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Abstract

This thesis presents an approach to the problem of generating execution facilities
for integrated programming environments from specifications of the dynamic seman-
tics of programming languages. The approach is based on techniques used in
semantics-directed compiler generators, using a denotational semantic description of
the language. These techniques are adapted to the special nature of an integrated pro-
gramming environment, in particular the need to provide incremental translation and

interactive execution.

In interpreters generated using our system, programs are translated into denota-
tions that are represented as linked structures containing pointers to the compiled code
of denotation functions. This representation is compact, provides reasonable execution

efficiency, and is easy to maintain incrementally during program modification.

The correspondence between the executable representation and the parse tree of
the program can be exploited to permit the user to interact with the program at run-
time in terms of source-language constructs, thus providing support for interactive exe-
cution. We show how many of the features of previous hand-coded integrated pro-
gramming environments can be incorporated naturally into the generated execution

facilities.
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Chapter 1

Introduction

The coding phase of program development usually involves many iterations of an
edit-compile-debug cycle. During this phase the programmer, using a variety of tools,
successively modifies, translates, and tests a program until it appears to be correct.
The set of tools available to the programmer during this process greatly affects the
time taken to complete it. Usually, the tools used are an editor (to write and modify
programs), a compiler (to translate them), and a debugger (to help deduce what went

wrong).

One approach to improving the efficiency of the coding process is to combine
these tools into a single integrated tool, often called an environment. For example,
several editors use the knowledge that the domain of objects being edited is limited to
programs in a particular programming language to assist the programmer in the crea-
tion of “correct” programs. These editors, variously known as language-based editors,
syntax-directed editors, or structure editors, provide assistance akin to that provided
by the front end of a traditional compiler; syntactic and static semantic errors may be
detected and perhaps repaired automatically. In some cases, program entry and

modification are not textual, but rather in terms of the syntactic units of the language,

thus assuring syntactic correctness at all times.’

! programs may, however, still be incomplete.



The next step is to add to such an editor the capability to run programs, thus
creating a complete integrated programming environment, or IPE. Since we are con-
cerned with program development, an IPE should provide adequate debugging support
during program execution. In addition, it is desirable that the execution facilities
exploit the special nature of an integrated environment (as opposed to a traditional edi-
tor and compiler) to shorten the development cycle as much as possible. Allowing

rapid transitions from editing to execution, and vice versa, helps achieve this goal.

In view of the large number of programming languages in existence, there is a
strong incentive to automate the creation of IPEs, rather than writing each one from
scratch. In order to develop an IPE generator, we need a language-independent skele-
ton or kernel, together with formal specification of all the language-dependent aspects
of an IPE, and algorithms for deriving efficient implementations from those
specifications. For a minimal complete IPE, the language-dependent aspects are the

syntax, static semantics, and dynamic semantics of the language.

This thesis presents an approach to generating execution facilities for IPEs from
specifications of the dynamic semantics of programming languages. The approach is
based on techniques used in semantics-directed compiler generators, using a denota-
tional semantic description. These techniques are adapted to the special nature of an
IPE, in particular the need to provide incremental translation and interactive execu-
tion.

The remainder of this introduction is arranged as follows: First, section 1.1 out-
lines the separation of the various components of a language description. Next, section
1.2 describes briefly previous approaches to the generation problem. Finally, section

1.3 introduces our method.




1.1. Syntax and Semantics

When describing languages, we try to separate questions of form from questions
of meaning; the former we term syntax, and the latter, semantics. [Tennent81] pro-
vides a good starting point for the reader interested in further discussions of the various

aspects of programming language specification.

1.1.1. Syntax

The syntax of a programming language specifies the form of programs in the
language. Syntax descriptions are usually written in a form of context-free grammar or
BNF (Backus-Naur Form), first developed to describe the syntax of the programming
language ALGOL 60 [Naur63]. This notation gives a precise, yet easy to understand,
specification of a language’s syntax. Additionally, by restricting our descriptions to
certain classes of grammars, we can automatically construct efficient parsers that deter-

mine the syntactic structure of programs.

It is often useful to distinguish between the abstract syntax and concrete syntax of
a language. The concrete syntax gives the actual form of valid programs as they would
be printed out or typed in, including all the “syntactic sugar” that is necessary for pars-
ing, whereas the abstract syntax discards all superficial elements, leaving only the part
essential to the meaning of the program. For example, Figure 1-1 gives the abstract
and concrete syntax of an if statement in Pascal [Jensen78]. Descriptions of languages
routinely include a formal concrete syntax specification in a form similar to that in Fig-
ure 1-1, and it is a fairly straightforward matter to write such a specification for a con-

ventional programming language.



Concrete Syntax

<statement> ::= if <condition> then <statement> <else part>
<else part> = else <statement>
Abstract Syntax

<statement> := if-then ( <condition> <statement> )
:= if-then-else ( <condition> <statement> <statement> )

Figure 1-1: Concrete and Abstract Syntax of an if statement.

1.1.2. Semantics

Where syntax specifies the form of valid programs in a language, semantics
ascribes meaning to them. There are several aims in specifying the semantics of pro-
gramming languages. A language semantics may be purely descriptive in intent, or it
may be designed to aid in some other goal, such as implementing a language processor,
or proving certain properties of programs written in the language.

While there are standard, well-understood formal methods for specifying the syn-
tax of programming languages, the same cannot be said for semantics. All too often,
the only semantic specification of a language is a document in a natural language such
as English, with all the ambiguity and room for error that entails. There are, however,
formal semantic specification techniques that have been developed.

The tractability of programming language syntax (in contrast to semantics) makes
it the ideal base from which to launch sorties against the formidable tasks of language
specification and implementation. Semantic descriptions that have a structure guided

by the syntax of the language are referred to as syntax-directed. Because the abstract




syntax is stripped of information that is irrelevant to the meaning of the program, it is
often chosen as the basis for syntax-directed specification of the semantics of a
language.

The semantics of languages can be divided into static and dynamic components.
We include in static semantics all those aspects of a language that are usually checked
by a compiler, such as type correctness and variable declarations. Since these checks
can also be considered to be further constraints on the form of correct programs, they
are sometimes called context-sensitive syntax, as opposed to what we have termed syn-
tax, which is context-free. The dynamic semantics of a language specifies the run-time
behavior of programs. The simplest way to describe the purview of dynamic semantics
is by default; dynamic semantics includes everything that is not covered by syntax or

static semantics.

The next two sub-sections present a short introduction to attribute grammars and
denotational semantics, respectively. Attribute grammars have been used as the basis
of language-based editor generator systems (the precursors of integrated programming
environments), and denotational semantics form the basis of our method for IPE gen-

eration.

1.1.2.1. Attribute Grammars

Attribute grammars were proposed by Knuth [Knuth68] in order to extend
context-free grammars to include context-sensitive properties of programming
languages. A fixed set of attributes is associated with each grammar symbol. These

attributes represent information associated with the symbol, such as its type or value.

Each production in the syntax of the language has associated with it a set of attri-

bute evaluation rules. If an attribute rule associated with a production defines the value



of an attribute of the symbol on the left-hand side of the production, we refer to that
attribute as a synthesized attribute; if the rule defines the value of an attribute of a sym-
bol on the right-hand side of the production, we refer to the attribute as an inherited
attribute. The attribute rules may only use attribute values associated with symbols

within the production in question. Figure 1-2 presents a simple example of type check-
ing in an expression. Note that <expression> refers to the n™ occurrence of <expres-

sion> in the production, and <expression>.type refers to attribute zype of node

<expression>.

Apart from the constraint on the attributes evaluation rules can use, there is no
restriction on the functions that may be specified. These functions can be arbitrarily
complex, and indeed may not even be defined for all inputs. Attribute grammars are
thus extremely powerful, and can in theory be used to specify all aspects of the seman-
tics of programming languages, although their strength lies in describing static seman-

tics.

Production:
<expression> .= <expression> + <expression>
Attribute Rule:
<expression>,.type = if <expression>,.type == <expression>,.type
then <expression>,.type
else error-type.

Figure 1-2: An attribute grammar example.




1.1.2.2. Denotational Semantics

Denotational semantics, as pioneered by Dana Scott and Christopher
Strachey [Scott71], describes the semantics of programming languages by mapping
programs in the language into mathematical functions. This mapping is denotational,
in that the meaning of a composite construct (such as an if statement) is defined in
terms of the meanings of its immediate constituents (an expression and another state-
ment). Chapter 2 gives a more detailed introduction to denotational semantics; we

present here some of the salient features of this semantic description method.

A denotational description of a programming language is syntax-directed and
modular. Every syntactic construct in the language is mapped into a mathematical
object (such as a number or function) that models its meaning. The meanings of ele-
mentary constructs (such as numerals or identifiers) are specified directly, whereas the
meanings of composite constructs are defined in terms of the meanings of their

immediate constituents.

In addition to the abstract syntax of the language, a denotational semantics must
also specify the semantic domains into which language constructs will be mapped, as
well as the semantic functions that define the mapping. There is usually one semantic
function for each syntactic category in the language, defined by cases on the produc-

tions in the abstract syntax.

As an example, Figure 1-3 gives the semantics of binary numerals (sequences of
0Os and 1s terminated by a "B"), following Tennent [Tennent81]. The semantic domain
is N, the non-negative integers. The semantic function, named E, maps binary
numerals (members of BinInt) into non-negative integers (members of N). To dif-
ferentiate between syntactic and semantic objects which have similar representations,

such as the binary digit "0" and the integer zero, we will enclose syntactic objects in



brackets ([ and ]) in the definitions of semantic functions. The operators used in the

semantic function ("*", "+", "=") are the standard integer operators.

Denotational semantics can be used to specify the entire (static and dynamic)
semantics of programming languages such as Pascal [Tennent78]. The denotational
nature of the definition permits it to be compact and modular. The use of mathematical
entities as the medium of specification facilitates manipulations for proving properties
of programs, languages, and implementations. For our purposes,. however, probably
the most important characteristic of denotational definitions is that they can be used to

generate implementations of the language.

Abstract Syntax
BNe Binlnt

BN — Seq B
Seq—>0111Seq01Seq 1

Semantic Domain
N={0,1,2,...}

Semantic Function
E: BinInt - N
E[0] =0
E[1]1=1
E[Seq 0] =2 x E[Seq]
E[Seq 11=2xE[Seq] +1

Figure 1-3: Denotational semantics of binary numerals.




1.2. The State of the Art

Previous approaches to the problem of IPE generation have used a variety of
specification techniques. The ALOE system [Medina-Mora82] developed as part of
the Gandalf [Habermann82] project at Carnegie-Mellon University provides an editor
kernel and a generator that combines a syntax description with the kernel to produce a
syntax-directed editor. The implementor can add semantic “action routines” and asso-
ciate an action routine with a particular production in the syntax. The ALOE kernel
will invoke the appropriate action routine whenever a node defined by a particular pro-
duction is edited. The action routines are written in a conventional programming
language and may perform any action that can be expressed in that language. The
strength of this approach, its generality, is also its greatest weakness; since there are no
constraints on what an action routine may do, it is hard to ensure that it does what is
required, and nothing else. Later work on ALOE [Ambriola84] uses a special
language for writing action routines and performs static and dynamic checks to ensure

the syntactic integrity of program trees.

A more formal approach uses attribute grammars to specify the semantics of
languages. Efficient algorithms have been developed for the incremental evaluation of
attributes [Reps83, Johnson83] when a syntax tree changes during editing. Editor gen-
erators such as the Synthesizer Generator [Reps84] and Poegen [Fischer84] use these
algorithms to provide automatically-generated editors that perform full syntactic and
static-semantic checking incrementally during program editing. The declarative nature

of attribute grammars makes specification easier than the action routine model, espe-

1

cially in the case of incremental changes, where order-dependent errors * are possible

! By order-dependent errors we mean situations where the final values of attributes depend not only
on the current state of the program, but also on the sequence of editing operations performed to reach
that state.
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in an imperative specification, but not in an attribute grammar.

The PSG programming system generator developed at the Technical University
of Darmstadt [Bahlke85] generates complete IPEs from formal definitions. The static
semantics of the language are specified using the context condition formalism
presented in [Snelting86] and the dynamic semantics are described denotationally

using a functional language based on the lambda calculus.

Kaiser [Kaiser85] proposes the use of action equations, which are claimed to
extend attribute grammars to specify the run-time semantics of languages. Kaiser’s

approach has not yet been incorporated into an IPE generator.

Ambriola and Montangero [Ambriola85] describe a generator of execution facili-
ties for Gandalf environments that is based on a denotational semantic specification of
the dynamic semantics of the language, although they do not perform incremental pro-

cessing.

1.3. IPE generation based on Denotational Semantics

A truly integrated programming environment must provide facilities for execution
of programs developed within the environment. In order to gain the maximum benefit
from the use of such an environment, the execution facilities should be fully integrated
into the overall environment, rather than being added as an afterthought, and should
exploit this integration to provide facilities not easily supplied by traditional discrete

environments.

The features we desire can be broadly described as incremental translation and
interactive execution. We would like to reduce as much as possible the sometimes
long compilation delay encountered in a traditional environment. Since we are con-

cerned primarily with program development, we are willing to accept reduced execu-
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tion efficiency in return for increased translation speed, in the hope that the overall
length of an edit-compile-debug cycle will thereby decrease. Ideally, we would like to
maintain an executable version of the program at all times during editing, thus creating
the illusion of instant translation. The processing necessary to update the executable
version in response to user editing actions should not, however, noticeably degrade the

perceived editing response.

During execution, we will exploit the availability of the program source represen-
tation and the high-bandwidth user interface (such as a multi-window high-resolution
display screen) that is typical of integrated environments to provide the user with use-
ful feedback on the progress of program execution. Such feedback aids user
comprehension of program behavior and thereby helps reduce debugging time. The
Cornell Program Synthesizer [Teitelbaum81] provided many of the features we believe

should be present in an IPE.

Of course, we have committed ourselves to the idea of generating such environ-
ments, rather than hand-coding them. The Synthesizer Generator [Reps84] and other
systems demonstrated that it is possible to generate the syntactic and static semantic
parts of an IPE from formal descriptions. Although there have been attempts to do the
same for the dynamic semantic aspects of languages, these attempts have not been as

successful, for various reasons.

The related field of semantics-directed compiler generators, however, has seen
much recent work, based primarily on denotational semantics. Systems like
SIS [Mosses76] and PSP [Paulson82] as well as the more recent work of
Sethi [Sethi83] and Appel [Appel85] demonstrate the feasibility of generating

language processors from denotational definitions.
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There are three issues that must be addressed in order to adapt compiler-

generation techniques to integrated programming environments:

e The unacceptable performance that is typical of compilers generated from denota-
tional semantics.

e The requirement for incremental translation, which can be used to simulate
instant translation, thus contributing to the appearance of integration.

e The need to provide support for interactive execution, so as to exploit the special
nature of an integrated programming environment to speed up the debugging pro-
cess.

This thesis explores an approach to the generation of execution facilities for
integrated programming environments based on a denotational semantics of the object
language. Our approach, called EDS (for Executable Denotational Specifications),

_translates programs into an internal executable representation that corresponds very
closely to the parse tree of the program. In this representation, each node represents
the denotation of a particular syntactic construct, and the nodes are threaded in accor-

dance with the flow of control of the program.

Several benefits accrue from the use of this executable representation. Firstly, the
syntactic correspondence permits easy incremental translation during editing without
degrading response. Secondly, the use of compiled code within denotations provides
reasonable execution speed, which is further augmented by the use of realistic
representations of stores and environments, in contrast to the more general function
representation used in many compiler generators based on denotational semantics.
Finally, code sharing between denotations keeps the executable representation compact
—— apart from a single copy of each distinct denotation function (one for each produc-
tion in the syntax of the language), the additional storage required for the executable

representation consists of a few pointers per node in the parse tree of the program.
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The correspondence between the executable representation and the parse tree of
the program can be exploited to permit the user to interact with the program at run-
time in terms of source-language constructs, thus providing support for interactive exe-
cution. Many of the features provided in hand-coded IPEs can be incorporated natur-
ally into the denotational specification of the language, thus providing a convenient

way to experiment with these features in IPEs for various languages.

Overall, we were able to achieve execution speeds comparable to that of hand-
coded interpreters such as px, the Berkeley Pascal interpreter, for simple programs.
We argue that this performance can be maintained for all the control flow aspects of

languages like Pascal.

Other aspects of Pascal are more troublesome; we do not anticipate that an imple-
mentation based purely on denotational semantics will be able to attain performance
comparable to hand-coded interpreters for languages with type, scoping and environ-
ment systems as complex as Pascal. For this reason, we believe that the ideal
integrated environment generation system will be a hybrid, employing a method such
as an attribute grammar to handle these aspects of the language, combined with a deno-

tational semantics that embodies the control flow aspects of the language.

The question of how best to obtain such a hybrid language specfication for a
language is a question that is not answered in this thesis, but one that we believe needs
to be addressed; the final chapter of this thesis outlines some possible approaches to the

problem.
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Chapter 2

Denotational Semantics

This chapter provides a tutorial introduction to denotational semantics. Readers
familiar with the subject may wish to skip this chapter. Those wishing to study the
subject further, especially the more theoretical aspects of it, should consult a book on

the subject, such as [Stoy77].

There are really two separate aspects to denotational semantics: the techniques
used to model programming language constructs, developed primarily by Christopher
Strachey; and the theoretical foundations that ensure that these techniques work,
developed primarily by Dana Scott. Since this thesis is concerned more with the use of
denotational semantics to define (and implement) languages and less with the underly-
ing theory (although we are grateful for its support), our introduction will reflect this

concern.

2.1. The structure of a denotational definition

A denotational semantics for a programming language defines a mapping from
programs in the language to mathematical objects that represent their meanings. This
mapping is defined by structural induction on the syntax of the language; the meanings
of simple constructs are defined directly, and the meanings of composite constructs are
defined in terms of the meanings of their syntactic constituents. The mathematical
object representing the meaning of a construct is referred to as its denotation, and

hence the term denotational.
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In addition to the syntax of the language, a denotational semantics specifies the
semantic domains to which denotations belong, as well as the semantic functions that

define the mapping from syntactic entities to their denotations.

