all embedded in the pyramid.
When they have transform nodes in common (as will often be the case, especially for
lower-level features like edges, angles, and curves) the transform (with pointers to the

adjacent nodes in all these trees) is executed only once.

The search in the tree hierarchies in the pyramid should not be confused with the
graph search in the so called ‘conceptual hierarchy’. These two searches are closely related.
But there is no one-to-one correspondence between the levels in these two hierarchies. In
other words, features at the same level of the 'conceptual hierarchy’ do not necessarily
appear at the same level in the ‘recognition tree’ in a pyramid. Also, a simple object like
‘door’ in a conceptual hierarchy may consist of features at several levels of the recognition
tree, e.g., longer vertical ‘door-side’ at a higher level, shorter horizontal 'door-top’ at a
lower level. Nevertheless, the search of the ‘recognition tree’ can still be guided by the

graph of the ‘conceptual hierarchy’.



2.2. The Importance of Key Features

Key features are those that appear frequently and are especially helpful in the recognition

of the object in question.

Key features can often be extracted from intrinsic images. In this paper we will
mainly use features of shape, texture and color as examples. Other types of intrinsic
features (e.g., surface orientation, occluding contour and disparity) should be investigated,

especially if the program is extended to general three-dimensional domains.

The reason for introducing the notion of ‘key features’ is that they form a
significantly smaller and especially important subset of the whole feature space. In real-
world image analysis, the possible space of features that are occasionally useful is usually
much too big to deal with. As a program like ours is given more and more transforms, the
importance of first using a small set of key features increases. It is more efficient to first
focus the system’s attention on the more important features. Moreover, many
psychological observations suggest that this is exactly the way human vision systems
works [18,21]. Yarbus reported his observations of the human eye movements during

perception of complex objects in [34]:

Records of eye movements show that the observer’s attention is usually held only by cer-
tain elements of the picture. When looking at a human face, an observer usuzally pays more
attention to the eyes, the lips, and the nose. The other parts of the face are given much
more cursory consideration. .. Analysis of the eye-movement records shows that the ele-
ments attracting attention may, in the observer’s opinion, contain information useful and
essential for perception.

This is not to argue that eye movement is essential to recognition. Recognition often takes
only a few hundred milliseconds, and can succeed without this kind of (slow) eye
movement. However, psychological observations have certainly revealed that the brain's

processes do focus on key features during the perception of complex objects.
2.3. Focus Areas

The discovery by the perceiver of some significant key features suggests the extraction of



other features in the conceptual hierarchy — to generate a hypothesis. Once the key
features are located, the enclosed or neighboring areas will attract special attention. The
spatial areas on which the attention is thus focused are named focus areas. For example,
in houses the areas enclosed by pairs of parallel long edges are possible window, shutter or
door areas. Features (e.g., colors and textures) in these areas are further studied, and, in

some sense, verified.

For texture measures, edgeness and edge separation are used in our programs, because
they are simple and effective. They can both be derived from the micro-edge map that the
program builds up in its first application of transforms to the raw input image (Section 3
will present the details of the implementation). Edgeness is the number of edges in a
certain unit area. Homogeneous regions, e.g., the sky, doors and window shutters (at the
appropriate image resolution) have low edgeness measures. On the other hand, trees,
windows and textured wall areas will have a relatively high edgeness measure. Edge
separation refers to the distance measure between micro-edges with eight different
orientations. Kjell [10] demonstrated good results using the edge separation method for
classifying images with different textures, and for image segmentation. For digital images
with good resolution, tree areas and brick wall areas will both have high edgeness
measures, but they will have completely different measures on edge separation, since

bricks have regular horizontal and vertical layouts whereas leaves do not.

In our implementation, simple statistical data (e.g., mean, standard deviation or
variance ) on the feature values within the focus areas are used. Pyramid operations are
employed for gathering statistics in the following manner. At first, the higher level nodes
that found the key features will specify the locations of the focus areas by passing the
coordinate information down to the child nodes and marking the nodes inside the focus
areas. Then the nodes inside the focus areas at an appropriate low level apply the local

measures (e.g., on edgeness or edge separation).



If the variable representing the feature value is x, then for a focus area with n

nodes, the mean (u) for these x values is

n
The values of } x; and n can be aggregated by the parent nodes at consecutively higher
i=1

levels. Pyramid operations with 2 X2 windows are suitable and efficient for doing this.
These are SIMD operations. Nodes outside the focus areas are masked out. Only one

bottom~up pass is needed to capture the mean values.

