AUTOMATIC GENERATION OF
COMMUNICATION PROTOCOLS

by

Bryan S. Rosenburg

Computer Sciences Technical Report #670
October 1986

AUTOMATIC GENERATION OF
COMMUNICATION PROTOCOLS

by

BRYAN S. ROSENBURG

A thesis submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN — MADISON

1986

iii

Abstract

This dissertation describes an effort to improve application-level communication
efficiency by using information provided by, and derived from, the application
itself.

We define a simple language for describing the static form of conversations be-
tween application processes. A conversation description serves as a form of service
specification for the conversation’s underlying communication protocol. It specifies
the types of messages required by the conversation and provides a regular expres-
sion that defines the set of legal sequences of messages between the conversation’s
participants.

We also define structures we call plans that application processes can use dy-
namically to participate in conversations. A plan is a regular expression a process
can construct to describe its desire to send or receive messages allowed by its ac-
tive conversations. The plan mechanism is a generalization of the CSP guarded
alternative construct. It allows processes to describe future as well as immediate
intentions.

Conversation descriptions and plans contain application-specific information
that can be used to enhance the efficiency of the application’s communication.
Other useful information can be derived from measurements made while the appli-
cation is running. We present strategies for collecting and using information from
these sources. These strategies attempt to use application-specific information to
reduce the number of low-level messages needed to accomplish the application’s
communication.

We have implemented a version of the protocol generation system that sup-
ports application processes to be executed on the Crystal multicomputer. We de-
scribe several typical applications and evaluate their performance. We show that
application-specific information from several sources can be used to significantly
improve the efficiency of the application’s communication.

iv

Acknowledgements

I first of all thank my parents, Dale and Peg Rosenburg, who instilled in me my
love of science and mathematics and who encouraged me to view graduate school,
not as a hurdle to be overcome, but as an important part of my life. I thank my
wife Julie for sharing this part of my life and for tolerating seven long years of
student housing. I especially thank her for putting up with me during the couple
months leading up to my final defense.

I thank the other members of the coffee-pot “syndicate”, Aaron Gordon and
Ennio Stacchetti, for many enjoyable afternoon discussions, some few of which may
actually have contributed to my work here. I guess I get to keep the coffee pot,
seeing as I’m the best procrastinator of the three of us. I especially thank my friend
Bill Kalsow, with whom I’ve discussed every single minor aspect of my research
(among other things). I can hardly claim any part of this research as completely
my own. Bill’s maintenance of the Modula-2 compiler and the TEX and IATEX
typesetting software has also been invaluable.

Finally, I thank my advisor, Dr. Raphael Finkel, for shepherding me through
this whole process and for periodically restoring my confidence in the work I was
doing. I also thank Dr. Marvin Solomon for occasionally shaking that confidence
and thereby improving the work.

This work was supported by the Charlotte project (DARPA contract numbers
N00014-82-C-2087 and N00014-85-K-0788) and by a Tektronix Doctoral Fellowship.

Contents
Abstract iii
Acknowledgements iv
List of Figures vi
1 Imtroduction 1
2 Related Work 3
2.1 Protocol Specification and Verification 3
2.2 Interprocess Communication. i 0. 0. 9
3 Protocol System Specification 10
3.1 Conversation Description 10
3.2 Conversation Participation. 0L, 14
3.3 DesignRationale 25
331 Conversations v v v v v v v bt e e e e e e 25
332 Plans i it e e e e e e e e e e e e e e e e 26
4 Abstract Implementation 31
4.1 Establishing Conversations ¢ v v v v v v v v v v 0o 32
4.2 Interpreting Plans i ittt 33
4.2.1 The EXCHANGE Protocol 34
4.22 The TRIPLEProtocol 37
43 Handling Errors. ¢ o i i v v i ittt i e et e e e e e 42
5 Protocol Improvement 44
5.1 Plan-based Improvement 44
5.2 Conversation-based Improvement 51

5.2.1 Statistics Collection « ¢« v v v i v it e e e e e e 51

vi

5.2.2 Opportunities for Improvement
523 The LAZY Protocol
524 Observations ¢t vt ittt it it e
6 Concrete Implementation
6.1 The ProGen Runtime Environment
6.1.1 TaskSubsystem
6.1.2 Client and Actor Tasks
6.1.3 Conversation Coordinator
6.14 Conversation SE€Tvers ¢ v« v vt v v vt b o b e
6.1.5 PlanDrivers ¢ v v i v i i e e e e e e e e
6.1.6 Overhead Reduction
6.2 Protocol Generator i i it it e e e e e e e e e e
6.2.1 EXCHANGE Protocol (Nugget)
6.2.2 EXCHANGE Protocol (Alternating-Bit)
6.2.3 TRIPLE Protocolo
6.24 LAZY Protocol 0 i i i e e e e e
6.3 Performance. ¢ v v o v v e ittt e e e e e e e e e e
6.3.1 Simple Producer-Consumer Example
6.3.2 Simple Remote Procedure Call Example
6.3.3 Packaged Remote Procedure Call Example
6.3.4 Packaged Producer-Consumer Example
6.3.5 Buffered Producer-Consumer Example
6.4 SUMIDATY . « + « v ¢ v v v v vttt et e e e e e e
7 Future Work
7.1 Improved Algorithms
7.2 Improved Conversation Descriptions
73 ImprovedPlans o i i e
74 Relaxed Semantics v v« v i vttt e e e e e e e
7.5 Better Theoretical Foundation

8 Conclusions

References

75
77
7
79
80
80
81
81
82
84
85
85
86
88
89
95
97
98
102
107

109
109
110
111
112
113

120

123

vii

List of Figures

3.1 Conversation descriptionsyntax.« oo oo 11
3.2 Ambiguous regular expressions0 e 21
3.3 Aplandriver’salgorithmccn 22
3.4 TFileProtocol example — conversation description 23
3.5 FileProtocol example — client processo 23
3.6 TFileProtocol example — SeIVEr process « « « « ¢ o« o o« o o v o . 24
4.1 The plan driver—conversation server interface 33
4.2 Transactions of the EXCHANGE protocol 35
4.3 The EXCHANGE protocol DFA oo 36
4.4 Normal transactions of the TRIPLE protocol 37
4.5 Some abnormal TRIPLE protocol transactions 39
4.6 'The necessity of three-valued sequence numbers 40
4.7 The TRIPLE protocol DFA 41
5.1 A conversation server’salgorithm o0 49
5.2 A conversation server’s algorithm — continued 50
5.3 Delaying a wait message0 ..o e 57
54 Delayinganackmessage. v 0ttt c e 58
5.5 Delaying an accept message oo o 0o e 0. 61
5.6 An unsuccessful acceptdelay00 63
5.7 A successful acceptdelay 63
5.8 Another successful acceptdelay oo 65
5.9 The LAZY protocol DFA 68
5.10 The LAZY Protocol DFA transitionso 69
5.11 The LAZY Protocol DFA transitions — continued 70
5.12 The wait-delay decision algorithm 71
5.13 The ack-delay decision algorithm 71

5.14 The accept-delay decision algorithm 72

viii

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1

Construction of a Crystal load module
Logical organization of a Crystal node machine
Simple producer-consumer — iteration time vs. object size
Simple producer-consumer — iteration time vs. producer time
Simple remote procedure call - iteration time vs. server time
Packaged remote procedure call — iteration time vs. server time . . .
Packaged producer-consumer — transaction time vs. package count .
Packaged producer-consumer — transaction time vs. object size
Buffered producer-consumer — iteration time vs. producer time . . .

The expected cost of delaying a wait message

Chapter 1

Introduction

The network hardware used to interconnect computers is inherently unreliable, and
the interface it provides to programmers is not always convenient. Communication
protocols that use checksums, timers, and acknowledgements to provide the user
with an abstract reliable communication line are intended to mitigate these prob-
lems. However, communication protocols are notoriously difficult to design and
debug, so most users of a distributed system rely on protocols provided by their
installation’s operating system. The available protocols may not conveniently and
efficiently meet the needs of a particular application, but the programmer must
often use a standard protocol because it is difficult to implement an application-
specific protocol. Many researchers are trying to automate various phases of the
task of implementing and validating new protocols.

This dissertation describes the development of a programming environment that
allows a programmer to describe the communication requirements of an application
at a very high level. Tools provided by the environment automatically construct
reliable protocols that provide the services required by the application.

The programming environment provides mechanisms for describing both the

static form of conversations between application processes and the dynamic parti-
cipation of those processes in conversations. These mechanisms let the programmer
provide the communication system with detailed knowledge of the high-level com-
munication requirements of an application. Other application-specific information
can be derived from measurements made while the application is running. Knowl-
edge from all these sources can be used to improve the efficiency of the application’s
communication.

Chapter 2 of this document describes related work in protocol specification
and verification, and in distributed operating systems and programming languages
for distributed systems. The user interface to our programming environment is
presented in chapter 3. The language used to describe the static form of conversa-
tions is specified, as is the mechanism for participating in conversations. Chapter
4 discusses several issues that must be addressed by any implementation of the
programming environment. Several strategies for using application-specific infor-
mation to improve the efficiency of constructed protocols are described in chapter
5. Chapter 6 describes our implementation of the protocol generator for the Crystal
multicomputer. This chapter also characterizes the performance of the constructed
protocols, both in situations where the various improvement strategies are success-
ful and in situations where they are not. Chapter 7 outlines several directions in

which this project might be extended, and chapter 8 presents our conclusions.

Chapter 2

Related Work

The research presented here is not based directly on any previous work. The field
most closely related to this project is that of protocol specification and verification.
Work in interprocess communication languages and in operating systems that sup-

port message-based interprocess communication have also been highly influential.

2.1 Protocol Specification and Verification

Work in protocol specification and verification is aimed at making it easier fo
develop new and/or special-purpose protocols. Our hope is to allow the application
programmer to specify a protocol at a level that is appropriate for the application,
and to let the protocol generator handle the low-level details such as sequence
numbers, acknowledgements, and retransmissions.

A large amount of work has been done in the general area of protocol definition
and verification [Sunshine81, Danthine80, Rand-Corporation80]. Much of this ef-
fort has been directed toward the creation of formalisms in which protocols may be
defined. There are two major parts of a protocol definition, the service specifica-

tion and the protocol specification. A service specification defines the services

provided by a protocol to its users and specifies constraints on the use of those
services. It does not define the method by which those services are to be provided.
Some work has been directed toward formalizing service specifications. Bochmann
[Bochmann80] describes a method for formally specifying local properties of a pro-
tocol interface and global protocol properties such as the requirement that messages
be delivered reliably and in the order they were sent. Local properties are specified
by providing a finite automaton that accepts legal sequences of client requests, and
global properties are specified by providing a context-free grammar that constrains
the joint behavior of two protocol clients. A protocol specification defines the
entities that cooperate to provide the protocol services and specifies the interac-
tions of those entities with each other and with their environment. Formal protocol
specifications have been based on several models. These include finite automata
[Bochmann80, Zafiropulo78, West78], Petri nets [Merlin76, Molloy82], and formal
languages [Brand78, Good77, Nash83].

The goal of protocol verification is to show that a protocol specification cor-
rectly implements its corresponding service specification. Since formal service
specifications are rarely available, many systems attempt to verify only general
protocol properties such as reliability, freedom from deadlock and livelock, and
completeness. A protocol entity is complete if it defines actions for all the input '
events that can occur in each of its states. In general, verifiers either exhaus-
tively search the joint state space of the protocol entities [Bochmann80, West78|,
or they attempt to prove assertions about the behavior of the protocol [Thomp-
son81, Good77, Brand78]. Exhaustive searches can discover problems such as the
possibility of deadlock or the occurrence of events for which a protocol entity is
not prepared, while assertion provers can guarantee protocol properties such as

reliability. Recent work by Clarke, Emerson, and Sistla [Clarke86] combines these

approaches. Their system verifies temporal logic assertions about the behavior of
communicating finite-state entities by exhaustively searching the joint state space
of the entities. Related to protocol verification are the automatic testing of proto-
cols [Linn83], and the analytic evaluation of protocol performance [Molloy82].

More closely related to our work are projects that attempt to automate vari-
ous aspects of protocol specification. Chow, Gouda, and Lam [Chow85] describe a
technique for constructing complex protocols from simpler components in such a
way that the resulting complex protocols retain desirable properties of the compo-
nents such as freedom from deadlock and completeness. The Automated Protocol
Synthesizer of Ramamoorthy, Dong, and Usuda [Ramamoorthy85] allows a proto-
col designer to specify just one of the two communicating entities that comprise
a protocol. Their synthesizer accepts a Petri-net description of a communicating
entity and automatically creates a description of a corresponding entity. The re-
sulting system is guaranteed to have desirable properties such as completeness,
boundedness, and freedom from deadlock or livelock, provided the original entity
satisfies certain easily-verified local constraints.

The projects most closely related to the work described here are those that
formalize protocol specifications in such a way that defined protocols can be im-
plemented automatically. Merlin [Merlin76] proposes the use of a Petri net inter-
preter to drive implementations of protocols described by Petri nets. Teng and Liu
[Teng78| define a system that allows a designer to use context-free grammars to
describe protocol entities, and that uses an automatic parser generator to construct

implementations of defined protocols.

More recent (and more relevant) projects of this sort include a system developed
by Sidhu and Blumer [Sidhu83] and a system developed by Anderson [Anderson85].

The protocol development system of Sidhu and Blumer allows a protocol designer to

6

use finite-state automata to describe protocol entities. For example, to describe the
alternating-bit protocol [Tanenbaums81], the designer would define two automata,
one to describe the sender and one to describe the receiver. Unfortunately, true
finite automata need an unmanageably large number of states to represent many
realistic protocols, and for that reason Sidhu and Blumer use finite automata ex-
tended with variables, predicates, and code fragments. Under this extension, a
protocol entity is described by an automaton that has an explicit state, but that
also has a collection of local variables it can use to hold additional state informa-
tion such as sequence numbers, destination addresses, or message contents. Each
transition in the automaton has associated with it an input event, a predicate on
the local variables of the automaton, and a code fragment. Input events include
such things as user requests, incoming messages, and timeouts. A transition is
made only if its input event is available and its predicate evaluates to “true”. The
code fragment associated with a transition is executed when the transition is made.

The code may change the values of local variables and generate output events.

Sidhu and Blumer provide a translator that consumes an extended automa-
ton description and produces a set of tables that define the automaton. These
tables are used by a protocol analyzer to verify standard protocol properties such
as boundedness, completeness, and freedom from deadlock or livelock. They are
also used to drive an implementation of the protocol. The automatically derived
implementation depends on “interface-event” routines that must be provided by
the protocol designer. These routines are used to encapsulate system-dependent
details of the interfaces to the underlying communication system, to the protocol
users, and to the operating environment. Sidhu and Blumer claim the coding of
these routines is relatively straightforward and that the automatic construction of

implementations is of great value in the design and testing of a new protocol.

Anderson’s system allows a protocol designer to use attribute grammars to de-
scribe the behavior of protocol entities. The terminal symbols of such a grammar
are names of interface events important to the protocol entity, and the grammar
describes the set of all legal sequences of such events. Interface events include user
requests, responses to user requésts, incoming and outgoing messages, and time-
outs. Each symbol in the grammar has an associated set of “attributes”, and each
production has an associated “enabling condition” and a set of “attribute assign-
ments”. Attributes are used to hold such things as sequence numbers, network
addresses, and arguments to interface events. A top-down parsing technique is
used, but a production is predicted only if its enabling condition is “true”. When
a production is predicted, its attribute assignments are evaluated. These assign-
ments may change the attributes of any node in the parse tree, and may therefore
have the effect of enabling other productions. Enabling conditions are used by a
protocol entity to provide flow control, for example. Anderson uses a top—down-
parser to drive a protocol implementation. Conceptually, the parser maintains
an incomplete parse tree that derives all the interface events that have already
occurred. If a new user request becomes available or if an input event occurs,
the parser attempts to extend the parse tree in such a way as to accept the new
event. This extension may involve the expansion of productions that predict output
events. In that case, a procedure that accomplishes the output event is called. As
in Sidhu and Blumer’s system, system-dependent details of the various interfaces
are encapsulated in procedures provided by the protocol designer.

Anderson’s approach has several advantages over that of Sidhu and Blumer.
First, it provides a more powerful formalism for describing protocols. It allows the
description of protocol features such as nested message sequences that can only

be encoded artificially in the transition code fragments of the Sidhu and Blumer

model. Second, it allows the direct specification of the legal sequences of events,
rather than the description of a machine that accepts all legal sequences. Protocol
service specifications can be derived more easily from sequence descriptions than
from automaton descriptions. Finally, an attribute grammar formally specifies
the order of both input and output events. An automaton description includes a
formal description of input events, but output events must be embedded in the
code fragments attached to automaton transitions.

Both of these projects provide a framework in which a programmer can design
a new protocol that will satisfy some desired service specification. Our hope is to
generate protocols automatically from end-user service specifications. For our pur-
poses, the service specification will be a description of the high-level conversation
between application processes. As a trivial example, both of the systems described
above can be used to implement the alternating-bit protocol. Our system might
produce the alternating-bit protocol as output, given a conversation description
that specifies the transmission of a unidirectional stream of messages from one

process to another.

The reason so much work is being done in the area of protocol specification and
verification is that communication protocols can be very complex programs. For
this reason, it is too much to hope that the protocol generator proposed here will
generate radically new, but correct, protocols. Instead it has the more modest goal
of producing customized variants of existing protocols that perform well in given

situations or protocols that dynamically adapt themselves to new conditions.

2.2 Interprocess Communication

This project is primarily concerned with the efficient implementation of message-
based interprocess communication. To test the validity of some of our ideas,
we have designed a communication mechanism that lets programmers explicitly
describe the communication requirements of application processes. The design
of this mechanism has been strongly influenced by the programming language
CSP |Hoare78|. Our experience with the Charlotte distributed operating system

[Finkel83] has also influenced the design.

This project achieves some measure of efficiency by avoiding the layered struc-
ture that characterizes many high-level protocols. Other operating systems and
programming languages strive for efficiency in the same manner. The hierarchy of
remote operations categorized and partially implemented by Spector [Spector82] is
one example. The high-level language communication mechanism implemented by
Leblanc [Leblanc82] is another. A third example is the remote procedure call fa-
cility provided by the V Kernel operating system [Cheriton83]. Saltzer [Saltzer84]
argues for providing reliability only at the very highest level of layered systems. We
accept his arguments to some extent, but we still provide reliable communication

to the users of our system.

Chapter 3

Protocol System Specification

In this chapter we provide the specifications for a new message-based interprocess
communication mechanism. This mechanism allows programmers to describe the
communication behavior of application programs more explicitly than they can
using existing interprocess communication mechanisms. We hope this mechanism
is usable, but its elegance as a programming language has not been our primary
concern. Instead we intend to explore ways to exploit the additional information
the mechanism makes available to the communication system.