2.1.1. The semantic domains

Specifying the domains that contain the denotations of language elements is an
essential part of a denotational definition. We use domains rather than sets in order to
avoid certain mathematical problems that arise from the use of recursive definitions of
functions and domains. Although our earlier example of binary numerals kFigure 1-3
in section 1.1.2.3) did not require recursive definitions, they are needed to model real-
istic programming languages. The reader interested in the theoretical difficulties that
arise and their solution is referred to [Stoy77]; we state here without proof that permis-
sible domains are countably based, continuous complete lattices, and that allowed

functions on domains are continuous.

Fortunately for those interested in denotational semantics as a tool for language
definition rather than as a theory in itself, it is fairly easy to ensure that the semantic
domains used are theoretically sound. The way to do so is to allow the definer to
specify only a restricted class of domains. In particular, the domains specified should
be either primitive domains, or constructed from primitive domains using a limited set

of domain constructors.

Primitive domains are either standard domains or explicitly specified finite
domains. Standard domains include Int, the domain of integers; Bool, the domaiin of
truth values; and Id, the domain of identifiers. Finite domains are defined by listing

their elements.
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Domain constructors are used to build domains from other domains. The domain
constructors usually allowed are:

Product The product domain (D; X D, X ... x D, ) is the domain of all n-tuples
(dyydy s, d ) of elements dye Dy, dy € D, .., d € D). Selectors
may be used to cull a particular element from a tuple.

Sum The sum domain (D, + D, + ... + D_) consists of elements of any one
of Dy, .., D, where each value has associated with it a fag indicating

which domain it came from. The use of a tag distinguishes the sum
from a union. The tag is useful in the case where there are elements that
are common to more than one component of a sum. Injection and pro-
Jection operators, together with tag tests, allow elements to be inserted

into and extracted from sum domains.
Function The function space (D, — D, ) is the domain of continuous functions
from D, to D,. We will not define what is meant by continuous func-

tions, except to say that they preserve the structure of domains. The
notation we will use only allows the definition of continuous functions.
Since all computable functions are continuous, this restriction does not

affect the power of our method.

The domains used in a denotational definition are specified by means of a system

of domain equations,

D, = rhs1

1

D]1 = rhsn

where Dy, .., D are the domains being defined and each right-hand side rhs, is a
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domain expression containing primitive domains, perhaps some of the Dj, and the

domain constructors defined above.

The desired domains D, ,..., D are then a solution of this system of domain equa-

66 99

tions. For technical reasons, we must interpret the in the equations as signifying

isomorphism rather than strict equality.

If a system of equations can be ordered so that for all i, rhs, contains only primi-
tive domains and D ... D, ;, then the system is said to be non-recursive, and a solution
can easily be found through a process of repeated back substitution, starting with D,,

which is defined in terms of primitive domains exclusively.

If it is not possible to order a system of equations as described above, then the
system is said to be recursive. Non-recursive systems are not powerful enough to
define the domains needed to specify the semantics of actual programming languages.
Unfortunately, recursive equation systems are not as straightforward to solve as non-
recursive ones. In particular, recursive equation systems can give rise to an uncount-
able infinity of solutions. In such cases, we take the least solution, that is, one that is
isomorphic to a subset of any other solution. The restrictions we have placed on the

structure of domains guarantee the existence of a unique least solution.

Finally, note that our definition of domain equations would permit equations of
the form

D=..+D—>D+..

If we were considering sets, a solution to this equation would have the strange property
that a subset of itself would be isomorphic to its own function space. If a set has more
than one element, the cardinality of its function space is strictly greater than that of the

set itself, precluding such an isomorphism. Fortunately, we are considering domains
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rather than sets, and restricting ourselves to continuous functions, so the above argu-

ment does not affect us.

2.1.2. The semantic functions

Once we have specified the abstract syntax of the language and the semantic
domains into which language constructs will be mapped, it remains only to specify the
mapping, the semantic functions. There is one semantic function for each syntactic
category in the language, defined by cases on the productions in the abstract syntax for
that category. The specification of a semantic function includes the syntactic category
to whose elements it assigns denotations, as well as the domain to which those denota-

tions belong. In most cases, this domain is a function space.

The language in which semantic functions are written is called the metalanguage
of the semantic description. This metalanguage is usually the A-calculus. Use of the
A-calculus enables us to specify all (and only) the computable functions, and permits

easy manipulation of higher-order functions.

2.2. A Simple Language

We will now define L, a simple programming language, as a vehicle for introduc-
ing some of the techniques of denotational semantic specification. Figure 2-1 gives the

syntax of L.

2.2.1. Informal Semantics of L.

This sub-section describes the semantics of L informally, in the manner of a

language definition or user manual.
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<prog>:=  Program (id ) <decl> <stmt>
<decl> ::=

<decl> = <decl>, <decl>,
<decl> ::= const id = <expr>
<decl> .= var id

<stmt> =

<stmt> = <stmt>1 <S’[t1‘1t>2
<stmt> = id := <expr>
<expr>:= numeral

<expr>:= id

<expr>:i= <expr>, + <expr>,

Figure 2-1: Syntax of L.

2.2.1.1. Programs

The header of a program specifies a particular identifier whose value at the end of
program execution is the meaning of the program. If this identifier is not declared in
the program, the program is erroneous. The body of a program consists of a sequence
of declarations followed by a sequence of statements. The declarations are in effect
during the execution of all the statements in the program; there is no block structure.

There is only one data type in L; all variables and expressions are of type integer.

2.2.1.2. Declarations

Declarations can be constant declarations, which bind identifiers to values, or
variable declarations, which merely set aside storage without assigning a value. The
expression that defines the value of a constant may use constants declared previously;
use of variables or undeclared identifiers is erroneous. It is illegal to have more than

one declaration for an identifier.
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2.2.1.3. Statements

For now, the only statements allowed in L are assignment statements, which
evaluate the expression on the right hand side and store its value into the memory loca-
tion denoted by the identifier on the left hand side; this identifier must have been

declared as a variable. Sequences of statements are executed in textual order.
2.2.1.4. Expressions

Numerals
<exXpr>:= numeral

A numeral is the simplest form of expression. Its value is the corresponding number.

Addition
<expr>:i= <expr>, + <expr>,

An expression can be the sum of two expressions, and its value will be the sum of the
values of those expressions. We could as easily include other operators than +, but do

not for reasons of brevity.

Identifier reference

<exXpr>:= id
The use of an identifier in an expression yields the value it denotes. If the identifier has
been bound to a value via a constant declaration, then the bound value is used; if it has
been declared as a variable, then the value most recently assigned to it is used. If the
identifier has not been declared, or is a variable that has not yet been assigned a value,

the program is erroneous.
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2.2.2. Denotational Semantics of L

We now proceed to give a denotational semantics for L.
2.2.2.1. The semantic domains

2.2.2.1.1. Basic Values

In our original example of binary numerals, the value domain was simplified by
the fact that every binary numeral denotes an integer. This is not the case in L, where
syntactically well-formed expressions may contain semantic errors, and hence not
denote any number. Examples of semantic errors would include division by zero (if L
were to include a division operator) and the use of an undefined identifier. Conse-
quently, we define our value domain to be

Val = N+ {1}
where L (bottom) is a special error value, distinct from all elements of N.

In conjunction with this definition of Val, we extend our basic functions on N
(notably +) to Val by making them strict. In other words, the function + for elements
of Val has the value L if either of its arguments is 1, and is otherwise identical to the

function + for elements of N.

2.2.2.1.2. Environments

At first glance, it appears that E, our (yet to be defined) meaning function for
expressions, should map expressions to elements of Val. However, the value of an
expression containing an identifier, such as “x + 17, can be determined only when we
know the context in which it is to be evaluated (in this case, the value to which x is
bound). We have said that our definition of the meaning of “x + 1” must be given

denotationally, that is in terms of the meanings of its components only. This require-



22

ment precludes the use of the bound value of x, since the binding of this value is not

part of the expression to which a meaning is being ascribed.

The solution to this problem is to define the meaning of an expression to be a
function from a collection of variable bindings to a value, rather than a value in itself.
We refer to the collection of variable bindings as an environment, and introduce the
domain of environments:

Env = Id — Val
The meaning function E for expressions can then be defined to have functionality
E : <expr> — Env — Val
This says that E maps expressions (members of <expr>) into functions that map

environments (members of Env) into the value of the <expr> in that environment.

2.2.2.1.3. Stores

Although not strictly required for defining the semantics of L, it is convenient to
introduce the concept of a store at this point. As its name suggests, a store is used to
model the memory of a computer. We define the domains Loc and Store, which
model memory addresses and memory itself.

Loc = N+ {1}

Store = Loc — Val
The value L as a possible element of Loc allows the modeling of invalid addresses,
such as variables for which storage has not been allocated. In conjunction with the
introduction of the Store domain, we modify the domain Env to map identifiers to
locations as well as values,

Env = Id — (Val + Loc + {undefined})
An environment will map an identifier to a value if the identifier is bound to a constant

value (via a const definition), to a location if the identifier denotes a variable, and to
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undefined otherwise. The use of a two-stage mapping (Id — Loc and then
Loc — Val) will allow the modeling of programming language constructs such as
pointers, reference parameters, and other situations where two or more identifiers can

be aliases of the same memory location (and hence the same value).

The meaning of an expression now requires both an environment and a store to
yield a value, so that the semantic function for expressions becomes:

E : <expr> — Env — Store — Val

2.2.2.2. The semantic functions

Having defined our semantic domains, we are now ready to define the semantic
functions that ascribe meaning to the constructs of L. We will have one semantic func-
tion for each of the syntactic categories in L, namely <prog>, <decl>, <stmt> and

<expr>.

2.2.2.2.1. E: The semantic function for expressions

We will first define E, the meaning function for members of the syntactic
category <expr>. As stated above, the functionality of E is

E : <expr> — Env — Store — Val

E is defined by cases on the possible productions for <expr>, as in Figure 2-2. Note
that we are not using A-calculus to define the E, but a notation similar to that used
in [Tennent81]. The variables env and store represent elements of the domains Env
and Store, respectively. Enclosing syntactic constructs in brackets signifies the appli-
cation of a meaning function to them. In cases where there is only one function that
can be applied, the function name will be omitted. Thus, [ numeral ] on the right hand
side in Figure 2-2 represents the meaning function for numerals applied to numeral.

This meaning function is left undefined here, but is understood to map numerals into
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the numbers they denote; similarly, the meaning function for identifiers is assumed to
map them into elements of the semantic domain Id. The notation foo ? bar is used to
test whether foo (an element of a union domain) is a member of domain bar. The /*

and */ delimit comments.

Note that the definition of E[id ] tests the domain of env([id]) to determine
whether it is a constant (with a directly available value) or a variable (which must be
mapped to a value through the store). It is assumed that store is strict, in that if the
location addressed is .1, the value returned will also be L. By default, all semantic
functions will be strict, so if a semantic function definition does not explicitly state
what the result will be when one of its arguments is L, it should be assumed to be L.
Note also that we have used the function + defined on the domain (Val x Val) — Val

rather than on the integers, as alluded to when we introduced the domain Val.

Finally, observe that the semantic definition of a sum expression specifies that
both component sub-expressions are to be evaluated in the context of the initial

environment and store, thus making the evaluation order of the sub-expressions

E [ numeral ] env store = [ numeral ]

E [ id ] env store = if env([id]) = undefined then L
elsif env([id]) ? Val then env({id])
else /* env([id]) belongs to Loc */
store(env([id]) /* could be .L */

E [ <expr>, + <expr>, ] env store
= E[ <expr>, ] env store + E[ <expr>, ] env store

Figure 2-2: Definition of E.
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irrelevant.

2.2.2.2.2. C: The semantic function for statements

We call the meaning function for statements C (Figure 2-3), following the litera-
ture, where statements are often referred to as “commands.” Commands affect the con-
tents of memory, so they are store transformers. In addition, command execution can
result in an error (such as assigning to a constant), which would yield L as the meaning
of the command. We define the domain of command results to be:

Res = Store + {1}
The functionality of C is then:
C : <stmt> — Env — Store — Res
That is, the denotation of a statement is a function that takes an environment and store

and produces an updated store, or results in an error.

C [ ]env store = store /* Null command has no effect */

C[ <stmt>, ; <stmt>, ] env store
= if C[ <stmt>, ] env store = L then .L
else C [ <stmt>, ] env store’
where store’ =C [ <stmt>, ] env store

C [ id := <expr> ] env store
= if E [ <expr> ] env store = | then 1
elsif env([id]) ? Loc then
update(store, env([id]), val)
where val = E [ <expr> ] env store
else L

Figure 2-3: Definition of C.
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The primitive function update takes a store, a location, and a value, and produces

an updated store. It has functionality

update : Store — Loc — Val — Store

and is, as always, strict.

2.2.2.2.3. D : The semantic function for declarations
D, the meaning function for declarations, is given in Figure 2-4.

Since declarations can update both environments and stores (by allocating space

for variables), and can cause errors (through attempted re-declaration), the result of

D [ ] env store = (env X store )

DI <decl>1 ; <decl>2 ] env store
= if D [ <decl>, ] env store = L then L
else D [ <decl>2] env’ store’
where ( env’ X store’ ) =D [ <decl>, ] env store

D [ const id = <expr> | env store
= if env([id]) = undefined then
if E[ <expr>] env store = | then L
else (env’ X store)
where env’ = env[[id] « val]
where val = E [ <expr> ] env store
else L /* Re-declaration */

D [ var id ] env store
= if env([id]) # undefined then L
elsif allocate(store) = 1 then .L
else (env’ X store’)
where env’ = env[[id] < loc]
and (store’ X loc) = allocate(store)

Figure 2-4: Definition of D.
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declarations is in the domain
DRes = (Env x Store ) + { L }
The functionality of D is then:

D : <decl> — Env — Store — DRes

The notation env[foo « bar] denotes an environment that is identical to env for
all argument values except foo, where it has value bar. We also introduce the primitive
function allocate, which allocates a free location from store. If there is no free loca-
tion, allocate returns L, otherwise it returns the allocated location and a new store.
Note that we have not constrained allocate to use any particular storage allocation dis-
cipline. Allocate has functionality

allocate : Store — (Store x Loc) + {.L}.

2.2.2.2.4. P : The semantic function for programs Finally, Figure 2-5
defines P, the semantic function for programs, which has functionality

P : <prog> — Val.
In the definition, env, denotes the predefined environment (for L, this maps all

identifiers to undefined) and store, denotes the initial memory, which is completely

unallocated.

2.3. Extending L

Given the domains and techniques introduced in the previous section, we can
extend L to include more expression and statement types. The interested reader is

referred to [Tennent81] or [Gordon79] for more examples.

There are also common programming language constructs that cannot be modeled

using the techniques described thus far. Some of these constructs are examined below.
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P [ Program ( id ) <decl> <stmt> ]
= if D [ <decl> ] env, store,, = 1l then L
elsif env([id]) = undefined then L
where (env X store) =D [ <decI> ] env,, store,,
elsif C [ <stmt> ] env store =L then L
where (env x store) =D [ <decl> ] env,, store,
elsif env([id]) ? Val then env([id])
elsif env([id]) ? Loc then store’(env([id]))
where store’ = C [ <stmt> ] env store
else L

Figure 2-5: Definition of P.

2.3.1. Iteration

One interesting extension to L that we will discuss here is the while statement,
<stmt> ::= while <expr> <stmt>
which has the usual meaning: <expr> is evaluated, and if it has non-zero value, <stmt>
is executed and then <expr> is evaluated again. The loop is exited when <expr> evalu-

ates to zero.

2.3.1.1. An Incorrect Definition A first attempt to give a denotational
definition for the while statement might result in something like Figure 2-6. The prob-
lem with this definition is the use of the entire while statement on the right hand side of
the definition, which destroys the structural induction; instead of defining the statement
in terms of its components, we are attempting to define it in terms of itself. The prob-
lem with this becomes obvious when we consider a non-terminating loop where the
controlled statement does not affect the store. The “definition” in Figure 2-6 then
reduces to

C [ while <expr> <stmt> ] env store = C [ while <expr> <stmt> ] env store
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since the execution of <stmt> does not change the store. This definition is circular, and
tells us nothing about the meaning of the loop, which we would like to define to be

erroncous.

2.3.1.2. The Solution

Although our “definition” above does not necessarily define anything, it does hold
as an equation. We can use this equation to derive a fixed-point definition of the
meaning of the while loop, but the following derivation, adapted from [Demers82] is

perhaps more intuitive, if less formal. Note that the program fragment

if <expr> then
<stmt>
while <expr> <stmt>

where one iteration of the loop has been “unrolled,” is equivalent to the original loop.
Define the abbreviations

WHILE = while <expr> <stmt>
and, for any stm,

IF(stm) = if <expr> then <stmt>; stm

and the shorthand notation

[Fi(stm) = IF(IF(.IF(stm)...)) i=0

C [ while <expr> <stmt> ] env store
= if E [ <expr> ] env store = L then L
elsif E [ <expr> ] env store = 0 then store
else C [ while <expr> <stmt> ] env store’
where store’ = C [ <stmt> ] env store

Figure 2-6: Attempted definition of while statement.
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where IF has been applied i times. Then the equivalence noted above can also be writ-
ten as
WHILE = IF(WHILE)
which indicates that WHILE is a “fixed point” of the statement transformation function
IF. We can also see that WHILE is the least fixed point, by considering the statement
IF = IFi(abort) i=0
where abort is a special statement that always produces the result L. If IF! produces a
result other than L then it produces the same result as WHILE. In addition, whenever
WHILE terminates, it does so after finitely many steps, and thus produces the same
result as IF for some j. In fact, if WHILE terminates after k steps, then it produces the
same result as IF for all j >k, so that WHILE is the limiz of IF as j = oo. If WHILE

does not terminate, then B produces L for all j, and its limit is trivially 1, which again

is the result of WHILE.

We can thus define the semantics of a while loop as a limit (Figure 2-7). This

C [ while <expr> <stmt> ] env store
= lim p.(env store)
i—yo0
where pj(e s) =L
andp, ,(es)
= if E[ <expr>]es = Lthen L
elsif Ef <expr>]es = Othens
elsif C[ <stmt>]es = Lthen L
else p,(e s”)
where s’ = C[ <stmt>] e s

Figure 2-7: Limit definition of while loop.
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limit may not always be computable, but it is computable for all finite loops, and some

infinite ones.

2.3.2. Procedure calls

Non-recursive, parameterless procedures with open scoping and no local
definitions are the easiest to model. In this case, a procedure is simply a list of com-
mands, and therefore represents a state transformation in the domain

Proc = Store — Store + { .}
Procedure names can be mapped to bodies by extending the environment mapping to

include Proc as a component of the range.

