Image Processing Algorithms for the
Pipelined Image-Processing Engine

by
Gilbert Verghese
Shekhar Mehta
Charles R. Dyer
Computer Sciences Technical Report #668

September 1986

Image Processing Algorithms for the
Pipelined Image-Processing Engine

Gilbert Verghese
Shekhar Mehta
Charles R. Dyer

Computer Sciences Department
University of Wisconsin
Madison, WI 53706

Abstract

In this paper we describe nine basic vision algorithms for the National Bureau of Standards’
Pipelined Image-Processing Engine (PIPE). The algorithms presented are: local peak detection,
median filtering, thinning, the Hough transform for line detection, photometric stereo, n-bit point
operations, detecting edges at multiple resolutions, stereo vision, and multiresolution, model-
based object recognition.

The support of the National Bureau of Standards under Order No. NANB510565 and the
National Science Foundation under Grant No. DCR-8520870 is gratefully acknowledged.

1. Introduction

Recently a number of architectures have been designed for real-time, low-level image
processing. In order to evaluate the relative advantages and disadvantages of these different
architectures it is necessary to design and implement various standard operations on each of the
machines and compare their performance. In this paper we describe algorithms for nine common
image processing operations that can be implemented on the National Bureau of Standards’

Pipelined Image-Processing Engine (PIPE) [1].

PIPE consists of a linearly connected array of processing stages. Each stage contains some
local image buffer memory and specialized hardware functional units for performing several
basic image processing operations such as point and neighborhood functions. Each operation is
applied to an entire 256 X 256 image. The data communication paths between adjacent stages are
used to transfer images produced in one stage to other stages where they are input to other

operations.

In order to better assess the PIPE architecture for low-level image processing, we

investigate in this paper the implementation of the following tasks:

Local peak detection

Median filtering

Thinning

Hough transform for line detection

Photometric stereo

n-bit point operations

Computing zero-crossing pyramids

Stereo vision

Multiresolution, model-based object recognition

We have selected this set of tasks because it represents a wide range of types of operations
which are frequently performed in image processing and computer vision applications. Local
peak detection and median filtering are nonlinear, local operations. Thinning is an iterative, local
process. The Hough transform is a global, many-to-one operation. Photometric stereo and n-bit

point operations are examples of generalized point operations. The last three tasks all involve the

use of multiresolution representations. First we describe the detection of edges at multiple
resolutions, constructing a zero-crossing pyramid using PIPE. Second, we describe an
implementation of the Marr-Poggio stereo matching algorithm. Finally, we present a coarse-to-
fine matching algorithm for model-based object recognition which uses the zero-crossing

pyramid as its basic representation.

For each task we present a PIPE algorithm specified by a network of basic operations which
can be directly executed by the appropriate functional units in one or more stages. Speeds of the
algorithms are also given in terms of number of time units, where one time unit equals one PIPE
field-ime or 1/60 second. Several of the more complicated operations are not completely
implemented in PIPE. For these algorithms, the operations associated with the host are also

specified but their timings are not given.

Section 2 describes the details of the PIPE architecture. Sections 3-11 present PIPE

algorithms for the tasks listed above (in that order).

2. PIPE Architecture

In this section we describe the architecture of PIPE. For more details, see [1,2]. PIPE is
designed for parallel processing of two-dimensional image data only. All operations are applied
to one or more images and all data paths communicate images. The organization of PIPE is a
linear sequence of processors, called stages, plus two specialized stages for input and output.
Each stage has its own local image memory, called image buffers, which is used to store

intermediate image results. There is no shared global memory.

Image data communication between stages is accomplished via direct interconnections from
each stage to its two adjacent neighbors and to itself as shown in Fig. 1. Because all operations
performed in each stage take a fixed amount of time, communication between stages can be
performed synchronously at the end of each time unit. Thus, at the end of each time unit each
stage, I, can output up to three images independently. One output goes to stage i+1 via the
forward path. A second goes to stage i—1 via the backward path. A third is output to stage i
itself via the recursive path. In addition to direct communication with each stage’s nearest
neighbors, PIPE has two "wildcard" buses, called VBUS A and VBUS B, which may be used to
output an image to one or more arbitrary stages. Only one image may occupy each of these

wildcard paths during any time unit.