To use the protocol system, the programmer must first describe the conversa-
tions in which various processes will engage, and then program the active or passive

participation of those processes in conversations.

3.1 Conversation Description

A conversation description is a static description of the form of a conversation
between two application processes. It assigns names to the participants in the
conversation, specifies the types of messages that the conversation requires, and

includes a regular expression that describes all legal sequences of messages. Such

10

11

a description conforms to the syntax rules of Figure 3.1.

(conv desc) 2= (conv name) (participants) : (reg ezpr)
(participants) == ((participant) , (participant))
(reg expr) := (reg ezpr) (reg ezpr)

(reg expr) | (reg expr)
(reg expr) *

{ (reg ezpr) }
(primitive)

[

(primitive) = (msg class) (content type) : (direction)

i

(content type)
((type list))

(type)
(type) . (type list)

(type list)

(direction) (participant) --> (participant)
(participant) <-- (participant)

(participant) <-> (participant)

o

i

{(conv name) = id
(participant) = id
(msg class) = id
(type) = id

Figure 3.1: Conversation description syntax

The description heading begins with a name by which users can refer to the
conversation description followed by the names of the two conversation partici-
pants in parentheses. These names may be any legal identifiers in the underlying
language. (The degree to which these names may be overloaded will depend on
the underlying language.) For example, a conversation between a fileserver and a

client may begin with the heading:

FileProtocol (Fileserver, Client)

12

The names Fileserver and Client may then be used within the body of the
conversation description to refer to the conversation participants.

The heading is followed by a regular expression. The primitive elements of this
expression describe individual messages. Each primitive begins with an identifier
that specifies the class of this message. Again, a class name may be any legal
identifier. Reasonable classes for the FileProtocol conversation might be Open,
Close, or Data.

Following the message class is an optional parenthesized list of the data types
that describe the contents of a message of this class. These data types can be any
named type legal in the underlying language. If no data types are specified, then
messages of this class have no content, and are used purely as signals. Messages of
class Open might have contents of type (FileName, FileMode), where FileName
and FileMode are types declared elsewhere. A Data message might have contents
of type (DataArray), while a Close message might have no contents at all. A
given message class may appear several times in a conversation description, but
the message content types associated with all the appearances must be identical.

Finally, each primitive specifies the two participants between which this message
is to be transmitted and the direction of the transmission. The participants are
named, separated by one of the symbols “-->”, “<--? or “<->”. The symbols
“_->” and “<--” show the direction the message is to travel, while the symbol
“<->” gpecifies that a pair of messages of the given class is to be exchanged by the
participants. A primitive that specifies the transmission of an Open message from
the client to the fileserver might therefore be:

Open (FileName, FileMode) : Client --> Fileserver
Primitives may be combined using the regular expression operators concatena-

tion, alternation, and arbitrary repetition. Concatenation is specified by lexically

13

concatenating the operands, alternation by an infix “|”, and arbitrary repetition
by a postfix “*¥”. Repetition has higher precedence than concatenation, which in
turn has higher precedence than alternation. These precedences are not reflected in
the ambiguous grammar of Figure 3.1. Operands of these operators may be delim-
ited with “{” and “}” to override the default precedences. A simple conversation
between a client and fileserver might have the following description:

FileProtocol (Fileserver, Client)

{
Open (FileName, FileMode) : Client --> Fileserver
c ,
Data (DataArray) : Client <-- Fileserver
} %
Close : Client --> Fileserver
}

This conversation description requires the client to send an Open message to the
fileserver, which will then send an arbitrary number Data messages back to the
client. The client must then send a Close message to the fileserver. A more
complex description that allows data to be both read and written and that allows
seeking in the file might be:

FileProtocol (Fileserver, Client)

{
Open (FileName, FileMode) : Client --> Fileserver
{
Data (DataArray) : Client <-- Fileserver
I
Data (DataArray) : Client --> Fileserver
|
Seek (integer) : Client --> Fileserver
} o*
Close : Client --> Fileserver
3

As a second example, a conversation between a producer and a consumer might

consist of an arbitrarily long sequence of messages, each of class Item and having

14

contents of type (ItemType). Such a conversation would have the following de-

scription:

StreamProtocol (Producer, Consumer)
{
Item (ItemType) : Producer --> Consumer

} #
A remote procedure call style of process communication might be specified by

the following conversation description:

RpcProtocol (Client, Server)
{
Question (QuestionType) : Client --> Server
Answer (AnswerType) : Client <-- Server

} o*
3.2 Conversation Participation

A conversation description is a static description of the form a conversation will
take. It is completely specified at the time a protocol for it is generated. The
uses to which processes want to put conversations, on the other hand, are not
known until the processes are running. A mechanism that allows processes to
participate in conversations must therefore be provided. The protocol generator
takes a conversation description and builds procedures that processes may use to
participate in the conversation. Some of these procedures are specific to a particular

conversation, while others are applicable to all conversations.

The function NewConversation is provided for the purpose of initiating new
conversations. The first argument to this function is a conversation name as it
appears in the header of some conversation description, the second argument is
one of the participant names of the header, and the remaining argument is the

name of the process that will be the other participant in the conversation. The

15

function returns a conversation descriptor that may be used later to refer to
the conversation. For example, if a process wants to take the part of the client in
a FileProtocol conversation, it must make the call:
conv := NewConversation (FileProtocol, Client, flsrvr);

This call initiates a new FileProtocol conversation in which the calling process is
to be the client and the fileserver is to be the process designated by flsrvr. The
nature of this process designation will depend on the underlying communication
facility. It may be as simple as a machine address if the system supports only one
process per machine. The other participant in a new conversation must make a
matching initialization call. Two calls to NewConversation match if they specify
the same conversation description but different participant names and if the initiat-
ing processes name each other as participants. A process may participate in several
conversations simultaneously. NewConversation is a non-blocking function. The
conversation descriptor it returns may be used immediately, but no messages will
be transferred until the new conversation is actually established. If two processes
open several identical conversations between themselves, their NewConversation
calls will be paired in the order they are made. Conversations are closed with the
procedure CloseConversation, which takes a conversation descriptor as its only
argument.

Once conversations have been initialized, processes will from time to time want
to send or receive messages allowed by the conversation descriptions. Processes
communicate by building and executing “plans”. A plan is a regular expression
whose primitive elements are “operations”. An operation is either a “communi-
cation event” or an “action” procedure call. A communication event (or event)
describes the transmission or the reception of a message or the exchange of a pair

of messages. It specifies the message’s conversation and class and describes the

16

process data areas that are to be read and/or written. Actions are application
procedures that are to be called at specific points during the execution of plans.
Since a plan is a regular expression, it may specify a sequence of operations, a set of
alternative operations, an operation to be executed repeatedly, or some combina-
tion of these structures. For example, a client in a FileProtocol conversation may
build a plan consisting of a single communication event, the reception of a Data
message from the fileserver. The fileserver, on the other hand, must be willing to
perform one of several different operations, depending on the wishes of the client.
It must simultaneously be willing to send a Data message, receive a Data message,
receive a Seek message, or receive a Close message. It must therefore build a plan
that includes these four events as alternatives. The particular alternative that is
chosen will depend on the wishes of the client at the other end of the conversation.
A plan may include events that belong to different conversations, and a process
may build and use several plans simultaneously. However, no single conversation
may be used with more than one plan. Plans execute independently, and allowing

different plans to involve the same conversation would destroy this independence.

At runtime, application processes use plan-constructor procedures to build
plans. The function NewPlan is used to create a new plan. It takes a single argu-
ment, an arbitrary integer called the plan identifier. This argument is passed to
action procedures that are called during execution of the plan. An action procedure
can use it to identify the plan that caused the procedure to be called. NewPlan
returns a plan descriptor that may be used to refer to the plan.

A newly created plan is empty, that is, it does not specify any operations to
be performed. Regular expressions that specify operations may be appended to a
plan, and the completion of expressions may be awaited. The routines Append and

Wait that accomplish these functions are defined later. Plans may be deallocated

17

using the procedure ClosePlan, which takes a plan descriptor as its only argument.

A plan may be closed only when all appended expressions have been awaited.

The primitive elements of these regular expressions are created by the func-
tion Action and by functions of the form Put(class), Get({class), and Trade(class),
where (class) is some message class that appears in a conversation description.
These functions return a pointer type that we will call a regular expression.
Action takes as its only argument a procedure name, and the regular expression
it returns describes a call to the named procedure. The first argument of the
Get{class), Put(class), and Trade(class) functions is a conversation descriptor re-
turned by a NewConversation call. The remaining arguments correspond to the
data typesrspeciﬁed for the contents of messages of class (class), one argument for
each specified type.

These primitive actions are combined using the functions Sequence, Choice,
and Cycle, which take regular expressions as arguments and return new regular
expressions. For notational convenience, we allow Sequence and Choice to take
an arbitrary number of arguments. A particular regular expression may be incor-
porated in a larger expression only once, so that expressions may be internally
represented as trees. A procedure FreeExpression can be called to deallocate an
arbitrarily complex regular expression.

To continue our FileProtocol example, a client’s regular expression to simply

open a file might be built by the single function call:
expr := PutOpen (conv, "myfile", filemode);

A regular expression to open a file, read one block, and close the file could be

constructed with the following expression:

18

expr := Sequence (
PutOpen (conv, "myfile", filemode),
GetData (conv, buffer),
PutClose (conv));

The fileserver might use the following regular expression to handle an open request,

an arbitrarily long sequence of read, write, and seek requests, and a close request:

expr := Sequence (
GetOpen (conv, filename, filemode),
Action (Open),
Cycle (
Choice (
Sequence (
PutData (conv, buffer),
Action (Read)),
Sequence (
GetData (conv, buffer),
Action (Write)),
Sequence (
GetSeek (conv, addr),
Action (Seek)))),
GetClose (conv),
Action (Close));

Here Open, Read, Write, Seek, and Close are procedures provided by the fileserver
that perform the indicated file operations. Since they are passed no arguments
other than a plan identifier, they must find such information as file names, buffers,
and seek addresses in variables global to themselves.

Once a regular expression has been constructed, it can be added to a plan using
the procedure Append. Append takes two arguments, a regular expression and a
plan descriptor, and it adds the regular expression to the end of the plan. The
expression will then be executed as soon as any previous regular expressions in the
plan have been satisfied. Application processes use the Wait function call to block
themselves while plans are executing. Wait takes no arguments. Each call to Wait

returns a single regular expression that was previously appended to a plan. All

19

the regular expressions appended to a particular plan will be returned in the order
in which they were appended, but expressions appended to different plans may
be arbitrarily interleaved. An expression returned by Wait can be re-executed by
appending it once again to a plan, or it can be deallocated with FreeExpression.

The procedure Sleep blocks the application process until all outstanding regular
expressions have been completed. It calls Wait repeatedly and deallocates the
regular expressions that are returned.

Finally, the procedure Perform is provided as an abbreviation for a common
sequence of program actions. It takes a regular expression as its only argument. It
appends the regular expression to an anonymous plan, waits for the expression’s
completion, and then deallocates the expression. This procedure allows most ap-
plications to avoid dealing directly with plans. Perform may be called only when
there are no outstanding regular expressions.

Action procedures are not executed concurrently, either with each other or with
the main process. They will be executed only while the main process is blocked in
a call to Wait, Sleep, or Perform. Action procedures may not make any of these
blocking calls, but they may build regular expressions and append them to plans.

We can now provide an operational definition of the semantics of plan execution.
Execution of a regular expression can best be described in terms of the expression’s
equivalent deterministic finite automaton (DFA). Well known algorithms [Aho77]
may be used to convert a regular expression into an equivalent DFA whose tran-
sitions are labeled with the action procedures and communication events of the
expression. For the purposes of this conversion, all the primitive elements of the
expression are considered to be distinct. DFA states that have only one exit tran-
sition are called decisive states, and the action procedure or communication event

labeling the single transition is said to be decisively specified. A regular expres-

20

sion is executed by following a path through its DFA and accomplishing the action
procedures and communication events that label the path.

In this discussion, we will assume each plan is executed by an abstract entity
called the plan’s driver. Drivers sequentially execute the regular expressions that
are appended to their plans. Each driver maintains a DFA state variable and
attempts to accomplish one of the operations that label the exit transitions of the
current state. The current state is advanced after each operation is accomplished.

We impose two restrictions on regular expressions to simplify their execution.
First, all action procedures must be specified decisively. We make this restriction
so that drivers never have to choose between alternative action procedures or be-
tween an action procedure and a communication event. Second, the communication
events that label the transitions leaving any given DFA state must be mutually dis-
tinguishable. Two communication events are indistinguishable if they specify the
same conversation and the same message class and direction. Events may be in-
distinguishable and yet not identical because they specify different data areas to
be read or written. Drivers have no basis for choosing among indistinguishable
events. Regular expressions that violate either of these restrictions are said to be
ambiguous, because they force drivers to make impossible choices. Figure 3.2
contains a few examples of ambiguous regular expressions.

We also require regular expressions to terminate properly. A regular expression
terminates properly if no final state of its equivalent DFA has a nonempty set
of exit transitions. This requirement allows drivers to easily detect the completion
of regular expressions. Its practical effect is to disallow regular expressions that
end with cycles.

Drivers may call action procedures whenever they are encountered during the

execution of regular expressions, subject to the concurrency constraints mentioned

21

Choice (
Action (Procedured),
Action (ProcedureB))

Choice (
PutOpen (conv, "FilenameA"),
PutOpen (conv, "FilenameB"))

Sequence (
Cycle (
GetData (conv, buffer)),
GetData (conv, buffer))

Sequence (
Cycle (
PutData (conv, buffer)),
Action (Close))

Figure 3.2: Ambiguous regular expressions

earlier. The execution of an expression may be continued as soon as a called action

procedure returns.

Drivers must cooperate to discover and accomplish matching pairs of commu-
nication events in their plans. The events in a matching pair may be accomplished
only when both events label transitions leaving the current states of their respec-
tive DFA’s. Two communication events match if they occur at opposite ends of
a conversation, they specify the same message type, their transfer directions are
consistent, and at least one of them is specified decisively. Two transfer directions
are consistent if one specifies a send and the other specifies a receive, or if both

specify an exchange.
The requirement that at least one of every matching pair of communication
events be specified decisively allows an efficient implementation of the matching

procedure. Drivers must commit themselves to the accomplishment of decisively

22

specified communication events that are encountered during the execution of their
plans. A driver facing a choice among alternative events can simply await a com-

mitment from one of its colleagues.

Figure 3.3 outlines the algorithm drivers follow in executing plans. This al-
gorithm is intended to clarify the semantics of plan execution, not to serve as an

implementation blueprint.

procedure PlanDriver (Plan).
while (Plan has not been closed) do
Await an appended expression from the client.
Build the expression’s equivalent DFA.
Assign the DFA’s start state to CurrentState.
while (CurrentState is not a final state) do
if (CurrentState is decisive) then
if (the transition’s label is an action procedure) then
critical section
Call the action procedure.
end
else {the transition’s label is a communication event}
Commit to the decisively specified event.
Await a corresponding commitment.
Complete the event.
end
else {CurrentState is not decisive}
Await a commitment to one of the alternative events.
Commit to the matched event.
Complete the event.
end
Advance CurrentState.
end
Return the completed expression to the client.
end
end PlanDriver.

Figure 3.3: A plan driver’s algorithm

The complete fileserver-client example appears in Figures 3.4-3.6. The client

and server processes are written in a Modula-like language.

FileProtocol (Fileserver, Client)

{
Open (FileName, FileMode) : Client --> Fileserver
{
Data (DataArray) : Client <-- Fileserver
I
Data (DataArray) : Client --> Fileserver
|
Seek (integer) : Client --> Fileserver
} *
Close : Client --> Fileserver
}

Figure 3.4: FileProtocol example — conversation description

process client (flsrvr : ProcessDesignator);

var conv : Conversation;
buffer : DataArray;

begin
conv := NewConversation (FileProtocol, Client, flsrvr);
Perform (PutOpen (conv, "myfile", READ+WRITE));
Perform (GetData (conv, buffer));
Perform (GetData (conv, buffer));

Perform (PutSeek (conv, seekaddr));
Perform (GetData (conv, buffer));:

Perform (PutSeek (conv, seekaddr));
Perform (PutData (conv, buffer));

Perform (PutClose (conv));
end client;

Figure 3.5: FileProtocol example — client process

23

24

process fileserver (clnt : ProcessDesignator);
var conv : ConversationID; name : FileName; mode : FileMode;
fd, addr : integer; buffer : DataArray;

procedure Open (pid : Planldentifier);
begin fd := open (name, mode); read (fd, buffer) end Open;

procedure Read (pid : Planldentifier);
begin read (fd, buffer) end Read;

procedure Write (pid : Planldentifier);
begin write (fd, buffer); read (fd, buffer) end Write;

procedure Seek (pid : Planldentifier);
begin seek (fd, addr); read (fd, buffer) end Seek;

procedure Close (pid : Planldentifier);
begin close (fd) end Close;

begin {fileserver main process}
conv := NewConversation (FileProtocol, Fileserver, clnt);
Perform (
Sequence (
GetOpen (conv, name, mode),
Action (Open),
Cycle (
Choice (
Sequence (PutData (conv, buffer), Action (Read)).
Sequence (GetData (conv, buffer), Action (Write)),
Sequence (GetSeek (conv, addr), Action (Seek)))).
GetClose (conv),
Action (Close)));
end fileserver;

Figure 3.6: FileProtocol example — server process

25
3.3 Design Rationale

The design presented here is the result of a continuing effort. It incorporates a few

arbitrary decisions, but most of the choices have been made with some justification.

3.3.1 Conversations

An early design decision we had to make was the choice of an appropriate language
for describing conversations. At one point we considered using context-free gram-
mars, but we soon found that all the example conversations we tried to describe
were regular languages. Conversation descriptions only constrain the sequence of
message types, not the contents of messages, so non-regular concepts such as se-
quence numbers or message identifiers can easily be included in the contents. Since
the power of context-free grammars appeared to be unnecessary, and since regu-
lar expressions are more concise than context-free grammars for describing regular
languages, we elected to use regular expressions to describe conversations.

A second choice we made was to limit conversations to two participants. Al-
lowing an arbitrary number of participants in a conversation would be desirable,
but the semantics of conversations and plans would be considerably more compli-
cated. The possibility of initiating conversations with only some of the participants
present, and of allowing participants to come and go during the course of a conver-
sation, would have to be considered. Also, the méa.ning of consecutive operations
that involve disjoint subsets of the participants would have to be defined. For-
tunately, many conversations naturally involve two participants, and interactions

among larger groups can be accomplished with pair-wise conversations.