The definition for the variance (02 of the distribution of x is

i xi —#]2
o=

n

If this definition is used to derive 02, then & must be known before the calculation of o2.
Therefore two passes are needed, the first for u, the second for obtaining o?. Between
these two passes, the u values must be propagated down to the nodes in the original focus

areas.

However, there is a "short-cut’ formula for the variance as below:

i 2
Xi
n ~=1
2 %2 = - n
. i=1
¢ = n

1
With this formula there is no need to pre-determine the mean value. The values of } x;,

i=1

b3

2. x;? and n can all be aggregated in a bottom-up way in the same pass. This allows the
i=1

computation for both x4 and 02 to be completed in just one pass. Although slightly more
calculations are conducted, the control for data flow is simplified in this approach. In a
complicated multilevel system like this, the control can sometimes be a bottleneck. To

avoid more complicated control and data flow, the one-pass method was adopted.
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From the process control point of view, the program’s attention is initially on the key
features. After the key features are extracted successfully in a bottom-up manner,
attention shifts to the focus areas. The process now turns into a top-down model-driven
mode to look for particular interior features in the focus areas. For example, window
panes will be expected in possible window areas, whereas elongated homogeneous areas
will be expected to indicate shutters. However, the parent (or grandparent) nodes need
only specify the ‘goal’ and mark the "focus areas’. The actual data for the measure of the
features will, as just described, again flow in a bottom-up way. Thus the program

combines bottom-up and top-down processing.

2.4. Lateral Search

In low level image pattern analysis, transforms are basically probabilistic template-like
thresholding operations. More and more global features can often be built up in a
hierarchical bottom-up way. Sometimes fairly simple, local transforms can yield good
results. Good masks for low level features such as edges, curves, and corners can be
relatively easily coded as several-level hierarchies executed over several layers of the
pyramid, and applied to almost any image. At higher levels this type of mask is harder to

find, since there are many more variations of feature combinations.

The key features and focus areas method makes use of cycles of bottom-up and top-
down data flow to accumulate pieces of evidence. However, there is also a need to add
more flexible search strategies to deal with more complex patterns in the real-world
images. It is often too likely to result in error to increase the weight of the “house’ based
only on some door-like features, say a rectangle. Lateral search is thus introduced to more
effectively handle geometrical relations between objects in the outdoor-scene analysis.
Based on the discovery of some key features, "attention’ can now also be directed to other
key features at the same level in the conceptual hierarchy of the scene. The feature search
routines are coded in the transforms, and can be triggered dynamically. In cases where

such pairs of key features are found in the ‘lateral search’, the implied object gets a
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significant increase in its weight.

There is a variety of neurophysiological evidence that supports the concept of “lateral

interconnections between areas at the same hierarchical level” [6, 14].

The term ‘lateral search’ refers to the search in a conceptual hierarchy. For the
corresponding search on a subpart of the recognition tree, whose nodes are usually
scattered around at many different levels in the pyramid, several levels may be involved
simultaneously in this so called 'lateral’ search. Often, this kind of ’lateral search’ is
actually accomplished by certain pyramid operations where the parent nodes use elongated
large windows (e.g, 2 X6, or 6 X2) to look for pairs of features in expected directions

within the window.

The lateral search need not be executed serially (node by node). Each layer of the
pyramid is assumed to be an SIMD array multi-computer. The search can be executed in
parallel by all processors in the appropriate layer, with those processors not involved
masked out. In the future, more powerful MIMD multi-computers with more
sophisticated connections between them at the higher levels of the pyramid could be built

that would significantly speed up processing.
2.5. Hypothesis Generation from Low Resolution Images

We have seen how the successful extraction of key features can lead to the generation of

subsequent hypotheses that guide top-down and lateral processing for their verification.

However, in order to know what to start with, and where, we sometimes need, (a) an
initial hypothesis of what key features to expect; and (b) an estimation of the object size.
The latter is important, because it suggests the appropriate resolutions (levels) to extract
and aggregate features for the recognition. These hypotheses can, and must, be generated
by the higher level processors on the basis of an initial rough analysis on images with
reduced resolutions, because (a) global information is needed to generate such hypotheses,

and is available only at higher levels; (b) certain salient, coarse and size invariant features
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can be extracted at reduced resolutions.

Once a hypothesis is generated, the system’s attention will be focused on the
hypothesized key features. This process is much like a human vision system glancing at an
object in a scene using ‘peripheral vision’, thus allowing the perception of a wide angle in a
low resolution, and then directing the attention to some details using the high-resolution

foveal areas.