Defining the semantics of procedure calls that involve recursion is more difficult.
We will not give the details here, but the approach is similar to that described above
for the while loop; call sé(iﬁences of increasing (but bounded) depth can be used to
approximate the effect of recursive calls of (potentially) unbounded depth, and the
meaning of unrestricted calls is then the limit of these (progressively better) approxi-

mations.

Parameters, local variables, and scoping rules all make the definition more com-
plex, but do not require the introduction of any concepts beyond those already
described. The interested reader is referred to the literature on the

subject [Stoy77,Gordon79, Tennent81].

2.4. Continuations

Unstructured constructs, especially those that cause non-local transfers of control,
such as gotos, are hard to model in the denotational framework described thus far. The
problem is that the meaning of a construct is assigned compositionally, in terms of the

meanings of its components, and the meaning of these components is determined
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independently of each other. Consider a stop statement, whose semantics are to dis-
continue execution and return the current store as the final result of the program.
Unfortunately, this affects the semantics of the rest of the statements in the program,
which now (as part of a program containing a preceding stop statement) have no effect
at all on the computation. Since we require that the meaning of a statement be
assigned independent of context, we cannot have different semantic functions for state-

ments depending on whether or not a stop statement has been encountered.

One way to model a stop statement is to include a special flag in the state of the
computation that tells us whether we have encountered a stop during execution. The
denotations of statements will then check this flag and return the current store unal-
tered if it has been set. Although this solution works, it is not particularly elegant, and
does not extend cleanly to other non-local transfers of control, such as statements of

the form goto id, where id is an arbitrary program label.

The notion of a continuation was developed by Christopher
Wadsworth [Strachey74] to describe the semantics of control transfers. In a semantics
using continuations, an extra parameter, the continuation, is supplied to the denotation
of every command. The continuation is a function that represents the meaning of the
remainder of the program at that point. The domain of continuations is usually of the
form

Cont = Store — Ans
where Ans is the domain of answers, or program results (usually part of the store, or
the contents of an output file). Thus the functionality of C, the semantic function for
commands, now becomes
C = <stmt> — Env — Cont — Store — Ans

Usually, a command produces an updated store and then passes that as an argument to
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its continuation, which returns the final answer of the program. However, the com-
mand is free to ignore the supplied continuation, and control transfers will do just that.
The denotation of a stop statement, for example, will return the appropriate component
of the current state directly as the result of execution. A statement of the form goto id
can look up “id” in the environment (which will now contain identifier—continuation

bindings) and invoke the bound continuation rather than the supplied parameter.

The introduction of continuations also simplifies error handling. Erroneous con-
structs can return error immediately as the result of the computation, and the semantic

functions need not be concerned with propagating input error values.

Although we have introduced continuations in the context of commands, we can
have other types of continuations. Declaration continuations, for example, would map
the results of declarations (belonging to the domain Env x Store) into the domain of
answers. Figure 2-8 gives the semantics of some sample constructs from L using con-
tinuations. Note the use of the keyword “rec” in the definition of the semantics for a
labeled statement. This indicates that the definition of cont’ involves cont’ itself, and
hence should be determined as the fixed point of an appropriate functional. This exam-
ple limits the scope of a label to the labeled command. More general label scoping is
possible, with attendant complexity in the definition of the semantics of labeled com-
mands, but is beyond the scope of this introduction. The interested reader may

consult [Stoy77] for details.

2.5. Summing up

The concepts introduced thus far are sufficient to model the semantics of
languages such as Pascal [Jensen78], whose denotational semantics are given

in [Tennent78)]. It is not possible within the constraints of this thesis to expatiate on



34

Semantic Domains
Env = Id — (' Val + Loc + CCont )
CCont = Store — Ans
ECont = Val —» Ans

Semantic Functions
C [ ] env cont store = cont( store )
C [ <stmt>, <stmt>, ] env cont store

= Cl <stmt>, ] env cont’ store
where cont’(s) = C [ <stmt>, ] env cont s

C [ id := <expr> ] env cont store
= E [ <expr> ] env k store
where k(n) =
if adr ? Loc then cont(update(store, adr, n))
else L
where adr = env([id])
C [ goto id ] env cont store
= if target 7 CCont then target(store) else L
where target = env([id])
C [ label id : <stmt> ] env cont store
= cont’
where rec cont’ = C [ <stmt> ] env[[id] < cont’] cont store

Figure 2-8: Semantics of L using continuations.

the entire subject of denotational semantics, nor would it be desirable; many better
equipped to do so have already contributed to the literature, and readers seeking to
learn denotational semantics would be best advised to begin their quest there. Our goal
here is not to contribute to denotational semantics, but rather to use the ideas contained
therein to simplify the task of programming environment generation. The aim of this
chapter, therefore, was to acquaint the reader unfamiliar with denotational semantics
with the tools and techniques of the trade, in order to facilitate their use in later

chapters.
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In many cases, we will not be concerned with the specifics of a denotational
definition of a particular language, but rather with the types of constructs used to
model the semantics of a variety of languages. Environments, stores, continuations,
and limits are some of the concepts that we will invoke in later discussion, together
with ideas relating to domain definition and structure. If the reader previously unfami-
liar with denotational semantics recognizes these terms and has some intuitive under-

standing of their significance, this chapter will have served its purpose.
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Chapter 3

Semantics-Directed Translation

A denotational description of a language specifies a translation from programs in
the object language to their denotations in the metalanguage. This translation, com-
bined with a method for interpreting terms in the metalanguage, defines an implemen-
tation of the object language. This chapter describes our approach to generating

language implementations based on denotational semantics.

3.1. Previous Approaches

In order to set the context for discussion of our approach, we briefly outline some

previous approaches.

3.1.1. A-calculus based translation

We can consider the semantic functions of a denotational semantics as rules
specifying the translation of language constructs into A-calculus expressions involving
the denotations of the component constructs as sub-expressions. Translation thus
proceeds bottom-up, composing A-expressions until the denotation of the program is

obtained as a single large A-expression.

This A-expression can be interpreted by reduction to normal form. A leftmost
reduction strategy is guaranteed to find the normal form if it exists, but is extremely
time-consuming. Other reduction strategies, such as innermost first ( “call by value” )
are less powerful but better suited to mechanical reducers, since no B-reduction is per-

formed unless the argument is in normal form.
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Peter Mosses’s SIS (Semantic Implementation System) [Mosses76] uses the tech-
nique just described — it produces the denotation of a program (known as the “seman-
tic parse”) and interprets the resulting A-expression. Larry Paulson’s PSP
system [Paulson82] includes a simplifier that performs certain “compile-time™ reduc-
tions on the denotation of a program before interpreting it; interpretation is via a stack

machine with an innermost reduction order.

The major drawback of A-calculus based systems is the inefficiency of manipulat-
ing functional values such as environments and stores. Naive A-calculus systems can-
not take advantage of the very limited ways in which stores and environments are
manipulated in denotational descriptions of common programming languages to per-
form these manipulations more efficiently. As a result, Pascal programs processed by
PSP execute about 1000 times as slowly as programs compiled with a conventional

compiler.

3.1.2. Smart semantics processors

Programming language designers often have in mind particular representational
tricks or implementations when incorporating features into a language. For example,
stack-based name resolution and storage allocation are commonly used in Pascal-like
languages. Unfortunately, such assumptions are not always explicit in the semantic
specification of the language, so that an automatically generated translator cannot
make use of efficient implementations of the underlying concepts, and hence performs
poorly compared to a hand-written system.

As a simple example, consider the store in a denotational definition. Program-

ming languages for von Neumann machines invariably assume a single store, which is

updated in place (imperatively). Denotational descriptions of these languages, on the
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other hand, may contain several occurrences of expressions yielding values in the
domain of stores, and several store-typed arguments to semantic functions. In order to
implement the language efficiently, it is vital that we be able to replace all these
instances of stores by references to a single global store, with appropriate imperative
updating operations. Recently, David Schmidt [Schmidt85] developed sufficient cri-
teria for a denotational definition to be correctly transformable in this way. A denota-

tion definition possessing this property is said to be single-threaded in the store.

There are, however, many other implementation techniques that are well-known
to language designers and compiler writers, yet their applicability to a particular
language cannot be deduced from its denotational semantics. One approach to solving
this problem is to use a “smart” semantics processor, that knows about concepts such
as stores and environments, and provides higher-level operations that can be applied to
them. The semantics of languages can then be written using the operations provided,
eschewing more general manipulations of the underlying objects, and freeing the

semantics processor to use “clever” (and efficient) representations for them.

There is, of course, a drawback to this approach; building in assumptions about
the implementation of certain constructs limits the generality of the languages that the
semantics processor can handle. Furthermore, the semantics of the object language

must be tailored to fit the assumptions made in the semantics processor.

3.1.3. Combinator-based approaches

Several researchers [Wand82, Sethi83] have proposed sets of special purpose
combinators. These combinators are chosen to resemble closely conventional machine
code, usually for a hypothetical stack machine. The denotational semantics is written

in terms of these combinators, rather than using general A-expressions. The denotation
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of a program is thus a tree whose nodes are combinators, and can be interpreted to
simulate program execution. Suitable choice of combinators allows some transforma-
tion of the tree before execution. Since the combinators correspond to conventional
machine operations and there are no general A-expression manipulations, execution is

reasonably efficient.

The drawback of the combinator-based approach is again the loss of generality.
Sethi’s system, for example, can handle the control structures of the C programming
language, but not data structures such as records, which require extensive manipulation

of environments.

3.2. EDS: Executable Denotational Specifications

We turn now to a description of our system for implementing languages based on
a denotational semantics. This system is called EDS (for Executable Denotational
Specifications). The implementor rewrites the standard semantics of the object
language, transforming it into an implementation-oriented definition that is supplied to
EDS. EDS then uses this definition to generate an implementation of the object

language.

Although EDS is presented here as a stand-alone interpreter generator, it is
intended to be combined with a language-based editor generator to produce a generator
for complete integrated programming environments. Chapter 4 describes how inter-
preters generated by EDS can be adapted to provide the special characteristics desired

in run-time facilities of IPEs.

EDS employs the smart semantic processor approach described previously
together with a variant of the combinator-based approach to translator generation.

Instead of providing a fixed set of combinators, EDS permits the language implemen-
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tor to define combinators, which may then be used in the language specification. In
addition, “clever” implementations are generated for certain common constructs

encountered in denotational specifications.

Semantic descriptions processed by EDS are first-order; they contain no func-
tional domains. Instead of functional domains, EDS uses first-order concrete represen-
tations of those domains. Subsequent sections will describe how the functional

domains usually encountered can be replaced by first-order representations.

The remainder of this section describes a version of EDS that supports only direct
semantic specifications, without continuations. Subsequent sections will describe how

EDS is extended to handle continuation-style semantics.

3.2.1. The form of an EDS specification

The semantic aspects of the language specification, with which we are concerned
here, are divided into three sections: the semantic domains, the combinator definitions,

and the meaning functions. Each of these will be described in turn below.

Although denotational semantics are traditionally specified in a functional
language, this is not the case in EDS; implementations specified in EDS are translated
into a general-purpose programming language (Modula-2) [Wirth83], and the language
specifier is permitted to write segments of the definition in Modula-2 for efficiency if
desired. The EDS specification language is thus a superset of Modula-2, with exten-
sions to support the definition and manipulation of domains and combinators, but has a

syntax based on that of Modula-2.
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3.2.1.1. The semantic domains

Domain declarations in EDS serve two purposes: to help detect errors in the deno-
tational specification, and to enable EDS to generate appropriate implementations for
elements of the domain. The following sub-sections describe how domains are
declared in EDS. For the most part, these domain declarations follow the domain con-
struction operations described in chapter 2, modified somewhat for convenient imple-
mentation. One notable exception is the function domain constructor, which is not
supported by EDS. Instead of functional domains, EDS specifications are expected to
use first-order concrete representations of elements of those domains, which take into
account the manner in which function-domain elements are manipulated in order to
provide efficient implementations for them. Specifically, the provision of an opaque
domain facility, together with combinator definitions, allows the internal structure of
certain domains to be hidden from other sections of the semantic description, thus

preserving some abstraction while permitting efficient implementation.

3.2.1.1.1. Predefined domains

Common domains are predefined by EDS. Some, such as Int and Bool,
correspond to the predefined types usually available in programming languages, while
others, such as Id, occur frequently in denotational definitions. One notable predefined

domain is the domain error, which contains a single value, errorval.

3.2.1.1.2. Domain declarations

Domain declarations are introduced by the keyword DOMAIN, and serve to asso-
ciate a name with a domain structure. Domain declarations may be recursive, and may
be written in any order. There is no precedence specified for the domain constructors;

only one type of constructor may be applied in a particular definition. The reason for
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this restriction is to prevent the creation of anonymous domains, that is, domains with a
structure but no name. Anonymous domains complicate the type-checking rules
without adding to the power of the system (although they do make domain
specification more concise) and hence are forbidden by the current implementation.

The following types of domain declarations are permitted:

Enumeration domains

Finite domains can be specified by listing the elements they contain. Currently
there is no overloading of names allowed: elements of enumeration domains must be
unique. The syntax of an enumeration domain definition is:

<name> = { <element>, <element> ,..., <element> };

Product domains

Product domains can be formed from any two domains. The first component of
the product is referred to as the head and the second as the tail. The syntax of an
enumeration domain definition is:

<name> = <headdomain> * <taildomain>;

Sum domains

Any number of domains can be combined into a disjoint union or sum domain. A
tag is maintained with each sum domain element to allow testing and extraction of
appropriate elements. The syntax of a sum domain definition is:

<name> = <domain> + <domain> + ... + <domain>;

3.2.1.1.3. Opaque domains

EDS permits the declaration of opaque domains, whose structure is not visible to

the rest of the semantic specification. These domains are treated as primitive domains




43

by the type-checker. Opaque domains are similar to opaque types in Modula-
2 [Wirth83]; in fact they are implemented as such. An opaque domain is specified by
declaring its name as a domain without providing a corresponding domain structure in
the domain declaration section. The actual internal structure of the domain is
described within an implementation module that is not visible to other sections of the

semantics.

Elements of opaque domains may be manipulated using special auxiliary func-
tions that implement the abstract operations desired. These operations are defined in
an implementation module for the opaque domain, and have access to its internal
representation. Opaque domains permit efficient concrete implementations of func-

tional domains while maintaining abstraction of the other sections of the specification.

3.2.1.2. The combinators

The success of the combinator approach to semantics-directed translation depends
greatly on the choice of combinators. In EDS, this choice is largely the responsibility
of the language specifier. In order to permit efficient implementation of a range of
languages, EDS’s design philosophy is to permit as much flexibility as possible in
combinator specification. This flexibility is not without price, however: the lack of a
fixed combinator set forces specification of combinators from scratch for every
language. On the other hand, judicious choice of combinators will allow a wide
variety of languages to be specified without combinator rewriting; in a sense, the par-
ticular choice of combinators defines an abstract machine on which the object

language will be implemented.

Combinators are similar to language primitives, except that they are defined by

the user. The argument and return types for combinators can be defined either directly,
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or through the use of named combinator classes, which are a convenient shorthand for
defining several combinators that have the same argument and result types. A combi-
nator class definition is introduced by the keyword COMBCLASS and specifies the
name and types (domains) of the formal parameters (A-variables), and the result type.
For example, the set of combinators for arithmetic operations on integers might be
declared as: '
ArithOps = COMBCLASS( opl, op2 : integer ) — integer;

Combinator definitions themselves have a form similar to procedure declarations,
except that the keyword PROCEDURE is replaced by COMBINATOR, and the pro-
cedure header (specifying argu/ment and result information) is replaced by the name of

the combinator class to which the combinator being defined belongs.

For example, given the definition of ArithOps above, the combinator “plus” could be
defined as:

COMBINATOR plus : ArithOps;
begin

return( opl + op2);
end plus;

Local variables may be declared within the body of combinators; these variables
may have any type or belong to any domain that would be visible in the combinator

definition following the standard scoping rules of Modula-2.

The body of a combinator can contain any legal Modula-2 statements. In addi-
tion, extensions to support manipulation of domain objects are provided — in particu-
lar postfix .Head and .Tail operators to separate the elements of a product domain, the
? operator to test which domain a value from a union domain belongs to, and the
DCASE statement, which performs a switch on the tag of an element from a union
domain. The projection operator :: extracts a particular element from a union; thus

viinteger would yield an integer result. Static type-checking ensures that v does
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indeed belong to a union domain having integer as one of its components; run-time tag
checking is also possible (to check that v does indeed contain an integer when the
expression is evaluated). Assignment statements of the form

foo ::= domname( expression ) -- Note the ::=
signify a domain injection, where foo is assigned the value of expression, together with
a tag signifying that this value belongs to “domname.” Once again, static type-

checking ensures that foo is indeed a union capable of containing such values.

3.2.1.3. The meaning functions

The meaning functions specify a translation from the syntactic domain into the
meaning domain. The domain to which the denotation of a particular syntactic con-
struct belongs is specified by a DENOTECLASS definition, which is identical in form
to a COMBCLASS definition. For example, the class of expression denotations could
be defined as:

ExprDenotation = DENOTECLASS(U : Env; S : Store ) — Val;
Although identical in form to combinator class definitions, DENOTECLASS
definitions will be used to define denotations rather than combinators, and denotations

are different from combinators, as explained below.

The keyword DENOTATION introduces the specification of a denotation, which
also includes the name of the denotation (for use in associating denotations with pro-
ductions) and its domain (defined in a DENOTECLASS definition). The form of a
denotation definition is similar to that of a combinator definition. The body of a deno-
tation differs from that of a combinator in that it may contain references to the denota-
tions of the sub—components of the syntactic entity to which it corresponds; these deno-
tations will be bound as parameters during translation of the object language program

into its denotation. As an example, consider the definition of the denotation of a sum
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expression:

DENOTATION AddExp : ExprDenotation;
begin

return(plus(EvalE(SynArg$1(U, S)), EvalE(SynArg$2(U, S))));
end;

The denotations of sub-components are distinguished from other parameters to denota-
tions because they will be passed “by name” rather than “by value,” as the other
parameters are. Sub-component denotations are also referenced specially, as can be

seen in the definition of AddExp above; the notation SynArg$n refers to the denotation

of the n™ syntactic sub-component of this construct. EvalE is a special macro (defined
by EDS) which ensures that the sub-component denotation is evaluated in accordance
with its denotation class. The reason for these Eval macros (there is one defined for
each denotation class) will be explained later, during the discussion on translation of

denotations.

