A SCALED TRUST REGION METHOD
FOR A CLASS OF CONVEX OPTIMIZATION PROBLEMS *

R.J.Chen and R.R. Meyer

Computer Sciences Department and Mathematics Research Center
The University of Wisconsin-Madison

Madison, Wisconsin 53706 USA

ABSTRACT

Piecewise-linear approximation of nonlinear convex objective functions in linearly conmstrained
optimization produces subproblems that may be solved as linear programs. This approach to approxima-
tion may be used for nonseparable as well as separable functions, and for the former class (the focus of this
paper), it lies between linear and quadratic approximation with regard to its accuracy. In order to have
additional control of the accuracy of the piecewise-linear approximation, we consider two devices : rec-
tangular trust regions and dynamic scaling. The use of rectangular trust regions in conjuction with the type
of piecewise-linear approximation considered here actually serves to simplify rather than complicate the
approximating problems. This is a result of the equivalence of the trust region and the use of a limited
number of segments in the approximation. The approach to dynamic scaling considered here may be
applied to problems in which each objective function term is a convex function of a linear function of the
variables. This scaling device allows the algorithm to adjust the approximation between an underestimat-
ing function (corresponding to a linear approximation) and an overestimating function (the nonseparable
analog of the overestimate associated with separable approximation of convex functions.) The scaling fac-
tor is adjusted in accordance with the acceptance criteria associated with the trust region method.

Computational experience is cited for some large-scale problems arising from traffic assignment
applications. The algorithm considered here also has the property that it allows such problems to be
decomposed into a set of smaller optimization problems at each major iteration. These smaller problems
correspond to linear single-commodity networks, and may be solved in parallel. Results are given for the
distributed solution of these problems on the CRYSTAL multicomputer.

1. Introduction

Piecewise-linear approximation of convex nonlinear objective functions in linearly constrained
optimization has the nice property of producing subproblems that may be solved as linear programs. This
approach to approximation may be used for nonseparable as well as separable functions, and this paper
deals with nonseparable convex objectives that are sums of terms of the form f ;(c;-x), where f; is a con-
tinuously differentiable convex function defined on R! and ¢ ;X is a linear function of the problem vari-

ables x. (See [Meyer 85] for details of a piecewise-linear trust region algorithm for the general

* This research was supported in part by NSF grant DCR-8503148 and AFOSR grant AFOSR-86-0194.

nonseparable case.) Although such a problem could be transformed into a separable problem by substitu-
tions of the form ¢;=c;"x and the concatenation of this equation to the constraints, this transformation can
have undesirable effects. For the multicommodity problems considered below, for example, it would
introduce additional coupling between variables and thereby destroy the block structure of the constraints,
and this new constraint would also have a different character from the other constraints, resulting in the
destruction of the network nature of the initial constraints. Thus, we will demonstrate how objective func-

tions of this type may be treated directly without the introduction of new constraints.

Piecewise-linear approximation lies between linear and quadratic approximation with regard to its
accuracy. In order to control the error in the piecewise-linear approximation , we introduce two devices :
rectangular trust regions and dynamic scaling. The use of rectangular trust regions in conjuction with this
type of piecewise-linear approximation was first described in [Meyer 86]. With this approach, trust region
constraints serve to simplify rather than to complicate the approximating subproblem, because the
equivalence between the trust region constraints and the use of a limited number of piecewise-linear seg-
ments in the approximation allows the former to be handled implicitly. The approach to dynamic scaling
considered here is a new approximation tool that takes advantage of the assumed form of the objective
function terms. This device allows the algorithm to adjust the approximation between an underestimating
function (corresponding to a linear approximation) and an overestimating function (the nonseparable ana-
log of the overestimating property inherent in separable approximation of convex functions.) The scaling

factor is adjusted in accordance with the acceptance criteria associated with the trust region method.

For notational simplicity we develop the theory below in the context of objective functions that are
sums of terms of the form f;(x;+ - - - +x;) , i.e., each term involves the sum of a fixed number (namely,
k) of variables. The extension of these results to the case in which the argument is a linear function of x is
straightforward. We also consider a specific block structure of the constraints in order to emphasize the
decomposition that is possible when piecewise-linear approximation is used appropriately in that context.

However, the theory as presented is also independent of the nature of the linear constraints.

Computational experience is cited for some large-scale problems arising from traffic assignment
applications. The algorithm considered here has the property that it allows such problems to be decom-

posed into smaller optimization problems at each major iteration. These smaller problems may be solved

in parallel, and computational results are given for the distributed solution of these problems on the CRY-

STAL multicomputer.