It takes little time to generate such a hypothesis. On the other hand, such a
hypothesis is obviously not necessarily accurate. Although a pyramid algorithm for the
relatively powerful median filtering operation is employed to generate the low resolution
images, some important features still get lost. To ensure good performance, such
hypotheses should include several alternatives (guesses), and be treated as though they are

subject to later modifications.
3. The Performance of the Program

In this work only front views of building scenes are used. The camera (viewpoint) is
sufficiently far from the object so that perspective projection need not be taken into
account. Many three-dimensional image analysis problems are not addressed. By choosing
a small subset of detailed TV images of real-world building scenes, our examples are

limited to a relatively well-defined, yet fairly general domain.

The program for outdoor-scene analysis was developed on a simulated pyramid. It
was initially tested on two house images, ‘house34’ and 'house35’. After the transforms
were developed, a third image "house.sri’, which was kindly supplied by Wesley, who used
it in [33], was also used. The program appears to exhibit some reasonable generality, since
it works as well on that image. Finally, the program was also tested on an office building
image ("buildingl’) to see if it can distinguish an office (or apartment) building from an
ordinary house by examining the number and the layout pattern of the windows. This

section gives some of the results from the analysis of these images.
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The digitized images all have a resolution of 512 X 512. They are input to and reside
at level 9 in the pyramid. Fig. 1 shows these four images at this resolution. Color images
are digitized with three component (RGB) images. The pyramidal median filtering
technique [12] is used to obtain multi-resolution images at the levels 8, 7 and 6. Next,
edge operators are applied for getting micro-edges at these levels, producing micro-edge
maps with eight directions encoded by 0, 1, ..., 7. Afterwards an edge thinning algorithm
is used to get micro-edges with single pixel width. Fig. 2(a) and (b) show such micro-edge
maps for ‘house35" and ‘house.sri’ at level 7 with a resolution of 128 X128. The main

steps for the analysis of the house images are described in the following sections:
3.1. Feature Extraction
3.1.1. The Selection of Proper Windows

In contrast to other methods, the pyramid approach makes possible the effective use of
relatively small cascaded windows to assess global processes in recognizing objects. If the
object is too large to 'see’ at one level, it will be visible at some higher level of the

pyramid, where the features will have been successively computed and pulled closer.

Since each parent node has direct links to its four children (direct children), windows
of 2 by 2 are the most natural choice. Operations within such windows are the most
efficient to execute and thus are often favored. But a 2 X2 window has drawbacks. First,
this type of window is a "non-overlapped window’. Such non-overlapped windows have
‘cracks’ between them [22). This means that small features may not be detectable except
at very high levels. Hence the number of levels needed to detect a feature is not
proportional to the logarithm of its size. Second, a ‘conceptual hierarchy’ is formed
according to the part-of relation. Some features, e.g., long edges, are semantically low
level information in the conceptual hierarchy. They may represent the side of a door, or
the top of a roof. However due to their length, they may only be combined at the very

top levels of the pyramid. This can lead to difficulties, since features which belong to the
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same level in the conceptual hierarchy (e.g., the top and the sides of a door) are now

separated by too many levels in the recognition tree in the pyramid.

In our program, windows of 2 X2, 3 X3, 4 X4 and up to 6 X6 are selected, according
to the particular task. The pyramid operations for such relatively small window sizes can
be implemented with reasonable efficiency and speed. For a parent P to access one of its
6 X 6 children, if this child C is not its direct child, P can use its sibling link to "talk’ to

one of its 8-neighbors P’, then P’ can use its direct link to get this C node for the node P.

However, large windows have their own problems, in addition to longer execution
time. Since the child sets of neighboring parents overlap a great deal, the same features
will be found redundantly in many nodes at the neighborhood of the expected location.
As illustrated in Fig. 3, with a 6 X6 window, the long vertical edge at level k+1 can be
completely detected at level k by nodes 4,5,6 and mostly detected by nodes 1,2,3,7.8.9. In
our recognition scheme, there is no benefit if all the nodes extract the same information in
such a redundant way. The redundancy becomes more severe, when features are combined

through several levels.