The final element of the meaning functions is the association of a particular deno-
tation with a production in the syntax of the object language, along with the binding of
denotations of sub-components as parameters. For simplicity, EDS binds denotations
for all sub-components, and does so in the order in which they occur in the production;
thus the specification need only provide the denotation name associated with a particu-
lar production — the rest is automatic. The denotation AddExp, for example, would
be associated with the production for an addition expression in the syntactic
specification of the language, as below:

<expr> = <expr> + <expr><<MAKEDENOTATION(AddJExp, 2);>>
The numeral 2 indicates the number of syntactic sub-components whose denotations
are to be bound; this information could be deduced from the production, but has to be

supplied in the original implementation of EDS, which used an existing parser genera-
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tor.

3.2.2. Generating an implementation

An EDS specification can be used to generate an implementation of the object
language. This implementation takes the form of a Modula-2 program, which consists
of several modules. Some of these modules are library modules that implement func-
tions built into EDS or provide run-time support for certain operations; other modules
are generated from the specification by EDS. An EDS-generated implementation exe-
cutes object-language programs by converting them into denotations and then inter-
preting the denotations. We will refer to the process of generating a language imple-

mentation from an EDS specification as interpreter generation.

3.2.2.1. Domain Implementations

During interpreter generation, domain specifications are converted into equivalent
Modula-2 type declarations. A Modula-2 definition module containing these declara-
tions is generated and used when compiling the Modula-2 representation of the combi-
nators and denotations. Each domain is assigned a domain number, which is used to
tag values in sum domains, in tests for domain membership, and to control alternative

selection in DCASE statements.

Each type of domain specification in EDS has an analogue in the type system of
Modula-2. Primitive domains correspond directly to predefined types in Modula-2,
with the exception of error and Id. Error is implemented as an enumeration type
with a single value, and Id is implemented as a string type, with string creation, assign-
ment, and comparison operations. Enumeration domains have an obvious implementa-
tion as Modula-2 enumeration types. Product domains are represented as records with

two fields, corresponding to the head and tail components of the product. Sum



48

domains are modeled by discriminated union types, that is variant records with tag
fields. The tag field takes on domain number values corresponding to the domains
comprising the union, and there is one variant for each component of the union.
Opaque domains correspond directly to opaque types in Modula-2; in the definition
module, only the type name is specified. The corresponding actual type declaration is
the responsibility of the language specifier (although a missing declaration will be

noted and cause an error message).

One significant difference between types in Modula-2 and domains in EDS is
recursion; EDS domains may be defined recursively, whereas Modula-2’s type system
does not permit recursion without the definition of an intermediate pointer type. A

declaration for this pointer type is supplied where necessary during interpreter genera-

tion.

3.2.2.2. The executable representation

During interpreter generation, the denotations specified for object-language con-
structs are translated into Modula-2 routines, which are then compiled into machine
code (also at interpreter generation time). The generated interpreter builds the denota-
tion of an object-language program bottom-up by binding the denotations of sub-
components as arguments to the denotation function for the particular production being
parsed. After the entire source program has been parsed, its denotation has been
created as a deeply nested function call, where some arguments of each call (the deno-
tations of sub-components) have been supplied, while other arguments (the stores and

environments, for example) have not been bound.

1 The initial implementation simplified matters somewhat by declaring pointer types for all
domains that might be recursive, specifically all union and product domains. It is reasonably straightfor-
ward to optimize away unnecessary indirection.
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The denotation function for a particular construct (say an addition expression)
may occur many times in the denotation of a program, with different arguments (sub-
expression denotations) each time. To conserve space, an EDS-generated interpreter
will maintain only one copy of a particular denotation function, and use pointers to it
in the denotation of the program. The denotation of a program is thus a tree that
matches exactly the syntax tree of the program, with each node in the tree labeled by (a
pointer to the machine-code representation of) a denotation function. The children of a
particular node in the denotation are labeled with the denotation functions correspond-
ing to the syntactic constructs that are the children of the corresponding node in the
parse tree. Figure 3-1 shows the tree that would represent the denotation of the
sequence of assignment statements:

foo := 1; bar := bar + I;
The function names CmdSeq, Assign, ConstExp, AddExp, and VarExp represent
pointers to the bodies of the appropriate denotation functions. These functions are not
defined here, but their intuitive semantics should be obvious; section 3.2.3 defines a
complete language, including possible implementations for these denotation functions.
Items within quotes, such as “foo” and “1” represent terminal symbols whose denota-

tions are defined directly.

Given this representation of program denotations, together with the association of
denotation functions with productions in the syntax of the object language, it is easy to
see that translation of a program into its denotation is a simple matter, analogous to
constructing the parse tree of a program. How to generate denotations that properly
implement the language is not so straightforward; the following section will explain

the issues involved and how they have been addressed.
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CmdSeq e

Figure 3-1: Denotation for sequence of assignment statements.

Assign "foo" Assign "bar" /
ConstExp "1 AddExp _— /
VarExp "bar" ConstExp "1

3.2.2.3. Manipulating functions

Denotational definitions manipulate functions extensively. In particular, the abil-

ity to define higher-order functions, which take functions as arguments and produce

functions as results, is required. A denotational semantics also uses “curried” func-

tions, which can be applied to arguments one at a time to produce partially applied

intermediate functions, which can then be passed as parameters, assigned, and so on,

before being applied to more arguments.

The language used to implement denotations in EDS is Modula-2, which does not

treat functions as first-class objects. Modula-2 supports procedure types and variables,

as well as formal procedure parameters, but provides no facility for currying or partial
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evaluation of functions. We have side-stepped the problem of perturbing functions
such as environments by forbidding the definition of explicit function-space domains.
Instead, we use first-order concrete representations of elements of function domains
together with combinators that update values and control function evaluation. How-
ever, we must still deal with the partial application of functions such as denotations to
incomplete argument lists. In many cases, the arguments themselves will also be deno-

tations that have been partially applied.

Partially applied functions are represented by a pointer to the function body
together with a list of arguments that have already been supplied (some of which may
be partially applied functions). In the initial implementation of EDS, only one inter-
mediate stage of partial application is supported; subsequent application must complete
the argument list and permit evaluation. When the full argument list is available, the
function body pointer (actually a Modula-2 procedure variable) is invoked with the

appropriate arguments.

It is possible, indeed likely, that a function will have as a parameter another par-
tially applied function. Such arguments are represented as described above, by a func-
tion pointer together with a partial argument list. This representation is similar to the
thunk mechanism used to implement by-name parameters. During the execution of the
function, references to the argument function that supply a completing argument list
will be expanded into actual calls, just as references to by-name parameters invoke

execution of the thunk.

3.2.2.4. Type checking

The use of Modula-2, a strongly typed language, together with the mapping

chosen between domain definitions and type declarations, permits extensive type
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checking of language specifications at interpreter generation time. This checking
speeds the detection of many specification errors, which often manifest themselves as
domain typing errors. Although the underlying Modula-2 compiler will detect type
errors in a specification, the error messages produced may be hard to relate to the origi-
nal EDS specification. For this reason, the EDS processor performs some type check-

ing of its own during interpreter generation.

Firstly, all domain definitions are analyzed for consistency. Undefined or mult-
ply defined domains are detected and appropriate error messages are printed. During
processing of combinator and denotation definitions, all identifiers occurring in con-
texts where a domain name is expected are checked to ensure that they do indeed
denote a domain. In addition, wherever a particular domain type is required, such as in
a domain injection (where a sum domain is required), the specified domain is checked

to ensure that it has the required structure.

The Modula-2 type system is used to detect inappropriate injection and projection

operations, as well as incorrect usage of .Head and .Tail operators.

3.2.2.5. Translation of combinators

COMBCLASS definitions cause two actions to occur at interpreter generation
time: firstly, the entire definition is associated with the combinator class name and
stored in a symbol table for later use in processing combinator definitions, and
secondly, a Modula-2 procedure type declaration is generated. This declaration fol-
lows the COMBCLASS declaration very closely, except that procedure types in

Modula-2 do not specify the names of the formal parameters.

COMBINATOR definitions are translated to Modula-2 procedure declarations.

The combinator class identifier specified is first checked to ensure that it is indeed
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associated with a combinator class definition, and this definition is then used to gen-
erate the procedure header. The body of the combinator is translated directly, except
for extended operations, such as domain tag testing, injection and projection, and
DCASE statements. The Modula-2 analogues of these operations are straightforward

given the representation of domain elements chosen.

3.2.2.6. Translation of denotations

DENOTECLASS definitions are processed similarly to COMBCLASS
definitions; the difference is that the equivalent Modula-2 procedure type declaration
will include additional formal parameters corresponding to sub-component denota-
tions. Since denotations belonging to the same denotation class will, in general, have
different numbers of syntactic components, these additional parameters are specified as
an open array of unknown size. In addition, the zype of the sub-component denotations
will differ among denotations belonging to the same class, and so the corresponding
parameters are declared to be of a type unifying all denotation classes. However, a
particular denotation “knows” the denotation class to which the denotations of its sub-
components belong, since it knows the syntactic category to which the corresponding
syntactic component belongs. The denotation supplied as an argument is guaranteed to
belong to this denotation class so long as the program syntax tree is syntactically
correct. This knowledge permits the thunk corresponding to the denotation to be

invoked directly with appropriate arguments, as described above in section 3.2.2.3.

Tt should be noted at this point that there is an alternative to the scheme of denota-
tion class definitions just described. In this alternative scheme, each denotation is
defined separately, as the sole member of a unique denotation type. Denotation classes
are then specified as the union of all denotation types that correspond to the same syn-

tactic category — the denotation class expr, for example, could be declared to be the
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union of the types of the denotations for addition, constant, multiplication, and what-
ever other expressions are permitted. This scheme would permit the denotations for
specific constructs to specify the number and denotation classes of the sub-component

denotations to be supplied as arguments.

The disadvantage of the alternative scheme is that the denotation of a sub-
component is no longer guaranteed to be of a particular procedure type, but can be any
one of a union of types. This necessitates the use of a run-time tag check to determine

the type of an argument before invoking the thunk.
The prototype implementation of EDS uses the scheme described originally.

Denotations differ from combinators in that they may contain references to the
denotations of sub-components. These references have to be expanded into invoca-
tions of the appropriate “thunk” that has been bound as an argument. This expansion
requires extraction of the corresponding denotation function, determination of the
arguments that have already been bound for that function, and binding of the additional
arguments now supplied. Some of the previously bound arguments may be thunks. In
order to simplify this expansion, EDS requires that the denotation be referenced
through a special eval construct that specifies the denotation class to which the denota-

tion being invoked belongs.

3.2.2.7. The rest of the interpreter

Once all the combinators and denotations have been translated into Modula-2 and
compiled, two things remain. First, we must generate the tree-builder that parses pro-
grams and constructs the tree of denotations that represents the executable version of
the program, and secondly, we must provide a method of interpreting the denotation

trees. Given the association between productions and denotations provided in an EDS
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specification, the tree-builder is almost identical to an ordinary parser that constructs a
parse tree of a program during parsing; it can be constructed from the syntactic

specification of the language by a slightly modified parser generator.

Execution of the denotation tree is simple: The denotation tree is one large,
deeply-nested function call, where some arguments (the denotations of subcom-
ponents) are to be passed by name rather than evaluated before the call. The translated
eval constructs will evaluate the thunks corresponding to these by-name arguments as

required in the course of execution.

3.2.3. An example of an EDS specification

We will now describe the process of transforming a standard denotational seman-
tics into an EDS-style specification, using as an example the language L introduced in

chapter 2.
3.2.3.1. The semantic domains

3.2.3.1.1. Basic Values

As in section 2.2.2.1.1, the domain of basic values is
Val = Int + error
The predefined domain Int corresponds directly to the machine representation of
integers, which does not include a separate error element, and does not, in general, pro-
vide strict functions or report errors such as overflow. A more efficient, but less
secure, implementation of L may elect to forego the inclusion of error in the domain
of basic values; we include it here, in order to follow more closely the definition of L

given previously.
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3.2.3.1.2. Stores

We choose to use an opaque Store domain, implemented as a pointer to an area
of memory set aside for this purpose. Actually, we will go further, and assume that the
definition of L is single-threaded in the store, so that we can implement store updates
and allocates by side effects on a single global store. David Schmidt recently
developed sufficient criteria for single-threading [Schmidt85], but the current imple-
mentation of EDS does not verify that a semantics is single-threaded in a particular
variable. EDS has been adapted to accept semantic definitions written in the more
powerful continuation style (see section 3.3 below), and it is expected that most
specifications will choose this style. As noted by Schmidt, semantics written in con-

tinuation style are trivially single-threaded in the store.

The opaque store domain does not affect other parts of the semantics, except that
we can no longer apply the store directly to locations, but must instead use a load com-
binator to return the value stored at a particular location. This combinator, along with
the other combinators that manipulate the store, will be described in the section on

combinators below.

3.2.3.1.3. Environments

Although the store is conceptually a function domain, we chose to hide this in our
implementation of it, and so did not have to contend with the fact that EDS does not
have a facility for defining function domains. Our treatment of the environment

domain in this section will show how this limitation can be overcome.

Environments are a rather special type of function, both in the way they are
defined and in the way they are manipulated. An environment has the same value

(undefined) for all but finitely many argument values. it can thus be modeled by a
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default value together with a finite mapping. The choice of mapping depends on the
ways in which environments are defined and used: a hash table will give easy updating
and access, but make it inconvenient to save and restore environments, while an asso-
ciation list will slow down lookup somewhat but make it easier to save and restore

environments.

Having chosen efficiency over generality in our definition of Store, we will make
the opposite choice in defining Env; although the semantics of L (a language without
block structure or scoping) do not require saving and restoring environments and
would hence be most efficiently implemented by using a hash table for an environ-
ment, we choose the association list model for illustrative purposes. We will, however,
manipulate the environment only through special combinators, thus hiding the imple-
mentation choice from the other components of the semantics, and easing later

changes.

An association list is a list of pairs; each pair consists of an identifier and an
environment value to be associated with the identifier. List domains can be created
through use of domain definitions of the form

DLIST = D+ (D xDLIST)
which defines DLIST to be a domain containing all finite sequences of elements of D.
In this example, we will, for conciseness, assume that EDS is extended to provide a
LISTOF domain constructor, together with CONS, CAR and CDR operations on ele-
ments of list domains. Using this extended notation, the environment-related domains
for L can be defined as in Figure 3-2. Note that Id is a predefined domain, and Loc is
an opaque domain that is implemented as a type “POINTER TO Val”, where Val is the

domain of storable values.
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undefined= undefinedval,
EnvValue= undefined + Val + Loc;
Binding= Id x EnvValue

Env = LISTOF Binding

Figure 3-2: Environment domains for L in EDS.

3.2.3.2. Combinator definitions

The low-level combinators that manipulate stores and environments are the only
sections of the semantics that need to know how these constructs are implemented.
We will now define these combinators, using the implementations described above for

the store and environment.

3.2.3.2.1. Store combinators

The load, update, and allocate combinators are used to manipulate the store.
These combinators, as well as the combinator classes to which they belong, are defined
in Figure 3-3. The domain AllocRes is defined to be (Store x Address). Note that the
store is used only implicitly, since EDS uses the real machine store, with elements of
Loc being pointers into actual memory. The parameter “s” is actually a dummy in this

specification.

3.2.3.2.2. Environment combinators

Environment manipulations in L are simple: we can update the binding of a par-
ticular identifier, or we can look up the binding of an identifier. The implementation
chosen is an association list of (Id, EnvValue) bindings. The value associated with an

identifier can be updated by prepending the new binding to the association list, and
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fload = COMBCLASS(s: Store;a:Loc) — Val;
tupdate = COMBCLASS( s : Store; a: Loc; v : Val ) —> Store;
tallocate = COMBCL.ASS( s : Store ) —» AllocRes;

COMBINATOR load : tload;
var

returnval : Val;
begin
if a = nil then
returnval ::= error( errorval );
else
returnval :=3a";
end;
return(returnval);
end load;

COMBINATOR update : tupdate;

begin
if a <> nil then
ai=v;
return(s);
end update;

COMBINATOR allocate : tallocate;
var
returnval : AllocRes;
begin
returnval. Head :=s;
new(returnval. Tail);
return(returnval);
end allocate;

Figure 3-3: Definition of Store combinators for L.

lookup must therefore return the first binding encountered, or undefined if none. Note
that this implementation allows us to use pointers into the middle of the association list
to access previous environments, thus eliminating the need to copy environments on
every update, while not assuming single-threading of environments. Although we will
not make use of this property here, specifications of languages that have several scopes
would be able to use it to advantage. The combinators define and lookup are given in

Figure 3-4.
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tdefine = COMBCLASS(e : Env; i: 1d; v : EnvValue) — Envy;
tlookup = COMBCLASS( : Id; e : Env) — EnvValue;

COMBINATOR define : tdefine;
var
NewBinding : Binding;
begin
NewBinding.Head :=1;
NewBinding.Tail := v;
return(CONS(NewBinding, e));
end define;

COMBINATOR lookup : tlookup;
var
returnval : EnvValue;

begin
if e = nil then
returnval ::= undefined(undefinedval);
elsif Equallde(CAR(e).Head, i) then
returnval := CAR(e).Tail;
else
returnval := lookup(i, CDR(e));
end;
return(returnval);
end lookup;

Figure 3-4: Definition of Environment combinators for L.

3.2.3.3. The denotations and their classes

Each production in the syntax of the object language has a denotation associated
with it. These denotations are divided into denotation classes which correspond to the
syntactic categories in the object language, and to the denotational functions of the

standard semantics of the object language.

3.2.3.3.1. Denotation classes

The denotation classes for L are defined in Figure 3-5. There is one denotation
class corresponding to each of the semantic functions E, C, D, and P defined in section
2.2.2.2. Res, the domain of command results is defined, as before, to be Store + error.

The domain DRes of declaration results is simplified to be just Env + error, in light of
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DENOTECLASS(env : Env; s : Store) — Val,;
DENOTECLASS(env : Env; s : Store) — Res;
DENOTECLASS(env : Env; s : Store) — DRes;
P = DENOTECLASS(Q —» Val;

TamE
o

Figure 3-5: Denotation classes for L.

the single global store used; the store could be included in the result, but would need-

lessly complicate the example.