2. A Multicommodity Problem

Consider a directed network E of m nodes and n arcs. Let A be the node-arc matrix of £ and £ be
the number of commodities sharing the network. Let x,; denote the value of flow on arc j corresponding
to commodity q. Let x, and b, denote the flow vector and supply-demand vector respectively of commo-
dity g. If f; (j=1,...,n) is a set of continuously differentiable functions corresponding to the n arcs of the

network, the corresponding multicommodity problem may be written as

n
min ij(x1j+x2j+- . -+xk,-)

J=1
Ax; = by
Ax, = b,
MCP)
Ax; = by

X; 20, ¢=12,..k, j=12,...,n

For notational convenience, we define

X, = Xg1, %42, *** »Xgn) ER™ (flow vector of commodity g);
Xj=(x1j, X, - ,x;) eR* (flow vector in arc j);
X:= (X1 Xp X)ER™ (flow vector);

fx = Zn‘, f ,-(Zk:,xq,-) (cost function);
f=1 g=1

Q, ={x, eR} | Ax, =b,] (feasible flow region of commodity ¢);

Q:={xeRY | Ax,=b,, for g=12,..k } (feasible flow region).

Network flow problems of the form MCP include computer network design [Cantor and Gerla 741,
[Magnanti and Wong 84], traffic assignment [Bertsekas and Gafni 82], [Dafermos 80], [Dantzig, et al, 79],
[Feijoo and Meyer 84], [Lawphongpanich and Hearn 83], [Pang and Yu 82], hydroelectric power systems

[Hanscom, et al, 80], and telecommunications networks [McCallum 76]. In many cases, the network and

the number of the commodities are large, so such problems can have hundreds of thousands of variables.
To solve MCP, several algorithms have been proposed. Among the best known are (1) the Frank-Wolfe
approach [LeBlanc, et al, 75]; (2) the column generation approach [Leventhal, et al, 73]; (3) the convex
simplex approach [Nguyen 74]. Among these algorithms, only the Frank-Wolfe method leads to the
decomposition of MCP into independent subproblems. The disadvantage of the Frank-Wolfe method is that

it converges very slowly.

To accelerate convergence and to allow for parallelism, the approach of [Feijoo and Meyer 84] util-
izes nonlinear separable approximation of the objective. Convex separable network flow problems have
been successfully solved by many programming algorithms based on methods that iteratively generate
search directions by solving approximating subproblems. Five algorithms that have been used are the
Frank-Wolfe [LeBlanc, et al, 75], [Collins, et al, 78], convex simplex [Nguyen 74}, [Rosenthal 81],
reduced gradient [Mutagh and Saunders 78], [Dembo and Klincewicz 813, [Beck, at el, 83], piecewise-
linearization [Kao and Meyer 81], [Kamesam and Meyer 84], [Monma and Segal 82], and Newton methods
[Klincewicz 83]. Convex piecewise-linear networks can be reformulated as linear networks, allowing
solution by extremely fast algorithms. The PL-approximation algorithm of [Kamesam and Meyer 84] is
thus adopted in [Feijoo and Meyer 84] as a subroutine to solve the separable subproblems. This approach
works well for small problems [Feijoo and Meyer 84,851, but for large-scale problems, a drawback
appears. The computing time per major iteration increases after several iterations, indicating inefficiency
in dealing with the global nature of the approximation. To remedy this, we incorporate in the algorithm
both the trust region theory developed in [Meyer 85] and a more flexible method of constructing separable

approximations.

3. A Scaled Separable Approximation

To obtain a good objective function approximation, we consider a class of scaled separable approxi-
mations in this section. This scaling has the property that the true objective function is bounded below and
above by separable functions corresponding to appropriate choices of the scaling parameters. Letting f be

convex, for a feasible point x € Q, we define a shifted function on R ®*

h(d) = f (d+x) - f (x).

This function corresponds to the change in the objective function resulting from a change of d in the

current flow x. Thus, MCP is equivalent to
min A(d) s.t. deQ,={d | x+deQ}. MCP)

For consistency , we list the notation associated with h in the same manner as before:
d, = (d,1,dg2, " ,dg,) (flow vector changes in commodity g);

d; =(dyj,dyj, -+ ,dy;) (flow vector changes in arc j);

d=(d;d,, --- ,d;) (flow vector changes);

hi() = f (2 %g)-f j(X4%4;) (shifted cost function for arc j);

hai(d

1
i 0) = vc—h j(od,;) (term associated with commodity ¢ on arc j, scaled by ¢);

rS(do) =Y i 2 -CI;h ;(0d,;) (scaled separable approximation of h).

For a 6>0, h5(d,o) is called a scaled separable approximation with scale factor 6. (A scaled separ-
able approximation with o=0 will also be established by considering limits below.) Some simple examples
of scaled separable approximations will now be given. (The upper and lower bounds for # will be esta-

blished in Corollary 3.4.)

Example 1: f (x)=x2 (k=1,n=1)
[1] x =0: (x denotes current point)

h(d) = h (d) = d?
hS(d G) = -é—(od)?‘:o'dz

(1) 6="1 (upper bound)

h5(d,1)=d%*=h(d)

(2) 6=0 (lower bound)

h5(d,0)=0(=f"(0)d)
21 x=1:

h(d) = h(d) = (1+d *~1 = 2d+d?

hS(d o) = —:}-(Z(O'd Yi(od)?) = 2d+od?