Feature-adaptable windows are used to lessen this problem. As an example, consider
again the window with size 6. For extracting the long vertical edge in Fig. 3 , only a 6 X2
window, i.e., the central strip of the 6 X6 window, need be defined. In this way, the
entire edge falls only in the window of node 5, while part of the edge can be seen in nodes
2 and 8. Fig. 4 depicts some of the feature-adaptable windows for detecting long edges

with different orientations.
3.1.2. Extraction of Collinear Long Edges

Since doors and windows are key features for houses, transforms were developed for
locating them. A close examination of a number of buildings suggests that collinear long
edges in orthogonal directions are often key features for windows, shutters and doors.

This step illustrates the extraction of these long edges.
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First, short edges are built from micro-edges. Pyramid operations are used:
specifically, all the nodes at level 6 examine their 4 X4 children at level 7. Take
‘shortedge0’ as an example. If a pattern of several micro-edge0’s lining up vertically is
detected in its window, the parent node claims a ‘shortedge0’. In order to reduce the
chance of wrong combinations of micro-edges, the actual handling of the 4 X4 window is
somewhat subtle. At first, the parent examines only its direct children (i.e., the center
2 %2 children). Only when a micro-edge0 with a sufficient weight is found at some direct
child node (e.g., at the upper left direct child), will the parent then look for other possible
micro-edge0’s in a 3 X3 window centered around this child. Hence this 3 X3 window is
indeed a subwindow of the 4 X4 window (e.g., the upper left part of the 4 X4 window).
In this way, the 4 X4 window is made more adaptable to different orientations of short

edges. The resulting shortedge0, ..., shortedge7 are stored at level 6.

Second, short edges are combined into long edges. As discussed in section 3.1.1,
variations of 6 X6 feature-adaptable windows are employed for this task. The transforms
for the detection of short and long edges work in the same hierarchical way. The long
edges (named 0 - 7) are extracted by level 5 nodes. Fig. 5 depicts the resulting "longedge0’
and "longedge4’ for "house35’, where the numbers indicate the column coordinates of these

vertical long edges at level 7's resolution (128 X 128).

After these two steps, efforts are made to build still higher level features. Doors and
windows are usually rectangular in the front views of buildings. Considering that doors
and windows of houses can often be partially occluded by other objects, e.g., bushes or
trees in front of the house, the program should also be able to deal with part of a
rectangle, especially some antiparallel long vertical edges. The level 4 nodes use pyramid
operations to extract pairs of such antiparallel long edges currently stored at level 5. For
example, a 2 X6 window is specified to search for pairs of vertical long edges ("longedge0’

at the left and ‘longedge4’ at the right, or vice versa).
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3.2. Search in Focus Areas

Once such collinear long edges are located, the enclosed regions are treated as focus areas.
Usually the program will examine more details of the image at lower levels. The full

program executes a number of sequences of this sort of shallowly serial searches.

Fig. 6 is a micro-edge map for the lower left window in 'house35" under the original
resolution (512 X512). In this particular example, window panes are not hard to recognize
at this high resolution. Once attention is focused on this area, evidence for a window is
abundant. Successive transforms (for short edges, Ljoints, rectangles) are employed from

level 8 up to verify the hypothesis of ‘'window’.

The program also gathers statistics on features such as colors and textures within
these focus areas. As an example, the study of ‘edgeness’ is shown. The motivation for
studying ‘edgeness’ is to distinguish subparts with high ‘edgeness’ values (e.g., trees,
windows, textured roofs) from others with low values (e.g., single-colored door, sky). At
levels 5, 6 and 7, the focus areas are specified by the level 4 nodes which found the pairs
of antiparallel long edges. Local measures on edgeness are then first made at level 7. Each
of the level 7 nodes counts the total number of micro-edges of its 2 X2 direct children at
level 8. The maximum possible edgeness value is 4, the minimum is 0. Based on this
edgeness count, nodes at levels 6, 5, and then level 4 get the statistical information (mean
and variance of edgeness) at all focus areas. Fig. 7 (a) and (b) show the data acquired at
level 4 for the focus areas in 'house35” and ‘house.sri’. The areas are enclosed by pairs of
long edges 4 and O, with ‘longedge4’ either at the left or at the right. The boundary
coordinates for these rectangular areas are also listed. (The data are scattered in different
locations at level 4. The presentation of these global tables is for the sake of clarity.)
Doors and windows in these images have mostly been identified as focus areas and have
some interesting statistics. For example, in "house35" doors and window shutters show
near-zero mean and variance values due to their uniform color and intensity, whereas

window areas have high edgeness values due to the edges of all the frames.
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The search in the focus area is very powerful for studying properties of subparts
with relatively big regions. Our program started with edge properties. By focusing in the
areas bounded by long edges, the program is capable of combining region properties with

edge properties.
3.3. An Example of Lateral Search

Although the transforms described are only a few examples of those actually used, the
analysis needed for the focus areas, e.g., the ones in Fig. 7, is already non-trivial. The
system can invoke further transforms on more features (e.g.., size, elongation and color of
the region) to disambiguate them. But to understand the subparts in the images, the more
important information here is the geometrical locations and relations between the door and

windows.