3.2.3.3.2. Denotations for expressions

There are three denotations belonging to the class E, corresponding to each of the
productions for an <expr> in the syntax of L. These denotations are defined in Figure
3-6.

Some explanation is required here. The notation “SynArg$n” refers to the deno-

tation of the n™ syntactic argument to this denotation. In cases where the argument
belongs to a primitive domain (such as integers or identifiers), it is accessed directly; in
cases where the argument is a (partially applied) member of a denotation class, the
appropriate denotation is invoked via an (EDS-defined) macro which sets up the
correct environment and arguments for the denotation (which has been passed by
name, as a “thunk”). EDS defines one such macro for each denotation class; EvalE is

the macro corresponding to the denotation class E.

3.2.3.3.3. Denotations for commands

The denotations for statements belong to the denotation class C. They are given

in Figure 3-7.
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DENOTATION NumberExp : E;
(* denotation of a numeral *)

var
returnval : Val;
begin
(* Convert numeral to integer, checking for overflow, etc. *)
(* Ascii_to_Integer returns true if conversion successful *)
if Ascii_to_Integer(SynArg$1, i) them
returnval ::= integer(i);
else
returnval ::= error(errorval);
end;
return(returnval);
end NumberExp;

DENOTATION IdExp : E;
(* denotation of an identifier *)

var
idval : EnvValue;
returnval : Val;
begin
idval := lookup(SynArg$1, env);
dcase idval of
undefined :
returnval ::= error(errorval);
Val:
returnval := idval::Val;
Loc:
returnval := load(s, idval::Loc);
end;
return(returnval);
end IdExp;

DENOTATION AddExp: E;
(* denotation of a sum *)

begin
o return(plus(EvalE(SynArg$1(env, s)), EvalE(SynArg$2(env, s))));

(* note that plus is strict, so need not check for error in sub-expressions *)
end AddExp;

Figure 3-6: Denotations for expressions in L.




DENOTATION NullCom : C;
(* denotation of a null command *)
var
returnval : Res;
begin
returnval ::= Res(s);
return(returnval);
end NullCom,;

DENOTATION SeqCom : C;
(* denotation of a sequence of commands *)
var
returnval : Res;
begin
returnval := EvalC(SynArg$1(env, s));
if returnval ? error then
(* no need to execute second statement, return error *)
return(returnval);
else
d returnval := EvalC(SynArg$2(env, returnval::Store));
end;
return(returnval);
end SeqCom;

DENOTATION AssignCom : C
(* denotation for assignment statement *)

var
returnval : Res;
expval : Val;
idval : EnvValue;
begin
expval := EvalE(SynArg$1(env, s));
if expval ? error then
returnval ::= error(errorval);
else
idval := lookup(SynArg$1, env);
if idval 7 Loc then
: returnval ::= Store(update(s, idval::Loc, expval));
else
returnval ::= error{errorval);
end;
end;
return(returnval);
end AssignCom;

Figure 3-7: Denotations for statements in L.

3.2.3.3.4. Denotations for declarations

The denotations for declarations in L are given in Figure 3-8. These denotations

all belong to the denotation class D.
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DENOTATION NullDec : D;(* denotation for null declaration -- no effect *)
var returnval : DRes;

begin
returnval ::= Env{env);
return(returnval);

end NullDec;

DENOTATION SegqDec : D;(* denotation for two declarations in sequence *)
var returnval : DRes;

begin
returnval := EvalD(SynArg$1(env, s));
if returnval ? error then
return(returnval);
else
q return(EvalD(SynArg$2(retumval::Env, )));
end;
end SeqDec;

DENOTATION ConstDec : D;(* denotation for constant declaration *)
var returnval : DRes;
expval : Val;
envval : EnvValue;
begin
if lookup(SynArg$1, env) ? undefined then
expval := EvalE(SynArg$2, env, s);
if expval ? error then
returnval ::= error(errorval);

else
envval ::= integer(expval::integer);
returnval ::= Env(define(env, SynArg$1, envval));
end;
else
returnval ::= error(errorval);
end;
return(returnval);

end ConstDec;

DENOTATION VarDec : D;(* denotation for variable declaration *)
var returnval : DRes;
envval : EnvValue;

begin
if lookup(SynArg$1, env) ? undefined then
envval ::= Loc(allocate(s).Tail);
returnval ::= Env(define(env, SynArg$1, envval));
else
returnval ::= error(errorval);
end;
return(returnval);
end VarDec;

Figure 3-8: Denotations for declarations in L.
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3.2.3.3.5. Denotation for a program

Finally, we can define the denotation for a program in Figure 3-9. The store s and

environment env are assumed to be initially empty.

3.2.3.4. Translation Rules

Having defined the semantic domains, combinators, and denotations for L, all that

remains is to specify the association between productions and denotations. Since we

DENOTATION Prog : P;

var
s : Store;
env : Env;
val : Val;
dres : DRes;
cres : Res;
idval: EnvValue;
begin
dres := EvalD(SynArg$2, env, s);
if dres ? error then .
val ::= error(errorval);
return(val);
else
cres := EvalC(SynArg$3, dres::Env, s);
if cres 7 error then
val ::= error(errorval);
return(val);
else
idval := lookup(SynArg$1, dres::Env);
dcase idval of
undefined:
returnval ::= error(errorval);
Val:
returnval ;= idval::Val;
Loc:
returnval := load(s, idval::Loc);
end;
end;
end;
return(returnval);
end Prog;

Figure 3-9: Denotation of a program in L.
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have one denotation per production, and each denotation takes the denotations of all its
syntactic components as arguments, this association is easily specified by including a
denotation name with each production in the syntax of L. In the denotations given

above, this association is given informally within comments (delimited by (* and *)).

3.2.3.5. Fixed points and iteration

EDS, as described above, has no fixed-point operator. The semantics of a while

loop can be simulated in EDS, as given in Figure 3-10.

DENOTATION WhileCom : C;

var
returnval : Res;
expval : Val;(* Control expression value *)
newstore : Store;(* Updated store *)
cval : Res;(* Intermediate command result *)
begin
expval := EvalE(SynArg$1(env, 5));
newstore := §;
loop
if expval ? error then
returnval ::= error(errorval);
return(returnval);
elsif expval::integer <= 0 then
returnval ;:= Store(newstore);
return(returnval);
else
cres := EvalC(SynArg$2(env, newstore));
if cres ? error then
returnval ::= error(errorval);
return(returnval);
else
newstore := cres::Store;
4 expval := EvalE(SynArg$1(env, newstore));
end;
end;
end;
end WhileCom;

Figure 3-10: Semantics of iteration in EDS.
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This definition actually corresponds fairly closely to the limit definition given in
Figure 2-7. The extension of EDS to encompass semantic definitions written in con-
tinuation style, which is the subject of the next section, will make the fixed-point

operation moot for iteration and other control-flow aspects of language specification.

3.3. EDS with continuations

Certain programming language constructs, particularly those that cause non-local
transfers of control, are more cleanly described in a semantics using continuations,
rather than the direct semantics we have used so far in EDS. Since most realistic pro-
gramming languages contain such constructs, we would like to extend EDS to support
semantic descriptions written using continuations. This section examines how the

introduction of continuations affects EDS.

There are several things to consider when examining the impact of continuations
on EDS. First and foremost, continuations are functions; we must determine whether
the constructs provided in EDS for manipulating functions are sufficient to handle
semantic descriptions written using continuations, and if not, how they must be
extended to accommodate such definitions. Even if no changes are required, we have
to examine how continuations affect the form of an EDS specification, specifically the
denotation definitions and the translation rules. In addition, we must observe how con-
tinuations change the executable representation of a program, and how the translation
and execution phases of the generated interpreter have to be modified to cope with
these changes. As we shall see in chapter four, these changes are very significant in

the integration of EDS into an IPE.
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3.3.1. Domains, combinators, and denotations

The domain of continuations is a function domain; typically, a continuation maps
a store into the language-specific domain of answers. Actually, the domain of answers
is not used by most of the semantics; usually, a language definition contains only a few
primitive continuations, which terminate program execution and extract an answer
from the store. For example, a language may contain the primitive continuations error
and stop, which represent an error exit and successful program termination, respec-
tively. Either or both may extract some information from the program state at termina-
tion, and return this information (say by printing a message on the terminal) as the
result of the program execution. Other continuations never manipulate values in the
domain of answers; while they return values in this domain, they do so indirectly, by
invoking some continuation on an appropriate store. Thus most continuations are
defined by composing a store-transforming function with another continuation. In light
of this characteristic, it is reasonable to use an opaque domain of answers, with primi-
tive continuations such as error and stop defined as combinators that map stores into

answers.

What of the other continuations, which are defined by composition? In order to
handle them, we need a facility for defining function composition. We shall now
extend EDS to allow a limited form of function domain; combinator and denotation
classes will be considered to be domains. Although this extension allows the definition
of function domains, the domains so defined have certain limitations. In particular,
there is no facility for defining curried function domains; all function domains are
defined to map a collection of arguments to a result in one step, with no intermediate
results being created. In addition, the type checking requires name equivalence rather

than structural equivalence. Thus, given the definition
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C = COMBCLASS( s : Store ) — Ans,
the domains
Doml = COMBCLASS(c:C;s: Store) — Ans
and
Dom2 = COMBCLASS(¢c:C)—>C

would not be considered equivalent.

Given this limited form of function domain, we can simulate the definition of a
domain of continuations by using the notion of completions, introduced by Henson and

Turner [Henson82] as the operational analogue of continuations.

Consider the language L defined using continuations as in Figure 2-8. Note that
by right-canceling the store in the definition of C, the semantic function for statements,
we can consider C to specify an equivalence between continuations. This equivalence
can also be seen in the definition of the functionality of C. Since we have defined the
domain of continuations to be

Cont = Store — Ans
the functionality of C, given originally as
C = <stmt> — Env — Cont — Store — Ans
can be rewritten as:
C = <stmt>— Env — Cont — Cont

The denotations of statements (with appropriate environments) can thus be considered
to be continuation transformers. Hence the combination of a statement denotation, an
environment, and a continuation, defines a continuation that is the result of applying
the statement denotation to the environment and continuation in turn; this is really just
another way of saying that the composition of a store-transforming function (a state-

ment denotation with an environment) with a continuation yields a function in the
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domain of continuations.

This recognition gives us the mechanism for defining the domain of continua-
tions: First, define the domain of primitive continuations, which is simply the combina-
tor class for the primitive continuations error and stop; second, note that a continua-
tion can be either a primitive continuation, or a (statement denotation, environment,
continuation) triple. The domain of continuations can thus be defined as the sum (dis-

joint union) of these two alternatives.

Invoking a continuation is no longer a simple matter of applying it to the store,
however, since non-primitive continuations are now represented as closures. Invoking
these closures requires calling the function representing the statement denotation, with
the environment and continuation as arguments in addition to the store; the statement
denotation performs the composition by calling the second continuation with the
appropriate store. A new keyword, CONTINUE, has been added to EDS to simplify
this task; the statement

CONTINUE contname( s );
will test the tag of contname and create an appropriate function call, with s as the store
parameter. A CONTINUE statement should terminate the body of every statement

denotation.

Other types of continuations, for example declaration continuations, can also be
included in the completion framework. Assuming the definitions
DCont = (Env x Store) — Ans
and
D = <decl> — Env — DCont — Store — Ans
note that they can be rewritten as

DCont =Env — Store — Ans = Env — Cont
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and

D = <decl> — Env — DCont — Cont.
We can then expand the completion sum domain to include the triple of a declaration
denotation, an environment, and a declaration continuation. The body of a declaration
denotation will bind its result environment with its supplied declaration continuation to

form a continuation, and invoke the result through a CONTINUE statement.

3.3.2. Translating continuation semantics

The translation rules for a continuation semantics are more complicated than
those of a direct semantics. In the case of a direct semantics, the translation rules were
trivial — denotations were bound as arguments to other denotations in accordance with
the syntax of the program. All denotations were defined identically, with the denota-
tions of all syntactic subcomponents as arguments. In a continuation semantics, there

is the problem of continuation arguments to contend with.

The most direct approach to dealing with continuations is to treat them as run-
time arguments to denotations, just as we have been doing with environments and
stores. However, note that the definition of the continuation of a particular statement
in a program involves the continuation of the statement following it, and so on: con-

tinuations are defined in reverse, opposite to the flow of execution of the program.

Actually, this is not strictly true; There are really three components required to
define a continuation (other than a primitive continuation): a statement denotation, an
environment, and another continuation (we ignore for the moment declaration and
expression continuations -— they are analogous). Of these, statement denotations are
always static, depending only on the structure of the program. The linkage that defines

the composition of continuations is also a static property for most programming
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language constructs — this claim will be substantiated later. Hence, if we can factor
out the environment from continuations, we can define continuations statically, and

bind them as arguments during translation.

The completion representation of continuations has already provided part of the
mechanism we need to separate the environment part of a continuation definition from
the (static) denotation part. Assuming we have a method of binding the denotation part
of completions statically (this will be discussed in the next section), it remains to
ensure that the appropriate environment is available and bound into the completions

before they are invoked through a CONTINUE statement.

A simple way to accomplish this binding is to restructure our semantics. Instead
of placing the environment before the continuation in the (curried) definition of the
meaning functions, place it after; the meaning function for statements (for example)
would then have functionality

C = <stmt> — Cont — Env — Store — Ans
We can then modify the domain of continuations to accept an environment argument in
addition to a store, thus making the environment part of the run-time state of the pro-
gram. This rewriting makes statement denotations (independently of environments)

into continuation transformers, and permits the static determination of continuations.

This solution is satisfactory in the case where the environment is purely dynamic
— that is, when all commands are executed in the environment that exists when they
are invoked; it does not provide for execution in a previously bound environment, such
as in the case of LISP “funargs,” for example. In order to support other scoping and
binding schemes, we must be able to create continuations that have environments
bound in; we are thus forced to revert to our original scheme, with environments

preceding continuations in the currying order. We can still simulate the scheme just
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described, by binding the environment component of the completion just before invo-
cation; in the case where the environment so bound is the current environment, we
have dynamic scoping with shallow binding, as we would have with an environment
that is part of the run-time state. We will leave unspecified for now the means of

assigning environments under other scoping schemes.

We now return to consider the problem of determining the static component of
continuations. Ravi Sethi [Sethi83] noted the correspondence between the continua-
tion structure of a program and a flow-graph of the program. Consider Figure 3-11
(adapted from [Sethi83] ), where each statement defines a continuation, in terms of a
supplied continuation and the denotations of its subcomponents. Following Sethi,

$statement represents the meaning of statement. Sethi considered states to be direct

&)

statement ¢, = $statement(c, )

Figure 3-11: Statements as continuation transformers.
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mappings from identifiers to values, thus sacrificing the advantages of a two-step
(environment plus store) mapping, such as the ability to model aliasing. This
simplification avoids the environment problem discussed above, and enables Sethi to

treat statements as continuation transformers.

Sethi uses Plumb, a language based on the pipe notation for composing functions,
to specify the construction of flow graphs for programs. With each production in the
syntax of the language, Sethi associates a rule, written in Plumb, which describes the
flow graph for that construct in terms of the flow graphs of its components and certain
primitive combinators. The reader is referred to [Sethi83] for a full explanation; we
present the technique here by means of some examples (Figure 3-12), adapted
from [Sethi83]. For each construct, we give the syntax, the associated Plumb rules,
and the resulting flow graph. The notation c, refers to a continuation (corresponding to
a point in the flow graph), and the boxes contain the flow graphs for the sub com-
ponents that label them. The primitive combinator cond selects between one of its two

continuation arguments based on the expression value supplied to it.

Note especially the flow graph and specification for the while loop. Continua-
tions here are defined recursively (hence the keyword cyclic in the specification), and

the corresponding flow graph contains a cycle.

Using Plumb, Sethi is able to specify flow graphs for all the structured control

constructs of the C programming language [Kernighan78].

In order to handle gotos, Sethi introduces an environment that maps identifiers
(labels) into continuations (flow graph points). It should be noted that this environ-
ment may be kept completely separate from the environment used to determine the
denotation of identifiers in object language programs; we shall refer to Sethi’s environ-

ment as the label environment. Sethi notes that indirections through the label
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expr

stmt

!

|
<stmt> ::= IF <expr> THEN <stmt,> ELSE <stmt,>

{ $$ ¢, = $expr | cond( $stmt, c,, $stmt, ¢, ) }

o

expr

\ 4

|
<stmt> ::= WHILE <expr> DO <stmt>

{$$c, =cyclicc, = $expr | cond( $stmtcy, ¢, ) }

Figure 3-12: Some examples of Plumb specification.
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environment may be dispensed with once the flow graph for a program is constructed;
this is a consequence of the static nature of labels in C — languages with label vari-
ables would require a run time label environment. For languages without label vari-
ables, however, our earlier claim that continuation structure is a static property is

upheld.

Sethi goes on to describe how a Plumb specification can be combined with a
grammar specification for a parser generator such as yacc to produce a translator that
generates flow graphs for programs. His work can be easily adapted for our purposes;
edges in his flow graph correspond exactly to the binding of completion arguments in
EDS. We thus have a translation method that binds the static portion of completions
for us, and we also see how the executable representation of a program changes now

that we have continuations.

The introduction of continuations has changed the structure of the executable
form of a program from a tree into a general graph. Loops and gotos form edges in the

graph that do not correspond to the syntactic structure of the program.

3.3.3. Execution with continuations

Continuations make the flow of control in a program apparent; where the execu-
tion order of denotation functions in a program tree built with a direct semantics was
determined implicitly by the order in which the denotation tree was traversed (which
was decided by the order in which each denotation invoked the denotations of its sub-
components), the execution flow in a denotation graph built using continuations is

explicit in the bindings of the continuations as arguments.

Previously, a denotation function would invoke each of its children in turn, and

they would invoke their children, and so on; the execution state at any instant was
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determined by the contents of the store and a stack of partially evaluated denotation
functions representing the path from the currently executing function to the root of the

denotation tree.

With the addition of continuations, each denotation function invokes precisely
one other denotation (its continuation), and this invocation is always the last action
before returning — continuation invocation is tail recursive. The execution state of a
program denotation is thus determined by the denotation graph, the store contents, and

a single current continuation value.