(1) o=1 (upper bound)
hS(d,1)=2d+d?*= h(d)
(2) 6=0 (lower bound)

h(d,0)=2d (=f'(1)d)

Example 2 : f (x,y) = (x+y)* (k=2,n=1)
[11 (x,y)=(0,0): ((x.y) denotes current point)
h(d) = hi(d+d) = (d1+d)

1 1
rS(d,0) = E(Gdu)z“l";((?dm)z =o(df+dF)

(1) o=2 (upper bound)
rS(d.2)=2df+d%)
(2) o=0 (lower bound)

h*(d,0)=0 (= Vf (0)d)

21 G.y)=(@.1:

h(d) = hj(d11+d 5) = (1+d 11+14+d) ~(141)? = (d 11+d 2 +4(d 1 1+d 57)

h*(d.0) = ‘é‘((ﬁd 1)*+4(cd n))‘*"cl;((o'd 2 +4(0d 1)) = o(d i +d 3)+4(d 1 1+d)
(1) 6=2 (upper bound)

hS(d,2) = 2(d fi+d 1 +4(d 11+d 31)

(2) o=0 (lower bound)

h3(d,0) = 4(dyr+dy) (= VS (1,1)d)

The error in the approximation in example 2 is 6(d & +d %)—(d 1;+d,;)* (independent of the base

point). The contours of error functions for 6=0, o=1, and 0=2 are shown in Figure 1, 2, and 3.

0.5

0.0

-1.0

0.5

0.0

-0.5 0.0 0.5 1L

Figure 1 Error Contours for 6=0

0

Figure 2 Error Contours for o=1

dy

0.5

0.0

Figure 3 Error Contours for c=2

Observe that h; and h(d)=3;; h;(3,d,;) are convex, and h;(0)=0 for j=1,2,...,n. By these proper-

ties, we have the following lemma.

Lemma 3.1 £ (d) < h5(d.k).

, we have

k
Proof: By the convexity of &;, and Z_Ilc—

k1 L1
h,-(quj) = hi (X 7 ke < X hykdy)
g=1 g=1 g=1

The lemma follows by applying 3, on both sides. [
j=1

We now show the monotonicity of £°(d,).

Lemma 3.2 For 0<0,<0,, h5(d,0;) < h5(d,0,).

Proof: By the convexity of 4;, and h;(0)=0, we have

Oy 02-0)
hj(Gldqj) = hl(__"Gquj"' Gy 0) < h (szq])
) G2

n k
The lemma follows by applying ¥, ¥ 67" on both sides. [
j::}q:]

The following lemma shows that the limit as 6—0 of the separable functions #5(d,o) is the lineari-

zation approximation at 0.

Lemma 3.3 For fixed d, #5(d,0) — VA (0)d=Vf (x)d, as 6—0".

Proof: By L’Hospital’s Rule, we have

 hy(ody) _ ,
tim 2% _ i 16y = by Oyl
and by the definition of &;,
oh (0)
2O 0= S = L2 D

Accordingly, if we define 25 (d,0):=V# (0)d, then h°(d,’) is a non-decreasing continuous function on
[0,00). Since the gradient approximation yields a lower bound, the next corollary notes that the choices

=0, o=k yield lower and upper bounds respectively on the objective function.

Corollary 3.4 15(d,0) < h(d) < h5(d.k).

10

Thus, h5(d,k) serves as an upper bound of #(d), while #°(d,0) serves as a lower bound of (d). To
construct a good separable approximation of the objective is a key factor in the efficiency of the trust
region method. The continuity and monotonicity of 4 (d,’) indicate that with a proper o, #°(d,o) is a suit-
able approximation. We allow the scalar ¢ to be adjusted at every iteration of our algorithm. The amount
of increase or decrease of ¢ is determined by the ratio of the true and approximate objective function

improvements in the preceding iteration.

The next lemma is used to show that the direction obtained from the separable program (in which

the scaled separable approximate function replaces the objective) is a descent direction.

Lemma 3.5 For 620, VA5(0,6) = VA (0).
Proof: For 0=0, the result is trivial.

For >0,

orSdo) __9 (hj(ody;)

3d,; oy o O

The lemma then follows from

, oh(0)
=h/O=222 O
J 3d,;

or*(0)
od,;

The next lemma establishes the descent relation between f and its separable approximations.

Lemma 3.6 For 620, if #5(d,0) <0, then d is a descent direction of f at x.
Proof: For =0, the result is trivial.
For 6>0, by the convexity of #%(-,6) and /°(0,6)=0, we have
0> h5(d,0) 2 h5(0,0) + VA5(0,6)-d = VA (0)d = Vf (x)d

So d is a descent direction of f atx. [

Assuming a ¢ has been selected, we consider an approximating separable program

min £5(d,6) s.t. deQy (SP)

n
If we collect terms corresponding to commodity q and define A7(d,.0):=Y, h;;(d,;0), then the objective
j=i

k
rS(d.o)=Y, h,f(dq ,0). The separable program then can be decomposed into £ subprograms of the form:
q=1

11

min A;(d,.,0) s.t. d; €Qy = {d, | x, +d, €Q,) (SP,)

The final step in the approximation process is to replace A5 by a piecewise-linear approximation

R Specifically, let h** be the piecewise-linear approximation of 5 with fixed mesh-size §>0. That is,

1
hdo) =Y qugh}%(cdqj) .
where the functions h}’ L(cdqj) are piecewise-linear functions that agree with k;(cd,;) at a set of mesh

points to be described below. We define PLP and PLP, analogous to SP and SP,:

min AL (d,0) s.t. deQy (PLP)

min h}(d, ,6) s.t. d, € Q. (PLP,)

Moreover, these subproblems can be solved in parallel [Feijoo and Meyer 85]. If the trust region is large
enough to contain the original feasible set, then the method of Feijoo and Meyer corresponds to =1, while

the Frank-Wolfe method [LeBlanc, et al., 75] corresponds to =0 .

