ADDING RELATIONAL DATABASES TO EXISTING
SOFTWARE SYSTEMS: IMPLICIT RELATIONS AND
A NEW RELATIONAL QUERY EVALUATION METHOD
by

Susan Horwitz

Computer Sciences Technical Report #674

November 1986

Adding Relational Databases to Existing Software Systems:
Implicit Relations and a New Relational Query Evaluation Method

Susan Horwitz
University of Wisconsin—Madison

Abstract

Interactive software systems should include query handlers. Query handlers based on the relational data-
base model are attractive because the model provides a uniform, non-procedural approach to query writing.
Standard relational database systems require that all information be stored in relations; however, the data
structures used by existing software systems are generally non-relational, and it is impractical to replace
them with relations.

A new kind of relations, implicit relations, and a new approach to query evaluation based on the use
of access functions allow software systems to include relational query facilities without giving up existing
non-relational data structures. The new query-evaluation method can also be used in traditional relational
databases, and may be more efficient than traditional evaluation methods when applied to queries that use
set operations.

1. Introduction

It is easy to see the benefits of including query facilities in interactive software systems such as language-
based editors, debuggers, and version-control managers. Existing systems that provide query facilities,
however, generally do so in a limited way; the user is restricted to a pre-defined set of queries, and query
answers cannot be used as inputs to further queries. This is because the query facilities are implemented in
an ad hoc manner. A better approach would be to take advantage of current database technology, basing
the query facility on the relational database model [Codd 1970]. Under this model, arbitrary queries can
be written by applying a standard set of operators to a set of relations. Query answers are themselves rela-
tions, thus are available as inputs to further queries. An advantage of the relational model over the
hierarchical and network database models is that the relational model provides a uniform, non-procedural

approach to query writing.

In relational database systems, this uniform approach to query writing is possible because all infor-

mation is represented uniformly, as sets of tuples called relations. By contrast, most existing software

This work was supported in part by the National Science Foundation under grant DCR-8603356.

-2

systems use non-relational data structures to store information. Given that we wish to access this informa-

tion through relational queries, it would seem that there are three possible approaches:
(1) All information is stored both in the original data structures and in relations.

(2) The information in the data structures is translated to relational form as needed for query process-

ing.
(3) The original data structures are replaced with relations.

It is clear that for large systems, solution (1) has unacceptable space requirements, while solution (2) may
necessitate long delays, unacceptable in interactive systems. Solution (3) may work in some but not all
cases. The problem is that operations previously performed on the non-relational data structures would
have to be performed on the relations. While relations are designed to allow efficient query evaluation,

they may not be so well-suited to these other operations.

Consider a specific example: language-based editing environments. Most language-based editors
represent programs as syntax trees; the data structure used is one in which it is easy to get from a tree node
to its children or to its parent. Linton [Linton 1984] designed an editor in which the tree data structures
were teplaced with relations. This representation has the advantage of allowing queries about program
structure to be written; unfortunately, some traditional editing operations became unacceptably slow when
performed using the relational representation. For example, using the standard INGRES relational data-
base management system [Stonebraker et al 1976], the display of a ten-line procedure body required forty
seconds of elapsed time. Even using a version of INGRES specially tuned for this task, the display
required seven seconds. By contrast, display of procedures by language-based editors that use the more

traditional tree data structures is virtually instantaneous.

Rather than abandoning the goal of adding a relational query facility to existing software systems, we
abandon the goal of storing all information in relations. When it is practical to do so, non-relational data
structures are replaced with relations, or information is stored in both the original structures and in rela-
tions. When such replacement or duplication is not practical, the information in the non-relational data
structures is accessed through the use of a new kind of relations called implicit relations. From the query-

writer’s point of view, an implicit relation is indistinguishable from any other relation; however, implicit

-3

relations are not stored as sets of tuples, instead the informational content of an implicit relation is

extracted as needed from arbitrary non-relational data structures during query evaluation.

Section 2 uses the example of language-based editing environments to clarify the concept of implicit
relations. Implicit relations that can be derived from the syntax-tree representation of a program are

defined, and are used as examples throughout the rest of the paper.

It is desirable that implicit relations and ‘‘normal’’, or explicit relations be indistinguishable from the
query-evaluator’s point of view as well as the query-writer’s point of view. Section 3 presents a new
query-evaluation method based on the use of three access functions. These access functions are provided

for all relations, thus allowing a uniform approach to query evaluation.

While the new query-evaluation method is vital to the efficient evalnation of queries that include
implicit relations, it may be of some interest in the context of ‘‘standard’’ query evaluation as well. This is
because the new method is well-suited to the evaluation of queries defined using the full set of relational
operators, set operators as well as selection, projection, and join. By contrast, previous methods have con-
centrated on evaluating queries expressed using select, project, and join only. Section 4 introduces a new
example query using only explicit relations to illustrate the potential advantages of our query-evaluation

method in this context. Section 5 compares the ideas presented in this paper with previous work.

2. Implicit relations: Examples from language-based editing environments

Providing a query facility as part of a language-based editor allows the programmer to ask questions about
the program under development. A very important class of questions are those that deal with program
structure, for example: ‘“Where, outside of procedure P, is variable x used?’’. Answering this question
requires information about the hierarchical structure of the program as well as information about points in

the program at which variables are used.