We chose to design a primitive mechanism for establishing new conversations.

Tt requires the two participants of a new conversation to name each other explicitly.

26

It does not provide any sort of “passive” open such as is available in TCP [Postel81],
nor does it provide a mechanism for establishing new connections based on existing
connections as is available in the Charlotte operating system [Finkel83]. The only
complicated aspect of the mechanism is that it is specified to be nonblocking. This
requirement complicates the implementation somewhat, but it allows application
processes to be much less careful of the order in which conversations are initialized
than would be the case if NewConversation were a blocking function. For example,
each process in a ring of processes can open a conversation first with its left neighbor
and then with its right neighbor without worrying about deadlock. Establishing
conversations is not an important aspect of this research project, so we designed

as simple a mechanism as possible.

3.3.2 Plans

In designing a mechanism for participating in conversations, we limited ourselves to
a purely procedural interface in hopes of avoiding both the religious issues involved
in creating a new interprocess communication language and the effort of implement-
ing a compiler for an entire programming language. Otherwise we would probably
have adopted a syntax similar to that of CSP [Hoare78]. The plan mechanism
we developed has all the power of the CSP communication constructs but is more

flexible.

In CSP, processes involved in a message transmission must name each other
explicitly. In our system, process names determined at runtime are used to open
conversations, and individual messages refer to conversations rather than processes.
A pair of processes may be connected by several conversations, allowing multiple
channels between processes.

All communication is synchronous in CSP. When a process tries to send or

27

receive a message it is blocked until the reciprocating process attempts a cor-
responding operation. The same synchronous communication is available in our
system using the Perform procedure, but the programmer also has the option of
separating the notification of an operation’s completion from the submission of
the operation request. Multiple plans executing concurrently allow an additional
degree of asynchrony.

The power of CSP’s alternative construct with input and/or output guards is
provided by our system’s Choice plan constructor. Our system’s Sequence and
Cycle constructors provide additional expressive power. They allow a process to
specify its intentions more completely, thereby providing more information that
may be used to improve communication efficiency.

Unfortunately, algorithms can sometimes be expressed more elegantly in CSP
than in our system. In CSP, a communication guard may be combined with a
Boolean expression to enable or disable a particular clause of an alternative con-
struct. We have no similar mechanism. Since plans are constructed at runtime, it
is possible to include only the clauses that should be enabled, but this solution is
not particularly elegant. In addition, an input or output guard in a CSP alterna-
tive construct is lexically adjacent to the code fragment that is to be executed if
the communication operation is accomplished. In our system, the code fragment,
no matter how trivial, must be embedded in an action procedure. The resulting
proliferation of tiny procedures can lead to a loss of clarity.

We turn now to a discussion of the reasons for imposing the various restrictions
on regular expressions that were described in the last section. These restrictions
include the requirements that regular expressions be unambiguous and properly
terminating and the requirement that at least one of the communication events in

each matching pair be specified decisively.

28

Ambiguous regular expressions are disallowed because they force drivers to
make decisions that cannot be made rationally without knowledge of the future
course of a conversation. Suppose alternative paths in a regular expression’s equiv-
alent DFA were allowed to begin with action procedures. A driver would then have
to look ahead past the action procedures to later communication events to choose a
path consistent with the commitments of other drivers. The problem is more diffi-
cult if alternative paths are allowed to begin with indistinguishable communication
events, because then drivers would have to look ahead past communication events
as well as action procedures to choose correct paths. Ambiguous expressions could
be handled correctly using the standard algorithm for constructing a DFA from a
nondeterministic finite automaton (NFA), but the increase in power would not be
worth the additional effort. If a regular expression is unambiguous, the construc-
tion of its equivalent DFA is straightforward because the usual intermediate NFA
is not required.

Regular expressions are required to terminate properly so that the completion
of an expression occurs at a well-defined time and so that the decisiveness of a
given communication event can be readily determined. Suppose we allow regular
expressions whose equivalent DFA’s have final states with nonembty sets of exit
transitions. A driver that reaches such a final state in a DFA cannot decide whether
to continue executing the current expression or to move on to the next expression
until it receives a commitment from another driver. An application process could
conceivably await the completion of the current expression before initiating the
chain of events that leads to the necessary commitment. Deadlock would be the
result. Of course, application processes can become deadlocked without going to
nearly so much trouble, so decreasing the possibility of deadlock is not a strong

justification for the proper termination requirement. A better justification is that

29

the requirement eliminates the confusion that can arise when a final state of an
expression’s equivalent DFA has exactly one exit transition. Suppose an application
process builds a plan consisting only of a cycle that specifies the arbitrary repetition
of a single communication event. Is that single event specified decisively? The
programmer may well think so since there are no other events that are possible
alternatives, but in fact the plan’s driver can never commit itself to accomplishing
the event because another expression may be appended to the plan at any time.
The proper termination requirement disallows this expression and all expressions
that end with cycles.

We make the requirement that at least one of the communication events of each
matching event pair be specified decisively so that plans can be executed efficiently.
Without this restriction, plans would have all the power and all the implementa-
tion difficulty of CSP with both input and output guards. Several algorithms for
implementing full CSP have been published [Bernstein80, Buckley83], and any of
these algorithms can be used to implement plans. Unfortunately, they all require
drivers to sequentially poll the other drivers involved in alternative communication
events, so the number of messages required to accomplish a single event depends
on the number of alternatives. Moreover, all the algorithms assume an underlying
reliable communication service, making them even less efficient. An alternative ap-
proach is to restrict the use of plans to make them more efficiently implementable.
CSP itself as defined by Hoare disallows output guards, allowing an implementa-
tion that requires just two reliable messages to accomplish each client transmission.
Unfortunately, this restriction breaks the symmetry of input and output, making
it difficult to express some algorithms naturally [Hoare78]. The restriction we have

adopted maintains this symmetry but still allows an efficient implementation.

We do not expect this project to stand or fall on the basis of the design of plans.

30

The major drawback of plans is that programs that use them are not as clear as
programs that use CSP alternative constructs. However, plans are more powerful
than alternative constructs, and they allow a process to provide more detailed
knowledge of its intentions to the system. They allow regular expression operators
other than alternation, and they are constructed at runtime, so the number and
contents of clauses can be varied as a program executes. It should be fairly easy
to write a preprocessor that will turn a CSP program into a program that uses
conversation descriptions and plans. A preprocessor might also be used to provide

a more pleasant programming language syntax for dealing with plans.

Chapter 4

Abstract Implementation

The programming system described in chapter 3 presents several interesting im-
plementation problems, even without considering the use of application-specific
information to improve the efficiency of the application’s communication. In the
following discussion, we will assume the top-level application is embodied in a col-
lection of client processes. Each client is assigned an agent whose purpose is to
communicate with other agents on the client’s behalf. Agents establish conversa-
tions between clients and interpret client plans. The internal structure of agents
will be left unspecified, but we will assume agents reside in an environment that
provides a rudimentary communication service that will allow one agent to send a
message to another with some degree of success, and a timer mechanism by which
an agent can be notified when a certain amount of time has elapsed. Agents can
use these services to implement reliable communication channels among themselves,
and the reliable channels can in turn be used to implement client services. How-
ever, this layered approach can be inefficient, so client services for which efficiency

is critical should be implemented directly with the low-level facilities.

31

32

4.1 Establishing Conversations

Agents may use layered reliable communication channels to establish conversations,
assuming new conversations are established relatively infrequently so that efficiency
is not critical. Initializing each new conversation requires the exchange of a pair of
reliable messages describing the clients’ corresponding NewConversation function

calls.

Each agent must maintain two lists of half-open conversations, one of locally
open conversations and another of remotely open conversations. When an agent’s
client calls NewConversation, the agent creates a new locally open conversation to
preserve the function’s arguments and returns its descriptor to the client. It then
sends an initialization message describing the arguments to the agent of the process
designated to be the conversation’s other participant. An agent that receives such a
message creates a new remotely open conversation. Agents attempt to pair locally
open conversations with remotely open conversations according to the matching
criteria specified in section 3.2. Some care must be taken to ensure that multiple
conversations between a single pair of clients are paired consistently. When two
matching half-open conversations are discovered, they can be merged to form a
fully open conversation.

Since NewConversation is nonblocking, clients may build regular expressions
involving conversations that are still only locally open. An agent that encounters
such a conversation during the execution of a plan must suspend the execution

until the conversation becomes fully open.

33
4.2 Interpreting Plans

In addition to establishing conversations, agents serve as the plan drivers for all
of their clients’ active plans. Drivers follow the algorithm of Figure 3.3, but the
mechanics of making and awaiting commitments must be discussed in more detail.
We associate with each end of all open conversations a new abstract entity called
a conversation server. Plan drivers use the servers associated with their open
conversations to accomplish communication events. The servers at opposite ends
of a conversation communicate with each other to accomplish the data transfers

specified by pairs of matching communication events.

Plan Conversation Plan Conversation Plan Conversation
Driver Server Driver Server Driver Server
Event ouncement ouncement
Event Delay
Completion Completion
Event
Completion
a b c

Figure 4.1: The plan driver—conversation server interface

Figure 4.1 illustrates the interface between a plan driver and each of its as-
sociated conversation servers. When the driver encountérs a decisively specified
communication event, it gives the event to the appropriate server and awaits the
event’s completion (Figure 4.1a). When a server learns that its partner has been
committed to the accomplishment of a particular event, it announces that fact to

its plan driver. The announcement may allow the driver to choose one of sev-

34

eral alternative communication events, in which case the driver gives the matched
event to the server and awaits the event’s completion (Figure 4.1b). Otherwise the
driver remembers the announcement but tells the server the remote event cannot
be matched immediately (Figure 4.1c). When a plan driver encounters a branch
point in its plan, it checks its servers’ outstanding announcements to see if any
of the alternative events can be accomplished immediately. If so, the driver gives
the matched event to the appropriate server and awaits the event’s completion
(Figure 4.1c). Otherwise the driver waits for new announcements from its servers
(Figure 4.1b). (If several alternative events match outstanding announcements,
the driver chooses one of them arbitrarily.)

The servers at opposite ends of a conversation must cooperate to provide the
services described in the last paragraph. In effect, they provide a communication
channel that has a rather peculiar service specification. We define two protocols
that a pair of conversation servers may use to meet this specification. The EX-
CHANGE protocol depends on an underlying reliable communication service, while

the TRIPLE protocol depends only on low-level communication facilities.

4.2.1 The EXCHANGE Protocol

Two conversation servers following the EXCHANGE protocol exchange reliable
messages to accomplish each matching pair of communication events. An event
message describing one of the events and including any specified data is transmitted
in each direction. The exchanged messages may occur in either order, and they
may cross on the communication medium.

When an otherwise idle server gets a decisively specified communication event
from its plan driver, it gathers any outgoing client data specified by the event

and sends its partner an event message describing the event. When it receives a

35

corresponding event message it scatters any incoming client data and notifies the

driver of the event’s completion.

When an otherwise idle server receives an event message, it announces the
decisively specified remote event to its plan driver. If the driver responds with a
matching event, the server accomplishes the event and sends an event message to
its partner. Otherwise the server waits. When it later gets a matching event from
its driver, it accomplishes the event and sends an event message to its partner. In
either case the server must notify the driver of the event’s completion as soon as

it has sent the event message.

A B A B
Event Event
> > event
Announcement
Announcement
Event (—C
Delay
Completion
a Event
event .
A B Completion
Eff_r.’f) Completion
b

c

Figure 4.2: Transactions of the EXCHANGE protocol

The sequence of messages a pair of servers uses to accomplish a particular
communication event is called a transaction. Figure 4.2 illustrates the three types

of transaction that can occur in the EXCHANGE protocol. In this and later figures,

36

pairs of parallel vertical lines represent time in two cooperating communication
servers. Labeled arrows between the time lines indicate transmitted messages,
while arrows outside the lines indicate interactions between the servers and their

plan drivers.

Event
event; Complete

Event,
event

event
Complete

Figure 4.3: The EXCHANGE protocol DFA

A conversation server following the EXCHANGE protocol can be specified as
the deterministic finite automaton shown in Figure 4.3. In this diagram labeled
ovals represent the states of the DFA and labeled arcs represent the DFA transi-
tions. Each transition label consists of two parts separated by a horizontal line.
Above the line is the DFA input that causes the transition. Possible inputs are
event messages from the server’s partner and “Event” or “Delay” notifications from

the server’s plan driver. Below the line is the action to be taken by the automa-

37

ton when the transition is taken. Possible actions include sending messages and
generating “Announcement” or “Completion” notifications. Sending a message is
specified simply by naming the message type, while the actions “Announce” and

“Complete” generate appropriate notifications for the server’s plan driver.

4.2.2 'The TRIPLE Protocol

The major drawback of the EXCHANGE protocol is that it depends on an un-
derlying reliable communication service, at some cost in efficiency. To overcome
this drawback we present the TRIPLE protocol, which depends only on unreliable
low-level messages and on timers. It covers the function of both the EXCHANGE

protocol and the underlying reliable message protocol.
A B A B

Event Event
>N._request

request

Announcement
Announcement

Event
accept

Completion

Completion

Event

resume

Event
—

c

Figure 4.4: Normal transactions of the TRIPLE protocol

Figure 4.4 illustrates the TRIPLE protocol’s three principle transaction types.

38

Suppose A and B are the servers at opposite ends of a conversation, and that A gets
a decisively specified communication event from its plan driver. Then A sends B
a request message describing the event. Upon receiving the request, B announces
the event to its plan driver. If the driver responds with a matching event, B returns
an accept message describing the matching event to A (Figure 4.4a). Otherwise
B responds with a wait message. At some later time B’s plan driver provides a
matching event. Then B sends a resume message to A, and A responds with an
ack message (Figure 4.4b). A notifies its driver of the original event’s completion
either when it receives an accept message or when it receives a resume message.
B notifies its driver of the matching event’s completion as soon as it has sent the
accept or resume message.

The request message carries data to be transferred from A’s client to B’s
client for this event. The accept message or the resume message carries data to
be transferred the other direction.

Since both communication events of a matching pair may be specified decisively,
matching request messages may cross on the transmission medium. In that case,
each server treats the request message it receives as if it were an accept message,

and each proceeds to the next transaction (Figure 4.4c).

Figure 4.5 illustrates two transactions that involve lost messages. Retransmis-
sion timers and sequence numbers are used to recover from such failures. After
sending a request message, a server starts a retransmission timer. If the timer
expires before the sender has received either an accept or a wait message, then the
request message is sent again. Essentially, the request is a reliable message, and
the accept or wait is an acknowledgement that it was received (Figure 4.5a,b). Sim-
ilarly, a server starts a retransmission timer after sending a resume message, and

retransmits the resume if the timer expires before an ack is received. The length

39

A B A B
Event Event
> ¥eq<s: > request
Announcement
drop Event
accept
Completion
drop
timeout timeout
request | Announcement request
Event
Completion

Completion Completion
a b
Figure 4.5: Some abnormal TRIPLE protocol transactions
of time a server will wait before retransmitting a request message is a protocol

parameter. Another parameter controls the retransmission of resume messages.

Sequence numbers are used to detect duplicate messages. A server that receives
a duplicate request message responds with another wait message if the matching
event is not yet available. Otherwise it resends its previous accept message (Fig-
ure 4.5b). Since accept messages may carry data, agents must always remember
the last data message they sent. A server that receives a duplicate resume message
responds with another ack message. Duplicate wait, accept, or ack messages are
ignored.

A consequence of the fact that request messages may cross is that two-valued
or “alternating-bit” [Tanenbaum81] sequence numbers are not adequate. A server
that has sent a request message may receive a request message from the current
transaction (Figure 4.6a), from the previous transaction (Figure 4.6b), or from the

next transaction (Figure 4.6¢), and it must respond appropriately in each case. All

40

A B A B A B
Event Event Event
3t request(1) —3trequest(1) —>h_request(1)
Event
drop
Completi Completi
equest(1) ompietion equest(1) ompretion
Completion Completion Completion
Event Event Event
——3Fequest(2) 3t request(2)
Event
*_—.—_.
Completion Combpletion
? request(2)
?
a
Event
b & u—

s equest(3)
c
Figure 4.6: The necessity of three-valued sequence numbers
three scenarios in Figure 4.6 appear identical to server A, except that the sequence
numbers on the last message A receives in each scenario are different. Three-valued

sequence numbers are therefore necessary.

A conversation server following the TRIPLE protocol can be specified as the
deterministic finite automaton shown in Figure 4.7. This DFA includes a new
“timeout” input as well as the actions “set” and “cancel” for starting and stopping
the timer. The server must maintain a sequence number variable as well as a
DFA state variable. The sequence number is incremented modulo 3 as part of the
DFA action “Complete”. The suffices “—1” and “+1” appended to message types
indicate messages with sequence numbers that do not match the server’s current
sequence number. Figure 4.7 does not show transitions that simply accept and

ignore old duplicate messages.

request+1
cancel; Complete; Announce

§ Announcing

—timeout
resume; set

Event
accept; Complete request-1
accept-1

ack
cancel; Complete

reguest

Announce

Event
request; set

resume
ack; Complete
accegt

cancel; Complete

reguest

cancel; Complete

resume
cancel; ack; Complete

request+1

request

resume-1
ack-1

request-1
accept-1

Blocked

— timeout
request; set

Figure 4.7: The TRIPLE protocol DFA

42

4.3 Handling Errors

Any implementation of the programming system described in the last chapter must
be concerned with program errors. Errors can arise at any stage of the development

and use of a new protocol.

Some errors can be detected at protocol generation time, when a conversation
description is being processed. Any violation of the conversation description syntax
rules can be caught and reported immediately. Inconsistent use of a message class
can also be detected. All the instances of a particular message class must specify
the same content types.

Some programming errors will be detected when a program that uses conversa-
tions is compiled. Badly formed plan-constructor expressions fall into this category.
Use of a message class with an incorrect message content type can also be detected
at compile time, because the Put(class), Get(class), and Trade(class) plan con-
structors specify arguments of the correct types for messages of class (class). The
quality of compile-time error messages will depend entirely on the language and

compiler being used.
The remaining types of errors cannot be detected until an application program

is running. These errors can be divided into several classes based on how hard it

is to detect them.

Some runtime errors can be dete_cted locally, without regard for the behavior
of other clients. Such errors include attempts to call blocking functions such as
Wait inside action procedures. Ambiguous plans and regular expressions that do
not terminate properly can also be detected locally at runtime, as can attempts to

violate the message-sequencing specifications of a conversation description.