Since AL > hS, the preceding lemma can be used to show that a descent direction is also obtained if

the optimal value of PLP is less than zero.

Lemma 3.7 For 620, if #™*(d,6) < 0, then d is a descent direction of f at x.

In the algorithms below, we use #™* as the approximating function. This approximation has the

advantage that the resulting subproblems may be solved as linear programs.

4. A Trust Region Algorithm

The trust region technique for unconstrained nonlinear programs is described in [More and Sorensen
791, [Fletcher 811, [Sorensen 82] and was further developed by many other authors to solve constrained
problems [Zhang, et al, 84], [Vardi 85], [Meyer 85]. The trust region method of this paper, a modified ver-
sion of that in [Meyer 85], may be contrasted with the trust region algorithm of [Zhang,et al. 84]. The
difference lies in the fact that the underlying approximate objective in [Zhang,et al. 84] is a linear function
while ours is not only a piecewise-linear separable function as in [Feijoo and Meyer 85}, but also is dynam-
ically scaled at each iteration. Computational experience cited in section 5 indicates that the trust region

algorithm utilizing scaled PL approximation converges much more rapidly than algorithms based on linear

12

approximation, yet requires only slightly more computing time per iteration.

For the development of our algorithm, if x is a feasible solution of MCP, we define notation as fol-
lows:
(1) the trust region :
Ag={d; eR" | ~0,<d,;<0,, j=1,..,n } : trust region for commodity g
={deR* | =0, $dgi S0, g=1,...k, j=1,..,n } : trustregion
o=(0y, "+ ,0) : trust region vector
o : threshold for o
Y1, V2 : reduction factors
(2) linear approximation :
d,f‘(ocq) : a solution of LP,(o,) (min Vi, (0)d, s.t. d, € QNA,)
hi(d) := Vf x)d
d-(0) : a solution of LP(0) (min AL(d) s.t. de Q, NA)
(3) separable approximation :
o : scale factor
c: upper bound of scale factor
d3(0,.0) : a solution of SP,(a,,6) (min A3(d,.0) s.t. dy € Qe MA,)
d%(0.,0) : a solution of SP(0,6) (min A%(d,6) s.t. de Q, NAg)
(4) piecewise-linear approximation :
8, : mesh-size used in PL, (5, = o, /2! for some integer i)
8 : mesh-size vector used in PL
d (0,.6.8,) : a solution of PL,(044,6.,8,) (min h;(d,,6.8,) 5.t dy € Qe NAg)
d"F (01,6,9) : a solution of PL(0,5,8) (min h™2(d,0,8) s.t. d e Qy NAy)
(5) improvement ratios :

hPL(dPE(0,0,9),0)
h3(d5(0.0).0)

N{0,0,8):= = ratio of piecewise-linear and separable optima

o : threshold of n-ratio (0< Mg <1)

hpiz?;) ; =ratio of & and hP* atd
Ko

p(d,0)=

13

Po P1» P2, P3 : thresholds of p-ratio (0<po<pi<1<pa<ps)

(6) the line-search :
L : maximum number of function evaluations per line-search
d™5 (1) : 1th point in line-search

Where not ambiguous, some arguments of dJ, d;, dJ%, ¢~ d%,d", h, hl hS, hPE m, p are omit-

ted; and the current point on which these are based will be added as needed. For simplicity, we add a

superscript i on each item of notation to express the association with the i th current solution x°.

The m-ratio defined in (5) is used in the convergence theory below, but need not be computed in
practice. In implementation, we can take the threshold 1, as a very small positive value so that we don’t
need to calculate the denominator of 1) if the numerator is greater than a tolerance. Alternatively, the algo-
rithm PLTR may be modified by bypassing the n-ratio test in step 2 whenever 4 (d™*) < —, where T is a
positive tolerance. (the proof of the convergence theorem is easily changed to take into account this

modification)

The algorithm to be described below determines for each distinct x* a trust region vector that pro-
vides at least a value My for the n-ratio and a value p, for the p-ratio. This is accomplished in two steps: 1)
the bound for the m-ratio is attained by refining the mesh-size as needed in the piecewise-linear subpro-
grams, and 2) the bound for the p-ratio is attained either by decreasing the trust region vector o as needed,
or by doing a line-search. In addition, we also use a suitable scale factor to adjust the objective approxima-
tion in order to achieve py-ratio quickly. The use of the line-search in our algorithm (when the p-ratio

bound is not initially satisfied) is not shared by the traditional trust region methods.