As discussed above in the introduction, it is impractical to replace the traditional syntax-tree
representation of a program with a relational representation. While it may be reasonable to include infor-

mation about variable usage both in the program tree and in a relation, it is probably not reasonable to

duplicate structural information. Instead, the following implicit relation is defined*:
ANCESTOR(ancestor: program point, descendant: program point)

The information that is conceptually stored in the ANCESTOR relation is actually implicit in the structure

of the syntax tree, and will be extracted as needed during query evaluation.

The question, ‘“Where, outside of procedure P, is variable x used?’’ can be formulated as a relational
query using the implicit ANCESTOR relation and an explicit relation containing information about vari-
able usage: USE(where: program point, variable name: string). Figure 1 shows an example program, the

corresponding syntax tree, and the corresponding USE relation.

program main;
begin
procedure P;
yi=x+1;
procedure Q;
x:=x+1;
procedure R;
yi=y+1;
end

Figure la
Example Program

*Throughout the paper, example relations are defined according to the following syntax:
relation-name(field-name;: type 1, field-name,: type o, ..., field-name,: type,,)

B: F

procedure Q

Figure 1b
Corresponding Syntax Tree

USE | where variable name
C y
C X
E X
G y
Figure 1c

Corresponding USE Relation

Figure 2 shows the tree form of the example query, and the relation produced by evaluating the query for
the example program of figure la. To compute the set of program points outside procedure P at which
variable x is used, the set of program points inside procedure P is subtracted from the set of program points
at which variable x is used. Note that program points correspond to syntax-tree nodes; the program point

that represents procedure P is node ‘B, the root node of the subtree for procedure P.

MINUS
PROJECT PROJECT
where descendant
SELECT SELECT
variable name = ‘x’ ancestor =B
Figure 2a
Example Query Tree:

‘““Where, outside of procedure P, is variable x used?’’

RESULT | where

Figure 2b
Result Relation
Uses of x outside procedure P in the example program

Another example of a relation implicitly available in the syntax tree is the relation of program points

and the language construct at that point:

CONSTRUCT(where: program point, construct: language construct)

The CONSTRUCT relation could be used (in conjunction with the ANCESTOR relation) to formulate

questions like: ‘“Which WHILE LOOPS contain PROCEDURE CALLS?"".

Naturally, the distinction between implicit and explicit relations must be invisible to the query writer.
The method used to evaluate queries must thus be able to handle occurrences of implicit as well as explicit
relations. In section 3 below we present a new method for query evaluation. Although motivated by the

need to handle implicit relations, the method can be applied to general relational queries; because the

-7

method is designed to handle set operations as well as select, project, and join, it may be more efficient
than traditional query-evaluation methods when applied to queries that use set intersection, union, and

difference.

3. A new query-evaluation method

The query-evaluation method presented in this section relies on the use of three access functions: member-

ship test, selective retrieval, and relation producing functions.
Definition:

(1) The membership-test function for relation R, given tuple ¢, returns ‘true’ if ¢ is in R, and otherwise
returns ‘false’.

(2) The selective-retrieval function for relation R, given list of fields fi, 5, ... f,, and list of values
V1,V2, ... ¥, Teturns the set of tuples in R that have value v; in field f; for all 7.

(3) The relation-producing function for relation R returns the set of tuples in relation R.

The basic idea behind the new query-evaluation method is to use membership-test and selective-retrieval
functions to avoid materializing both implicit and intermediate relations. Section 3.1 below discusses how
some relational operators can be implemented using their operands’ membership-test or selective-retrieval

functions in place of the actual operand relations.

Section 3.2 gives an outline of our query-evaluation method. The method assumes the existence of
membership-test, selective-retrieval, and relation-producing functions for all relations used in the query,
both implicit and explicit. Section 3.3 discusses how these functions can be constructed, using the
ANCESTOR relation introduced above as an example. Given these functions to build on, membership-test,
selective-retrieval, and relation-producing functions are constructed for the relations represented by the
internal nodes of the query tree. The time and space savings of the query-evaluation method come from
using the membership-test and selective-retrieval functions associated with implicit and intermediate rela-
tions, rather than materializing these relations. Constructing membership-test and selective-retrieval func-

tions for internal nodes is discussed in section 3 4.