Other runtime errors arise from the joint behavior of two or more clients. An

43

error occurs when the clients at opposite ends of a conversation decisively choose
different paths through a conversation description. A different error occurs when
the client at one end of a conversation closes the conversation while the other client
is still trying to use it. In this sort of error, neither client can be said to be at
fault. These errors are detected when unexpected messages arrive, or when arriving

messages require actions that are inconsistent with the local client’s behavior.

It is difficult or impossible to detect some programming errors that may occur.
If one client uses an incorrect argument in a call to NewConversation, the intended
connection may never occur. The two supposedly matching initialization calls will
return half open conversations that will never become fully open. Application pro-
grams may deadlock without violating any of the requirements of the programming
system. These errors result in some subset of the application processes being per-
manently barred from making forward progress. A distributed deadlock detection
algorithm would be required to detect them. The cost of running such an algorithm

could perhaps be restricted to those processes involved in the deadlock.

Some mechanism for reporting runtime errors must be provided, but the nature
of this mechanism will depend on the underlying language. An implementation
could simply halt with an error message whenever a runtime error is encountered.
Errors could be handled more elegantly in a language such as MESA [Lampson80)
or ADA [Ichbiah79] that supports the establishment of exception handlers and the
raising of exceptions. In the absence of such features, many of the plan constructors
could return error indications, and the function Wait could return an indication of
any error that occurs during the execution of plans. This last mechanism is not
particularly satisfying, because it leads to application programs that are cluttered

with error-handling code.

Chapter 5

Protocol Improvement

The previous chapter discussed some general issues involved in implementing the
protocol system defined in chapter 3, but it did not consider ways to use avail-
able application-specific information to improve the efficiency of the application’s
communication. There are two sources of such information: plans and conversa-
tion descriptions. Each of these sources can be used to enhance communication
efficiency.

In general, we will attempt to reduce the total number of messages that must
be sent. All networks have a per-message cost of transmission as well as a per-byte
cost, so reducing the number of messages sent can be an improvement, even if the

total number of transmitted bytes is constant.

5.1 Plan-based Improvement

A plan built by a client may contain information not only about the immediate
communication requirements of the client, but also about the client’s future com-
munication requirements. The client’s agent is often able to use this additional

knowledge to package the client’s communication in fewer messages than would be

44

45

possible if the knowledge were not available.

For example, consider the participants in a remote procedure call conversation
(see section 3.1, page 14). First suppose the customer accesses the server by making

the following calls:

Perform (PutQuestion (Server, Question));
Perform (GetAnswer (Server, Answer));

In this case the customer’s agent sees the two operations one at a time, so it must
accomplish them individually. At best each operation will require an exchange of
low-level messages, so the entire remote procedure call will require at least four
low-level messages.

Instead, suppose the client makes the following call:

Perform (
Sequence (
PutQuestion (Server, Question),
GetAnswer (Server, Answer)));

The customer’s agent can now see both operations at once, so it can send a single
low-level message that describes both of them. Then the server’s agent can respond
with a single low-level message completing both operations, and the entire remote

procedure call will have been accomplished with two low-level messages.

This example involves a straight sequence of operations, but the principle can
be extended to more complicated plans. Suppose the remote procedure call con-
versation description allowed the reply to a question to be either an answer or an

error, and that the customer makes the following call:

Perform (
Sequence (
PutQuestion (Server, Question),
Choice (
GetAnswer (Server, Answer),
GetError (Server, Error))));

46

The customer’s agent can send a single message describing the entire plan, and the
server’s agent can respond with a message completing the question operation and

one of the alternative replies.

In general, an agent interpreting a decisively specified event in a plan’s equiv-
alent DFA can include in its outgoing message the connected region of the DFA
rooted at the event and involving the same conversation as the event. The message
must include the states and transitions of the DFA region and the communication
events that label the transitions, including any outgoing client data specified by
those events. The region can be discovered by a depth-first search starting at the
decisive DFA state and terminating at any state that has an exit transition labeled
with either an action procedure or a communication event belonging to a conversa-
tion other than the decisively specified event’s conversation. If the region includes
some of the exit transitions of a DFA state, it must include all the transitions.
Two other criteria may also limit the size of the region that can be included in an
outgoing message. First, the packet size of the underlying communication system
may limit the number of communication events that can be included in any one
message. Second, the message cannot include any event whose outgoing data might
be affected by the incoming data of a predecessor event.

When an agent receives a message containing a plan fragment, it can accomplish
events in the fragment locally until it reaches a state in the fragment that has no exit
transitions. Then it responds with a message describing the events it completed,
so that the original agent can complete the same events.

If fragment-containing messages cross because both events of a matching pair
are specified decisively, then each agent can compare the fragment it sent with
the fragment it received in order to complete a maximal sequence of events. The

comparison is not computationally expensive, because one fragment or the other

47

must be decisive at each state. The fragments might not describe plan regions of
equal size. If part of one of the fragments remains unaccomplished after a maximal
sequence of events has been completed, both agents can regard the excess as a new

fragment that has already been transmitted.

The computational overhead of searching through plans to decide what parts to
include in an outgoing message is significant. However, a regular expression can be
used many times, either because it is part of a cycle or because the client reuses it,
so the overhead can be amortized over all the uses by preprocessing the expreésion
the first time it is encountered. The preprocessing step decorates each event in a
regular expression with a description of the relevant part of the remainder of the
plan. When an agent encounters a decisively specified event, it can include in its
outgoing message the description stored at the event.

The algorithm described above assumes an underlying reliable communication
service. In fact, the EXCHANGE protocol described in section 4.2.1 is a special
case of this algorithm that always transmits plan fragments consisting of a single
communication event.

We can describe the new algorithm more concretely if we assume, as in the last
chapter, that an agent consists of a collection of abstract plan drivers and conver-
sation servers. The interface between plan drivers and conversation servers must
be slightly modified. Plan drivers can now give their conversation servers entire
plan regions to be accomplished, not just single communication events. A driver
that encounters a decisively specified communication event during the execution of
its plan gives the server the entire relevant region rooted at the event. Announce-
ments generated by a server still describe a single decisively specified remote event,
but the driver’s response to an announcement can be an entire region rooted at

the local event that matches the announced remote event. A server now notifies

48

its driver of a region’s completion only when an entire path through the region
has been accomplished. The notification must include the last DFA state on the

completed path.

Conversation servers can then execute the algorithm of Figures 5.1-5.2 within

the framework provided by the modified server-driver interface.

The plan-packaging strategy described in this section can also be integrated into
the TRIPLE protocol described in section 4.2.2. We now allow request messages to
describe entire plan regions rather than single communication events. A request
message’s matching accept or resume message then describes a completed path

through the region described in the request message.

A serious complication arises because request messages can cross on the com-
munication medium. If the request messages describe plan regions that match in
length on the common path, both agents may complete the events on that path
and proceed. The problem arises whfm one message describes a longer path than
the other. In this case both agents can complete the short common path. Then the
agent that received the longer region must treat the excess as a new request mes-
sage with a new sequence number, and the agent that sent the longer region must
pretend it sent the new request. Unfortunately, finite automata cannot count, so
these requirements cannot be easily integrated into the DFA of Figure 4.7 that
defines the TRIPLE protocol. An auxiliary counter is needed, and some of the

DFA transitions require enabling predicates.

49

procedure ConversationServer (Conversation).
var LocalPlan, RemotePlan.
begin
while (Conversation is open) do
Await a new RemotePlan from our partner or
a new LocalPlan from our plan driver.
if (we got a new RemotePlan) then
LocalMatch (RemotePlan).
else {we got a new LocalPlan}
RemoteMatch (LocalPlan).
end
end
end ConversationServer.

procedure LocalMatch (RemotePlan).
var CompletedLocalPlan, LocalPlan, Event.
begin
Clear CompletedLocalPlan.
while (RemotePlan is not exhausted) do
if (RemotePlan is decisive) then
Announce the decisively specified event to our plan driver.
end
Await a new LocalPlan from our plan driver.
foreach Event in Path (LocalPlan, RemotePlan) do
Accomplish Event.
Append Event to CompletedLocalPath.
end
if (LocalPlan is exhausted) then
Notify our plan driver of LocalPlan’s completion.
end
end
Send CompletedLocalPath to our partner.
if (LocalPlan is not exhausted) then
RemoteMatch (LocalPlan).
end
end LocalMatch.

Figure 5.1: A conversation server’s algorithm

50

procedure RemoteMatch (LocalPlan).
var RemotePlan, Event.
begin
Send LocalPlan to our partner.
while (LocalPlan is not exhausted) do
Await a new RemotePlan from our partner.
foreach Event in Path (LocalPlan, RemotePlan) do
Accomplish Event.
end

end
Notify our plan driver of LocalPlan’s completion.

if (RemotePlan is not exhausted) then
LocalMatch (RemotePlan).
end
end RemoteMatch.

function Path (var LocalPlan, var RemotePlan) : list of Event.
var EventList.
begin

Clear EventList.

while (LocalPlan and RemotePlan are not exhausted) do

if (LocalPlan is decisive) then
Append the decisively specified local event to EventList.
Locate the matching event in RemotePlan.
else {RemotePlan must be decisive}
Locate the matching event in LocalPlan.
Append the matching local event to EventList.
end
Advance the states of LocalPlan and RemotePlan.
end
returnEventList.
end Path.

Figure 5.2: A conversation server’s algorithm — continued

51
5.2 Conversation-based Improvement

The second major source of application-specific information is the set of conversa-
tion descriptions that specify the form of the application’s communication. The
types and sizes of application messages and possible message orders are directly
available from the descriptions. Information about how the conversations are ac-
tually used cannot be determined until runtime. Such information includes the
distribution of choices made at alternatives in a conversation, the time intervals
between messages, and whether a particular message is sent or received decisively.
To collect such information, the system must keep statistics while the application
is running. With enough accurate information, agents can sometimes improve the
efficiency of the application’s communication by delaying certain low-level mes-
sages in hopes of packaging them with succeeding messages or even omifting them

entirely.

5.2.1 Statistics Collection

Statistics about how a conversation is used are most easily maintained if the conver-
sation description is stored as a deterministic finite automaton (DFA). Techniques
for transforming an arbitrary regular expression into a DFA are well known [Aho77].
Applying these techniques to the regular expression of a conversation description
results in a DFA that consists of a set of states connected by transitions that are
labeled with primitive elements of the regular expression. In our case, the prim-
itive elements describe message transmissions, so the transitions are labeled with
ordered pairs, each consisting of a message class and a message direction chosen
from {-->, <--, <->}. The agents at both ends of the conversation can use the

same DFA, but for the first participant of the conversation the label ({class), -->)

52

describes a Put{class) operation while for the second participant the same label
describes a Get{class) operation. A similar statement holds for the “<--" message

direction.

When an agent completes a communication event for its client, it can match
the event against the transitions leaving the current conversation state. Since the
automaton is deterministic, exactly one of the transitions will match the event,
and the agent can change the state of the conversation to that specified by the

matching transition. The event causes the transition.

To make the protocol improvement decisions discussed in the next section an
agent must have some knowledge of the future course of the conversation. In partic-

ular, it needs the following information about each of the next several transitions.

e What transition will be taken next.

Whether the next transition will be preceded by a communication event in-

volving a different conversation.

Whether the event that causes the transition will be specified decisively.

When the client will provide the event that causes the transition.

When the client will wait for the event’s completion.

To estimate this information, it is natural to attach attributes to each transition
of the DFA and to adjust their values each time the transition is taken. The

following attributes are useful.

53

Likelthood. In general, a state in the DFA will have several transitions leaving it,
and each time the conversation reaches that state it must follow exactly one
of the exit transitions. The choice of which transition to take is made by the
client driving the conversation, or by the client at the other end if the local
client is not decisive. The Likelthood of a given transition is the estimated
probability that the transition will be taken once the conversation reaches
the DFA state from which the transition originates. Some DFA states will

have only one exit transition, in which case the single transition will have a

Likelthood of 1.

4

Continuity. Since plans may involve several conversations, the next transition in a
particular conversation may not be made until one or more events involving
other conversations are completed. The Continuity of a transition is the esti-
mated probability that the transition follows the previous transition without

any intervening events involving other conversations.

Decisiveness. The events that cause transitions in the conversation DFA can be
specified decisively or indecisively. The Dectsiveness of a transition is the
estimated probability that an event that causes the transition will be specified
decisively. A transition can have a Decisiveness less than 1 even if it is the
only transition leaving a particular DFA state, because plans can involve

several conversations.

Delay. Clients perform some amount of work in addition to producing communi-
cation events. The Delay of a transition is the estimated amount of time the
client spends working before providing an event that causes the transition

and after providing the previous event.

54

Overlap. Once a communication event has been accomplished, it is returned to
the client, but the client may do some work before actually waiting for the
event. The Overlap of a transition is the estimated amount of work the client
does after providing an event that causes the transition and before waiting

for that event to be completed.

The Delay and Overlap attributes are estimates of time intervals, the distri-
bution of which can be characterized in many different ways. We have chosen to
maintain a minimum and maximum estimated interval. See section 7.5 for some

further ideas on this subject.

These attributes should accurately characterize the client’s recent behavior, so
the values assigned to a transition’s attributes should depend only on measurements
made during the k most recent uses of that transition, where k is a small integer
parameter. If k is too small, short-term fluctuations in the client’s behavior may
cause the attribute values to change too rapidly and to never accurately reflect the
client’s future behavior. If k is too large, long-term changes in the client’s behavior

may not be reflected in the transition attributes for an unacceptably long time.

For a given k we can define the attribute values as follows: A transition’s
Likelihood is the fraction of the last k times the transition was enabled that it was
actually taken. A transition is enabled whenever its conversation reaches the DFA
state from which the transition originates. The Continuity of a transition is the
fraction of the last k times the transition was taken that it immediately followed
another transition in the same conversation. The Decisiveness of a transition is the
fraction of the last k events causing the transition that were specified decisively. A
transition’s Delay is the range of the amount of work the client did before providing

each of the last k events that caused the transition, and its Overlap is the range of

55

the amount of work the client did after providing but before awaiting each of those
events. Each attribute value is a function of the last k observations of some variable.
Likelithood, Continuity, and Decisiveness are averages of the last k observations of
Boolean variables, while Delay and Overlap are ranges of the last k observations of
non-negative real variables.

Unfortunately, attributes defined in this manner cannot be maintained cheaply.
To maintain an average over the last k observations of a variable it is necessary to
remember the k most recent observations. A new observation can be incorporated
into the average in constant time by subtracting a k** of the oldest value from the
average and adding a k** of the new value. The new value is then remembered in
place of the oldest value. To maintain the minimum and maximum of the last k
observations of a real variable, it is also necessary to remember the k most recent
observations, but in this case it is not possible to incorporate a new observation
in constant time. When a new value is incorporated, it is easy to check if it is
a new minimum or maximum. The problem arises when the displaced value is
equal to the minimum or maximum of the observations. If so, the minimum or
maximum of the new set must be recalculated. The recalculation can be done in
time proportional to log k using a heap.

A simple and inexpensive alternative to remembering many observations and
maintaining complicated data structures is to clear a transition’s attributes and
start over every k* time the transition is taken. The disadvantage of this ap-
proach is that sometimes a transition’s attributes will be based on as many as k&
observations while at others they will be based on only one observation. A some-
what more complicated alternative is to keep and use an old set of attributes based
on k observations while the next set is being constructed. Then the attributes

used to make decisions will always be based on k observations, but they will never

56

incorporate the most recent observations. To overcome this disadvantage at some
cost in time, decisions can be based on both the saved set of attributes and the set

under construction.

5.2.2 Opportunities for Improvement

Information about how a conversation is being conducted can sometimes be used to
improve the conversation’s efficiency. In general, an opportunity for packaging mes-
sages into one packet arises whenever two or more consecutive low-level messages
belonging to a single conversation are sent in the same direction. An improvement
attempt often involves delaying a particular outgoing message in the hope that
it can be packaged with a succeeding message or omitted entirely. Such delays
can degrade the conversation’s performance if the hoped-for succeeding message is
not available in time. Information gathered at runtime can be used to avoid this
degradation. The underlying protocol used to implement plans and conversations
determines the particular improvements that are possible. The remainder of this
chapter discusses the opportunities that arise in the TRIPLE protocol described

in section 4.2.2.

Delaying wait messages

A straightforward improvement is to delay a wait message in hopes of sending an
accept message instead. According to the basic protocol, an agent B that has
received a request message from agent A but whose client has not yet submitted a
matching event responds to the request with a wait message. Instead, B can delay
the wait for a short amount of time. If B’s client produces the matching event
during that time, the request message can be answered with an accept message,

completing the transaction in just two messages (Figure 5.3a). Otherwise, B must

57

A B A B
Event Event
P_request —>N_request
Announcement Announcement
Delay Delay
Event
accept i
P Completion timeout
walt
Completion Event
a
resume
Completion
Completion

b
Figure 5.3: Delaying a wait message

still send the wait message, and the transaction will eventually be completed with
resume and ack messages (Figure 5.3b).

Runtime estimates of the client’s behavior can be used to decide how long a
particular wait message should be delayed. Agent B knows from the incoming
request message which transition the conversation DFA will next take, and the
Delay attribute of that transition estimates the minimum and maximum time it
takes the client to produce events that cause that transition. An appropriate wait
delay is therefore the maximum Delay minus any client time that elapsed before
the request message arrived. Agent B can set a timer to expire if the awaited
communication event does not arrive during the expected interval, in which case
the wait message must be returned by itself. Agent A must know how long B is
willing to delay the wait message so it can allow time for both a message round

trip and B’s wait delay before retransmitting its original request message.

58

A B A B
Event Event
3 request 3 request
Announcement Announcement
Delay Delay
Event Event
resume) resume .
Comipletion Completion
Completion Completion
Event
S ack+
request timeout
ack
Announcement
a b

Figure 5.4: Delaying an ack message

Choosing a bad wait delay time has several consequences. If the delay is not
large enough, no improvement occurs, and in fact the agent incurs the additional
costs of setting a timer and having it expire. If it is larger than necessary, an
unnecessarily long time is spent recovering from lost request, wait, or accept
messages, because A’s request retransmission time depends on B’s wait delay
time. In fact, there may be some a priori upper bound imposed on wait delays
to limit the time it takes to recover from lost messages. If the appropriate delay
exceeds this bound, the wait message should be returned immediately to avoid the

expense of setting a timer.

Delaying ack messages

A second possible improvement is to delay an ack message in hopes of including

it in the next outgoing request message. For example, suppose agent A has sent

59

a request message to agent B, received a wait message in response, and sometime
later received a resume message. A must respond to the resume with an ack
message. If the next communication event is specified decisively and is already
available, A may package the ack and the succeeding request in a single message.
If the next event is not yet available, A may delay the ack for a short amount of
time. If A’s client submits the next communication event during that time, A can
send the ack and the succeeding request together (Figure 5.4a). If the event is
still not available at the end of that time, A must send the ack message by itself
(Figure 5.4b).