In the building images with front views, windows are often lined up horizontally
and/or vertically, doors are usually at lower positions than windows, and the window
shutters (if any) are very good indications of the locations of the windows. The "lateral
search’ routines use these geometrical relations. For instance, every time a window is
implied, the program will look for the door or other windows at a range of certain

distances and directions.

As an example, consider the window-door lateral search for "house35" in a little more
detail. As usual, many of the entries in Fig. 7(a) are not important parts of the house.
Some of them are even in the tree area. Since some lower left node at level 4 got a high
weight for the left window (Fig. 6) in the previous step, search routines were triggered to
laterally look for other windows and door. The routines succeeded in finding the door and
lower right window at this time. As entries in Fig. 7(a) indicate, there are two "window
assemblies’ (combinations of one window area and two shutter areas) in ‘house35’. The
entries marked 'window’ and 'shutter’ indicate that their top is at about row 72, and their
bottom at about row 83. The left and right boundaries for the left window assembly are

column 29 and column 46; for the right window assembly they are column 88 and column
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106. Similarly, the door-assembly (combination of one door and two door frames) has its
(top, bottom, left, right) at (72, 87, 59. 74). The shutters, doors, and door frames have
basically zero mean and variance values on the edgeness measure, whereas the windows
have high mean and variance values. For locating the shutters and doors, the program first
finds 'non-tiny’ and ‘low-edgeness’ areas. Focus areas whose area is larger than 10 and
mean not larger than 0.5 are chosen, as shown in Fig. 8(a). After the lateral search
routines find the matched shutter and door areas, they search further for the evidence of
the two entire window assemblies and one door assembly, with their appropriate spatial
relations. The result is shown in Fig. 8(b), where the first three rows show the lower left
window assembly, and so on. The partial conclusions are: (a) The lower windows have
clearly visible frames and panes, the shutters next to the lower windows have a low-
edgeness texture measure; (b) a door is between two windows, the bottom of the door is
lower than the bottom of the windows, their top is on the same line; etc. In this case, the
weights for the door and windows, and also for house, are increased substantially, with

confidence.
3.4. More Searches Initiated from High Levels

Due to the topology of the pyramid, the high level nodes can naturally be used to access

global data.

As discussed in section 2.5, sometimes global features derived directly from low
resolution images (e.g.. 64 X64) can be used by higher level nodes to generate hypotheses
at the beginning of the analysis. In outdoor-scenes, colors of large regions are good size
invariant features and useful clues for regions like sky and grass. The large sky-colored
regions above some long horizontal or triangular roof-shaped edges, and the green grass-
colored regions lower down, imply the possible existence of a house in between these two
regions. The hypothesis thus generated suggests the possible set of key features (e.g.,

doors and windows) to look for and the possible "best-levels’ to start at.
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However, what may be an even more important role that the high level nodes play is
the combining and abstracting of features collected by lower level processes. A simple
example is the recognition of the outlines and roofs of buildings. These are more global
features and they are aggregated at higher levels in the pyramid. When a certain set of
features has been implied with sufficiently high weights, some goal-driven search routines
are invoked to look for other related features in the conceptual hierarchy. Now these
features no longer have to be key features. By accumulating more evidence, the recognition
process becomes more thorough. This type of search is especially useful for the features
whose extraction heavily relies on global knowledge of the scene. For example, the
chimney in "House35" was initially not noticed by the program. It is recognized after there

is already an indication of the shape and location of the roof.