Algorithm PLTR
step 0: initialization:
Select real numbers i, Y2, O, Po, P1, P25 P3 Mos o, and integer L ;
Select initial values o and ¢*;
(with restrictions 0<y;<Y,<1, 0<0i<0?, 0<py<p;<1<P,<ps, 0<ng<1, 0<o’<c, O<L)
Set i=0;

step 1: find a feasible solution:

Find x°e Q;
while tolerance of solution not satisfied do
step 2: solve piecewise-linear programs:
I« i+l
(refine mesh until n|-ratio satisfactory)
for g =1,k
8« 2a;
(reduce mesh size by factor of 1/2)
do 8} < 8:/2; solve PLy (0t} 8] x');
until £75(dFEB1)) <merhS@ds)
endfor;
step 3: do p-ratio test:
p' ¢ p(d™)
if p’ > po then
step 4: no line-search needed:
X xi+dft;
case (update trust region size and scaling factor)
pi<pr: of « max{pol .0}, o' « min{26',0};
p1<p <py: o ¢ max{yof,a}, o o'
pa<pi<ps: o ¢ of, ¢ « 0.750%;
pi>ps: o « of, 6 « 0.50°;
endcase;
else
step 5: line-search:
(attempt to satisfy p-ratio test by line-search)
forl=1,L

h(@d= (@) .

p e nPL(gPLy’

if p’ 2 po then x’ ¢~ x+d™(1); of « max(y,0/,01); 6’ ¢ min{26’,6}; goto step 2;

15

endfor;
(p-ratio unattained; contract trust region)
of « 10f; 6° « min{2¢°,6};

endif;

endwhile

Remarks:

1) In step 1, the feasible solution can be found by solving a linear network program, where the linear
objective function in each commodity can be taken to be f,;°(0) for each arc.

2) In the n-ratio test of step 2, h5(d®(c)) can be replaced by a lower bound, obtained by the primal
method or dual method in [Kamesam and Meyer 84], [Kao and Meyer 81] or by A% (d* (o)) or by
the alternatives discussed above.

3) If needed, the line-search is used in step 5. For simplicity, we use golden-section search since typ-
ically only one function evaluation is required.

4) The initial value of the trust region vector for each distinct x° is at least a, since the value of x’

changes only in step 4 or in step 5, where the new value of o is set to at least .

Before proving the main convergence theorem, we consider two types of optimality conditions for

MCP.

Lemma 4.1 x is an optimal solution of MCP if and only if d“=0 solves LP(o.,x) for 0>0.
Proof: LP(o.,x) solved by d =0

=> KKT for LP(0.,x) satisfied at d=0

=> KKT for MCP,(x) satisfied at d=0

=> d=0 is optimal for MCP;(x) because of convexity of h(d).
The analogous argument holds in the other direction. [

Lemma 4.2 For 620, x is an optimal solution of MCP if and only if d5=0 solves SP(c,0.x) for 0>0.

16

Proof: The result follows from the above lemma because #° and and 4 have the same gradient. [J
This lemma implies that if x is not a solution of MCP, then for any o0 and 620, #°(d5(0.,6),6)<0.

By arguments analogous to those used in [Meyer 85], it may be shown that for any ce[0,01,
he(-,0) = hPE(,0)+0 (o)) = h ()+o (). By using the first of these properties, we establish the finiteness of

the iteration in step 2 of algorithm PLTR.

Lemma 4.3 For 0<no<1, 0>0, and 0<o, if x is not an optimal solution of MCP, then 1(0.,5,8)>1, with &
obtained from step 2.
Proof: Suppressing arguments to simplify notation, we have
S (@5)<hS (@™)<h PR (dPE)<h L (@5)=h S (@5)+o (B).
Thus, APL(d™)=h5 (d5)+o (3), and since k5 (d%)=0, the n-ratio bound is obtained as 5—>0. [
The following three lemmas may be proved in a manner analogous to the proofs of lemmas 4,5,6 of

[Meyer 85].

Lemma 4.4 For 0<p<l and 620, if x is not an optimal solution of MCP, then for o, small enough,

p(dPL 70-) 2 pO'

In order to guarantee that the improvement ratio behaves properly in the neighborhood of any accu-
mulation point X of a sequence x, we now observe that 4% (d%(0,6,x),0.x) is continuous for a fixed scale

factor o.

Lemma 4.5 For 620, 15(d’ (0,6,%),0.x) is a continuous function of x and o for x € Q and 0>0.

The key factor in the validity proof of the algorithm is the guarantee of a minimum improvement
ratio in a neighborhood of non-optimal points. In the following, py is a parameter in (0,1), ¥' € Q, and

p(d,c.y") is as defined before.

Lemma4.6 If y¥ »5, where ¥ is not a solution of MCP, then there exists an o>0 such that

p(d™ ,6.,y")2py for all 0e(0,0), 62620, and all y* sufficiently close to §.

The main convergence theorem of the algorithm now follows in a straightforward manner.