Once again, estimates of the client’s behavior can be used to select an appropri-
ate ack delay. While it is delaying the ack, agent A cannot know which of several
alternative transitions the conversation will next take, so it must rely on the Likeli-
hood attributes of the alternatives to guess at the future course of the convefsa,tion.
The agent can restrict its attention to those alternatives with Likelthood attributes
significantly greater than zero.

An ack message should not be delayed if the Continuity of a likely next transi-
tion is significantly less than one at either end of the conversation. A Continuity
less than one indicates a client that may be involved in other conversations before
it gets around to continuing the current conversation, in which case the ack should
be returned immediately to avoid conflicts with other conversations.

Agent A should not delay the ack message unless the Decisiveness of all the
likely next transitions is close to one. If A’s next communication event is not
specified decisively, A cannot initiate the next transaction with a request mes-
sage. Agent B cannot initiate the next transaction until it receives the ack to its
outstanding resume message, so A must return the ack immediately.

Another situation in which the ack should be returned immediately occurs

60

when the clients of both A and B specify the next communication event decisively,
but B’s client provides the event sooner than A’s client. In this case A should
return the ack immediately so that B can initiate the next transaction as soon
as possible. This situation can be detected by comparing the Delay attributes of
the likely transitions with the corresponding attributes at the other end of the
conversation. Agent A should not delay the ack if A’s maximum Delay attrii)ute
of a likely transition is greater than B’s minimum Delay of the same transition.
If all the criteria discussed above are satisfied, delaying the ack message will
probably be worthwhile. An appropriate delay time is the largest of the maximum
Delay attributes of all the likely next transitions. Delaying the ack by that amount
of time should allow A’s client enough time to provide the next communication
event no matter which of the likely next transitions is actually taken. Agent A
must set a timer that will expire if the awaited event does not arrive as quickly as
expected, so that the ack message can be returned by itself. Agent B must allow
time for both a message round trip and A’s ack delay before retransmitting the
resume message, and for that reason there may be some a priori upper bound on
ack delays. If the appropriate delay exceeds that upper bound, the ack should be

returned immediately to avoid the expense of setting a timer.

Delaying accept messages

A third possible improvement is to delay an accept message in hopes of packaging
it with the next outgoing request message. Suppose agent B has received a request
message from agent A and is about to send an accept message in response. If B’s
next communication event is available and is specified decisively, B can package the
accept and the succeeding request in a single message. Otherwise B may delay

the accept message for a short amount of time. If B’s client submits the next

61

A B A B
Event Event
> request request
9 Announcement 9 Announcement
Event Event
Completion Completion
Event
accept+
request timeout
Completion accept
Announcement Completion
a b

Figure 5.5: Delaying an accept message

communication event during that time, B can send the accept and the following
request together (Figure 5.5a). Otherwise the accept must still be sent by itself
(Figure 5.5b).

Several considerations that affect the choice of a proper ack delay also apply
to the choice of an appropriate accept delay. The Likelihood attributes of the
conversation’s possible next transitions can be used to predict the future course of
the conversation. The accept message should not be delayed when the Continuity
attributes of the likely next transitions show that other conversations may interfere.
The Decisiveness attributes of the likely next transitions can be used to avoid
delaying the accept when the awaited communication event may not be specified
decisively. If this improvement is attempted, the largest of the maximum Delay
attributes of the likely transitions is an appropriate setting for the timer used to
detect events that are not submitted as quickly as expected. In this case the sender
of the original request message must allow time for a message round trip, a wait
delay, and an accept delay before retransmitting the request, because both delays

may occur in succession. The accept should not be delayed at all if the appropriate

62

delay exceeds some @ priori bound.

An additional complication arises because both accept and request messages
may carry client data. The delayed accept message and the succeeding request
message may not both fit in a packet of the underlying transmission medium. In
that case the accept and request must be sent as separate messages, so the accept
message may as well be sent immediately.

Once the criteria discussed so far have been met, an agent considering the delay
of an accept message must still decide if the attempted improvement will in fact
be profitable. Delaying an accept message can sometimes serialize client work that
could otherwise be done in parallel.

Consider the sequence of two transactions illustrated in Figures 5.6 and 5.7. The
vertical lines in these figures represent time in application processes A and B. The
heavy solid segments of these time lines indicate intervals of client computation,
and the dotted segments indicate idle intervals. Gaps in the lines indicate intervals
of agent activity. Client computations are occasionally interrupted by incoming
messages. The labels on the time lines indicate client actions such as initiating
computations, appending events to plans, or waiting for events to complete.

In Figure 5.6, agent A’s client appends a communication event and awaits its
completion before beginning to work on the second event. If agent B returns the
first accept message immediately, the clients can work on their next events in
parallel (Figure 5.6a). If, however, agent B delays the accept while its client works
on the next event, A’s client will not be able to begin work on the second event
until B’s client is finished (Figure 5.6b). The savings realized by decreasing the
number of messages is overwhelmed by the decrease in client parallelism.

In Figure 5.7, agent A’s client works on the second communication event before

awaiting the completion of the first event. Agent B can now safely delay the accept,

work =

append ——
wait
done

request _—~ — append
—— wait

w__
done

a

work =

append -

wait ——

work —

accept+

append —
wait
done

63

pemen WOTK.

append
-<E wait
work

request — append
—— wait

&em,&
done

b

Figure 5.6: An unsuccessful accept delay

A B

work =
append ——

work =

wait

work
request I_—

append
wait
work

request_~ — append
e WAL

append
wait
done

Kept__
done

a

A B
work = e WOTK
append —_request
work —
append
wait
work
accept+
request —~ — append
— wait
wait
append accept
wait
done done

b

Figure 5.7: A successful accept delay

64

and the saving of a message is beneficial.

Agents can use the Overlap attributes of transitions to distinguish these two
situations. If agent A has sent a request message, the Overlap attribute of A’s
current transition indicates how much work A’s client will probably do before
waiting for the current transaction to complete. If the Delay attributes of all of
B’s likely next transitions are smaller than A’s current Overlap, B can probably
delay the accept long enough to return a combined accept and request message
before A’s client needs the accept.

The algorithm for deciding whether to delay an accept message is further com-
plicated by the fact that the attempted improvement may be beneficial in the long
run even if it delays one of the clients temporarily. The delayed client may be
compensated by a decreased waiting time in some future transaction. Before de-
laying an accept message, an agent must decide that some future transaction will
be completed by both agents sooner than it would be if the improvement were not
attempted. In general, the transaction at which the benefit becomes apparent may
be arbitrarily far in the future, but in most cases the benefit becomes apparent in
the next one or two transactions, and it is possible for the agent to recognize those
situations.

Consider the sequence of three transactions in Figure 5.8. In the first transac-
tion agent A sends a request message, and A’s client immediately waits for the
transaction’s completion. When agent B is ready to complete the first transaction
with an accept message, it must decide whether delaying the accept will benefit
both A and B over the course of the three transactions. If B delays the accept,
A’s client will be blocked waiting for the first transaction to complete while B’s
client is busy working on the second transaction. This disparity is acceptable if two

conditions are met. First, B’s client must be able to work on the third transaction

work = —— work
append —__request
wait -—-\\\\\\‘\\5s
accept_—~ — append
= Work
work =
append ——_request
wait -—-\\\\\\‘\\53
wait
accept append
— work
work =
append —_request
wait —
wait
accept append
_c wait
done done

a

work =

append -

wait =

work =

<

accept+

xept“

done

b

Figure 5.8: Another successful accept delay

— work

append
work

wait
append
work

wait
append
wait
done

65

66

while the second transaction is completing, because otherwise working ahead on
the second transaction was of no benefit. Second, A’s client must be able to do
the work for both the second and third transactions while B’s client is working on
the third transaction, because otherwise A’s client cannot make up the time it was
delayed on the second transaction. The first condition amounts to the statement
that B’s Overlap attribute of the transition corresponding to the second transac-
tion must exceed A’s Delay for the second transaction. The second condition is
equivalent to the statement that the sum of A’s Delay attributes for the second
and third transactions must be less than B’s Delay for the third transaction. These
statements can be relaxed somewhat by allowing for A’s first transaction Overlap,
which measures the amount of work A can do while B is delaying the accept mes-
sage. These two conditions are sufficient for B’s delay of the accept message to
be beneficial to both agents. Figure 5.8 illustrates a scenario in which both con-
ditions hold, and agent B’s delay of the first accept message is in fact profitable.
In practice, agent B cannot always know the next two transitions the conversation
will take, and the conditions are more complicated if the likely future course of the

conversation has branches.

5.2.3 The LAZY Protocol

The conversation-based improvement attempts discussed in the last section can
be incorporated in the TRIPLE protocol DFA of Figure 4.7 by adding new DFA
states to represent the time intervals during which messages are being delayed
and new message types to account for combined messages. We call the modified
protocol the LAZY protocol because to at least some extent it only sends messages
when necessary. Figure 5.9 illustrates the modified DFA that defines the LAZY

protocol. This illustration does not show transitions that correspond to expired

67

retransmission timers and duplicate messages, and it does not include actions that
start and stop retransmission timers or generate completion notices. The complete
set of DFA transitions is listed in Figures 5.10-5.11.

The decision algorithms discussed in the last section are encapsulated in the
DFA actions “set-wt”, “set-ak”, and “set-ac”, which are outlined in Figures 5.12-
5.14. A decision not to delay a particular message is implemented by scheduling
an immediate timeout, in effect bypassing the message delay state. These three
procedures depend on the variable CurrentState that holds the state of the con-
versation DFA. This variable is modified as events are completed. Each transition
of the conversation DFA has “NextState” and “MsgSize” attributes as well as the
statistical attributes defined in section 5.2.1. The decision algorithms depend on
the values of statistics at both ends of the conversation. Subscripts “local” and
“remote” on transition attributes are used to indicate which values are intended.
Superscripts “L” and “T” are used on transition attributes that hold ranges of

real values to indicate the lower or upper bound of the range.

68

timeout
—— Expectin
wait peciing
Event ack+req
cancel; set-ac Delaying set-ac
g Event
wait Sem———
7 resume
Delay
set-wt
ack+req
Announce
/- Announcing Finishing
/ Event
set-ac
request ack
Announce Event
Delayi
claying Holding
accept
Event
request accept =
Delaying
Event
cancel; acc+req resume
Event set-ak
cancel; ack+req
accireq
Announce ack
request+i

Figure 5.9: The LAZY protocol DFA

69

State Input Next State Action

Idle
Event => Waiting : request; set
request = Announcing : Announce
request—1 = Idle : accept-—-1
resume—1 => Idle : ack—1

accept—1 = Idle

ack—1 => Idle
accept—2 = Idle
ack-—-2 = Idle
Announcing
Event = DelayAc
Delay = Delay Wt
DelayWt
Event => DelayAc
timeout = Expecting
request = DelayWt
accept—1 => DelayWt
ack—1 = DelayWt
Expecting
Event = Finishing
request =—> Expecting
accept—1 = Expecting
ack—1 => Expecting
Finishing
ack = Idle+1
ack+req =—> Announcing+1 :
request+1 = Announcing-1 :
Event =—> Holding
timeout = Finishing
request = Finishing
accept—1 = Finishing
ack—1 = Finishing

: Complete; set-ac
: set-wt

: cancel; Complete; set-ac
: wait

: resume; Complete; set
: wait

: cancel

cancel; Announce
cancel; Announce

: resume; set

Figure 5.10: The LAZY Protocol DFA transitions

70

State Input

Next State

Action

Holding
ack
ack+treq
request+-1
timeout
request
accept—1
ack—1
DelayAc
Event
timeout
request
accept—1
ack—1
Waiting
request
accept
acc-req
wait
resume
timeout
request—1
resume—1
request+1
accept—1
ack—1
accept—2
ack—2
Blocked
resume
wait
DelayAk
Event
timeout
resume

= Waiting+1
= DelayAc+1
= DelayAc-+1
= Holding
= Holding
= Holding
= Holding

=> Waiting+1
= Idle+1
= DelayAc
= DelayAc
=> DelayAc

= Jdle-+1
= Idle+1

= Blocked
= DelayAk
=> Waiting
= Waiting
=> Waiting
=> Waiting
= Waiting
= Waiting
=> Waiting
=> Waiting

—> DelayAk
== Blocked

= Waiting+1
=3 Idle+1
= DelayAk

: cancel; request4-1; set

: cancel; Complete; set-ac
: cancel; Complete; set-ac
: resume; set

: cancel; acc+req; set
: accept

: cancel; Complete
: cancel; Complete
=> Announcing+1 :
: cancel

: cancel; Complete; set-ak
: request; set

: accept—1

: ack—1

: request

cancel; Complete; Announce

: Complete; set-ak

: cancel; ack-+req; set
: ack

Figure 5.11: The LAZY Protocol DFA transitions — continued

procedure set-wt.
t « the transition from CurrentState determined
by the most recently received request.
delay « t.Delay,..,, — (time since last event completion).
SetTimer (delay).
end set-wt.

procedure SetTimer (interval).
if interval > MaxMessageDelay then
Schedule an immediate timeout.
else

Schedule a timeout to occur when tnterval has elapsed.

end
end SetTimer.

Figure 5.12: The wait-delay decision algorithm

procedure set-ak.
delay « 0.
foreach Likely transition ¢ from CurrentState do
delay <+ max (delay, t.Delay ..
if Disconnected or Indecisive or Harmful then
Schedule an immediate timeout.
return.
end
end
SetTimer (delay).
end set-ak.

Likely = (t.Likelthood > ¢)
Disconnected = (t.Continuity,,.,; < (1 — €))
Indecisive = (t.Decisiveness;, ., < (1 — €))

Harmful = (t.Delay ., > t.Delay,_.;.)

Figure 5.13: The ack-delay decision algorithm

71

72

procedure set-ac.
msgsize < (size of the outgoing accept).
delay «— 0.
foreach Likely transition ¢ from CurrentState do
delay «— max (delay, t.Delayy,,)
overlap « t.Overlap ... — (time since last request arrived).
remainder — t.Delay .. — overlap.
if Disconnected or Indecisive or TooBig or
(HarmfulNow and HarmfulLater) then
Schedule an immediate timeout.
return.
end
end
SetTimer (delay).
end set-ac.

Likely = (t.Likelihood > €)

Disconnected = (t.Continuity,,., < (1 - €))
Indecisive = (t.Decistveness, ., < (1 — €))

TooBig = (msgsize + t.MsgSize > MaxPacketSize)
HarmfulNow = (t.Delayy., > overlap)

HarmfulLater = (3 a transition u from ¢.NextState such that:
(u.Likelthood > €) and (

(u.Overlapi,.,, < remainder) or
(u.Delayisy < u.Delay;more + remainder)))

Figure 5.14: The accept-delay decision algorithm

73
5.2.4 Observations

The discussion in the preceding sections suggests several issues that need to be

clarified.

Statistical Significance

Several of the transition attributes defined in section 5.2.1 are estimated probabil-
ities, but in practice the actual estimates are never used. All that is important is
whether an attribute is significantly greater than zero and whether it is significantly
less than one. Since each estimated probability is an average of k observations of
a Boolean variable and k is a small integer, even one positive observation among
the last k may make the estimate significantly greater than zero and one negative
observation may make it significantly less than one. Agents are interested not so
much in the average of the k observations but in whether the average is zero, one,

or neither, and this three-valued attribute may be easier to maintain and use.

Sharing Statistics

Some of the protocol improvement strategies discussed above require knowledge of
the behavior of the client at the other end of the conversation as well as of the be-
havior of the local client. Therefore an agent must maintain two sets of attributes,
one that characterizes the local client and one that characterizes the remote client.
Agents must exchange sets of attributes describing their clients, since an agent can
only measure its own client. This exchange can be accomplished by including tran-
sition attributes in the low-level messages that are used to complete the transition.
Under some of the statistics collection schemes discussed in section 5.2.1, the local

attribute values are only brought up to date every k** time the transition is taken,

74

so they need to be exchanged only at those times.

Making Decisions

The protocol improvement strategies discussed in previous sections can be com-
plicated and computationally expensive. However, the atiributes on which the
decisions are based change only occasionally, so the decisions themselves need to
be reconsidered only at those times. The decision values can then be stored with

the attributes on which they are based and used when they are needed.

Both agents involved in a transaction must know about improvement attempts
that involve the delay of messages, because retransmission intervals must allow for
possible message delays. Since both agents have the same information, they can
make the same decisions independently, or one agent can make the decisions and

report them to the other agent.

Using Timers

Timers are used solely to recover from errors. In the past they were used to recover
from hardware errors such as lost messages. Now we also use them to recover from
bad decisions. Ideally, timers should never expire, and for that reason setting and
canceling a timer should be inexpensive, but the actual delivery of a timeout need

not be efficient.

Chapter 6

Concrete Implementation

A prototype implementation we call ProGen has been constructed to demon-
strate the feasibility of the protocol system design and of some of the protocol
improvement strategies outlined in the last chapter. This prototype supports ap-
plication processes written in Modula-2 [Wirth82] and intended for the Crystal
multicomputer [Cook83]. The Crystal multicomputer is a collection of 20 Digital
Equipment Corporation VAX 11/750’s connected by an 80 megabit /second Pro-
teon token ring. Each node machine runs a copy of the Crystal Nugget, which
provides software partitioning of the network and which supports both datagram
and reliable communication services within a partition.

The ProGen system has two major components, the protocol generator itself
and the ProGen runtime environment, which is maintained as a library that can
be linked into application programs. Figure 6.1 diagrams the steps required to
construct a Crystal load module.

Conversation descriptions are processed by the protocol generator, which pro-
duces a Modula-2 module for each description. These modules are compiled along

with the application processes written in Modula-2. The resulting relocatable ob-

75

76

conversation
descriptions

protocol
generator

application
processes

Modula-2 ProGen Crystal
compiler library nugget
link
editor

< loa%rxslllodule

stal

)

Figure 6.1: Construction of a Crystal load module

jects are linked with the ProGen library and the Crystal Nugget to form load

modules that can be executed in a Crystal partition. This implementation allows

only a single application process per Crystal node machine.

We will begin with a description of the ProGen runtime environment, because
it supports the generated protocols. Then we will discuss the protocol generator,

several versions of which have been implemented so that various protocol improve-

ment strategies can be fairly evaluated.

77
6.1 The ProGen Runtime Environment

The ProGen library provides a runtime environment for application processes that
use conversations. It defines all the data types required by application processes,
and it contains all the application-level functions and procedures described in chap-

ter 3 that are not specific to individual conversations.