As a more detailed example, the analysis for textures of walls in "house34’ and
*house35” will be examined. The walls of "house34’ are built of shingles that create many
regularly arranged horizontal long edges ('longedge2’ and ’longedge6’) in the image. The
walls of 'house35" have almost no trace of edges at the current image resolution. The
evidence of the locations of the key features (windows and doors) of the houses is used to
point out the possible locations of the wall areas. Then the statistics on the edgeness and
edge separation for the wall areas are measured. Fig. 9 is an illustration of the data
collected from these areas. In ‘house35' there is evidence for a 'door-assembly’ whose
(top, bottom, left, right) is (72, 83, 59, 74), and one of the "window-assemblies’ at (72,
83, 88, 106). Two sample "wall areas’ are thus chosen to be at (64, 68, 88, 106) and (72,
83, 78, 84); one is above the window, and the other between the door and the window.
The wall areas in 'house34’ are chosen in a similar way. As seen in Fig. 9(a) the mean
values for edgeness in ‘house34’ are relatively high, as they should be. The vertical
distance between ‘longedge2’ and ‘longedge6’ is used as the measure of ‘edge separation’.
The statistics of edge separation are quite informative. The mean value of 2 indicates that
horizontal long edges are separated on the average by two cells (at the resolution of

256 X256) and the variance value of O indicates the extremely regular horizontal edge
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separation pattern in the two chosen wall areas of ‘house34’. In Fig. 9(b), the low mean
‘edgeness’ values indicate there are very few edges in the wall areas of "house35’. Since
there are no pairs of longedge2’ and "longedge6” existing within a certain maximum search

distance, the mean and variance for edge separation in "house35" get a value "undefined’.

Generally, the program can handle image data that is noisier and more complex than
what is presented in Fig. 9. However, this example is sufficient to illustrate how the high
level nodes can effectively initiate more search routines, ones that improve the recognition

process.
3.5. Combining Information Using Evidential Reasoning

To perceive real-world images, a vision system needs intelligent reasoning mechanisms.
QOur program uses its own knowledge representation technique, and the evidential
reasoning mechanism based on key features with the application of the Dempster-Shafer
theory to combine evidence. A detailed description is presented in [11, 13]. The program
is capable of accumulating evidence and reasoning under uncertainty. Table 2 shows the

partial results of the reasoning process from the analysis of the image "buildingl’.

Possible window areas

Wi1-6| W7 | W8 | W9 |[W10|W11|W12| 4 5 9 |15 117 | 18
Bel (elong ) 05 {05]05(|05}(05|05]05]|03|05(05(03|0.51]05
Bel (text) 04 {02104|04{04|04]|04104}| 0 |04/04] 01| O

Bel (it—bound)| 0.6 [{0.6 |06 06|06 |06 06| 0 (01} O 0 [06]03

Bel (rt—bound )| 0.6 0.6 0.6 10301 06 |06 06[03]03]|06| 0 |0.1
Bel (wnd) 449 1.409.449|.407|.379 | .449 | .449 |.335|.205|.262.335|.285|.205

Bel (v—sibl) | 0.6 [ 0.6 |06 (0606 |06 |06 | 0 0 [06] O 0606
Bel (h—sibl) | 0.6 |0.6 10610606 |06 {06 0 (06| O 010 0
Bel ' (wnd ) 492 |.4751.4921.475|.462 |.492 |.492 |.134.203|.2251.134{.234.203

Bel (non—=wnd)| O 0 0160 0 0 0 [05(051 0O 0| 0105

Bel "(wnd) | .492 |.475].492.475].462 |.492 |.492 |.080|.166].225{.134|.234|.166

Table 2 Belief Values for Some Possible Windows in 'Building1’
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After extracting pairs of collinear horizontal long edges, 46 areas are hypothesized as
possible window areas. To make this example clearer, 12 real window areas are labeled
"W1’ to "W12', the others '1" to "34". Only the 12 real window areas and 6 "non-window’
areas which carry relatively high weights and thus are not easy to discriminate from the
real windows are shown in Table 2. At first, belief values (similar to weights) are
assigned to each area according to the ‘perfectness’ of its elongation , texture, and the
extracted left-boundary and right-boundary. These belief values are combined to obtain the
belief value Bel (wnd ) for each area. This step already gives higher belief values to the 12
real windows than any of the ‘non-window’ areas. However, it can be seen that the value
for "W10" (0.379) is fairly close to the value of non-window ‘4" and "15° (0.335).
Contextual geometrical relations are thus used to improve the result. Since the windows
of an office (or apartment) building are usually arranged in a horizontal or vertical
alignment, the ‘lateral search’ for horizontal or vertical sibling windows is conducted. It
turns out that the real windows are successful in finding their neighbors and hence have
their Bel (wnd ) increased; whereas the non-window areas are unable to find their
neighbors in this way and thus get their Bel (wnd ) decreased. The new values are
indicated by Bel '(wnd). Finally, the approximate locations of the outlines of the
building are used (they are actually propagated dswn from a higher level in the pyramid).
Some of the areas, e.g., ‘4", ‘5" and '18’, are ruled to be probably out of the building
boundaries due to their locations. Their chances of being real windows are further
reduced. The final values Bel " (wnd ) show that the program is very confident about the
existence of the 12 real windows. Because the program found strong evidence of the
number and the arrangement of the windows at this level, it combined this with other
evidence (e.g., the shape and outline of the building), and succeeded in recognizing the

object in "Buildingl’ as an office or apartment building.
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4. Summary and Discussion