17

Theorem 4.7 If X is an accumulation point of a sequence generated by Algorithm PLTR, then X is an
optimal solution of MCP.
Proof:
Assume the result is false, and let (x*} be a subsequence such that x* — X. Using the preceding
lemma, we consider those sufficiently large i, such that p(d’“D L ,O',Xi*)Zpo for all oce(O,&), 0=0. More-
over, since the initial value of o for each distinct x* is at least 0., it is the case that for arbitrarily large
iy that of*>0v* :=min(yla,g} (since the trust region vector is not reduced below this quantity to
achieve the required improvement ratio) and p”2pq. Letting 8:=h5 (d° ,o* ,6,X), we then have for the
iterations without line-search,
h* @) < peh P @ (o 6%),6") (siep4)
< pomoh™ (@ (0*,6"),0") (step2)
< poNoh ™S (d*5 (0*,6),0) (Lemma3.2)

< PoMoBy /2 (Lemmad.5)
aiLs

while for the iterations with line-search, the first inequality above holds for from step 5. How-

ever, for x* sufficiently close to X, the relations
FE)—f %) < f (—f (x*) (' is decreasing)
= h*(d™®) or h*(d*™) (step4orstep5)

< poo B /2
contradict f (x*) — f&). O

18

5. Computational Results

This section describes computational results for five standard traffic assignment problems (see Fig-
ure 4 for the first four networks). The sources of these problems are: [Nguyen and Dupuis 84] (Problem
A), [Steenbrink 74] (Problem B), [Bertsekas and Gafni 82] (Problem C), [LeBlanc and Morlok 75] (Sioux
Falls Problem for Sioux Falls, South Dakota), and [Nguyen and Dupuis 84] (Hull Problem for Hull,
Canada). Table 1 shows the comparison of three sequential algorithms executed on a Microvax II. The
sequential version of PL.TR (in which the single commodity subproblems are solved sequentially) may be
compared with the Frank-Wolfe trust region algorithm [Zhang, et al. 84] and the reduced gradient algo-
rithm (as implemented in MINOS, see [Murtagh and Saunders 791). Table 2 demonstrates the performance
of the parallel version of the PLTR algorithm as implemented on the Crystal Multicomputer (a local area
network of Vax750s). All the computer codes are written in standard FORTRAN 77 using double preci-
sion throughout. The compiler used is Berkeley 4.3 FORTRAN 77. The parallel program uses SAP (Sim-
ple Application Package), which is a communication package for Crystal nodes. The timings reported are

exclusive of input and output.

The following remarks explain certain details in the implementation of our method on the Crystal
Multicomputer.

1) initialization:
Choose 1,=0.5, v,=0.75, pg=0.3, p;=0.8, p;=1.3, p3=2, L=3, and cp=1.

2) feasible solution:
The initial iterate x° was taken to be the element of Q corresponding to the solution of the linear
network problem with costs given by f;(0).

3) network subroutine:
A modified version of RNET [Grigoriadis and Hsu 79] is used to solve piecewise-linear subprob-
lems.

4) line-search:
In general, the optimal solution from the trust region is satisfactory, and a line-search is unneces-
sary. When a line-search is called for, golden section search is used for simplicity. Typically, only

one function evaluation is needed in this case to achieve the required p-ratio .

19

5) stopping criterion:
We calculate a lower bound for MCP every few iterations. Given a current feasible solution x°, a
lower bound is obtained by computing the optimal objective value of the linearized problem :
min f (X)+Vf (x)x st xeQ
(This problem may be decomposed and solved in parallel.) If the gap between the current objec-
tive value and the best lower bound is below the preset tolerance then stop. The test results indi-
cate that the lower bounds obtained from the linearized linear programs are not very tight relative
to the upper bounds from the feasible solutions. We also stop the algorithm if the improvements
of the objective functions are sufficiently small in 3 consecutive iterations. The eight-figure agree-
ment in the objective values produced by PLTR and MINOS for most of the test problems sug-
gests that the results are correct to more significant figures than the lower bound would indicate.
6) parallel implementation on Crystal:
A description of the Crystal Multicomputer and its communications software is given in [DeWitt,
et al. 841 and [Feijoo 85]. Additional details of the implementation of parallel algorithms for
traffic assignment on CRYSTAL are provided in [Feijoo and Meyer 84], [Feijoo 85], and [Chen

and Meyer 86].