-8-

3.1. Using membership-test and selective-retrieval functions

Some relational operators can use an operand relation’s membership-test or selective-retrieval function in
place of an explicit representation of the operand relation. MINUS is one such operator. Given an explicit
representation of R1, and a membership-test function for relation R2, one can implement (R1 — R2) as fol-
lows: a single scan is made through R1 considering each tuple ¢ in turn; ¢ is in the result relation if it is not

a member of R2.

let

R1 and ANSWER be relations

R2.membership be a membership-test function for relation R2

in
begin

ANSWER := {};

for each tuple t inR1 do

if (—R2.membership(t))
then ANSWER := ANSWER v {t};

return(ANSWER);

end

Figure 3
Implementing MINUS using a membership-test function

Similarly, EQUI-JOIN can be implemented using one explicit operand relation and the other operand
relation’s selective-retrieval function. A single scan is made through the explicit operand relation; for each
tuple ¢, the selective-retrieval function of the other operand relation is called with the number of the join
field and the appropriate value from ¢. All returned tuples are joined with ¢ and added to the result relation.
The code given below in figure 4 is for the operation: JOIN (R1, R2) WHEN (field#3 of R1) = (field #1 of
R2).

let

R1 and ANSWER be relations

R2.selective-retrieval be a selective-retrieval function for relation R2
in
begin

ANSWER := {};

for each tuple t in R1 do

for each tuple u in R2.selective-retrieval((1), (¢.field#3)) do
ANSWER := ANSWER v JOIN(¢, u);

return(ANSWER);

end

Figure 4
Implementing EQUI-JOIN using a selective-retrieval function

The evaluation of queries that include implicit relations is acceptably efficient only when calls to the
implicit relations’ membership-test or selective-retrieval functions can replace ‘‘normal’ access to the
relations. The evaluation of queries that include only explicit relations can benefit from this technique as
well. The code given in figure 4 may appear at first to be no more than a nested-loops join in which an
index on the join field is used to look up values in the inner relation [Wong and Youssefi 1976][Selinger et
al 1979]. The important innovation introduced by our technique is that R2 need not be a materialized rela-
tion; instead, it can represent an arbitrary relational computation, including set operations. As discussed
below in section 3.4, R2.membership and R2.selective-retrieval can often be implemented so that neither
R2 nor any of the intermediate relations involved in the computation of R2 need to be built. Instead, the
membership-test or selective-retrieval functions associated with the nodes of the subtree rooted at R2 are
called. By contrast, most existing database management systems implement set operations in such a way
that one or both operands and/or the result of applying a set operator are usually built as temporary rela-

tions. This issue is discussed further in section 4.

Because operand relation R2 need not be a materialized relation, we refer to the technique illustrated
in figure 4 as an extended nested-loops join. An example query for which an extended nested-loops join is

the evaluation method of choice is presented in section 4.

.10 -

3.2. Algorithm outline

Given a query tree, and given membership-test, selective-retrieval, and relation-producing functions for the
relations named at the leaves of the tree (construction of these functions is discussed below in section 3.3),

the algorithm for query evaluation using membership-test and selective-retrieval functions is the following:

Step 1: Function construction
(a) Make one post-order traversal of the query tree. At each internal node n:
(1) Build functions n.membership, n.selective-retrieval, and n.relation-producing.
(2) Compute an estimate of the cost of invoking each function.

(3) Compute an estimate of the sizes of the relations returned by the selective-retrieval and relation-
producing functions.

(b) Build a relation-producing function for the root node of the query tree.

Step 2: Evaluation

Call the relation-producing function at the root node of the query tree.

Functions at node » can call any function at a child of » in the query tree. For example, the relation-
producing function at the root of the query tree of figure 2 might call both children’s relation-producing
functions, or it might call its left child’s relation-producing function and its right child’s membership-test

function.

The cost estimate for a function at node » is computed using the cost estimates for the functions it
calls and the appropriate size estimates. When there are several possible ways to implement a function,
cost estimates are used to choose the most efficient implementation. For example, consider the costs of the

two possible implementations for the relation-producing function at the root of the query tree of figure 2:

Implementation method 1: Compute the set difference of the relations returned by both children’s relation-
producing functions.

Total Cost = cost(left child's relation-producing function) + cost(right child's relation-producing
function) + a cost proportional to the size of the smaller of the two relations returned by the
children’s relation-producing functions to perform the subtraction.

Implementation method 2: Call the right child’s membership-test function once for every tuple returned by
the left child’s relation-producing function.

Total Cost = cost(left child's relation-producing function) + size(relation returned by left child's
relation-producing function) % cost(right child’s membership-test function).

-11-

Estimating the sizes of intermediate relations is a very difficult problem. It follows that accurate cost
estimates for a node’s membership-test, selective-retrieval, and relation-producing functions may be
difficult to compute. By assigning a cost of ‘infinity’ to all implicit relations’ relation-producing functions
we can avoid the selection of a disastrous evaluation strategy, one that instantiates implicit relations.
Beyond that, empirical evidence is needed to determine how size estimates should be made, and how well

the selection process is carried out in practice.

3.3. Membership-test and selective-retrieval functions for leaf relations

Membership-test and selective-retrieval functions must be provided for all leaf relations, both implicit and
explicit. The functions for implicit relations defined on non-relational data structures are implemented as
operations on the data structures. For example, the functions for the implicit ANCESTOR relation defined
above in section 2 operate on the program’s syntax tree. The most straightforward way to implement
membership testing for the ANCESTOR relation is the following: given a potential ancestor-descendant
pair <a, d>, start at node d and walk up the program tree to the root; if node ¢ is found on this path return
‘true’, otherwise return ‘false’. The time cost of a membership-test function implemented in this way is, in
the worst case, proportional to the height of the program tree. Amortized cost O(log(size of program
tree)) can be achieved using the link-cut tree data structure described in [Tarjan 1983]. This method
requires that the program’s syntax tree be represented in a different form than is usual, and has higher

storage requirements.