This paper describes the search and control strategy which is made feasible by the use of
key features. Following the model of ‘preattentive processes’, the transforms that
successfully extracted key features are used to trigger other transforms for ‘focus of
attention’ in focus areas, and also for 'lateral search’ in extracting other key features.
Since the searches are concentrated in relatively small and especially important subsets in
the feature space, recognition is accomplished efficiently and effectively. This is attested to
by the program’s success in recognizing buildings (bouses) in four different test images.
The pyramid-like hierarchical structure facilitates the combining of both bottom-up and
top-down searches. By the application of key features and the combination of a variety of
effective search patterns, the program accumulates evidence about the important
components of buildings and their surroundings, e.g., windows and doors, as well as roofs,
chimneys, walls, glasses, bushes, trees, sky, ... , and finally reaches the goal of recognizing

different buildings in outdoor scenes.

The VISIONS system [8] was proposed as a general system for the interpretation of
static outdoor scenes. The system is composed of a segmentation subsystem and an
interpretation subsystem. The segmentation subsystem extracts features in a "processing
cone’. The results of "boundary analysis’ and ‘region analysis’ are merged to produce the
segmentation of images. The interpretation subsystem interprets features in terms of
world knowledge, and proposes new features to be looked for by the segmentation process.
There have been many follow-on publications about segmentation techniques as well as
several concerning knowledge representation and reasoning in the VISIONS system. The
main difficulties seem to be: (a) good segmentations are exceedingly difficult to achieve
(indeed we conjecture that they cannot be achieved except after objects have been
recognized), (b) a suitable knowledge representation and reasoning technique for the

complex outdoor-scene domain remains to be satisfactorily developed.
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The present paper also examines the domain of static outdoor scenes. The pyramid
programs developed have many similarities to the VISIONS system, since both take a
parallel-serial hierarchical approach to object recognition in a pyramid-like structure.
However, our approach attempts to combine lower- and higher-level processes into a
well-integrated multi-level system. Our program does more processing (both low-level
and high-level) that is highly parallel using neuron-like micro-modular transforms within
the parallel structure and therefore should be substantially faster (given appropriate
hardware). We do not believe that a complete and near perfect segmentation is possible,
Or necessary, on most image analysis tasks. Segmentation should serve to help recognition;
it is not an end in itself. This paper describes how key features are used to alleviate the
segmentation problem, and to initiate a smooth combination of bottom-up, top-down, and
lateral flows of processes. The emphasis is on the search and control aspects related to the

use of key features that process and help focus attention on important parts of the scene.

The present program was tested on only a small number of images; but these were
complex real-world images. The program’s knowledge of key features, and of the entire
set of recognition trees of features that it uses to model all the objects are expressed as
micro-modular transforms. So this program can be made substantially more general and
more powerful, simply by adding more transforms. Given suitable parallel hardware, it
will still be as fast; therefore it offers real promise of real-time perception of real-world

objects.
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Statistics on 'focus areas’ enclosed by pairs of long edges 4-0:

area 7 o2 top
32 2.6 1.2 20
40 1.5 1.2 36
32 1.1 1.4 36
20 1.1 0.9 44
20 1.3 1.7 40

4 0.3 0.2 48
72 1.6 1.3 40
56 0.2 0.4 52

8 1.0 1.3 72

8 0.0 0.0 76
20 0.0 0.0 72
24 0.0 0.0 72
60 2.4 0.9 72
24 0.0 0.0 72
32 0.0 0.0 72
76 1.8 1.4 72

8 0.8 0.7 84
120 0.0 0.0 72
60 0.6 1.0 84
32 0.0 0.0 72
32 0.5 0.8 88

bottom

left

18
55
55
64
29
36
45
88
95
45
63
76
105
63

right

-~> upper window

~~-> upper window

-~> lower shutter
--> lower window
--> lower shutter
--> lower shutter
~-~> lower window