3.3.4. Procedure calls

Our above statement that a single continuation suffices to characterize the execu-
tion state of a program is not quite true in the presence of procedure calls. A procedure
call involves two things: an environment switch (usually performed implicitly by the
binding of an environment value to the procedure body when its denotation was
created) and a saving of a return continuation. By analogy with actual implementa-
tions of languages, the saving and restoring of continuations during procedure call may

be implemented by pushing and popping a stack of continuations.

The denotation of a call statement will push the continuation corresponding to the
next statement onto the continuation stack, and transfer control to the continuation
corresponding to the procedure being called; in the case of static scoping, this con-
tinuation may be part of the flow graph, but in the case of dynamic scoping, the con-
tinuation must be extracted from the environment. In the static case, the environment

indirection may be eliminated as it was for labels.

A return from a procedure (either implicitly or through execution of a return

statement), will simply pop the top continuation from the stack and invoke it.
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3.4. Summary

This chapter has presented two versions of our approach to the generation of exe-
cution facilities from denotational semantics. The first version, for denotational
semantics written in direct style, translates an object language program into a tree-
structured denotation. A node in the tree is a pointer to a compiled representation of
the denotation function of the appropriate construct, together with pointers to the nodes

representing the denotations of the syntactic components of the construct.

EDS differs from most conventional semantics-directed compiler generators in
using a (albeit extended) conventional programming language (Modula-2) rather than a
special purpose functional language. As a consequence, EDS has to contend with the
problems of defining and manipulating higher-order functions. We have described
how the function manipulations encountered in denotational definitions can be simu-

lated in EDS.

The second version of EDS incorporates the ability to handle semantic definitions
written using continuations. Once again, the problems of function manipulation arise
and are dealt with, by combining the techniques of completions [Henson82] and flow

graph representation of continuations [Sethi83].

Although the issue has never been explicitly raised in this chapter, EDS was
designed to complement a language-based editor generator, thus providing the capabil-
ity to generate a complete integrated programming environment. The following
chapter will describe how the design choices made in EDS enable incremental transla-
tion and interactive execution to be achieved with reasonable performance, thus
fulfilling the goal of providing a truly integrated programming environment generated

completely from specifications.
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Chapter 4

EDS for an Integrated Programming Environment

We have thus far discussed EDS as a stand-alone interpreter generator. We will
now consider how EDS can be combined with a generator of language-based editors to

form an IPE generator.

As a first step, let us examine how an interpreter generated by EDS can be incor-
porated into a language-based editor to produce an IPE; if this integration is straight-
forward, we have an IPE generator, albeit one with two quite distinct components —
EDS and the LBE generator. Subsequently, we can discuss how EDS and an LBE gen-
erator may be more completely integrated, and how such integration may be exploited

to improve the generated IPE.

There are several LBE generators described in the literature, based on a variety of
paradigms, and using different specification techniques. Rather than selecting a
specific LBE generator from among the many candidates, we will describe the integra-
tion in terms of a generic LBE that has much in common with LBEs generated by a

variety of generators, with reference to specific systems where appropriate.

In describing how an EDS-generated interpreter interfaces with an LBE, there are
two aspects to consider — translation and execution. Chapter 3 has already described
how an EDS-generated interpreter translates a source language program into its deno-
tation; what we must examine here is how this translation can best be performed in the
context of an IPE, keeping in mind the aim of reducing the length of the edit-compile-

debug cycle as much as possible.
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In the case of execution, the special nature of an IPE once again demands some-
thing more than a typical stand-alone interpreter; interactive execution is the key con-
cept. We will describe several features of previous IPEs, and show how they may be

incorporated into an EDS-generated interpreter.

4.1. A generic LBE

Many LBEs have been described in the literature, and many LBE generators as
well. We will attempt here to describe a “generic” LBE that is in some sense a least
commen denominator of the various approaches that have been adopted in the past.
We do not claim that this LBE is somehow the “best,” or even as good as any of the
others — in fact, the aim is to describe a “least” LBE that can be mutated fairly easily
to fit any of the popular paradigms for LBEs. The description of this generic LBE will,
of necessity, be incomplete; in particular, aspects of the LBE that have no direct bear-

ing on the interface with EDS will be left unspecified.

A language-based editor usually represents programs internally as something
other than simple text. Although the exact representation may take many forms, the
aim is to facilitate structured manipulations of the program, which usually implies
knowledge of the syntactic structure of programs. It is thus reasonable to assume that
an LBE always either has, or can easily simulate, access to a (abstract or concrete) syn-
tax tree of the program being edited. For simplicity, we will assume that our generic

LBE stores programs internally as abstract syntax trees, with editing operations being

either specified as, or converted into, tree manipulations.

Our LBE must have a way of displaying programs on screen in (more or less)
conventional textual form in order to permit user interaction. We shall assume that this

is done by creating a screen image from the internal representation, and that there is a
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relatively simple method of accessing the screen image corresponding to a particular

node in the syntax tree.

As we describe the process by which an EDS-generated interpreter is integrated
into an LBE, we will come upon other facilities that are required in the LBE. Rather
than describe these facilities now, we shall extend our generic LBE as the need arises.
In some cases this extension will take the form of adding a particular feature not found
in current LBEs, in other cases we will describe how the needed feature may be simu-
lated with the facilities already common in LBEs; in the event that there are competing
schools of thought on the way certain features are implemented in LBEs, we will
attempt to outline the implementation of the required feature within the framework of

each of the paradigms.

4.2. Translation

One way to effect the translation of a program into its denotation is through the
use of a conventional stand-alone EDS-generated interpreter. This would involve gen-
erating a textual representation of the program, writing it out to a file, and invoking the
EDS-generated interpreter on this file. The interpreter would then scan and parse the
program contained therein, and convert it into a tree-structured denotation as described

in chapter 3.

Quite apart from the inefficiency involved in converting a syntax tree representa-
tion of a program into a textual one, which is then immediately parsed again by EDS,
there is a philosophical objection to the translation method just described. The aim of
integrating tools into a common environment is to shorten the edit-compile-debug
cycle as much as possible. Permitting rapid transitions between editing and execution

is one way to further this aim. We will carry this approach to its extreme — we would
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like to provide instantaneous transition from editing to execution, or at least reduce the
transition time to the point where the user is unaware of a distinct translation phase,

but rather imagines the program to be directly executable at all times.

In order to sustain this illusion, we must be able to maintain the executable
representation of the program incrementally during editing. At the same time, this
incremental processing should not significantly degrade the perceived response of the

LBE to the user’s editing commands.

A denotational semantics has two properties that are extremely useful for the pur-
pose of incremental translation. Firstly, a denotational semantics is syntax-directed —
denotations are specified for constructs based on their syntactic structure. A particular
denotation depends only on the denotations of its immediate constituents, which are its
direct children in the syntax tree. Secondly, the semantics is modular — the denota-
tion of a construct depends on the denotations of its components, but the extent of this
dependence is strictly delimited. For example, the denotation of an assignment state-
ment includes the denotation of an expression; if the syntax tree is altered by replacing
this expression, its denotation can be replaced by that of the replacement expression

without requiring any further alterations to the statement denotation.

In the case of EDS, where denotations are represented as trees with pointers to the
denotations of sub-components, this replacement is a simple matter of updating the
argument pointer for the appropriate component of the statement denotation to point to
the new expression denotation. The actual code for denotations, as was noted in
chapter 3, is compiled into machine code at interpreter generation time, and it is
merely pointers to the denotations that are manipulated during construction and
modification of the executable representation. For example, Figure 4-1 shows the

changes necessary when the statement
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foo :=1;
is changed to
foo :=foo + 1;
In the denotation for the assignment statement, the pointer to the denotation of its
second sub-component (the expression whose value is to be assigned) must be changed
from its original value (pointing to the denotation of the constant expression “17) to
point to the denotation of the new expression (the sum “foo + 1). The solid lines indi-

cate the original pointer values, and the dashed line indicates the updated value.

Thus, for a direct semantics, we see that maintaining the executable representa-
tion of a program is analogous to maintaining the syntax tree of the program, which the

LBE presumably already does. If EDS were to be integrated with the LBE generator,

Assign "foo"
N
AN
N
N
X
ConstExp "1 AddExp |~ /
VarExp "foo" ConstExp "1

Figure 4-1: Incremental updating of denotation pointers.
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the necessary denotation pointers could be incorporated into the definition of the tree

nodes used by the LBE.

For an EDS interpreter added as an afterthought, we need a way of maintaining
the denotation tree in parallel with updates to the syntax tree. Fortunately, although
LBE generators do not agree on the way they would do so, they all provide a reason-

ably easy way to maintain the denotation tree.

Since the denotation tree of a program depends only on the structure of the pro-
gram syntax tree, any LBE that provides support for static semantics must theoretically
be capable of maintaining the denotation tree. In fact, in the case of the two most com-
mon approaches to static semantics in LBEs, action routines and attribute grammars,
the denotation tree can be maintained with minimal effect on editing response, since
the extent of the change to the syntax tree delimits the extent of the changes to be
made to the denotation tree. The amount of work that has to be done for each syntax

tree modification is thus bounded by a constant.

In the case of a continuation semantics, the situation is somewhat more compli-
cated. Although the modularity of the definition is preserved and the executable
representation can be constructed purely through pointer manipulations, there is the
problem of continuation arguments to contend with. Continuation links are trouble-
some for two reasons. Firstly, they do not always point to nodes that are immediately
adjacent in the syntax tree, as do the pointers to sub-component denotations in a direct
semantics. Secondly, continuation links may form loops. In particular, the denotation
of a program containing a while loop or backward jumping goto statement will contain

continuation links that form a loop.

The non-local nature of continuation links has the potential to degrade seriously

the editing response of an LBE that updates them incrementally, since the scope of
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changes to the denotation graph is no longer confined to the production being modified.
Thus although the work to be done is still constant for each editing operation, the
nodes involved may be arbitrarily far apart; in the case of an LBE based on an incre-
mental attribute grammar evaluator, this could mean examining all the intervening
nodes in order to propagate the changes. In practice, however, the effect is minimal,
for two reasons. Firstly, the frequency and extent of these non-local updates is limited;
in most cases, the flow graph of a program corresponds very closely to the syntax tree,
deviating only in the case of non-sequential transfers of control, such as gotos and
loops. In a typical program, the percentage of such nodes is modest. Secondly, the
problem of non-local updating arises in other contexts within an LBE, such as in asso-
ciating identifier uses with their corresponding declarations, and has been recognized
as a problem, particularly in the case of attribute grammar based editors. As a result,
techniques have been developed to minimize the impact of such updates on editing

response [Reps86].

The existence of loops in the flow graph of a program must be noted when speci-
fying a flow graph constructor using an attribute grammar. Circular dependencies
among attributes in a tree can cause the attribute values to be undefined, and attribute
grammar evaluators will usually reject a grammar that (even potentially) permits circu-
lar dependencies. Once again, the problem has been noted and a solution advanced by
the designers of LBE generators based on attribute grammars. The Synthesizer
Generator [Reps84] permits the definition of local attributes that are associated with a
production rather than a grammar symbol, and also allows an attribute to be a pointer
to another attribute. The problem of circular continuation dependencies can then be
removed by associating an entry attribute with each node that has a denotation, and set-

ting the value of entry to be a pointer to the denotation. Other denotations that refer to
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this one as a continuation will instead refer to the entry attribute. Since the entry attri-
bute value depends only on the location of the denotation, and not its value, the circu-
larity is broken. This strategy for dealing with circularities was previously described
in [Mughal85], which used a flow graph approach to gen;:rating run-time facilities in
association with the Synthesizer Generator. Using these entry attributes, the flow

graph of a while statement as given in figure 3-12 would be modified as in figure 4-2.

e : | while.entry
expr Legend
H entry attribute
: cond.eniry denotation
X ———> control flow continuation
""""" # attribute pointer
stmt.entry conditional branch denotation
stmt
v

to entry of continuation of while

Figure 4-2: Flow graph for while loop with entry attributes.
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Note that there is no loop comprosed entirely of solid arrows — the dotted attribute

pointers serve to break the circularity.

4.3. Execution

Once we have a denotation tree for a program, we can interpret it on command as
described in chapter 3. However, we would like to go beyond the facilities provided
by a simple interpreter and utilize the special nature of an integrated environment to
provide features that speed up the debugging process, thus shortening the development
cycle. Choosing and evaluating the features that achieve this goal is beyond the scope
of this thesis; instead, we will draw on previous work, selecting illustrative features
from hand-coded IPEs and illustrating how they may be incorporated into the execu-
tion facilities generated by EDS. Although the features described originated in many
different systems, they were all present in the Cormell Program

Synthesizer [Teitelbaum81], which we will adopt as our benchmark.

The goal we wish to achieve is interactive execution; the user should be kept
aware of the progress of execution, both in terms of the locus of execution in the pro-
gram and the run-time state. Furthermore, the user should be able to suspend execu-
tion at any time, and interact with the program’s run-time state; although we may wish
to limit this interaction to be read-only, there are cases when it may be reasonable to
allow the user to modify the run-time state and then resume execution. Carrying this
idea even further, we can consider the consequences of permitting the user to modify

the program itself before resuming execution.

In discussing the execution aspects of an EDS-generated interpreter integrated
into an IPE, we will assume a continuation semantics. There are two reasons for this

assumption: firstly, continuation semantics are, of necessity, more common in the
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specification of actual programming languages, and secondly, the use of continuations
makes program flow explicit, aiding the implementation of tracing and debugging
facilities. In light of these advantages, we envisage the use of continuation semantics

exclusively in actual specifications.

4.3.1. Flow Tracing

The high bandwidth of modern video display devices permits the flow of control
to be traced on the screen during execution. The Cornell Program Synthesizer, for
example; used the screen cursor to indicate the location of the instruction pointer at
each moment, redrawing the screen as necessary whenever control passed outside the
display window.

This feature can easily be incorporated into an interpreter generated using EDS.
The most natural place to perform the display update necessary to switch the highlight-
ing is during invocation of a continuation. Each continuation includes the denotation
of a particular syntactic entity that will be the locus of execution when the continuation
is invoked; we can modify the effect of a CONTINUE statement in the EDS
specification language to test a global flag and, if set, highlight the screen image of the

syntax tree node whose denotation forms the continuation being invoked.

In order to do so, two things are necessary — we must be able to find the tree
node associated with a particular denotation, and we must be able to find the screen
image for that tree node. If flow tracing is not to slow program execution unaccept-
ably, these operations, as well as the actual highlighting itself, must be reasonably

efficient.

Finding the syntax tree node corresponding to a denotation is easy to do — as

noted in the discussion on translation, there is a direct correspondence between tree
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nodes and denotations. If the denotations are included as a field in the tree nodes, as
might be the case in a fully integrated generator system, the correspondence is trivially
apparent; if the denotation tree is maintained separately, we would require an addi-
tional tree node pointer in each denotation, in addition to the pointers to denotation
functions and sub-components, but this is a relatively minor overhead. In the case of
the Synthesizer Generator, where denotations could be maintained as attributes, there

is a simple mapping from attributes to the node with which they are associated.

Mapping syntax tree nodes to screen images, and highlighting the screen image,
are functions that an LBE must already include. However, flow tracing, where screen
updating frequency is controlled by execution speed, may demand higher performance
than editing, where screen updating frequency is dependent on the rate at which the

user initiates program changes.

One complication that has not been mentioned thus far is un-highlighting the
screen image of a node when control leaves its denotation. Once again, the logical
place to accomplish this task is during the transition from one continuation to another,
namely, the execution of a CONTINUE statement. The problem that arises is deter-
mining the denotation that is currently being executed. Recall that the code for a deno-
tation function may be shared among many denotations (such as the denotation func-
tion for an addition expression being shared among all addition expressions in the pro-
gram), and hence there is no unique mapping from denotation functions to denotations.
One possible solution is to pass the denotation itself as a parameter to the denotation
function upon invocation, but there is a better way — since there can be only one
denotation active at any time, it suffices to have some way to identify the current deno-
tation. This current denotation may be a global location, corresponding roughly to an

instruction pointer. CONTINUE statements would thus (assuming flow tracing is in
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effect) perform the following sequence of actions:
e  Un-highlight the current denotation.

e  Extract the new current denotation from the continuation being invoked and
install it as the current denotation.

e  Highlight the screen image of the syntax tree node corresponding to the current
denotation.

e Invoke the continuation as in a stand-alone interpreter.

4.3.2. Providing an execution monitor

Several interactive execution features, including breakpoints, single-stepping, and
slowing down execution during tracing to follow the execution flow more easily,
require the ability to, at various points during execution, transfer control outside the

program, perform some action, and perhaps resume program execution.

As was the case with flow tracing, continuation invocation is the logical place to
interpose these actions. We will now describe an efficient way of optionally inserting
a (possibly empty) set of actions in the continuation invocation. Since the denotations
are compiled at interpreter generation time, whereas the determination of the actions to
be interposed is made just before execution, this insertion cannot be done through the

use of compile-time flags on the denotation functions.

Consider the implementation of the CONTINUE statement. Conceptually, it con-
sists of extracting a denotation function pointer and its arguments from a continuation,
adding a store argument, and calling the denotation function with appropriate argu-
ments. However, this call is the last action performed by the calling denotation func-
tion, and hence is tail recursive. Furthermore, the nature of a continuation semantics is
such that only one denotation function will ever be active at a time. We can therefore

optimize the continuation invocation as follows: first, replace the run-time argument
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stack by a fixed argument area which is overwritten with the arguments for each new
call; second, noting that we have already “pushed” the arguments by installing them in
the argument area, and that the tail recursion obviates the need to save the return

address, replace the call by a jump to the code for the denotation function.

This jump is now our foot in the door of program execution. By inserting a no-op
prior to the jump, and replacing the no-op with a co-routine call to an execution moni-
tor when desired, we can provide support for interactive execution with minimal over-

head (execution of a no-op per continuation invocation) during normal execution.

Conceptually, we can look at the (possibly empty) call to the execution monitor
as an extra store-transforming function that will be composed with every continuation.
The return address saved when the monitor is called, together with the contents of the
store, the argument area, and the procedure call continuation stack, comprise the entire
state of the suspended execution, and so define a continuation that may be invoked to
resume execution. If the execution state is unaltered, simply transferring control to the

jump (returning from the monitor) will suffice to resume execution.

The execution monitor (or monitors — we can have several different monitors
that may be interposed in a continuation invocation) has complete access to the state of
the suspended execution, as well as freedom to interact with the rest of the IPE. In
addition, the ability to interpose monitors selectively gives us tremendous power. For
example, the user may interact with the monitor to query the current value of a vari-

able, which can be determined from the execution state.