20

(1) Problem A (2) Problem B

(3) Problem C (4) Sioux Falls Problem

Figure 4 Four test problems

Problem A f =Za,~tj2+b,-t,-
Dimension Algorithm FWTR PLTR RG
Comms | 4 | ODs | 4 Iter 24 14 21
Nodes 13 | Arcs | 19 CPU 4s 2.9s 6.3s
Cnstrs | 52 | Vars | 76 Obj 85028.071 | 85028.071 | 85028.071
LB 85021.021 Gap 7.050 7.050 7.050
ProblemB f =Y a;t?+h;t;
Dimension Algorithm FWTR PLTR RG
Comms 12 | ODs 12 Iter 57 23 106
Nodes 9 Arcs | 36 CPU 33.1s 18.8s 32.9s
Cnstrs | 108 | Vars | 432 Obj 16957.685 | 16957.674 | 16957.674
LB 16957.086 Gap 0.599 0.588 0.588
Problem C f =Zajtj3+bjtj2+cjt,-
Dimension Algorithm FWTR PLTR RG
Comms 5 ODs 5 Iter 35 23 54
Nodes 25 | Arcs | 40 CPU 17.6s 14.9s 17.5s
Cnstrs | 125 | Vars | 200 Obj 5934.7617 | 5924.3427 | 5924.3427
LB 5923.9289 Gap 10.8328 0.4138 0.4138
Sioux Falls Problem f =Y a;t/+b;t;
Dimension Algorithm FWTR PLTR RG
Comms | 24 | ODs | 552 Iter 175 75 733
Nodes 24 | Arcs 76 CPU 12m 17s 6m 23s 12m 14s
Cnstrs | 576 | Vars | 1824 Obj 730121.42 | 721391.91 | 72139191
LB 721387.97 Gap 873345 3.94 3.94
Hull Problem f=" 1;a;(14+—2 Py
7 (a B j+1 b i
Dimension Algorithm FWTR PLTR RG
Comms 16 ODs 142 Iter 100 23 3348
Nodes 423 | Arcs 798 CPU 81m 23m 457m
Cnstrs | 6768 | Vars | 12768 Obj 31205.213 | 31194.605 | 31194.645
LB 31194.581 Gap 10.632 0.024 0.064

Table 1 Comparison of FWTR, PLTR, and RG Algorithms on Microvax II RC

21

22

Problem A | Parallel PLTR (21 Iters)
Machines 1 3 5
CPU 24 .65 15.3s 11.0s
Speedup 1 1.6 2.3
Efficiency 1 0.54 045
Problem B Parallel PLTR (37 Iters)
Machines 1 3 4 5 7 13
CPU 2m13s | Im14s | 52.7s | 42.8s | 33.7s | 24.3s
Speedup 1 1.8 2.5 3.1 4.0 5.5
Efficiency 1 0.60 0.63 0.62 0.57 042
Problem C | Parallel PLTR (35 Iters)
Machines 1 6
CPU 1m 24.7s 24.8s
Speedup 1 34
Efficiency 1 0.57
Sioux Falls Problem Parallel PLTR (100 Iters)
Machines 1 3 4 5 7 9 13
CPU 27m 53s | 14m45s | 10m17s | 8m1s | 5Sm47s | 4m 30s | 3m 25s
Speedup 1 1.9 2.7 3.5 4.8 6.2 8.2
Efficiency 1 0.63 0.68 0.70 0.69 0.69 0.63
Hull Problem Parallel PLTR (44 Iters)
Machines 1 3 5 9 17
CPU 1h59m | 1h2m | 32m33s | 18m39s | 9m 21s
Speedup 1 1.9 3.7 6.4 12.7
Efficiency 1 0.64 0.73 0.71 0.74

Table 2 Performance on the Crystal Multicomputer (a local area network of Vax750s)

23

6. Conclusions

This paper establishes the convergence of a trust region method based on a dynamically-scaled
piecewise-linear approximation of the objective function. The scaling feature allows the approximation to
be adjusted from an underestimating to an overestimating approximation in order to enhance the likelihood

of satisfying the criteria of the trust region approach.

With respect to the set of test problems considered, the convergence rate of this method (PLTR) is ,
as expected, superior to that of the corresponding linear trust region method (denoted here as FWTR).
Since the time per iteration is comparable for these two approaches, PL TR enjoys a definite advantage with
respect to total time. Because of the manner in which iterations are defined in the MINOS code, it is more
difficult to make this type of comparison with the second-order reduced-gradient method (denoted here as
RG) in MINOS. However, the time required to produce eight-figure objective function accuracy in PLTR is
consistently less than in MINOS, and for the largest problem in the test set (6768 constraints and 12,768

variables), PL'TR is roughly 20 times faster.

Another important property of PLTR is that it allows the traffic assignment problems considered here
to be decomposed into single commodity problems, so that parallel computation may be utilized. Computa-
tional results with a corresponding block-Jacobi-type parallel algorithm on the CRYSTAL multicomputer
show that good speedups are attained with such an approach. Research is continuing on parallel algorithms
that are more closely related to block-Gauss-Seidel methods in the sense that they utilize information from
the most recently updated blocks of variables (these are commodities in the traffic assignment context).

This alternative approach to parallel computation will be described in [Chen and Meyer 86].

24

References

Beck, P., Lasdon, L., and Engquist, M. {1983]: "A reduced gradient algorithm for nonlinear network prob-
lems", ACM Transactions on Mathematical Software, Vol. 9, No. 1, 57-70.

Bertsekas, D. P. and Ganfi, E. M. [1982]: "Projection methods for variational inequalities with application
to the traffic assignment problem”, Mathematical Programming Study 17, 139-159.

Cantor, D. G. and Gerla, M. [1974]: "Optimal routing in packet switched computer networks", IEEE Tran-
sactions on Computing C-23, 1062-1068.

Chen, R. J. and Meyer, R. R. [1986]: "Parallel optimization for traffic assignment", to appear as University
of Wisconsin-Madison Computer Sciences Department Tech. Rpt.