The environment’s lowest layer is a task-scheduling subsystem, and the envi-
ronment is structured as a collection of lightweight tasks communicating through
input queues. The application process is itself embodied in a task, while another
task executes action procedures on the client’s behalf. A third task coordinates
the opening and closing of conversations. Tasks associated with each open conver-
sation implement conversation-specific protocols, and tasks associated with each
active plan coordinate plan access. Figure 6.2 illustrates the logical organization
of a program running on a Crystal node machine. We will begin with a description
of the task subsystem, followed by a description of the tasks that comprise the

environment.

6.1.1 Task Subsystem

The Crystal nugget supports a single user process per Crystal node machine. The
task subsystem provided by the ProGen environment supports lightweight tasks
within a nugget process.

A new task may be created dynamically by naming a Modula-2 procedure to
serve as the task’s template and specifying a stack size and priority for the task.
Task stacks are allocated from a heap. A task terminates when it returns from the
procedure that forms its template. New tasks are given internal names when they

are created.

78

Task-Scheduling Subsystem

Crystal Nugget

Figure 6.2: Logical organization of a Crystal node machine

79

Tasks are scheduled according to their priorities. A task may be preempted at
any time by a task of higher priority, but tasks within a priority level may rely on
mutual exclusion. A single “idle” task has priority lower than all other tasks.

Tasks communicate by enqueueing “notices” to each other. A notice can be
any data object so long as it allows room for the necessary queueing pointers.
By convention, notices have an initial field that identifies the data type of the
remainder of the notice. Tasks have a single input queue from which notices may
be dequeued. A task attempting a dequeue when its queue is empty will be blocked,
allowing other tasks of equal or lower priority to run. Enqueueing a notice to a
task of higher priority will result in the immediate scheduling of that task, but the
preempted task will maintain its position with respect to its peers.

The task subsystem converts interrupts from the Crystal nugget into notices
enqueued to appropriate tasks. The Crystal nugget provides a number of com-
munication channels called “ports”. The ProGen environment associates a task
with each port, and send or receive completion interrupts that occur on a port
are directed to the associated task. The task subsystem also provides an alarm
mechanism that allows a task to request that a “timeout” notice be enqueued to
the task at a certain time in the future. An alarm may be canceled by the task

that set it.

6.1.2 Client and Actor Tasks

Application programmers never manipulate tasks directly. The main body of an
application process is incorporated in a “client” task, which runs at a priority above
that of the idle task. The routines a client calls to manipulate conversations and
plans actually enqueue requests to other system tasks that run at a still higher

priority. The client Wait routine is essentially a dequeue from the client’s input

80

queue.

A task called the “actor” executes action procedures as they are encountered
in the plans constructed by the client task. The actor and the client run at the
same priority, so action procedures are not executed asynchronously with respect

to the client.

6.1.3 Conversation Coordinator

Conversations are managed by a task called the “coordinator”. Client calls to
NewConversation and CloseConversation generate requests to the coordinator.
Coordinators on different machines use a well known nugget port to communicate
among themselves. They follow the algorithm outlined in section 4.1 to discover
matching pairs of conversation initialization requests. A nugget port is allocated
to each new conversation. The coordinator runs at a priority higher than that of

the client.

6.1.4 Conversation Servers

Associated with each open conversation is a “conversation server” created by the
coordinator when the conversation is initialized. The procedure template from
which a conversation server is created depends on the particular conversation de-
scription being used. The protocol generator described later produces a customized
conversation server template for each different conversation description.

The servers at opposite ends of a conversation are responsible for accomplish-
ing the data transfers that comprise the conversation. They communicate with
each other using the nugget port allocated to the conversation. The protocol they
maintain on this channel is determined by the protocol generator, and it is this

protocol we have in mind when we speak of “generating” a protocol for a particular

81

conversation description. Conversation servers run at a high priority so that other

tasks cannot unduly interfere with the communication protocol.

6.1.5 Plan Drivers

Each active plan has an associated “driver” task created when the client calls New-
Plan. New regular expressions that are appended to the plan are enqueued to the
plan driver, which then cooperates with the actor and with the conversation servers
associated with the plan in interpreting the expressions. Regular expressions are
enqueued back to the client as they are completed. The driver is also responsible

for closing the plan cleanly when the client calls ClosePlan.

Plan drivers and conversation servers cooperate according to the server-driver
interface described in section 4.2. Plan drivers enqueue decisively specified events
to appropriate conversation servers and servers enqueue announcements and com-

pletion notices to their plan drivers.

6.1.6 Overhead Reduction

The task cooperation described in section 4.2 requires many queued notices, and
correspondingly many task switches. In our implementation, we try to avoid some
of this overhead by allowing conversation servers associated with a particular plan

to assume some of the function of the plan driver.

The ProGen library provides a procedure Advance that conversation servers
may call instead of enqueueing completion notices to the plan driver. The procedure
duplicates the operation of the plan driver upon reception of a completion notice,
possibly enqueueing a notice to the actor or to another conversation server and

possibly returning a regular expression to the client.

82

The library also provides a function MatchingEvent that conversation servers
may call instead of enqueueing announcements to the plan driver. The arguments
to this function describe a remotely initiated communication event. The func-
tion returns a matching event if one exists among the plan’s current alternatives.
Otherwise it returns nil but leaves behind a description of the outstanding an-
nouncement.

Reducing task switching overhead in this manner requires that conversation
servers associated with a particular plan share a data structure that was previously
private to the plan driver. Therefore conversation servers and plan drivers must

run at the same priority.

6.2 Protocol Generator

The protocol generator produces conversation server templates tailored to specific
conversation descriptions. It also produces the conversation-specific plan construc-
tors that clients use to build communication events.

The protocol generator accepts as input a single conversation description con-
forming to the syntax of Figure 3.1. As it processes the description it records the
conversation name and the names of the participants, as well as all the conversa-
tion’s message classes and their associated content types. It also parses the regular
expression that defines the possible message orderings, and converts it to a minimal
deterministic finite automaton using the sequence of algorithms found in [Aho77).
As output, the protocol generator produces a Modula-2 definition module and a

corresponding implementation module.

The definition module provides declarations for the conversation-specific con-

stants, variables, and procedures needed by application programs that want to use

83

conversations based on the given conversation description. The conversation name
and the participant names from the header of the conversation description are de-
clared so that they may be used in calls to NewConversation. The conversation
name points to a data structure that contains information about the conversation
description that is needed when a new conversation is created. This information
includes the character string name of the conversation description, which the con-
versation coordinator uses to find matching calls to NewConversation. It also
includes a pointer to the template procedure from which conversation servers for
this conversation description are to be created. The definition module also declares
the Put{class), Get(class), and Trade(class) plan constructors that are specific to

this conversation description.

The major component of the implementation module produced by the protocol
generator is the conversation-specific template for conversation servers. Servers
built from this template must cooperate with other conversation servers and with
plan drivers in interpreting plans, and they must accomplish the data transfers
specified by the communication events directed to them. Conversation servers
are also expected to enforce the restrictions on message orders imposed by the
conversation description. Any protocol may be used between the servers at opposite
ends of a conversation. Different versions of the protocol generator produce servers

that use different kinds of protocols.

The implementation module also initializes the variables declared in the defi-
nition module and provides procedures for the plan-constructor declarations. The
plan constructors are simple functions. The ProGen library defines a data struc-
ture that is used to represent the regular expressions that comprise plans. Each
plan constructor dynamically allocates a node of this structure and initializes its

fields from the constructor’s arguments.

84

We have implemented three versions of the protocol generator that make no at-
tempt to use application-specific information to improve communication efficiency
and one version that attempts some of the improvement strategies described in
chapter 5. The first three versions serve as benchmarks against which various
attempts at improvement can be compared.

All four versions produce conversation servers that use the DFA derived from
the conversation description to enforce the description’s message ordering restric-
tions. The DFA is stored as a state transition table, and each conversation serve;-
maintains a DFA state variable. As the server begins each new transaction, it
determines a new DFA state based on the current state and on the transaction’s
message class and direction. The transaction is legal if the new state is not an error
state. Otherwise the server prints an appropriate error message and aborts the en-
tire application process. Conversation servers produced by the first three versions

of the protocol generator make no other use of application-specific information.

6.2.1 EXCHANGE Protocol (Nugget)

The simplest version of the protocol generator creates conversation servers that
implement the EXCHANGE protocol defined in section 4.2.1 using the reliable
message service provided by the Crystal nugget. The servers accomplish each
application-level data transfer by exchanging a pair of reliable nugget messages.
In this version, all the messy details of sequence numbers and retransmission
timers are hidden in the nugget, allowing conversation servers that are clean and
simple. The nugget has direct access to the hardware clock and to the communi-
cation device, so any protocol implemented inside the nugget is bound to be more
efficient than the same protocol implemented on top of the nugget, using the timer

and the unreliable message services provided by the nugget.

85

6.2.2 EXCHANGE Protocol (Alternating-Bit)

In another version, conversation servers use the low-level facilities of the nugget
to implement a standard alternating-bit protocol (ABP). This intermediate-level

protocol is then used to implement the EXCHANGE protocol.

This version can serve as a fair basis for comparison because it depends on the
same nugget facilities as all later versions. The conversation servers constructed by
this version are still fairly simple because the reliable protocol is logically separate

from the algorithm that uses it.

6.2.3 TRIPLE Protocol

The third version of the protocol generator creates conversation servers that use
the low-level facilities of the nugget to implement the TRIPLE protocol described
in section 4.2.2.

In this version, the EXCHANGE protocol is integrated with the underlying pro-
tocol used to achieve reliable communication. This integration allows this version
to use fewer low-level messages per transaction than the first two versions, but the
constructed conversation servers are more complex.

To help manage this complexity, conversation servers are structured as table-
driven finite automata. The heart of each server is a loop with a dequeue operation
at its head. Each dequeued notice is converted to a DFA input, which is used along
with the current DFA state to locate an entry in the DFA table. The entry contains
a new DFA state and a list of actions to be performed. The actions are represented

as small constants used to select clauses of a case statement.

The table basically represents the DFA of Figure 4.7 that defines the TRIPLE

protocol, but with one modification. The new DFA incorporates a static version

86

of the protocol improvement strategy described in section 5.2.2, in which a wait
message is delayed in hopes of sending an accept message instead. Conversation
servers delay wait messages by a fixed length of time, rather than by a length of
time based on the past behavior of the client. This fixed delay has two negative
consequences. First, the time it takes to recover from lost messages is increased
by the length of the delay, and second, the costs of setting a timer and having it
expire are incurred if the delay is not long enough. These costs are insignificant

compared to the saving of two low-level messages when the strategy is successful.

6.2.4 LAZY Protocol

Our fourth version of the protocol generator creates conversation servers that at-
tempt some of the application-specific protocol improvements discussed in chap-

ter 5. This version implements the LAZY protocol described in section 5.2.3.

Plan-Based Improvements

A simple version of the improvement strategy discussed in section 5.1 has been inte-
grated with the LAZY protocol. This strategy attempts to make use of information
contained in the plans provided by clients at runtime.

Conversation servers built by this version of the protocol generator search their
associated plans for straight sequences of communication events that can be pack-
aged in a single message. All the events in such a sequence must be part of the
same conversation, and the entire sequence, including application data, must fit in
a single nugget packet.

When a conversation server is ready to initiate a transaction to accomplish the
first event of such a sequence, it can instead initiate a transaction to accomplish

the entire sequence. It sends a request message describing the entire sequence,

87

including any outgoing application data specified by the events of the sequence. In
reply it expects either an accept message that completes the entire sequence or a
wait message that completes nothing. In the latter case, the transaction will be
completed with resumé and ack messages.

A conversation server that receives a request message describing a sequence of
events responds with an accept message if it can match all the events in a short
amount of time. Otherwise it responds with a wait message and later sends a
resume message when all the events have been matched.

When crqssing request messages describe sequences of different length, the
conversation servers complete the shorter sequence, and the remainder of the longer
sequence is retransmitted in a new request message.

The cost of searching for suitable sequences is incurred only when a particular
regular expression is encountered for the first time. Therefore clients that reuse

expressions or include them in cycles can amortize the cost over all the uses.

Conversation-Based Improvements

Conversation servers built by the fourth version of the protocol generator imple-
ment the LAZY protocol, which attempts the conversation-based protocol improve-
ment strategies discussed in section 5.2. These strategies all involve delaying certain
low-level messages of the TRIPLE protocol, hoping they can be packaged with suc-
ceeding messages or omitted entirely. Under certain circumstances, wait, ack, or
accept messages may be delayed.

The algorithm for deciding whether and by how much to delay a particular
message requires some knowledge of the past behavior of the client, so conversation
servers record relevant characteristics of their clients as they are running. These

statistics are attached to the DFA constructed from the conversation description,

88

which has so far been used only to enforce the message-order constraints of the
description. Instead of maintaining attributes for each transition of the DFA, as
discussed in section 5.2.1, our implementation maintains attributes for each of
the DFA states. This change allows us to use less space, because there are fewer
states than transitions, but our characterization of the client is correspondingly
less precise, because information that would have been maintained in the exit
transitions of a DFA state is now summarized in the state itself. This loss of
information could cause us to miss opportunities for protocol improvement, but it

will never cause us to attempt an improvement that is not beneficial.

Several of the client attributes maintained by conversation servers involve inter-
vals of time between various client actions such as appending a regular expression
to a plan or waiting for the completion of an expression. Such intervals are readily
available because the task-scheduling subsystem keeps track of the time consumed
by each task, including the client and actor. Unfortunately, time spent by the Crys-
tal nugget servicing a hardware interrupt is attributed to whatever task happens
to be running when the interrupt arrives. Clients could be characterized more ac-
curately if this extraneous time could be excluded, but the nugget does not provide

the information necessary to make this exclusion possible.

6.3 Performance

We can now discuss the performance of the conversation servers produced by the
four versions of the protocol generator. We will first examine two examples for
which the protocol improvement strategies discussed in chapter 5 are not applicable.
These examples allow us to compare the performance of the two versions of the

EXCHANGE protocol with that of the TRIPLE protocol. They also allow us

89

to assess the cost of attempting protocol improvements in situations where the
improvement strategies are not successful. We then examine several examples for

which one or another of the improvement strategies are successful.

The protocols we have studied each exhibit several behavior modes. Such modes
arise for several reasons. A protocol may use different numbers or types of mes-
sages under different circumstances. For example, the TRIPLE protocol uses a
request message and an accept message per transaction when the two clients are
reasonably balanced, but it uses request, wait, resume, and ack messages when
one client is significantly slower than the other. We say the protocol is in wait-
resume mode when four messages per transaction are required. Different modes
also arise from different message crossing patterns. In the ABP version of the
EXCHANGE protocol, each transaction consists of exchanged reliable messages.
If two machines are well synchronized, each machine’s send will complete before
its receive completes. If one machine is slightly behind the other, its receive will
complete before its send completes. If the machine is further behind, its receive
will complete before its send is even initiated. Transaction times may be different
in all three cases, even though the numbers and types of messages are the same.
Some behavior modes seem to be caused by idiosyncrasies of the comnmunication
hardware. Incoming and outgoing messages may interact in strange ways under

certain timing conditions. Such modes are hard to explain or predict.

6.3.1 Simple Producer-Consumer Example

Our first example has a simple producer process sending Item messages to a simple

consumer process. The producer executes the following loop:

90

for i := 1 to Count do

Produce (Object);

Perform (PutItem (conv, Object));
end;

The consumer executes a similar loop:

for i := 1 to Count do
Perform (GetItem (conv, Object));
Consume (Object);

end;

The time it takes to produce or consume an object can be varied, as can the size
of objects.

Figure 6.3 shows the time per iteration as a function of object size using each
of the four versions of the protocol generator, assuming it takes no time to produce
or consume objects. Object size is varied in 100 byte increments, and each datum
is an average over 100 iterations of the loop. The clock is accessed twice, once
before and once after the loop, and the difference is divided by the number of
loop iterations. The measured interval does not include the opening and closing of
conversations, but it does include the early loop iterations when the system may
not have achieved a steady state.

A striking feature of this figure is the mode change that occurs in both versions
of the EXCHANGE protocol at an object size of about 800 bytes. Apparently the
interaction of data messages and acknowledgements changes at that point.

We can draw several conclusions from this figure. First, the behavior of the
ABP version of the EXCHANGE protocol is roughly similar to that of the Nugget
version, but it is about 4 milliseconds per iteration slower. Protocols implemented
on top of the nugget suffer this penalty because they cannot directly access the

hardware clock or the communication device.

Second, the TRIPLE protocol significantly outperforms the Nugget version of

waBoCow t-ﬂ-b—-ap-u--B

29 | Iteration Time

6 .
------- EXCHANGE Protocol (Nugget)
Y EXCHANGE Protocol (ABP)
............. TRIPLE Protocol
) LAZY Protocol
0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Object Size (bytes)

Figure 6.3: Simple producer-consumer — iteration time vs. object size

91

92

the EXCHANGE protocol even though it uses the same nugget facilities as the
ABP version of the EXCHANGE protocol. The performance advantage would be
more pronounced if the TRIPLE protocol had access to the same hardware facilities
as the Nugget.

Finally, the LAZY protocol performs only slightly worse than the TRIPLE
protocol on which it is based. The difference is the overhead for collecting statistics
and looking for improvement opportunities, and we see that it amounts to about
0.7 milliseconds per iteration in this example.

Figure 6.4 illustrates another aspect of this same producer-consumer example.
Tt shows the time per iteration as a function of the time the producer takes to
produce an object, assuming objects are four-byte integers and that it takes no
time to consume an object. Producer time is varied in 1 millisecond increments,
and each datum is an average over 100 loop iterations. The upper set of lines
in this figure display the same data as the main graph, but with the producer
time subtracted out so that the differences among the versions are more apparent.

Several features of this figure must be explained.

First, both versions of the EXCHANGE protocol perform best when the pro-
ducer and consumer are evenly matched, that is, when the producer takes no time
to produce each object. These versions exchange a pair of reliable messages to
accomplish each object transmission, and when the clients are evenly matched the
two messages cross because both clients are decisive. When the producer is slower
than the consumer, the consumer’s message arrives before the producer is ready
with the next object, so the messages do not cross. Apparently this pattern of
messages is less efficient than the crossing pattern. This phenomenon may also
explain the mode change in the last figure, in which the producer and consumer

were evenly matched but the exchanged messages were not of equal size.