The selective-retrieval function for the ANCESTOR relation, given a value d for the descendant
field, walks up the program tree to the root, building a tuple <n, d> for each node » along the path. Givena
value a for the ancestor field, the function traverses the subtree rooted at a, building a tuple <a, n> for each
node n in the subtree. Both the time and space costs of selective retrieval for the ANCESTOR relation are

thus proportional to the size of the answer set.

Membership-test and selective-retrieval functions must also be written for explicit relations, relations
stored as sets of tuples. The methods used for membership ‘testing and for selective retrieval, and the
efficiency of the functions, depend on the storage and access methods provided for the relations. The most

efficient functions can be provided for indexed relations. Less efficient functions can be written for rela-

-12 -

tions stored in sorted order. Functions for a relation stored unsorted with no auxiliary access method are

the least efficient; a complete scan of the relation may be required on every invocation.

3.4. Membership-test and selective-retrieval functions for internal nodes

One could implement the membership-test and selective-retrieval functions for an internal node of a query
tree by building the intermediate relation represented by the node and searching for the appropriate tuples.
Since the point of using membership-test and selective-retrieval functions is to avoid building intermediate
relations, this strategy will rarely be cost-effective. In general, membership-test and selective-retrieval
functions make use of similar functions found at the next level down in the query tree, which in turn make
use of functions at the next level down, and so on, until we reach the leaves of the tree and the functions

associated with the leaf relations.

The particular membership-test and selective-retrieval functions built for an internal node of a query
tree depend on which relational operator is found at that node. Sometimes there are several ways to imple-
ment the functions. The selective-retrieval function for an INTERSECTION node n, with operands R1 and

R2, is a good example; one could implement n.selective-retrieval in any of the following ways:

(1) Given parameters f (a list of fields) and v (a list of values), n.selective-retrieval returns the inter-
section of R1.selective-retrieval(f, v) and R2.selective-retrieval(f, v).

(2) For every tuple ¢t returned by Rl.selective-retrieval(f, v), n.selective-retrieval calls
R2.membership(z); t is in the set returned by n.selective-retrieval iff R2.membership returns ‘true’.

(3) Same as (2), reversing the roles of R1 and R2.
For each instance of an INTERSECTION node, the implementation with the lowest cost estimate is chosen,

In the absence of PROJECT nodes, the design of membership-test functions for the internal nodes of
a query tree is quite straightforward. For example, the membership-test function for an INTERSECTION
node n with operands R1 and R2, given parameter ¢, returns the conjunction of R1.membership(¢) and

R2.membership(¢):

n.membership(¢) {
if (R1.membership(#))
then return(R2.membership(¢));
else return(false);

}

-13-

PROJECT nodes complicate membership-test functions because the arity of the relation represented by a
PROJECT node is smaller than the arity of its operand relation. We want to build a membership-test func-
tion f for the PROJECT node that invokes its child’s membership-test function f ; however, f cannot pass
to f * values for fields that are not included in the PROJECT node’s list of projected fields. We allow f to
pass a special ‘‘wildcard” value, denoted by ‘+°, to f’ for every field not included in the list of projected

fields. Membership-test functions must thus be prepared to handle tuples that contain wildcard values.

In some cases, SELECT nodes can replace wildcard values with constant values. This situation can
be illustrated by considering the example query of figure 2. The root node of this query tree is a MINUS
node. The relation-producing function for this node can be implemented by calling the relation-producing

function of its left child, and the membership-test function of its right child.

The membership-test function of the right-hand-side PROJECT node is called by the relation-
producing function of the MINUS node with a tuple of the form <d>, because the arity of the relation

represented by both the MINUS node and the PROJECT node is 1.

The PROJECT node’s membership-test function calls the membership-test function of the right-
hand-side SELECT node with a tuple of the form <«, d>, because the arity of the relation represented by
the SELECT node is 2. The wildcard value is in the first field of the tuple because the projected field, ‘des-

cendant’, is the second field of the relation represented by the SELECT node.

The SELECT node’s membership-test function calls the membership-test function of the ANCES-
TOR relation with a tuple of the form <B, d>. The SELECT node’s membership-test function is able to
replace the wildcard value in the first field with a constant value because a tuple cannot be in the relation

represented by the SELECT node unless it has the value B in the first field.

The above example illustrates a particularly fortuitous situation; the wildcard value passed down by
the PROJECT node is immediately replaced with a constant value by the SELECT node. This will not be
the case in general; thus, membership-test functions must be written to handle arguments containing wild-
card values. For example, in the presence of wildcard values, the membership-test function for an INTER-
SECTION node cannot simply return the conjunction of its children’s membership-test functions. Figure 5
illustrates a situation in which doing so would lead to erroneous results. If the INTERSECTION node’s

membership-test function is called with a tuple of the form <x, 1> and calls its children’s membership-test

-14 -

functions with the same tuple, they will each return ‘true’. R1.membership returns ‘true’ because it
includes tuple <0, 1>, and R2.membership returns true because it includes tuple <1, 1>, yet there is no

tuple in the relation represented by the INTERSECTION node with a 1 in the second field.