--> door

--> lower shutter

Statistics on "focus areas’ enclosed by pairs of long edges 0-4:

bottom

left

right

area 13 top
8 1.3 0.7 40
40 2.2 1.3 36
4 0.0 0.0 44
8 0.0 0.0 44
64 2.4 0.8 40
56 1.3 1.3 48
148 2.3 1.0 40
8 0.0 0.0 44
12 0.0 0.0 44
56 0.8 1.4 52
4 0.0 0.0 64
112 1.3 1.5 64
4 0.0 0.0 72
28 0.4 0.9 76
44 1.8 1.2 84
52 0.1 0.2 72
48 0.0 0.0 72
40 0.0 0.0 72
12 1.1 1.4 88

** g2 — variance.

43
43
47
47

—-> dormer side
--> dommrer side

--> dormer side
--> dormrer side

-~-> door frame
-~-> door frame

** The symbolic names pointed to by arrows are not program output

at this stage of the recognition.

Fig. 7 (a) The Statistical Data for "Focus Areas’ in "House35"



Statistics on "focus areas’ enclosed by pairs of long edges 4-0:

33

area K o’ top bottom left right

24 1.2 0.8 44 47 103 108

32 0.2 0.4 40 55 49 50 ~-->upper shutter
44 0.0 0.0 40 55 76 78 --> upper shutter
48 1.5 1.4 52 55 99 110

48 0.1 0.2 68 83 55 57 --> lower shutter
96 0.3 0.4 68 83 71 + 76 --> lower shutter
28 0.1 0.1 72 83 90 92 --> lower shutter
64 0.1 0.1 88 95 52 59

Statistics on "focus areas’ enclosed by pairs of long edges 0-4:

area M o? top  bottom left right

44 0.2 0.3 72 75 25 35

140 1.0 1.0 68 83 60 69 --> lower window
124 1.1 1.2 72 83 79 88 --> lower window
92 0.1 0.2 72 83 94 101

48 0.2 0.3 84 91 24 29

164 0.3 0.6 84 95 33 46 --> door way

** o2 _ variance.

*¥* The symbolic names pointed to by arrows are not program output
at this stage of the recognition.

Fig. 7 (b) The Statistical Data for "Focus Areas’ in "House.sri’



Statistics on 'focus areas’ enclosed by pairs of long edges 4-0:

area M o? top bottam
56 0.2 0.4 52 55
20 0.0 0.0 72 79
24 0.0 0.0 72 83
24 0.0 0.0 72 83
32 0.0 0.0 72 83
120 0.0 0.0 72 87
32 0.0 0.0 72 87
32 0.5 0.8 88 91

left

105
63

-~> Jower
-~-> lower
--> lower
--> door

--> lower

Statistics on "focus areas’ enclosed by pairs of long edges 0-4:

left

right

61

area 7 o® top  bottom
12 0.0 0.0 44 51
28 0.4 0.9 76 79
52 0.1 0.2 72 87
48 0.0 0.0 72 87
40 0.0 0.0 72 87

72

74

34

shutter
shutter
shutter

shutter

-~> dormer side

--> door frame
~-> door frame

*** The symbolic names pointed to by arrows are not program output

at this stage of the recognition.

(a) Non-Tiny, Low-Edgeness Areas

59
63

61
70

area 7 o top bottom
24 0.0 0.0 72 83
60 2.4 0.9 72 83
24 0.0 0.0 72 83
32 0.0 0.0 72 83
76 1.8 1.4 72 83
32 0.0 0.0 72 87
48 0.0 0.0 72 87
120 0.0 0.0 72 87
40 0.0 0.0 72 87

72

74

>> lower shutter
>> lower window

>> lower

shutter

>> lower shutter
>> lower window

>> lower

shutter

>> door frame

>> door

>> door frame

(b) Matched Window-Assemblies and Door-Assembly

Fig. 8 The Lateral Search results in "House35’



Statistics on Edge Separation Measure:
© o> top bottom left right

2.0 0.0 54 63 88 110
2.0 0.0 68 79 72 83

Statistics on Edgeness Measure:
M o> top |Dbottom left right

1.8 04 54 63 88 110
19 1.1 68 79 72 83

(a) house34

Statistics on Edge Separation Measure:
u o> top bottom left right

undef undef 64 68 88 106
undef undef 72 83 78 84

Statistics on Edgeness Measure:
73 o> top Dbottom left right

02 04 64 68 88 106
02 03 72 83 78 84

(b) house35

Fig. 9 Edge Separation and Edgeness Measure on Wall Areas