As a further example, suppose we wish to “watch” a variable, and update a screen
display whenever its value changes. This can be done by interposing a display routine

before every continuation that performs an update on the variable value.
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Consider also uninitialized variables. Combinators that access the store can be
modified to query the user for a value whenever they would otherwise return an unitial-
ized or error value, assuming the store implementation permits the detection of such
values. In the case of simple variables, the value may be input directly, whereas struc-
tured variables could use a structure editor to ensure the correctness of the value sup-
plied. The domain specification for the return value would provide a specification for
the structure editor invoked, using the techniques for editor generation from type

declarations described in [Dewan86]

To make the most effective use of this ability to interpose éctions in the execution
path, we require the ability to identify sets of continuations (flow graph nodes) that
satisfy certain criteria. In the case of watching variable “foo,” for example, we need to
identify all nodes with denotation function “Assign” and variable “foo.” The incor-
poration of relational databases into IPEs, as proposed in [Linton84] and further
developed in [Horwitz85], will greatly simplify this task. Assuming the existence of a
relational database containing suitable information, many interactive execution and
debugging features can be characterized by specifying a query that yields a set of flow

graph nodes and a monitor continuation to be interposed before those nodes.

4.3.3. Incomplete' programs

Now consider the execution of an incomplete program. Let us define a default
denotation for each syntactic class. This default denotation will be inserted into the
flow graph as the denotation of any missing or unexpanded construct. Consider what
we could do when this default denotation is invoked at run-time. One option would be
to suspend execution and force the user to supply the missing program fragment; in an
editor generated by the Synthesizer Generator, for example, the denotation might open

a new buffer with a root of the appropriate syntactic class, and graft the supplied sub-
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tree onto the main program tree.

Another alternative would be to permit the user to simulate the effect of the unex-
panded construct; the denotational nature of the semantics ensures that this is accept-
able provided the default denotation enforces appropriate constraints on the user-
supplied result. Thus the default denotation for an expression might request an integer
value from the user, and the default denotation for a statement might permit the user to

modify the store, since statements transform stores.

4.3.4. Interleaving editing and execution

The discussion of incomplete programs above introduced the concept of resuming
execution after modifying a program, although the modification permitted was limited
to the expansion of a previously unexpanded (and unexecuted) construct. Can we
extend this concept to permit resumption of execution after other forms of

modification?

Before we consider the question of implementing interleaved modification and
execution, we must clarify the concepts involved. Let us introduce some terminology.
We will use the term original program to refer to the program that was executing
before suspension, and the term modified program to refer to the program after
modification. The steps involved in interposing a program alteration in an execution

are thus:

e Interruption of the executing original program.

e Transformation of the original program into the modified program.
e  Resumption of the modified program execution.

Clearly, it is always possible to obtain some result when resuming execution after

program modification, but for this result to be useful it must bear some relationship to
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the correct one. A strict definition of correctness would require that the results
obtained when resuming execution of a program be identical to those obtained if the
modified program were executed from the beginning, and of course this result could be
trivially obtained by restarting execution from the beginning of the (modified) pro-

gram. We would like, however, to obtain the same effect without having to start over.

What we need then, is a characterization of the state of a suspended execution,
and a way of modifying this state in accordance with modification of the program. Let
us first characterize the state of a program execution; we will do so in terms of the
internal representation of the program and the various denotational semantics con-

structs that accompany it, in order to maintain language independence.

We include the executable representation of the program (a denotation tree or
flow graph) as part of the state of the program execution; in terms of the denotational
semantics of the language, the denotation of a program is considered to be part of its
execution state. The discussion of incremental translation earlier in the thesis has
already dealt with the transformation of this component of the execution state in

response to changes in the program.

Another obvious component of the execution state is the current locus of execu-
tion in the program — the “program counter.” In the case of a direct semantics, the
execution locus is defined by the current denotation together with its ancestors; in the
case of a continuation semantics, the execution locus is defined by the current con-
tinuation together with the stack of continuations saved as return addresses from pro-
cedure calls.

The current store and environment are obviously components of the execution

state of a program; although their exact nature will vary from language to language,

they are language-independent concepts common to most denotational definitions.
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Finally, any other global variables in the denotational specification, such as an
expression evaluation stack, or a procedure call environment stack, are also com-

ponents of the execution state of a program.

Having identified the elements that determine a program’s execution state, we
turn now to ways of mapping the execution state of a suspended program in accor-

dance with modifications to the program itself.

As mentioned previously, the incremental translation techniques already
described suffice to transform the denotation of the original program into that of the
modified program; it remains to determine changes necessary to other components of

the execution state to reflect the program modification.

It would appear at this point that we must relax our requirement of absolute
correctness; it does not seem feasible to modify the execution state to be consistent
with the state that would be obtained if the modified program were started anew. For
example, the modified program, if executed, may never reach the point at which the
original program execution was suspended; furthermore, this reachability question is

known to be undecidable.

If we abandon absolute correctness, what then shall we require in its stead? A
reasonable choice seems to be to require that all aspects of the execution state that are
statically determined be correct, but permit dynamic aspects (such as the contents of
the store) to have incorrect values; where we allow (possibly) incorrect values, it seems

reasonable to retain the current values.

In addition to this weakened form of correctness, we would like to impose
another condition -—— safety. That is, resumption of execution should not result in any
error that could not have resulted from a normal program execution. Note that we are

not proscribing errors that would not occur during execution of the modified program
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from the beginning, which would require strict correctness in many cases; we are
merely forbidding the introduction of a new class of errors. Thus uninitialized vari-
ables or zero-divide errors will be tolerated, even if they would not have occurred if
the modified program were executed from the beginning, but faults in the program
interpretation mechanism will not — situations that may precipitate such faults should

be noted and appropriate actions taken before resuming execution.

It may be argued that we should ensure that no spurious errors are introduced as a
result of resuming execution, but we feel that such a requirement is excessively restric-
tive, being equivalent to a requirement of absolute correctness. We feel that, to a com-
petent programmer who understands the ramifications of resuming execution and uses
this capability with care, the convenience of resuming execution outweighs the disad-
vantage of an occasional spurious error; we will leave it to the discretion of the user of
an environment to attempt resumption only in cases where such resumption may rea-

sonably be expected to produce meaningful results.

What then are the situations where catastrophic failure may result, and how can
they be detected? One class of such situations involves cases where elements of the
execution state that control further execution are no longer consistent with the
modified program; for example, deletion of the statements corresponding to currently
active denotavtions would be such a case. For a direct semantics, there is one currently
executing denotation in a suspended execution, but in addition, the ancestors of this
denotation in the denotation tree also serve to define the current locus of execution. In
the event that any of these denotations is altered, it is unsafe to resume execution
directly. Similarly, for a continuation semantics, the current continuation stack (result-
ing from procedure calls) serves to determine the execution locus. Any program

modifications that invalidate the continuation stack (including the current continuation)
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preclude direct resumption.

In such a case, what are the alternatives? The simplest choice is obviously to res-
tart execution, but in most cases we can compromise; some integrated programming
environments periodically save state as a way of supporting simulated reverse execu-
tion. Such a facility could be included in an EDS-generated interpreter, as we have
already identified the components that determine an execution state; an actual imple-
mentation may be able to optimize such checkpointing by only saving part of the state,

determined by change and relevance.

If the execution state has been checkpointed, we can “roll back™ execution to a
point preceding the invocation of the changed denotation, and then resume execution
from that intermediate point; in the case of a direct semantics, this corresponds to mov-
ing up the denotation tree above the point of change, and then resuming; in the case of
a continuation semantics, we must roll back from procedure calls until all invalidated

continuations have been removed from the stack.

Tf expression semantics have also been written in continuation style, using an
expression stack, and if execution can be suspended during expression evaluation, it is
possible that modifications to the expression under evaluation could invalidate the
stack, and more importantly, make it unsafe to resume execution, by creating a poten-
tial stack underflow situation. In such cases, we would have to roll back execution
until the stack is empty, and re-start expression evaluation; if expression evaluation is

side-effect free, this rollback is relatively inexpensive.

There remains one component of the run time state that we have not considered
— the environment. Since the environment holds the key to interpretation of the store,
we must be able to maintain the consistency of the environment during program

modification if resumption is to be meaningful. There may be more than one
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environment encoded in a suspended execution state; in particular, procedure returns
will usually require restoration of a previous environment; such environments will be

saved along with the return continuation when the procedure is called.

The simplest approach to maintaining environment consistency is to forbid
resumption whenever an existing (or saved) environment is disturbed; we could of
course use the rollback technique employed for procedure calls here as well. It is
tempting, however, to try to transmute extant environments when programs change. A
full analysis of this topic is beyond the scope of the present work, but we present some

ideas that might merit further study.

Consider additions or deletions of variable declarations. For the sake of argu-
ment, we will assume that the resulting program does not contain undeclared variables
— the detection of undeclared variables, though necessary, is inherent in semantic
specification and not an a.rtifact of resuming execution after modification. We will also
restrict these additions and deletions to leave unaffected the remainder of the environ-
ment; for example, they should not (through the scoping mechanism of the language)
cause other variable occurrences to be re-bound (in the modified program) to a
definition other than the one to which they were bound in the original program. If the
environment modifications satisfy these criteria, then it is clear that a suitable imple-
mentation of environments will permit replacing old environments with new without
affecting correctness of the execution state; all that is required is that the new environ-
ment be identical to the old in the intersecting portion, specifically allocation of loca-

tions (values must be identical in any case).

Changes to declarations are more troublesome — since changes to a type or vari-
able declaration may require that the space allocated for a variable be enlarged, or the

contents of the store be re-interpreted. It is not clear whether it will in general be
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worthwhile to do so; it may be simpler to roll back execution to a point where none of

the environments have been modified.

Changes in procedure parameters are an especially troublesome form of environ-

ment modification; it would appear that in such cases rollback is the best solution.

4.4. Incorporating compiled code

In order to achieve greater execution speed, some interpretive systems allow parts
of a program to be compiled, and mix this compiled code in with interpretation of the

remainder of the program.

Interposing a section of compiled code in a denotation tree or a flow graph is sim-
ple — the code segment may be packaged as a denotation function with the appropri-
ate parameters and return type and inserted into the denotation of the program just like
any other denotation. What is not so simple is the interaction between the compiled

and interpreted parts of the program.

For this mixed-code strategy to succeed, the compiled version of the code must be
able to mimic exactly the behavior of the equivalent interpreted version. We deter-
mine the behavior of a program fragment by its effect on the execution state of the pro-
gram; the components of this execution state were described previously in the section

on interleaved editing and execution.

Since EDS-generated interpreters use a model of the store that closely fits the typ-
ical compiled model, and access and update this store through predefined combinators,
it is easy to ensure that compiled versions of program fragments respect this store
model. Similarly, the run-time expression stack can easily be made compatible with

both interpreted and compiled code.
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Procedure calls involving compiled code require a little care; there are three cases

to consider:

(1) Compiled procedure called from interpreted code. In this case, a simple inter-
face denotation can be wrapped around the compiled procedure to handle the

call and return in the way that the interpreted code expects.

(2) Compiled procedure called from compiled procedure. In this case, there is no
interface necessary, and the call can proceed as a normal call would in com-

piled code.

(3) Interpreted procedure called from compiled procedure. This case is more trou-
blesome, especially if we do not know at compile time whether the called pro-
cedure will be compiled or interpreted. One possible solution is to assume that
all procedures called from compiled code will be compiled, and compile a spe-

cial stub that reverts to interpretation if such is not the case.

In the above discussion, we have ignored environments. One of the principal
sources of inefficiency in an EDS-generated interpreter is the indirection through the
environment for identifier references; we would hope that compiled code can avoid
this inefficiency. The only way to ensure this is to “freeze” that portion of the environ-
ment that is referenced by a compiled code segment when the segment is compiled;
subsequent modifications to the environment will force re-compilation of the fragment.
Note that this dependence on the environment ties in with our previous experience in
studying interleaved execution and modification — in both cases additions to or dele-
tions from the environment that leave unchanged the “interesting” part of the environ-

ment are harmless, provided environments are implemented appropriately.

In summary, then, compiled code appears to be feasible provided the interactions

between the environment of the compiled code and that of the interpreted portion of
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the program are minimized. Thus it makes sense to compile program sections at a
granularity of modules, where environment interactions are limited to parameters and
global variables (which can be allocated in the (temporal) order of their definition, thus

minimizing environment-caused recompilation).

The problem of minimizing module recompilation as a result of environment
changes has been studied by Walter Tichy [Tichy86]. We expect that work in this area
will be applicable to both the execution resumption and mixed-code problems in
integrated programming environments, as a result of the shared aim of maintaining

consistency between similar environments.

4.5. Summary

In this chapter, we have shown how EDS, and interpreters generated by it, may be
integrated with an LBE generator, and LBEs generated thereby, to produce a generator
for, and examples of, complete IPEs. We have aimed for two principal capabilities in

the generated IPE: incremental translation and interactive execution.

The paradigm of instant executability at all times, which we feel is an integral
part of a “true” IPE, led to the requirement for incremental translation. We have
shown how the tree-structured denotations of EDS-generated implementations, as well
as the flow-graph executable representations used in the case of continuation seman-
tics, can be easily created and maintained incrementally using facilities found in

current LBEs.

On the subject of interactive execution, we have shown how many of the features
of hand-coded IPEs such as the Cornell Program Synthesizer can be incorporated into
interpreters generated from continuation semantics by EDS. The provision of “hooks”

which facilitate the insertion of arbitrary monitor functions into the continuation invo-
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cations of an executable representation allow the implementation of many interactive

debugging features, while minimizing overhead during un-monitored execution.

We have thus shown the feasibility of generating execution facilities for IPEs

-

from denotational semantic specifications, while retaining the interactive features that

made hand-coded IPEs so attractive.
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Chapter 5

Conclusions

5.1. Summary of work

Integrated programming environments that support program execution are a
natural extension of language-based editors. Just as was the case with LBEs, there is a
strong incentive to automate the generation of IPEs, which requires a formal
specification method for all the language-dependent aspects of the IPE, namely syntax,
static semantics, and dynamic semantics. Previous work on LBE generators has
addressed the issues of syntax and static semantics, but attempts to incorporate

dynamic semantics have been less successful.

We have presented an approach to the problem of generating execution facilities
for IPEs that is based on denotational semantics. A denotational semantics for a
language provides a modular, syntax-directed mapping from programs in the language
into mathematical functions, and can be used as a specification for an implementation
of the language. Denotational semantics has been the basis for much work in the area

of semantics-directed compiler generation.

In adapting compiler-generation techniques to IPEs, there were three issues to be

addressed:

e The severe performance problems normally associated with compiler generators
based on denotational semantics.

e  Support for incremental translation, thereby providing the illusion of instant
translation necessary in a truly integrated programming environment.
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e  Support for interactive execution, in order to exploit the special nature of an IPE
to speed the debugging process.

The performance of language implementations generated from denotational
semantics is notoriously poor. Denotational definitions of programming languages use
higher-order functions extensively, requiring the use of a specification language that
supports the definition, creation, and manipulation of such functions; usually, the
specification language chosen is some variant of the A-calculus. In many compiler-
generator systems, programs are translated into a A-calculus expression, which is then
reduced to normal form; this reduction process is extremely slow, and is the source of

much of the inefficiency in compiler generators based on denotational semantics.

In our system, called EDS, we have sacrificed some generality for efficiency.
Noting that denotational definitions of typical programming languages manipulate
functions in limited ways, we extended a general-purpose programming language
(Modula-2) to support these limited function manipulations. We were thus able to use
this extended language as the specification language for the semantic functions in a
denotational definition, avoiding the overhead associated with the overly general func-

tion manipulations permitted in the A-calculus.

EDS-generated interpreters translate programs into denotations that are
represented as linked structures containing pointers to the compiled code of denotation

functions. This representation affords several advantages:

e The use of pointers to shared copies of the code for denotation functions reduces
the space required for the executable representation of a program to a few
pointers per construct — comparable to that of a parse tree.

e The denotation functions are compiled once, at system generation time; EDS-
generated interpreters can thus translate programs rapidly while maintaining rea-
sonable execution efficiency.
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e The linked structure, which corresponds to the flow graph of the program, is easy
to maintain incrementally during program modification, thus supporting the
instant execution paradigm we desire.

Program execution in EDS is accomplished by executing the functions pointed to
by the nodes of the flow graph. These functions invoke appropriate continuations
when they have completed their computation; the flow of control is determined by the
structure of the flow graph, together with conditional branching functions; no separate
interpreter is required. Continuation invocation, the last action performed by a denota- '
tion function, provides a natural place for the run-time system (and thereby the user) to
interact with a running program. The close correspondence between the flow graph of
a program and its syntax tree can be exploited to provide syntax-directed debugging
functions, such as flow tracing and breakpointing. If provision is made for the selec-
tion of particular continuation links, additional features such as real-time monitoring of

variable updates can be provided.

5.2. The Implementation

In order to demonstrate the feasibility of our approach, we have constructed pro-
totype implementations of the major components of EDS. Initial experiments with
hand-coded denotation functions verified the advantages of the proposed executable
representation for direct semantics, and served to clarify many of the issues involved in
simulating function manipulations in a language that did not support functions as first-

class objects.

These experiments led to a type-checker and translator for domain definitions and
domain element manipulations, which, combined with scanner and parser generators,
formed a simple generator for stand-alone interpreters using direct semantics. This

stand-alone generator was later extended to support specifications using continuation
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semantics, and combined with the Synthesizer Generator [Reps84] to produce a com-

plete IPE generator.

The type-checker and translator together comprise about 4000 lines of Modula-2
code, including interfaces to the scanner and parser generators. We were able to use
existing parser and scanner generators, together with generic drivers for the resulting
tables, resulting in significant savings in code and effort. More savings result from the
use of a “high-level” output language, Modula-2, allowing much processing to be off-

loaded to the Modula-2 compiler.

The type-checker and translator process EDS input specifications at about 600
lines per minute on a VAX 11/780, discounting the time required to compile the result-
ing Modula-2 code. The complete specification for L is translated in 16.2 seconds,
with the resulting Modula-2 code requiring 32.5 seconds to compile. The above
figures do not take into account time for compiling predefined libraries and interfaces
to the other parts of the system; this time is independent of specification size, and most

of the auxiliary modules may be pre-compiled, independently of the specification.