INTERSECT <x, 1>
<0,1> <1,1>
<0,0> <0,0>

Figure 5

Why an INTERSECTION node’s membership-test function must change
in the presence of wildcard values

When there are wildcard values in the given tuple ¢, the INTERSECTION node’s membership-test

function must be implemented in one of the following ways:

Implementation method 1

Step 1:
Call one child’s selective-retrieval function, passing as arguments the list of fields in ¢ that do not
have wildcard values and the corresponding list of values.

Step 2:
For every tuple u returned by Step 1, call the other child’s membership-test function with argument
1. As soon as the membership-test function returns ‘true’, the membership-test function for the
INTERSECTION node returns ‘true’. If the membership-test function never returns ‘true’, the
membership-test function for the INTERSECTION node returns ‘false’.

Implementation method 2

Step 1:
Call both children’s selective-retrieval functions, passing as arguments the list of fields in ¢ that do
not have wildcard values and the corresponding list of values.

Step 2:
Compute the intersection of the two sets returned by step 1. If the intersection is non-empty, the
INTERSECTION node’s membership-test function returns ‘true’, otherwise it returns ‘false’.

-15-

The relative costs of the node’s children’s membership-test and selective-retrieval functions, and the size
estimates for the relations returned by the selective-retrieval functions determine which of the above

methods is used.
To summarize:

. Membership-test, selective-retrieval, and relation-producing functions are built for all internal nodes
of the query tree. The functions associated with node n can call functions associated with any child
ofn.

. A cost estimate is computed for each function; when there is more than one possible implementation
for a particular function the implementation with the lowest cost is selected.

) A naive approach to writing membership-test functions can fail when the query contains PROJECT
nodes. Example problems and solutions were outlined above; a complete treatment of this issue is
found in [Horwitz 1985].

4. Generality of the method

In this section we introduce a new example query to illustrate the potential advantages of our query-
evaluation method over existing methods in the context of queries that use only explicit relations. We
expect our method to be most advantageous in the evaluation of non-trivial queries involving set operators.
In general, the larger the query tree and the greater the number of set operators, the more beneficial our
method will be. This is because our method treats all of the relational operators, including the set opera-
tors, in a uniform fashion, thus allowing the optimization of the entire query, rather than optimizing por-

tions of the query independently of each other.

By contrast, the SQL query optimizer considers the operands of a UNION separately [Lohman
1986], and arranges for subqueries to be fully evaluated before the top-level query [Selinger et al 1979].
Users of the QUEL language can implement set union and set difference by building one operand relation
and inserting or deleting the tuples of the other operand relation. This separation of a query into two parts
clearly leads to lost opportunities for optimization. Set union can also be implemented using ‘‘or’’, and set
difference can be implemented using aggregates. However, it is unclear how likely naive users are to avail
themselves of these possibilities (especially the latter), or how well the QUEL optimizer handles such

queries.

The example query discussed below uses the following (explicit) relations:

-16 -

PARTS(Part#: integer, ComponentOf: string)

SUPPLIERS(SName: string , Part#: integer)

We wish to retrieve the numbers of all parts that are components of ‘‘tractor’’, and are supplied by either
“Smith’’ or ‘‘Jones’’ but not both of them. A straightforward translation of this query to tree form yields

the query tree shown below in figure 6a. Figure 6b gives a higher-level view of the same query, substitut-

ing English explanations for some sub-queries.

PROJECT
Part#

JOIN
Part# = Part#

/\

SELECT
ComponentOf = ‘tractor’

MINUS

/\

PROJECT
Part INTERSECT
1] /\
SELECT
SName = ‘Smith’ PROJECT PROJECT
or Parti Part#
SName = ‘Jones’
SELECT SELECT
SUPPLIERS SName = ‘Smith’ SName = ‘Jones’
SUPPLIERS @

Figure 6a

Example query using only explicit relations
All tractor components supplied by Smith or Jones but not both

Assuming that the number of tractor components is small compared to the number of parts supplied by
either Smith or Jones, and that there are indexes on the ‘‘ComponentOf’’ field of the PARTS relation and

the ““Part#’ field of the SUPPLIERS relation, the best way to evaluate this query is to use an extended

-17-

PROJECT
Part#

JOIN
Part# = Part#

parts that are
tractor components

R2: R3:

part numbers
of parts supplied by
Smith, Jones, or both

part numbers
of parts supplied
by both Smith and Jones

Figure 6b
Simplified, ‘“English’* version of example query of figure 6a

nested-loops join (introduced in section 3.1):

(0

@

G)

extended nested-loops join. Because the non-materialized relation is defined using minus, standard query
evaluators would probably not choose extended nested-loops join to evaluate this query. By contrast, the

evaluation strategy that would be selected by applying our method to the query tree of figure 6 is exactly

Tractor components are extracted from the PARTS relation using the index on the ComponentOf
field.

For each tuple ¢ extracted in step (1), a lookup is done on the relation represented by the MINUS
node. If a tuple with the appropriate part number is found, it is joined with ¢,

The Part# field of each tuple created in step (2) is stored in the result relation.