Collins, M., Cooper, L., Helgason, R. V., Kennington,J. L., and LeBlanc, L.. J. [1978]: "Solving the pipe
network analysis problem using optimization techniques”, Management Science, 24, 747-760.

Dafermos, S. C. [1980]: "Traffic equilibrium and variational inequalities”, Transportation Science 14, 42-
54,

Dantzig, G., Harvey, R., Lansdowne, Z., Robinson, D., and Maier, S. [1979]: "Formulating and solving the
network design problem by decomposition”, Transportation Res. 13B, 5-17.

Dembo, R. S. and Klincewicz, J. G. [1981]: "A scaled reduced gradient algorithm for network flow prob-
lems with convex separable costs", Mathematical Programming Studies, 15, 125-147.

DeWitt, D., Finkel, R., and Solomon, M. [1984]: "The CRYSTAL multicomputer: design and implementa-
tion experience”, University of Wisconsin-Madison Computer Sciences Department Tech. Rpt.
#553.

Feijoo, B. [1985]: "Piecewise-linear approximation methods and parallel algorithms in optimization”,
University of Wisconsin-Madison Computer Sciences Department Tech, Rpt. #598.

Feijoo, B. and Meyer, R. R. [1984]: "Piecewise-linear approximation methods for nonseparable convex
optimization”, University of Wisconsin-Madison Computer Sciences Department Tech. Rpt. #521.

Feijoo, B. and Meyer, R. R. [1985]: "Optimization on the Crystal multicomputer”, in Computing 85, G.
Bucci and G. Valle eds., Elsevier Science Publishers.

Fletcher, R. [1981]: Practical Methods of Optimization, John Wiley.

Grigoriadis, M. D. and Hsu, T. [1979]: "RNET the Rutgers minimum cost network flow subroutine”, SIG-
MAP BULLETIN, 17-18.

Hanscom, M. A., Lafond, L., Lasdon, L. and Pronovost, G. [1980]: "Modeling and resolution of the
medium term energy planning problem for a large hydro-electric system", Management Science,
26, 659-668.

Kamesam, P. V. and Meyer, R. R. [1984]: "Multipoint methods for separable nonlinear networks",
Mathematical Programming Study 22, 185-205.

Kao, C. Y. and Meyer, R. R. [1981]: "Secant approximation methods for convex optimization”, Mathemati-
cal Programming Study 14, 143-162.

Klincewicz, J. G. [1983]: "A newton method for convex separable network flow problems”, Networks 13,
427-442.

25

Lawphongpanich, S. and Hearn, D. W. [1983]: "Restricted simplicial decomposition with application to the
traffic assignment problem", University of Florida Department of Industrial and System Engineer-
ing Research Rpt. 83-8.

LeBlanc, L. J., Morlok, E. K., and Pierskalla, W. P. [1975]: "An efficient approach to solving the road net-
work equilibrium traffic assignment problem”, Transportation Res. 9, 309-318.

Leventhal T. L., Nemhauser G. L., and Trotter Jr., L. E. [1973]: "A column generation algorithm for
optimal traffic assignment", Transportation Science 7, 168-176.

Magnanti, T. L. and Wong, R. T. [1984]: "Network design and transportation planning: models and algo-
rithm", Transportation Science 18, 1-55.

McCallum, C. J. [1976]: "A generalized upper bounding approach to communications network planning
problem"”, Networks 7, 1-23.

Meyer, R. R. [1985]: "Trust region methods for piecewise-linear approximation”, University of
Wisconsin-Madison Computer Sciences Department Tech. Rpt. #626.

Monma, C. L. and Segal, M. [1982]: "A primal algorithm for finding minimum-cost flows in capacitated
networks with applications", Bell System Tech. J. 61, 949-968.

More, J. J. and Sorensen, D. C. [1979]: "On the use of directions of negative curvature in a modified New-
ton method", Mathematical Programming, 16, 1-20.

Murtagh, B. A. and Saunders, M. A. [1978]: "Large-scale linearly constrained optimization", Mathematical
Programming, 14, 41-72.

Nguyen, S. [1974]: "An algorithm for the traffic assignment problem", Transportation Science 8, 203-216.

Nguyen, S. and Dupuis, C. [1984]: "An efficient method for computing traffic equilibria in networks with
asymmetric transportation", Transportation Science 18, 185-202.

Pang, J. S. and Yu, C. S. [1984]: "Linearized simplicial decomposition methods for computing traffic
equilibria on networks", Networks 14, 427-438.

Rosenthal, R. E. [1981]: "A nonlinear network flow algorithm for maximization of benefits in a hydroelec-
tric power system", Operations Res. 29, 763-786.

Sorensen, D. C. [1982]: "Newton method with a model trust region modification", SIAM J. Numerical
Analysis, 19, 409-426.

Vardi, A. [1985]: "A trust region algorithm for equality constrained minimization: convergence properties
and implementation” SIAM J. Numerical Analysis, 22, 575-591.

Zhang, J., Kim, N. H., and Lasdon, L. [1984]: "An improved successive linear programming algorithm",
University of Texas Graduate School of Business Working paper 84/85-3-2, Austin.