20 . Iteration Time — Producer Time

--

15 J» PRI

B

s
[\
o

© B O O M W e

110
100

T [i777777

Iteration Time

R AEEEETEY EXCHANGE Protocol (Nugget)
D L EXCHANGE Protocol (ABP)
27 TRIPLE Protocol

1LAZY Protocol

0 10 20 30 40 50 60 70 8 90 100
Producer Time (milliseconds)

Figure 6.4: Simple producer-consumer — iteration time vs. producer time

93

94

A second feature of this figure is the sudden jump in iteration time that occurs
at a producer time of 75 milliseconds in the TRIPLE protocol curve. This version
of the TRIPLE protocol incorporates a fixed wait delay of 75 milliseconds, so
this jump marks the transition to the wait-resume mode of the protocol. The
conversation servers use two messages per iteration below the transition and four
messages per iteration above the transition. The ABP version of the EXCHANGE
protocol uses four messages per iteration throughout the range, and we see that
its performance is only slightly worse than the TRIPLE protocol in wait-resume

mode.

The LAZY protocol experiences a similar jump in iteration time near the 75
millisecond mark, but the increase is about 3 milliseconds instead of 7. The LAZY
protocol does not have a fixed wait delay, but it does have an a prior: upper
bound of 75 milliseconds on how long any message may be delayed, so this jump
again marks the transition to wait-resume mode. In this situation the LAZY
protocol does not delay the wait message at all, thereby avoiding the costs of
setting a timer and having it expire. However, the main difference between the
TRIPLE and LAZY protocols in this range is that the LAZY protocol is able to
successfully apply one of its protocol improvement strategies. The last of the four
messages per iteration in wait-resume mode is an ack message from the consumer
to the producer acknowledging the producer’s resume message. In this example,
the consumer’s next request message is ready very quickly, so the consumer can
profitably delay the ack so it can be included in the next request. The LAZY
protocol therefore uses three messages per iteration instead of four, accounting for
most of its 4 millisecond per iteration performance advantage over the TRIPLE

protocol.

95

6.3.2 Simple Remote Procedure Call Example

Our second example involves a remote procedure call conversation between a server
and a simple client. The server executes the following statement:

Perform (
Sequence (
Cycle (
Sequence (

GetQuestion (conv, Question),
Action (ComputeAnswer),
PutAnswer (conv, Answer))),

GetExit (conv)));

The client executes the following loop:

for i := 1 to Count do
GenerateQuestion;
Perform (PutQuestion (conv, Question));
Perform (GetAnswer (conv, Answer));
end;
Perform (PutExit (conv));

The time it takes to generate questions and compute answers can be varied arbitrar-
ily. Both questions and answers are four-byte integers. The server’s GetQuestion
event in this example is not specified decisively because the GetExit event is always
a possible alternative. The Answer transaction is specified decisively at both ends.
Figure 6.5 shows the time per iteration for this example as a function of the
time it takes the server to compute an answer, assuming the client takes no time
to generate questions. Each iteration now represents two high-level messages or as
many as eight low-level messages. Server time is varied in 1 millisecond increments,
and each datum is an average over 100 loop iterations.
| In this figure we again see the transition to wait-resume mode of both the
TRIPLE and LAZY protocols near a server time of 75 milliseconds. However, only

the answer transaction is affected, so even above the transition the protocols use

96

m 120

VoW ol oM ¢ IR IR IR ol el

35

30

25]

20 _

Iteration Time — Server Time

--

15 |

110
100 _

Tteration Time .

R EXCHANGE Protocol (Nugget)
S EXCHANGE Protocol (ABP)
------------- TRIPLE Protocol
LAZY Protocol

0 10 20 30 40 50 60 70 8 90 100

Server Time (milliseconds)

Figure 6.5: Simple remote procedure call — iteration time vs. server time

97

only six low-level messages per iteration. In this example, the criteria for delaying
the ack message are not met, so the LAZY protocol is not able to outperform
the TRIPLE protocol either above or below the transition to wait-resume mode.
However, delaying the ack message would in fact be profitable in this situation, so
we see that our conservative decision algorithms sometimes miss valid improvement

opportunities.

The LAZY protocol’s overhead for collecting statistics and searching for im-
provement opportunities is about 2 milliseconds per iteration in this example. Each
iteration represents two high-level messages, but even so the overhead is higher in

this example than in the last.

The TRIPLE and LAZY protocols exhibit sharp performance peaks near a
server time of 3 or 4 milliseconds. The peak marks the point at which the con-
versation tasks generate request messages for the answer transaction at nearly the
same time. Below the peak the server initiates the answer transaction, while above

the peak the client initiates the transaction.

6.3.3 Packaged Remote Procedure Call Example

In our next example we again have a remote procedure call conversation. The server
is unchanged from the last example, but the client is somewhat more sophisticated

and executes the following loop:

for i := 1 to Count do
GenerateQuestion;
Perform (
Sequence (
PutQuestion (conv, Question),
GetAnswer (conv, Answer)));
end;
Perform (PutExit (conv));

98

This client packages the PutQuestion and GetAnswer events in a single regular
expfession rather than executing them individually.

Figure 6.6 shows the time per iteration as a function of the server time for the
TRIPLE and LAZY protocol versions of the protocol generator. The performance
of the two versions of the EXCHANGE protocol on this and later examples is not
shown, because we expect it to be consistent with the earlier examples. The same
is true of the TRIPLE protocol version, but we continue to show its performance
for comparison with the LAZY protocol version. Once again, server time is varied
in 1 millisecond increments and each datum is an average over 100 loop iterations.

In this example, the LAZY protocol is able to take advantage of the additional
information provided by the client to package both the question and answer events
in a single request message. The server’s conversation task can respond with a
single accept message accepting the question and providing the answer, complet-
ing each iteration with just two low-level messages. However, the overhead for
packaging messages is fairly high, so the LAZY protocol outperforms the TRIPLE
protocol by only about 15 percent instead of the 50 percent that might be expected.

Above the 75 millisecond mark, the server responds to the double request mes-
sage with an immediate wait message and later returns a double resume message.
The client’s ack is sent by itself, so each iteration requires four low-level messages
in this range. In the same range the TRIPLE protocol requires six messages per

iteration, two for the question transaction and four for the answer transaction.

6.3.4 Packaged Producer-Consumer Example

We turn now to a less realistic example but one that shows that taking advantage
of the information in plans can be very profitable. In this example, as in the

first example, a producer process sends Item messages to a consumer process, but

30 _
Iteration Time — Server Time

25 . : L

20 i :....-.........--....-....--.-..-..-..-...-...,....-.....]..:

15 .

Iteration Tlme

B

[y
(48]
=

110 |
100 |
90 |
80 |
70 |
60
50]

40 .
30 | TRIPLE Protocol
LAZY Protocol

2 OB O O O U e e e e

20 4
10 |

0 10 20 30 40 50 60 70 8 90 100
Server Time (milliseconds)

Figure 6.6: Packaged remote procedure call - iteration time vs. server time

100

in this case the processes package several communication events in each regular

expression. The producer executes the following code fragment:

putexpr := nil;
for i := 1 to Package do
putexpr := Sequence (putexpr, PutItem (conv, Object[i]));
end;
for i := 1 to Count div Package do
Produce (Object[l .. Packagel);
Append (putexpr, plan);
Wait O
end;
FreeExpression (putexpr);

The consumer executes a corresponding code fragment:

getexpr := nil;
for i := 1 to Package do
getexpr := Sequence (getexpr, GetItem (conv, Object[il));
end;
for i := 1 to Count div Package do
Append (getexpr, plan);
Wait O;
Consume (Object[l .. Packagel);
end;
FreeExpression (getexpr);

In this example we can vary the time it takes to produce and consume objects,
we can vary the size of objects, and we can vary the number of objects that are
packaged in each regular expression. The loop limits are adjusted so that tests
with different package counts generate the same number of transactions. We will
be concerned with the time per transaction rather than the time per iteration of

the loop.
Figure 6.7 shows the time per transaction as a function of the number of events
per package, using four-byte objects and assuming it takes no time to produce

or consume objects. Package count is varied from 1 to 10, and each datum is an

101

Transaction Time

............. TRIPLE Protocol
4| — | AZY Protocol

B AB OO0 W B

Package Count

Figure 6.7: Packaged producer-consumer — transaction time vs. package count

102

average over 2520 transactions. This number is the smallest integer evenly divisible
by all the integers between 1 and 10 inclusive.

The TRIPLE protocol version is able to take some advantage of the larger pack-
age counts because its overhead per event is reduced, but it always sends the same
number of messages so its performance increases only marginally as more events
are packaged in each regular expression. The LAZY protocol, on the other hand,
can fit all the packaged objects in a single message, so its performance improves
dramatically with package count.

Figure 6.8 shows the same example, but this time varying the object size while
keeping the package count fixed at 100 objects pér package. Object size is varied in
100 byte increments, and each datum is an average over 1000 transactions, which
amounts to 10 loop iterations.

As objects get larger, fewer and fewer will fit in a single low-level message.
Above 1000 bytes only one object will fit in each message, so in this range the
LAZY and TRIPLE protocols perform comparably, the LAZY protocol suffering
an overhead of about 0.3 milliseconds per transaction. On smaller objects the
LAZY protocol significantly outperforms the TRIPLE protocol. Three of these
object sizes allow two objects per message, and two of them allow three objects
per message. This observation accounts for the plateaus that occur in the lower

portion of the LAZY protocol curve.

6.3.5 Buffered Producer-Consumer Example

Our last example also involves a producer-consumer conversation, but in this case
the client processes buffer their requests, that is, they begin working on the next
request without first waiting for the previous request to complete. The producer

executes the following code fragment:

Transaction Time

oM oCO0w t—l-»—-r--r--B

o S e TRIPLE Protocol
LAZY Protocol

1]

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Object Size (bytes)

Figure 6.8: Packaged producer-consumer — transaction time vs. object size

103

104

putexpr := PutItem (conv, Object);

Produce (Object);

Append (putexpr, plan);

for i := 1 to Count - 1 do
Produce (NextObject);
Wait Q;
Object := NextObject;
Append (putexpr, plan);

end;

Wait O;

FreeExpression (putexpr);

The consumer executes the corresponding fragment:

getexpr := GetItem (conv, Object);
Append (getexpr, plan);
for i := 1 to Count - 1 do
Wait Q);
LastObject := Object;
Append (getexpr, plan);
Consume (LastObject);
end;
Wait Q;
Consume (Object);
FreeExpression (getexpr);

As before, we can vary the size of objects and the time it takes to produce and
consume objects.

Figure 6.9 shows the time per iteration of this example as a function of producer
time, assuming four-byte objects and a consumer time of zero. Producer time is
varied in 1 millisecond increments, and each datum is an average over 100 loop
iterations.

This example illustrates all three of the conversation-based protocol improve-
ment strategies discussed in section 5.2. We will examine the features of this figure

in order of increasing producer time.

For very small producer times, the two clients generate events simultaneously,

105

20 _
Iteration Time — Producer Time

15 4

)

Iteration Time

B

p—
[\
(=

110
100

Y LB O O D 2 e e i e
oo
o
1

............. TRIPLE Protocol
LAZY Protocol

0 10 20 30 40 50 60 70 80 90 100
Producer Time (milliseconds)

Figure 6.9: Buffered producer-consumer — iteration time vs. producer time

106

and since both events are specified decisively the conversation tasks send crossing
request messages. None of the message delay strategies are applicable in this mode,
so the TRIPLE protocol outperforms the LAZY protocol by an amount equal to

the overhead for collecting statistics and searching for improvement opportunities.

When the producer takes at least 5 milliseconds to produce each object, the
consumer’s request message arrives before the producer generates the matching
event. When the event is generated, the producer’s conversation task has the
option of sending an accept message immediately or delaying it and later sending
a combined accept-request message. The criteria for choosing the latter course
are met in this example because the producer is double buffering its objects. The
consumer’s conversation task can respond to the combined accept-request message
with an accept-request message of its own, because the response will arrive before
the producer needs the accept. Therefore the LAZY protocol uses one message per
iteration in the producer time range of about 5 to 35 milliseconds. Each message
completes one transaction and initiates the next. In this range the LAZY protocol
uses less than 6.4 milliseconds per iteration, excluding the time it takes to produce

objects. This time represents a 23 percent improvement over the TRIPLE protocol.

At a producer time of about 35 milliseconds, the producer’s conversation task
can no longer delay accept messages because the time to produce two objects begins
to exceed the 75 millisecond a priori bound on how long messages may be delayed.
However, it can still delay its response to the consumer’s request message until one
object is produced, so it can send accept messages rather than wait and resume
messages. In the producer time range of about 35 to 75 milliseconds the LAZY
protocol’s performance is slightly less than that of the TRIPLE protocol with its
fixed 75 millisecond wait delay.

Near a producer time of 75 milliseconds both protocols switch to wait-resume

107

mode, but here, as in the first example, the LAZY protocol is able to include the
ack messages of that mode in other request messages. Above 75 milliseconds the

LAZY protocol outperforms the TRIPLE protocol by about 26 percent.

Throughout the range of producer times the performance of the TRIPLE pro-
tocol at best slightly exceeds that of the LAZY protocol, and over much of the

range the LAZY protocol is significantly better.

6.4 Summary

The performance measurements presented in this chapter can be summarized as
follows. In the EXCHANGE protocol implementation using reliable nugget mes-
sages, communication overhead is approximately 9.1 milliseconds per transaction
plus 0.004 milliseconds per byte of client data transferred. The alternating-bit
implementation of the EXCHANGE protocol adds an extra 3.6 milliseconds per
transaction. We attribute this additional cost to the fact that the nugget’s re-
liable protocol has more direct access to the communication hardware than the
alternating-bit protocol implemented on top of the nugget. The TRIPLE proto-
col implementation has two major behavior modes, accept mode and wait-resume
mode. In accept mode, its communication overhead is approximately 8.4 millisec-
onds per transaction plus 0.002 microseconds per byte of client data transferred.
The overhead is increased by approximately 6.9 milliseconds per transaction in

wait-resume mode.

The LAZY protocol implementation incurs the additional overhead associated
with maintaining runtime statistics and searching for improvement opportunities.
The extra cost ranges from 0.4 to 0.9 milliseconds per transaction, which represents

an increase of 5 to 10 percent over the communication overhead of the TRIPLE

108

protocol implementation. This increased overhead is offset by the performance gain
realized when one or more of the protocol improvement strategies are successful.
The plan-based improvement strategy yields net performance improvements as high
as 84 percent, while the conversation-based strategies yield net improvements as
high as 26 percent. These results show that application-specific information can
often be used to improve the application’s communication efficiency. We cannot
calculate an overall “average” improvement because we do not have any notion of

what constitutes an average application program.

The implementation effort described in this chapter has been valuable, not so
much because it allowed us to obtain concrete performance measurements, but be-
cause it brought to our attention flaws in the basic design of the protocol system
itself and in our protocol improvement algorithms. For example, early versions of
the design did not include the function Wait. Application processes had to use
the procedure Sleep, which blocks the calling process until all outstanding regu-
lar expressions have been completed and deallocated. A process could not reuse
a regular expression, nor could it maintain a buffer of two or three outstanding
expressions. We did not discover these design shortcomings until we had built
an implementation advanced enough to take advantage of the additional informa-
tion sophisticated application processes could provide. Problems we encountered
during the implementation also led us to realize how easily delaying certain mes-
sages can lead to decreased client parallelism. This realization forced us to expand
the set of statistics maintained at runtime and to increase the complexity of the
message-delay decision algorithms. The performance measurements presented in
this chapter are not surprising because all the surprising numbers we encountered
during the course of the implementation led to modifications of the system design

or to changes in the improvement algorithms.

Chapter 7

Future Work

The research described in this dissertation can be extended in several directions.

7.1 Improved Algorithms

The protocol improvement strategies outlined in chapter 5 make use of some of the
information contained in plans and conversation descriptions, but they also miss
many improvement opportunities.

The plan-based improvement strategy described in section 5.1 attempts to pack-
age nontrivial plan fragments in each low-level message. The algorithm considers
only fragments that consist entirely of communication events that all belong to the
same conversation. It should be possible to make effective use of fragments that
include action procedure calls, although it might be necessary to maintain runtime
estimates of the running times of such procedures. Fragments that involve more
than one conversation may also be useful. Two communication events belonging
to one conversation, but separated by an event belonging to a different conversa-
tion, could still be packaged in a single message provided the intervening event is

completed quickly. Runtime statistics could be used to recognize such situations.

109

110

The conversation-based improvement strategies described in section 5.2 can also
be improved. Better runtime characterizations of client behavior would allow more
accurate improvement decisions. Also, better algorithms may be able to recog-
nize more improvement opportunities, given the client statistics that are currently

maintained.

7.2 Improved Conversation Descriptions

More protocol improvements might be possible if conversation descriptions con-
tained more information.

A major shortcoming of conversation descriptions as they are currently defined
is that they contain no timing information. The remote procedure call description
says that an Answer message will be sent in response to each Question message,
but it says nothing about how quickly the response will be generated. Therefore
the protocol generator cannot always use the Answer as an acknowledgement of
the Question but must instead rely on timing information derived at runtime.
Conversation descriptions could include some sort of timing constraints that reflect
the expected uses of the conversation. Clients that fail to meet the constraints
might receive less efficient service, or they might be aborted.

Conversation descriptions might include other constraints on how a conversation
may be used. Knowledge that certain messages in a conversation must always be
sent or received decisively could allow the protocol generator to accomplish those
messages more efficiently. Such knowledge would allow agents to avoid some of the

guesses they currently make.

Finally, conversation descriptions might be extended to include unreliable as

well as reliable message classes. Such an extension would make the protocol gen-

111

erator useful to a wider variety of applications.

7.3 Improved Plans

If plans were more powerful, programmers could make more use of them, giving
the system more information on which to base improvements. Plans are the means
by which clients specify their intentions to their agents, and the more completely
those intentions are specified the more chance the agents would have of improving
their clients’ communication efficiency. Several operators in addition to the regular

expression operators Sequence, Choice, and Cycle might be useful.

One simple and useful operator would be a definite iterator, analogous to a for-
loop, that would specify that a regular expression is to be executed a particular
number of times. As plans are currently defined, a client that wants to send exactly
a thousand messages must either build an enormous linear plan, or it must execute
a smaller plan in an explicit loop. Making such loop information visible to the

agents should allow them to execute plans more efficiently.

Other useful operators might be analogues of if-statements and while-loops.
Such operators would require a new type of primitive plan element that might be
called a “condition”. A condition would be a Boolean function similar to an action
procedure that would be called during the execution of a plan to determine which
of the alternate expressions in an if-statement to execute or whether to exit a
while-loop. These operators would allow programmers to describe their intentions
very precisely. Runtime statistics could be used to estimate the likely results of
condition functions. Agents could base their actions on the estimates, but they
must always be able to recover cleanly from bad guesses. This problem is similar

to the difficulty faced by hardware architects in designing machines that prefetch

112

instructions or data, and that therefore need to predict the outcome of conditional

branch instructions.