The lookup in step (2) is performed on a non-materialized relation; this is the extended part of the

the extended nested-loops join described above.

-18 -

Using our query-evaluation method, the lookup of step (2) is implemented using a call to the MINUS
node’s selective-retrieval function, asking for all tuples that have the given part number in field number
one. Because the relation represented by the MINUS node has only one field, its selective-retrieval func-
tion is equivalent to its membership-test function; a call to MINUS.membership leads to calls to the
MINUS node’s children’s membership-test functions, eventually leading to «calls on

SUPPLIERS.membership, which are implemented using the index on the ““Parti#”’ field.

The cost of step (1) is proportional to the number of tractor components; the cost of step (2) is pro-
portional to the number of tractor components times the cost of a lookup on the SUPPLIERS relation. A
lookup on the SUPPLIERS relation (using the Part# index) is proportional to the number of suppliers that
supply the given part. In the worst case, when all suppliers supply all parts, the cost of a lookup is propor-
tional to the number of suppliers. The worst-case overall cost of the extended nested-loops join is thus

O((# of tractor components)* (# of suppliers)).

Given a multi-attribute or multi-dimensional index on the SUPPLIERS relation, the cost of
SUPPLIERS.membership is independent of the number of suppliers supplying each part, and the overall
cost of the extended nested-loops join is just O@# of tractor components). Note also that by using pipelin-

ing, the extended nested-loops join can be performed without materializing any intermediate relations.

How does the performance of extended nested-loops join compare to a more traditional evaluation
method in which the relation represented by the MINUS node is materialized and then joined with the set
of tractor components? To answer this question without getting bogged down in the details of exactly how
the relation represented by the MINUS node would be computed, note that the computation of the MINUS
relation requires the computation of the relation labeled ‘“R2”’ in figure 6b. Computing relation R2 without
an index on the SName field of the SUPPLIERS relation requires at least one complete scan of the SUP-
PLIERS relation, making this a far more expensive approach than the extended nested-loops join. Given
an index on the SName field of the SUPPLIERS relation, relation R2 can be computed more efficiently,
and a more detailed analysis would be needed to determine the relative merits of the extended nested-loops
join approach, and the approach in which the MINUS relation is materialized. Note however, that materi-

alizing the MINUS relation has two inherent disadvantages as compared to the extended nested-loops join:

-19-

(1) A multi-attribute or multi-dimensional index on the SUPPLIERS relation cannot be fully utilized
since information about the part numbers of tractor components is not available within the MINUS
sub-query.

(2) Pipelining cannot be fully utilized to prevent the materialization of intermediate relations since the
approach forces the materialization of at least one intermediate value, namely the MINUS relation
itself.

5. Relation to previous work

The major contributions of this paper are the definition of implicit relations and the design of a new query-

evaluation method. In this section we compare these two aspects of our work with relevant previous work.

The concept of implicit relations has some similarities with the concept of views [Ullman 1980 pp.
5-9]. In both cases, the user of a database is given access to relations that are not actually stored as sets of

tuples. View relations and implicit relations differ in how they can be defined, and in their intended use.

A view relation is defined by a query; conceptually, the query is re-evaluated after every
modification to the database, and the view relation is the result of the most recent evaluation. View

definitions are limited to relational operators applied to explicit or view relations.

Implicit relations are defined by three access functions: membership-test, selective-retrieval, and
relation-producing, which can be defined by applying arbitrary operators to arbitrary data structures.
While the example implicit relations presented in this paper have been defined in terms of non-relational
operations on non-relational data structures, it is equally reasonable to define implicit relations in terms of
operations (relational or not) on explicit relations. Thus, implicit relations can be viewed as a generaliza-

tion of view relations.

We turn next to a comparison of our approach to query evaluation with relevant previous work in

that area. The goals of our query-evaluation method are:
(1) Avoid materializing implicit relations whenever possible.
(2) Avoid materializing intermediate relations whenever possible.
(3) Achieve goals (1) and (2) in the presence of set operators as well as select, project, and join.

Having just considered the similarities between view relations and implicit relations, one is led to ask

whether there is an analog to our first goal, avoiding the materialization of implicit relations, in the context

-20 -

of queries that use view relations. The answer is that query-evaluators do try to avoid the materialization
of view relations used in queries. Because view relations are defined as relational operations on explicit
relations, the mechanism for avoiding the materialization of view relations is straightforward: the view
definition is inserted into the query in place of the view relation, and the entire query is optimized [Stone-

braker 1975].

Of course, this approach won’t work when an implicit relation is used in a query because implicit
relations may not be defined in terms of relational operations on explicit relations. Thus, while the goal of
avoiding the materialization of implicit relations is similar to the goal of avoiding the materialization of
view relations, the methods used to achieve that goal must differ. Our approach to avoiding the materiali-
zation of implicit relations is to use the membership-test and selective-retrieval functions provided for these

relations in place of the relations themselves.

Membership-test and selective-retrieval functions are also used to achieve our second goal, avoiding
the materialization of intermediate relations. This can be viewed as a combination and generalization of

the methods of [Wong and Youssefi 1976] and [Liu 1979].