Since EDS and the Synthesizer Generator were developed independently, the
amalgam was not as complete as might be achieved with a complete IPE generator sys-
tem developed from the beginning to incorporate the features of both systems. In par-
ticular, the internal representations of primitive domains such as integers and
identifiers differed significantly between the two systems, requiring some conversion at
runtime. In addition, we chose to define a flow graph constructor in SSL, the Syn-
thesizer Generator specification language, using a hand-written attribute grammar to
construct the graph. In principle, such a flow-graph constructor should be derivable
from a Plumb-like specification of the flow-graph components of the various constructs

in the language, but the nature of the output specification (in this case, the attribute
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grammar) is specific to the particular LBE generator being used. Section 5.4 on future
work describes our vision of a completely integrated generator that would incorporate

such a translator.

Despite the incompatibilities between EDS and the Synthesizer Generator, we
were able to generate a complete IPE for a simple language (the language L of chapter
2, with if and while statements) and incorporate flow tracing and breakpointing
features into the generated environment. The resultant environment suffered no sub-
jective editing response degradation (as compared to a syntax-only editor), and pro-
vided reasonable execution speed — with a static environment and flow tracing dis-
abled, programs executed at about 10K denotations per second, or about one third as
fast as the Berkeley Pascal interpreter px interprets equivalent Pascal programs. This
implementation did not optimize monitor overhead, invoking the monitor on every
continuation initiation, and using subroutine calls with stack arguments rather than
tail-recursive jumps with global arguments, and consequently monitor and function
call overhead accounted for over 60 percent of the execution time; incorporating the
optimizations described in section 4.3.2 should reduce this overhead substantially and
make the generated environment comparable to px. Of course, L is far from being
Pascal. How would the performance of an EDS-generated environment change in the

transition to a full-scale language?

The execution speed attained using the flow graph executable representation,
which we measured at 10K denotations per second, is relatively independent of the
actual contents of the denotation, being dominated by the overhead of setting up the
environment and arguments for a denotation, and then actually calling the denotation;
in comparison, the time taken to execute (say) an addition is negligible. More complex

languages, such as Pascal, will require more complex denotations, as well as more
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denotations per statement; as an example, a procedure call would, depending on how
we wrote our definition, require either one denotation that performed all the necessary
argument and local variable stack manipulations as well as the saving of the return
continuation, or a sequence of simpler denotations. In either case, the time taken to
perform the procedure call would be more than that taken to perform an addition, by
about the same factor as would be encountered in compiled code. We therefore expect
the performance of an EDS-generated interpreter to remain comparable to that of px

when both process programs of similar complexity, at least as regards control flow.

From the point of view of EDS, a more significant difference between L and Pas-
cal is the complexity of types and environments encountered in Pascal. Although
environments implemented using shallow binding, as used in interpreters for languages
with dynamic scoping, and also in Mughal’s system [Mughal85] reduce the overhead
of variable access in many cases, they do little to reduce the cost of a record field
access. In compiled code, record field accesses are essentially free at run-time, given
suitable addressing modes, but in a denotational semantics such a field access will
involve determining the base location of the record via an environment lookup, deter-
mining the field offset via another environment lookup (relative to the result of the first
lookup, since field names are not necessarily unique across records), and then a calcu-
lation of the resultant location; each of these steps will also involve the overhead of

invoking a denotation.

In the case of a language like Pascal, the second environment lookup above is
unnecessary — record field offsets are static properties of the program, and could be
placed as attributes of the node in question prior to execution. Unfortunately, proper-
ties such as this are not easily deduced from the denotational definition of the

language. However, for a generated environment to achieve execution efficiency com-
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parable to that of a hand-coded interpreter, this and other compile-time simplifications
must be done at translation time, rather than deferred until run-time; the same holds

true for type-checking, in languages where type is a static property.

In section 5.4 on future work, we present some ideas on how a hybrid system,
using an attribute grammar front end coupled with an interpreter generated from deno-

tational semantics might be able to accomplish these simplifications.

5.3. Comparison with related work

There has been other work with goals similar to ours; in order to place our work
in perspective, we will briefly summarize some of this other work and compare it with

ours.

5.3.1. Other Integrated Programming Environments

Throughout the thesis, we have been using the Cornell Program Synthesizer as an
example of the type of integrated programming environment that we wish to generate.
There are other notable integrated programming environments, and we describe some
of these below. Although the systems described are environments rather than genera-
tors, they are interesting as comparison points for auntomatically generated environ-

ments.

5.3.1.1. Magpie

Magpie [Delisle84, Schwartz84] is an integrated programming environment for
Pascal based on incremental compilation. This incremental compilation allows the
programmer to specify debugging actions in Pascal, eliminating the need for a separate

debugging language.
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Magpie’s user interface is designed to remove the separation between program
development tools; all commands that make sense in a particular context are made
available within that context, regardless of whether they are associated with editing or
debugging.

Magpie uses display windows (called browsers) to provide access to both the pro-
gram and its execution state. Debugging actions are specified by entering Pascal state-
ments that are executed immediately in the context of the suspended execution state.
In addition, the user may specify demons, written in Pascal, that monitor run-time

events such as assignment to a variable or invocation of a procedure.

Since Magpie runs on a powerful single-user workstation, it is able to utilize pro-
grammer “think time” to compile programs in the background. Translation is per-
formed in units of procedures, and with incremental linking via a stub linked at the
entry point of any procedure for which the machine code has not yet been obtained.
Execution starts immediately in response to user command, and if execution reaches an
un-translated procedure, the stub invokes the translator to produce machine code for it;

if this translation is unsuccessful, a run-time error occurs and execution is suspended.

Magpie supports execution and debugging functions by instrumenting translated
code with debugging code, which may invoke a demon or run-time support routine. In
order to reduce recompilation, which may invalidate execution state, Magpie inserts
debugging hooks in functions, which allow debugging to be turned on and off without

regenerating code.

5.3.1.2. DICE

The DICE (Distributed Incremental Compiling Environment) system [Fritzson84]

is an integrated programming environment, based on incremental compilation, that
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runs on a host computer and supports the development of programs that run on a target

computer connected to the host.

The DICE system performs statement level incremental compilation on Pascal,
and permits incremental recompilation even after changes to global declarations. The
system is based solely on compilation technology, with no interpretation, even for
debugging. Databases of cross-reference and static analysis information are an integral
part of the DICE system, and are used to support incremental recompilation as well as
some debugging facilities. The cross-reference database is used to identify statements

that need recompilation after changes to global declarations.

The DICE system uses the debugger as the focus of integration; all system capa-
bilities are available from the debugger, such as editing and interrogation of the static
analysis database. The debugger works in units of statements, so that breakpoints may
be placed at statement boundaries only, and the target machine state is also defined

only at these boundaries.

The parser, pretty-printer and editor in the DICE system are table-driven, while
the code generator is based on that of the portable C compiler [Johnson79]; static

semantics are hand programmed, as is the debugger.

5.3.2. Action Equations

Kaiser [Kaiser85, Kaiser86] proposes the use of action equations, which are
claimed to extend attribute grammars to specify the run-time semantics of languages,
by supporting the expression of history or dynamic properties. Instead of attribute
definitions, Kaiser embeds equations in an event-driven architecture. Events activate
equations, and active equations are evaluated according to dependencies derived from

the equations. Some equations are not associated with any event, and are thus in effect
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at all times — these equations correspond to conventional attribute grammar

definitions.

The advantages claimed for the action equation paradigm are support for multiple
events (as opposed to a single change event in attribute grammars), and support for
non-applicative mechanisms. Correspondences are drawn between events aﬁd mes-
sages in an object-oriented language, and between the equations activated by an event
and the method invoked by a message. In order to simulate message passing, equa-

tions may propagate events as well as apply functions.

Action equations are implemented by translating them into a combination of
dependency graphs and procedures written in a special tree-oriented programming
language. The dependency graphs are used to determine the order in which to invoke

the procedures corresponding to active equations.

The goals of Kaiser’s work are almost identical to ours; the primary difference is
the vehicle chosen to achieve these goals. We have adopted a proven technique, deno-
tational semantics, and adapted it to the incremental and interactive nature of IPEs;
Kaiser has proposed a new specification technique. Although [Kaiser86] mentions that
action equations have only been used to specify toy environments, it claims that they
can be used to implement run-time facilities for programming environments supporting
realistic languages. Denotational definitions of realistic programming languages such

as Pascal already exist [Tennent78].

5.3.3. The PSG programming system generator

The PSG programming system generator [Bahlke85] developed at the Technical
University of Darmstadt combines the use of context conditions [Snelting86] for static

semantic specification with a denotational description for dynamic semantics to pro-
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duce a complete language description. This description is processed by PSG to pro-

duce a complete programming environment.

The denotational part of the language definition is written in a functional
language based on type-free A-calculus. This language supports basic data types
including integer, real, boolean, string and identifier, and the structured types list/tuple
and map, as well as higher-order functionals of arbitrary rank. Arguments to function
applications are evaluated call-by-need, which provides advantages of both call-by-
value and call-by-name, and is a correct implementation of recursion allowing non-
strict functions. Call-by-need also allows visible side-effects within the environment,

which are used to support interactive output.

The translator in a PSG environment can perform incremental compilation, but
only in cases where the abstract syntax tree is created top-down by a series of
refinement steps; in other words, incremental compilation is possible, but not incre-
mental re-compilation. This incremental compilation capability also permits execution
of incompletely specified programs, with execution being suspended when an unex-
panded construct is encountered, and resumed when the required fragment has been

supplied.

Execution in PSG systems is by A-calculus reduction, using closures and environ-
ments as in the SECD machine. During execution, user interaction for input, output,
expanding unspecified constructs and supplying values for uninitialized variables is

permitted.

EDS was developed independently of PSG. PSG is a complete environment gen-
erator, but suffers from the performance problems associated with denotational seman-
tics based compilers using direct A-calculus reduction. The fragment concept, used

throughout PSG, supports run-time expansion of incomplete programs, and user-
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supplied values for uninitialized variables. Other debugging functions provided in

EDS, such as flow tracing and breakpointing, are not supported by PSG.

5.3.4. MELA

The MELA metalanguage, developed at the University of Pisa [Ambriola85], is a
functional language that supports the definition of higher order functions and domains
required for denotational specifications. MELA descriptions are automatically
translated to a conventional executable language through a series of correctness-

preserving transformations, resulting in an interpreter for the language described.

This interpreter may be combined with a structure editor to form a complete pro-
gramming environment, but such an environment is not truly integrated; no mention is
made in [Ambriola85] of incremental processing, nor is interactive execution

specifically addressed.

5.3.5. Reppy and Kintala

Reppy and Kintala [Reppy84] proposed the use of denotational semantics to
specify the run-time semantics of languages, and thereby generate execution facilities
for IPEs. They also noted the correspondence between Sethi’s flow graphs [Sethi83]
and code trees in the Cornell Program Synthesizer [Teitelbaum81] and suggested that
code trees could be generated from denotational specifications by techniques similar to

Sethi’s.

Much of the inspiration for our work has come from that of [Reppy84] and there
are many similarities between the two. One major difference is in the choice of exe-
cutable representation: where [Reppy84] uses code trees containing op-codes for an
abstract machine, together with an interpreter for the corresponding virtual machine,

we use pointers to compiled denotation functions, thus dispensing with the need for an
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interpreter (although an execution monitor is still needed to provide debugging sup-
port).

Although Reppy and Kintala suggest the incorporation of interactive execution
facilities into the generated environment, the presentation in [Reppy84] does not
develop this subject fully. We believe that our model of execution monitoring, where
debugging features are incorporated as store-transforming functions interposed before
continuation invocations, gives a conceptually clean framework for the specification of

these features, while permitting their efficient implementation.

5.3.6. Mughal

Like [Reppy84], the system described by Mughal [Mughal85] also uses a
control-flow graph as the executable representation of a program, but once again the
contents of the flow graph differentiate it from EDS. In [Mughal85], the instruction set
recognized by the interpreter is defined through the use of SSL, the specification
language for the Synthesizer Generator [Reps84]. The domain of op-codes is thus
defined as a phylum (in Synthesizer Generator terminology) with an operator
corresponding to each op-code. This representation provides a consistent abstract
machine within which to specify the run-time semantics of a language. The abstract
machine can be extended by adding new operators to the CODE phylum, provided the

interpreter specification is augmented to recognize and implement the new operators.

The use of an interpreter for the abstract machine code used as the executable
representation of programs results in much slower execution than EDS, which uses

pointers to compiled denotation functions.

Although [Mughal85] uses a high-level specification language (SSL) to define the

interpreter for the abstract machine code, the code associated with a specific construct
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is still specified directly rather than being generated from a high-level definition of the
run-time semantics of the construct. Assuming a suitable choice of abstract machine
operations, however, it seems that Sethi’s flow graph construction technique can be

adapted for use here too.

As with [Reppy84] and EDS, the use of an attribute grammar to define the trans-
lation from syntax tree to executable representation yields incremental translation
automatically, given the incremental attribute updating algorithms available, such
as [Reps83] and [Johnson83]. Interactive execution and debugging are also discussed
in [Mughal85], where the code block is taken as the unit of execution, analogous to the

continuation invocation in EDS.

5.4. Future work

Through the design and prototype implementation of EDS, we have shown the
feasibility of using denotational semantic specifications to generate execution facilities
for integrated programming environments. We believe this is a promising approach to

producing complete IPEs for a variety of languages, and should be investigated further.

A key issue in the design of an integrated generator will be the division of func-
tionality between static and dynamic semantics. As we alluded to earlier, such static
properties of programs as type-checking and record field offset determination should
be done at translation time in order to achieve the best performance possible. In addi-
tion, static type checking helps find errors earlier in the program development process,

which is one of the strongest arguments in favor of static typing systems.

It seems then, that efficiency considerations as well as error detection are best
served by separating static and dynamic aspects of a language in an implementation.

On the other hand, an attraction of denotational semantics is its ability to encompass all
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aspects of a language semantics within a single framework. In addition, there are
denotational semantics for several programming languages, and we would like to use
these specifications with as little modification as possible. How then do we resolve

these two competing goals?

Let us first describe our vision of what a hybrid environment for a language like
Pascal would look like, and then outline some approaches that could lead to reconcilia-

tion of such an environment with the desire to use standard denotational semantics.

The front-end of a hybrid Pascal environment would perform all the semantic
processing already performed by language-based editors, such as type checking and
detection of undeclared variables. In addition, we would use the front-end
specification mechanism (say atiribute grammars) to implement two translation func-
tions — the creation of the program denotation, and the calculation of the static com-

ponents of the environment.

Thus we would expect the attribute rules to supply each identifier usage with an
attribute corresponding to its associated environment value, assuming that that value is
statically determined. An example of such a statically determined value would be
record field offsets. Activation record offsets for variables could also be assigned stati-

cally.

Although these values can be assigned statically, a naive implementation using an
attribute grammar might be extremely inefficient. For example, consider allocating
activation record offsets depending on the lexical order of the variable declarations in
the procedure. In that case, addition of a new variable declaration preceding all the
others would cause re-assignment of the offsets of all the variables in the procedure,
which would propagate to all uses of variables in the procedure. Such propagation is

clearly undesirable.
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We can avoid this propagation by allocating activation record offsets on the basis
of the temporal order in which variable declarations are introduced (treating
modification as deletion followed by insertion). With this scheme, the activation
record offset of a variable is never changed except as a result of changes to the variable
declaration (or other declarations it depends on explicitly). This scheme has also intro-
duced some order-dependence into our system, which we had earlier deemed undesir-
able; however, the order-dependence is very closely contained, by concealing it in a
single attribute evaluation function, which determines the offset attribute of a variable
as a function of the size of the variable. This attribute evaluation function itself
violates the functional nature of attribute grammars, since its return value may differ
on different calls, even though called with the same argument. This violation is
benign, however, since incremental re-evaluation will not invoke the function, assum-
ing its result will be unchanged, since its argument has not changed, which is exactly
what we want; in the case where the attribute re-evaluation mechanism mistakenly
invokes the function even though its argument value has not changed, we still maintain
correctness, although some spurious attribute re-evaluation will be triggered as a result

of the change in the value of the function result.

Given that the front-end of our environment has performed all this checking and
processing, the denotational semantics from which the back-end is generated can be
simplified and made more efficient. For example, type checking need no longer be
done at run time, and environment access is simplified to be the retrieval of an attribute
value from the identifier to which the environment is to be applied. For procedure
calls, if local variables are allotted activation record offsets, then the environment
manipulations necessary at procedure entry and exit are simply the stack manipulations

necessary in conventional compiled code; the size of a procedure’s activation record
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will be an attribute of the procedure header.

We now face the problem alluded to earlier —— how do we derive these separate

specifications from a denotational semantics (and possibly an attribute grammar

specification) of the language, and how do we ensure that the composite does indeed

specify a correct implementation of the language?

Although we do not at present have an answer to this question, we can outline

some possible approaches:

The most ambitious, and probably least feasible, scheme is to deduce automati-
cally both parts of the specification from a denotational semantics for the
language. A general method of separating the two aspects seems unlikely —
implementation tricks such as static chains are extremely hard to deduce from the

denotational semantics of a language.

At the other end of the spectrum is verification; given a denotational semantics,
attribute grammar, and modified denotational semantics, the system verifies that
the attribute grammar and the modified denotational semantics together are

equivalent to the standard denotational semantics.

A variety of intermediate approaches is possible. Given a standard denotational
semantics and an attribute grammar, the system can deduce a modified denota-
tional semantics. The variety of approaches arises from the degree of assistance
that the language specifier is required to provide during the transformation pro-

CESss.

In a more mundane vein, there are other optimizations that could be performed to

improve the performance of EDS-generated systems. The need to call a continuation

for every construct in the language, no matter how trivial, is a major source of over-
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head. Sethi [Sethi83] uses a graph reducer to coalesce linear sequences of instructions
into basic blocks; a similar technique could be used in EDS, but would obscure the
correspondence between syntax tree and executable representation, complicating incre-

mental translation and debugging.

In conclusion, then, we have presented a system that can generate interpreters
based on denotational semantics. Although the generated interpreters have perfor-
mance comparable to that of hand-coded interpreters for control flow aspects of simple
languages, work needs to be done to improve the performance of the interpreters with
regard to optimization of static properties. We feel that a hybrid approach, combining
the best features of attribute grammars with the techniques developed in EDS, holds
the key to generating interpreters for realistic programming languages that have perfor-

mance comparable to hand-coded systems.
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