These enhancements give plans much of the power of programming languages.
The next logical step would be to provide a syntactic interface to plans, rather than
the cumbersome procedural interface currently provided. Standard infix regular
expression operators could be used, and program fragments could be included
directly in plans, eliminating the necessity of action procedures. The compiler
for this language could then derive useful information about loops and conditional

statements in application programs.

7.4 Relaxed Semantics

The current semantics of conversations and plans, which are derived from CSP,
make each high-level message a synchronization point for the processes involved.
This strictness precludes some improvements that would otherwise be possible.
Many application programs do not depend on the strict synchronization provided
by the semantics. For example, the producer process in a producer-consumer ex-
ample would not ordinarily mind if the system buffers several of the produced
objects, so long as they eventually reach the consumer. We might alter the se-
mantics of plans to allow decisively specified Put(class) communication events to
complete before the matching Get(class) events have been submitted. This change
would allow a greater degree of parallelism between the clients at opposite ends of a
conversation. It would allow some of the conversation-based protocol improvement
strategies to succeed in more situations, including situations that currently require
clients to double buffer their requests. Clients that require the synchronization

provided by the old semantics could use Trade(class) events that are synchroniz-

113

ing by nature. Unfortunately, relaxing the semantics in this manner breaks the

symmetry of sends and receives that is one of the appealing aspects of CSP.

Another powerful feature of the semantics of our system and of CSP is the
“exactly one” property of alternative clauses. This property promises that one and
only one of the possible alternative communication events at any point in a plan
will be accomplished. Once again, many clients could as easily use an “at least
one” property that could be implemented more efficiently. For example, a bounded
buffer process is usually willing to complete either a GetItem or PutIten communi-
cation event, but it can just as easily tolerate the simultaneous completion of both
events. However, clients that rely on the current semantics would be considerably
more complicated if less powerful semantics were provided. A good example is the
stream-oriented file server of Figure 3.6. The heart of the server’s plan is a choice
between PutData, GetData, and GetSeek communication events. The server can-
not tolerate the simultaneous completion of both the PutData and GetSeek events,
because the action following the reception of a seek message modifies the outgo-
ing data buffer. The client may get the wrong data. Without the “exactly one”
property of alternative clauses, file servers and clients would have to follow a more
complicated handshaking procedure to correctly handle seek requests. Perhaps an
“at least one” variant of the Choice operator could be provided for those clients

that do not require the power of the current semantics.

7.5 Better Theoretical Foundation

The ad hoc algorithms of section 5.2 for choosing an appropriate wait, ack, or
accept delay should be placed on a better mathematical foundation. These al-

gorithms attempt to recognize situations in which delaying a particular message

114

would be profitable, but they involve arbitrary constants such as the parameter k&
that controls the number of measurements included in statistics, and the a priors
upper bound on how long any message may be delayed. Furthermore, they use
the minimum and maximum of the last k values of a variable to characterize the
variable, when other functions of the past values might be more appropriate.

We can at least make a step toward putting these algorithms on a better theo-
retical basis. For example, consider the choice of an appropriate wait delay in the
LAZY protocol. A conversation server that has received a request message and
whose plan driver does not currently have a matching communication event must
decide whether, and by how much, to delay its wait message in hopes of sending
an accept message instead. If we could assign an expected cost to each possible
wait delay, we could choose the delay that minimizes the expected cost.

The expected cost has two components. First, if we choose a delay that is too
short, we incur the costs of sending two additional messages. Second, the longer
the delay we choose, the longer it takes to recover from lost messages, because the
original server must allow time for the wait delay and a message roundtrip before
retransmitting its request message.

These statements must be quantified to be useful. Let C(d) be the cost function
that assigns an expected cost to each possible wait delay d, d > 0.

The first component of this cost is 2M if d is too small and 0 otherwise, where
M is the message transmission time of the underlying communication system. Let
W measure the length of time between the arrival of the request message and the
client’s submission of a matching communication event. Then the first component
of the expected cost is 2M Pr[W > d], where Pr[W > d] is the probability that W
exceeds d. We can regard W as a nonnegative random variable with distribution

function Fw, in which case the expected cost’s first component can be written as

115

2M (1 — Fy (d)).

To a first approximation, the second component of the cost is 0 if no messages
are lost and 2M -+ d otherwise, because the original server’s retransmission interval
must exceed 2M + d. Let L be the probability that the underlying communication
system loses any particular message. Then the second component of the expected
cost is simply L(2M + d), ignoring the possibility of two or more lost messages.

We can therefore write the expected cost function C(d) as:
C(d) = 2M(1 — Fy(d)) + L(2M + d)

or

C(d) = 2M(1 + L) — 2MFy (d) + Ld

In this formula, M and L are constant characteristics of the underlying communi-
cation system, and Fw is a characteristic of the client’s behavior in this situation. _

Figure 7.1 shows the expected cost function for three different values of the
message-loss probability L, assuming a message transmission time M of 2 millisec-
onds and that W is normally distributed with a mean of 50 milliseconds and a
standard deviation of 5 milliseconds.

Once the expected cost function has been defined, the location of its minimum
value can be determined. The general shape of the expected cost curve is deter-
mined by the shape of the probability distribution function Fyw. All distribution
functions of nonnegative random variables start somewhere between 0 and 1 at the
origin and increase monotonically to 1 (perhaps asymptotically). Therefore the
expected cost function includes a constant term 2M (1 + L), a monotonically de-
creasing term —2M Fy (d) and a monotonically increasing term Ld. The location of
the minimum expected cost is not affected by the constant term, but is determined

by the interplay of the decreasing and increasing terms. If the function is smooth,

116

10 .

Expected Cost (milliseconds)

,| M=2ms L =0.01
W normally distributed
1 50 ms. mean
’ 5 ms. standard deviation
0

0 10 20 30 40 50 60 70 80
wait Delay (milliseconds)

Figure 7.1: The expected cost of delaying a wait message

117

its minimum value must occur at the origin or at a point where the function’s first
derivative is 0. Otherwise the minimum value may also occur at a point where the
function’s first derivative is undefined.

Cost functions that involve a standard continuous distribution, such as the nor-
mal, the exponential, or the uniform distribution, have at most one local minimum
other than the origin. The decision as to whether to delay a wait message then
boils down to the question of whether the expected cost at that local minimum is
less than th;a expected cost at the origin. If not, the wait should be sent immedi-
ately. Otherwise it should be delayed by an amount determined by the location of
the local minimum.

For example, if W is normally distributed with mean p and variance o?, then

d
Fy(d) = / \/Z_tr?e—%(z-u)z/m dz

-0

and C(d) has a local minimum at the delay

i = 1+ \l ~20%1n (L” 2’"’?)

T 2M

provided Lv/27mo? < 2M. The wait message should be delayed if C(dmin) < C(0)
and sent immediately otherwise. Unfortunately, this criterion cannot be evaluated
cheaply since it involves several transcendental functions and a definite integral
that does not have a closed functional form.

We have now reduced the problem of choosing an appropriate wait delay to
the problem of determining the distribution function Fw of the random variable W
that measures the length of time between the arrival of the request message and
the appearance of a matching communication event. An estimate of the distribu-

tion function can be based on the measurements of the client’s past behavior. A

118

large body of statistical machinery has been developed for exactly the purpose of
estimating the distribution of a random variable from a set of observations of the
variable’s value [Mood74]. The standard approach would be to assume some form
for the variable’s distribution and to use past values of the variable to estimate
the parameters that characterize a particular member of the assumed family of
distributions. For example, we might assume that W is normally distributed, in
which case the sample mean and sample variance are our best estimators of the
parameters u and o2 that characterize the normal distribution. (Tt is interesting
to note that the best estimators of the parameters of the uniform distribution are
the sample minimum and the sample maximum. Perhaps an implicit assumption
of uniformity underlies the decision strategies described in section 5.2.) We must
still allow for the fact that W’s distribution may vary with time, so parameter
estimates based on the last k observations or on a geometrically weighted average
of the past observations might be appropriate.

This analysis places the choice of an appropriate wait delay on a firm theoret-
ical foundation. We simply choose the delay that minimizes our expected costs.
Unfortunately, the cost function described in the last few paragraphs is only an
approximation to the true cost function. A more accurate function would include
the costs of handling timers, it would better reflect the costs incurred when mes-
sages are lost, and it would allow for interactions with other improvement attempts.
For example, a lost request message costs nothing if it can be retransmitted and
delivered before the matching communication event is available, and the cost of
choosing an insufficient wait delay is only one extra message if the final ack can

be included in a later message.

Ideally, we would analyze an entire conversation and choose parameter values

that jointly minimize the conversation’s expected execution time. We would deco-

119

rate the conversation’s DFA with estimated transition probabilities and estimated
distributions of the time intervals between transitions, and from that information
we would determine parameter values that are jointly optimal. A step toward this
ideal would be to analyze acyclic paths through the DFA in an effort to jointly
optimize the parameters involved in the path.

Placing our various protocol improvement strategies on a firmer theoretical and
mathematical foundation would allow us to consider “protocol optimization”, not

just “protocol improvement”.

Chapter 8

Conclusions

The research described in this dissertation makes a step in the direction of im-
proving application-level communication efficiency by using information provided
by, and derived from, the application itself. It also addresses a gap in the existing
hierarchy of protocol development systems.

A communication protocol can be considered at three levels of increasing ab-
straction, the implementation level, the protocol specification level, and the service
specification level. Protocol verification systems attempt to demonstrate that a
proposed protocol specification meets some required service specification. Proto-
col implementation systems construct concrete implementations based on abstract
protocol specifications. Our protocol generation system creates a protocol imple-
mentation directly from a limited form of service specification we call a conversation
description.

A conversation description is a high-level specification of the service provided
by an abstract communication channel. It does not include such implementation
details as sequence numbers, acknowledgements, or retransmissions. The proto-

col generator described in this dissertation builds a communication protocol that

120

121

provides the service specified by a conversation description. A deterministic finite
automaton (DFA) drives each end of the constructed protocol. The automaton
is the product of two DFA’s, one constructed from the conversation description’s
regular expression and another that incorporates sequence numbers, retransmis-
sion timers, and acknowledgements. The latter DFA is a common component of
all constructed protocols. The conversation-specific component enriches the state
space of the constructed protocol, making the protocol more adaptable to its en-
vironment than standard protocols. The enriched state space lets us maintain a
detailed characterization of the runtime behavior of the application process. Using
this characterization, we can predict the success or failure of protocol improvement
strategies, and we can select appropriate values for protocol parameters.

We have defined an interprocess communication mechanism we call a plan. Ap-
plication processes use plans dynamically to participate in conversations. Plans are
a generalization of CSP’s communication mechanism. They allow all regular ex-
pression operators, not just alternation, and they relax CSP’s prohibition of output
statements in guards. We allow indecisively specified output events, which are out-
put events that appear at choice points in plans, but we define the event-matching
criteria in such a way that each pair of matching communication events must in-
clude at least one decisively specified event. This relaxed restriction restores the
symmetry of input and output events and also allows an efficient implementation.
The TRIPLE protocol presented in chapter 4 is an efficient low-level communica-
tion protocol we use to implement plans. It could also be used to implement a
version of CSP that allows both input and output guards but that requires at least

one of each matching pair of communication statements to be deterministic.

Plans are another source of application-specific knowledge that can be used

to increase the efficiency of the application’s communication. They contain infor-

122

mation about the immediate and future communication intentions of application
processes. Knowledge of future intentions often allows us to use fewer low-level
messages to accomplish the intended communication than would be necessary if

the knowledge were not available.

Our implementation of the protocol generator supports application processes
running on the Crystal multicomputer. We have evaluated the performance of
several typical applications. The overhead associated with making runtime mea-
surements and searching for improvement opportunities ranges from 5 to 10 percent
of the time needed to accomplish a single communication event involving no data.
The various improvement strategies yield performance gains ranging from 0 to 84

percent.

We believe these results justify our contention that application-level communi-
cation efficiency can be significantly improved using information provided by, and

derived from, the application itself.

123

References

[Aho77] Aho, A. V. and J. D. Ullman, Principles of Compiler Design,
Addison-Wesley, 1977.

[Anderson85] Anderson, D. P., Protocol Specification by Real-Time Attribute
Grammars, Ph.D. Thesis, 1985

[Bernstein80] Bernstein, A. J., “Output Guards and Nondeterminism in
‘Communicating Sequential Processes’,” ACM Transactions on
Programming Languages and Systems 2:2 (April 1980), pp. 234-238.

[Bochmann80] Bochmann, G. V., “A General Transition Model for Protocols
and Communication Services,” IEEE Transactions on Communications
28:4 (April 1980), pp. 643-650.

[Brand78] Brand, D. and W. H. Joyner, Jr., “Verification of Protocols using
Symbolic Execution,” pp. 351-360 in Computer Networks, North-Holland,
1978.

[Buckley83] Buckley, G. N. and A. Silberschatz, “An Effective
Implementation for the Generalized Input-Output Construct of CSP,”
ACM Transactions on Programming Languages and Systems 5:2 (April
1983), pp. 223-235.

[Cheriton83] Cheriton, D. R. and W. Zwaenepoel, “The Distributed V
Kernel and its Performance for Diskless Workstations,” Proceedings of the
Ninth ACM Symposium on Operating Systems Principles, 10-13 October
1983, pp. 128-139. In ACM Operating Systems Review 17:5.

[Chow85] Chow, C. H., M. G. Gouda, and S. S. Lam, “A Discipline for
Constructing Multiphase Communication Protocols,” ACM Transactions
on Computer Systems 3:4 (November 1985), pp. 315-343.

[Clarke86] Clarke, E. M., E. A. Emerson, and A. P. Sistla, “Automatic
Verification of Finite-State Concurrent Systems Using Temporal Logic
Specifications,” ACM Transactions on Programming Languages and
Systems 8:2 (April 1986), pp. 244-263.

124

[Cook83] Cook, R., R. Finkel, D. DeWitt, L. Landweber, and T.
Virgilio, “The Crystal Nugget: Part I of the First Report on the Crystal
Project,” Technical Report 499, Computer Sciences Department,
University of Wisconsin - Madison, April 1983.

[Danthine80] Danthine, A. A. S., “Protocol Representation with Finite-State
Models,” IEEE Transactions on Communications 28:4 (April 1980),
pp. 632-643.

[Finkel83] Finkel, R., M. Solomon, D. DeWitt, and L. Landweber, “The
Charlotte Distributed Operating System: Part IV of the First Report on
the Crystal Project,” Technical Report 502, Computer Sciences
Department, University of Wisconsin - Madison, July 1983.

[Good77] Good, D. I., “Constructing Verified and Reliable Communications
Processing Systems,” ACM SIGSOFT Software Engineering Notes 2:5
(October 1977), pp. 8-13.

[Hoare78] Hoare, C. A. R., “Communicating Sequential Processes,” CACM
21:8 (August 1978), pp. 666-677.

[Ichbiah79] Ichbiah, J. D. et al., “Preliminary Ada Reference Manual,” Sigplan
Notices 14:6 (June 1979).

[Lampson80] Lampson, B. W. and D. D. Redell, “Experience with Processes
and Monitors in Mesa,” CACM 23 (February 1980), pp. 105-117.

[Leblanc82] Leblanc, T. J., The Design and Performance of High-Level
Language Primitives for Distributed Programming, Ph.D. thesis, 1982

[Linn83] Linn, R. J., J. S. Nightingale, and W. H. McCoy, “Testing OSI
Protocols: A Compendium of Papers,” Report No. ICST/SNA - 83-1,
National Bureau of Standards, Washington, D.C., June 1983.

[Merlin76] Merlin, P. M., “A Methodology for the Design and Implementation
of Communication Protocols,” IEEE Transactions on Communications
24:6 (June 1976), pp. 614-621.

[Molloy82] Molloy, M. K., “Performance Analysis Using Stochastic Petri Nets,”
IEEE Transactions on Computers 31:9 (September 1982), pp. 913-917.

[Mood74] Mood, A. M., F. A. Graybill, and D. C. Boes, Introduction to
the Theory of Statistics, McGraw-Hill, 1974.

125

[Nash83] Nash, S. C., “Automated Implementation of SNA Communication
Protocols,” IEEE International Conference on Communication, June
1983.

[Postel81] Postel, J., “Transmission Control Protocol - DARPA Internet
Program Protocol Specification,” RFC 793, Information Sciences
Institute, University of Southern California, September, 1981.

[Ramamoorthy85] Ramamoorthy, C. V., S. T. Dong, and Y. Usuda, “An
Implementation of an Automated Protocol Synthesizer (APS) and Its
Application to the X.21 Protocol,” IEEE Transactions on Soft Ware
Engineering SE-11:9 (September 1985), pp. 886-908.

[Rand-Corporation80] Rand Corporation, “Formal Methods for
Communication Protocol Specification and Verification,” Report No.
ICST/HLNP - 80-7, National Bureau of Standards, Washington, D.C.,
June 1980. Draft Report.

[Saltzer84| Saltzer, J. H., D. P. Reed, and D. D. Clark, “End-To-End
Arguments in System Design,” ACM Transactions on Computer Systems
2:4 (November 1984), pp. 277-288.

[Sidhu83] Sidhu, D. P. and T. P. Blumer, “An Automated Protocol
Development System,” IEEE Symposium on Application and Assessment
of Automated Tools for Software Development, 1983, pp. 10-23.

[Spector82] Spector, A. Z., “Performing Remote Operations Efficiently on a
Local Computer Network,” CACM 25:4 (April 1982), pp. 246-260.

[Sunshine8l| Sunshine, C. A., “Formal Modeling of Communication
Protocols,” RR-81-89, Information Sciences Institute - University of
Southern California, March 1981.

[Tanenbaums81] Tanenbaum, A., Computer Networks, Prentice-Hall, 1981.

[Teng78] Teng, A. Y. and M. T. Liu, “A Formal Model for Automatic
Implementation and Logical Validation of Network Communication
Protocol,” NBS Computer Networking Symposium, IEEE, 1978,
pp. 114-123.

[Thompson8l] Thompson, D. H., C. A. Sunshine, R. W. Erickson, S. L.
Gerhart, and D. Schwabe, “Specification and Verification of
Communication Protocols in AFFIRM Using State Transition Models,”
RR-81-88, Information Sciences Institute - University of Southern
California, March 1981.

126

[West78] West, C. H., “General Technique for Communications Protocol
Validation,” IBM Journal of Research and Development 22:4 (July 1978),
pp. 393-404.

[Wirth82] Wirth, N., Programming tn MODULA-2, Springer-Verlag, 1982.

[Zafiropulo78] Zafiropulo, P., “Protocol Validation by Duologue-Matrix
Analysis,” IEEE Transactions on Communications 26:8 (August 1978),
pp. 1187-1194.