Our use of selective-retrieval functions to evaluate joins corresponds to “‘tuple substitution’’ as
presented in [Wong and Youssefi 1976]. Our method can be considered to be a generalization of theirs
because we are able to do lookups on non-materialized operand relations and because we allow the
operands of joins to be defined using set operators, while they only consider queries defined using selec-
tion, projection, and join. Further, our method is more flexible in that the use of selective-retrieval is only
one possible way to implement a JOIN node’s relation-producing function. Other possibilities, for exam-
ple, calling both operands’ relation-producing functions followed by a sort-merge join [Selinger et al

1979], can be considered as well.

[Liu 1979] proposes the use of membership tests for the evaluation of some set operators. However,
because Liu was concerned with optimizing the execution of set-oriented programming languages, he con-
siders only the set operators, and not selection, projection, or join. While it is rather trivial to build
membership-test functions for all nodes of a query tree that contains only set operators, it is not obvious
how to do so for a query tree that includes selection, projection, and join. Some of the subtleties that arise

in the latter case were mentioned briefly in section 3.4; a complete treatment appears in [Horwitz 1985].

“21-

Other approaches to query optimization that seek to avoid building intermediate relations are the use
of pipelining [Smith and Chang 1975] [Yao 1979] [Lu and Carey 1985] and of tree transformations [Smith
and Chang 1975] [Hall 1976]. When pipelining is used, tuples are passed up the tree as they are computed
rather than waiting until an entire intermediate relation is formed. Pipelining is thus similar to our query-
evaluation method in that intermediate relations are not materialized. It is dissimilar in that, when pipelin-
ing is used, the tuples of intermediate relations are all computed, whereas our method seeks' to avoid or
reduce the computation (as well as the materialization) of intermediate values. To understand this differ-

ence, consider the following query:

INTERSECT

T~

R1 CROSS-PRODUCT

One way to evaluate this query without materializing the temporary relation represented by the CROSS-

PRODUCT node is to use pipelining. The cross product is computed a tuple-at-a-time, and each tuple is
passed up the query tree. The tuple is in the result relation if it is in R1. While no temporary relation is
materialized using this approach, all tuples of the cross product are computed; thus, the cost of the evalua-

tion is at least proportional to the size of the cross product.

By contrast, using our method the query can be evaluated without materializing the temporary rela-
tion, and without computing any tuples of the cross product. Instead, a scan is made through relation R1,
each tuple ¢ is divided into two tuples, ¢; and ¢,, according to the arities of R2 and R3, and lookups are
done in relations R2 and R3 on ¢, and ¢, respectively. Tuple ¢ is in the result relation if ¢ is in R2 and ¢, is

in R3. The cost of this evaluation is thus independent of the size of the cross product.

Of course, other factors, for example, the existence of indexes, affect the over-all cost of evaluating
the query. This example is merely meant to illustrate the philosophical difference between our approach

and pipelining, and to indicate the potential advantages of our method. Further, the two approaches are not

-22-

incompatible; pipelining can be incorporated into our approach by having selective-retrieval and relation-

producing functions use pipelining rather than returning entire relations.

Tree transformations such as combining sequences of projections into a single projection and com-
bining sequences of selections into a single selection, can reduce the number of intermediate relations in
the query tree. Moving selection operators ahead of construction operators can reduce the sizes of the
intermediate relations represented by the internal nodes of the query tree. These techniques do not, how-
ever, address the question of whether one can avoid building some of the intermediate relations of the

transformed tree.

As with pipelining, incorporating tree transformations into our method will be important to its suc-
cess. A query can often be represented using a number of different trees, and a different relation-producing
function will be built for the root node of each such tree. It is important that transformations be used to

produce trees in which the cost of the root node’s relation-producing function is minimized.

Similarly, other optimization techniques could be used to produce more efficient membership-test,
selective-retrieval, and relation-producing functions. Exploiting idempotency and unsatisfiability to sim-
plify conditions [Hall 1976] [Eswaran et al 1976] can lead to more efficient membership-test and relation-
producing functions; using the methods of [Astrahan and Chamberlin 1975] [Blasgen and Eswaran 1977]
[Selinger et al 1979] [Yao 1979] for access path selection, the methods of [Smith and Chang 1975] for
choosing sort orders, and the methods of [Gotlieb 1975] [Wong and Youssefi 1976] for calculating join

orders can all lead to more efficient relation-producing functions.

Our third goal, the efficient evaluation of queries that include set operations, has been all-but ignored
in past work. Two exceptions are [Shaw 1985] and [Chu and Hurley 1982]. The work presented in [Shaw
1985] deals with query processing on a non-standard machine designed to support the execution of rela-
tional operations, and is thus not comparable with the work presented here. [Chu and Hurley 1982] discuss
query processing for distributed databases; their model of query evaluation is one in which intermediate
values are computed and passed among a set of processors. Thus, while they share our goal of handling set
operators, they do not share our goal of avoiding the materialization of intermediate relations, and the two

approaches have little in common.

-23-

While we recognize the importance of select-project-join queries, we feel that the set operators
deserve consideration, too. We believe that there are queries for which the most natural formulation
involves the use of set intersection, union, and difference; therefore the efficient evaluation of queries that

use set operators is a reasonable goal.

6. Summary

The desire to allow interactive software systems to include relational query facilities without giving up
existing, non-relational data structures led to the design of implicit relations. Information contained in the
non-relational data structures is conceptually stored as sets of tuples, and can be accessed by using implicit

relations in queries.

The use of implicit relations in queries requires a new approach to query evaluation. The method
described here is a uniform approach based on the use of three access functions: membership-test,
selective-retrieval, and relation-producing. Access functions for implicit relations are defined as operations
on the appropriate non-relational data structures; access functions for normal or explicit relations are

defined according to the access methods provided for the relations.

While the new query-evaluation method must be used on queries that include implicit relations, it
may prove superior to existing methods when applied to queries that include only explicit relations as well.
In general, we expect our method to be most-advantageous in the evaluation of queries that make heavy use
of set operations. Further investigation is needed to define the class of applications to which our method is

well-suited, and to determine how well it performs in practice.

-24-

References

[Astrahan and Chamberlin 1975]
Astrahan, M.M. and Chamberlin, D.D. Implementation of a structured English query language.
Communications of the ACM Vol. 18 No. 10 (Oct 1975) 580-588

[Blasgen and Eswaran 1977]
Blasgen, M.W. and Eswaran, K.P. Storage and access in relational databases. IBM Systems Journal
16 (1977) 363-377

[Chu and Hurley 1982]
Chu, W.C. and Hurley, P. Optimal query processing for distributed database systems. IEEE Tran-
sactions on Computers Vol. ¢-31, No. 9 (Sept. 1982) 835-850

[Codd 1970}
Codd, EF. A relational model of data for large shared data banks. Communications of the ACM Vol.
13 No. 6 (June 1970) 377-387

[Eswaran et al 1976]
Eswaran, K.P. Gray, J.N. Lorie, R.A. Traiger, I.L.. The notions of consistency and predicate locks in
a database system. Communications of the ACM Vol. 19 No. 11 (1976) 624-633

[Gotlieb 1975]
Gotlieb, L. R. Computing joins of relations. ACM SIGMOD International Conference on Manage-
ment of Data (May 1975) San Jose, CA, 55-63

[Hall 1976]
Hall, P. A. V. Optimization of single expressions in a relational data base system. IBM J. Res.
Develop. Vol. 20 (May 1976) 244-237

[Horwitz 1985]
Horwitz, S. Generating language-based editors: a relationally-attributed approach. PhD thesis. Cor-
nell University (August, 1985)

[Linton 1984]
Linton, M. Implementing relational views of programs. Proc. of the ACM SIGSOFTISIGPLAN

software engineering symposium on practical software development environments (April 1984) Pitts-
burgh, PA, 132-140

[Liu 1979]
Liu, L. Essential uses of expressions in set-oriented expressions. Ph.D. Thesis. Comell University
(May 1979)

[Lohman 1986]
Lohman, G.M. Do semantically equivalent SQL queries perform differently? IEEE 1986 Interna-
tional Conference on Data Engineering (Feb. 1986) Los Angeles, CA, 225-226

[Lu and Carey 1985]
Lu, Hongjun and Carey, M.J. Some experimental results on distributed join algorithms in a local net-
work. Proceedings of VLDB 85 (1985) Stockholm, 292-304

225

[Selinger et al 1979]
Selinger, P.G. Astrahan, M.M. Chamberlin, D.D. Lorie, R.A. and Price T.G. Access path selection in
arelational database management system. ACM SIGMOD International Conference on Management
of Data (May-June 1979) Boston, MA, 23-34

[Shaw 1985]
Shaw, D.E. Relational query processing on the Non-Von supercomputer. From: Query Processing
in Database Systems W. Kim, D. Reiner, D. Batory, eds. Springer-Verlag (1985)

[Smith and Chang 1975]
Smith, J.M. and Chang, P. Optimizing the performance of a relational algebra database interface.
Communications of the ACM Vol. 18 No. 10 (Oct. 1975) 568-579

[Stonebraker 1975]
Stonebraker, M. Implementation of integrity constraints and views by query modification. ACM
SIGMOD International Conference on Management of Data (May 1975) San Jose, CA, 65-78

[Stonebraker et al 1976]
Stonebraker, M., Wong, E., and Kreps, P. The design and implementation of INGRES. ACM Trans.
on Database Systems Vol. 1 No. 3 (Sept. 1976) 189-222

[Tarjan 1983]
Tarjan, R.E. Data Structures and Network Algorithms. Society for industrial and applied mathemat-
ics Philadelphia, PA (1983)

[Ullman 1980}
Ullman, J. Principles of Database Systems. Computer Science Press Potomac, MD. (1980)

[Wong and Youssefi 1976]
Wong, E. and Youssefi, K. Decomposition - a strategy for query processing. ACM Transactions on
Database Systems Vol. I No. 3 (Sept. 1976) 223-241

[Yao 1979]
Yao, S.B. Optimization of query evaluation algorithms. ACM Transactions on Database Systems
Vol. 4 No. 2 (1979) 133-155