The input stage receives images from up to two input devices. It outputs an image either to
stage 1 via its forward path, or to other stages via one of the wildcard buses. The output stage
receives images from the last stage’s forward path or from other stages via a wildcard bus. This
stage outputs images to the host or to a special processor called ISMAP. ISMAP maps an image
of values into an "inverted index" form which specifies for each possible value which coordinates

in the image contain that value.

A pipeline of operations can be performed on a sequence of images passing through PIPE as

follows. Each stage performs a sequence of operations on an image it receives from the previous

1SOH

dVINSI

/[

"

A4

//

"3d1d Ul syred uonedsiunwwod abew: pue sabeys jo uoneziuebio | "bi4

abejs
nduy

«— Blawe)

abels //ﬂ
1ndinQ N abels |¢ | abeis
A A —n A A g A A

<
.

asnan

//
3

Vv SNaAn

stage and then passes its resulting image to the next stage for further processing. The final image
output by the last stage exits PIPE through the output stage to the host. In this scheme there is a
continuous, one-way flow of images through PIPE using the forward paths to communicate
images between stages. However, because of the presence of the additional communication
pathways in PIPE (i.e., the backward path, recursive path and two wildcard buses), there is
considerably more flexibility in defining sequences of image operations. That is, PIPE is in effect
a linearly connected set of synchronous, MIMD parallel processors, where each processor is

specially designed for performing image processing operations.

Fig. 2 shows an individual stage of PIPE. Within a stage three basic types of image
operations can be performed. All operations in a stage take place within 1/60 second. The
simplest is a point operation in which each pixel’s value is transformed into a new pixel value by
a specified function. This function depends only on the given pixel’s value and not its spatial
position in the image. These operations are implemented via lookup tables which are shown in
Fig. 2 as LUT functional units. LUT’s in this and subsequent figures are shown as rectangles.
The second type of operation includes all arithmetic and Boolean functions of two operands
which compute the value of an output pixel as a function of the corresponding pair of pixels in
the two input images. A simple arithmetic logic unit, denoted ALU in Fig. 2, computes these
results. ALU’s are shown here and subsequently as parallelograms. Finally, 3 X 3 neighborhood
operations can be specified which compute the value of an output pixel as an arithmetic or
Boolean linear combination of the nine values in a 3 by 3 block of pixels centered at the
corresponding point in the input image. Each PIPE stage contains two hardware units for
performing these types of operations; in Fig. 2 these are shown as NBR functional units. NBR’s

are shown using circles in this and other figures below.

The hardware functional units in a stage can be grouped into two parts: those functional
units that are before the stage’s image buffers and those that follow them. Currently, each PIPE

stage can contain up to thirty-two 256 X 256 image buffers.

from from from

stage i stagei-1 stagei+1 VFE{BrSnA
RECURSIVE | |BACKWARD FORWARD
LuUT LUT LUT

l

From
VBUS B

B
RO! CONTROL 255U XF§5E5RX3
|
|
77777 7] [
PRENBR LUT ?4 I
A !

NBR @

A4

Jod b

stage/ stagei-1 stagei+1 VBUSA VBUSB

<
al

Fig. 2. Block diagram of a single stage of PIPE showing
the image buffers, look up tables (LUT), neighborhood
operators (NBR), region of interest controller (ROI) and
ALU’s. The shapes associated with these functional
units will be used throughout the remaining figures.

The pre-buffer functional units are used to combine up to three input images into one using
the LUT’s and ALU’s shown in Fig. 2. Input to the image buffers is from either ALLU B or one of
the wildcard buses. Stage buffers can store images for an arbitrary length of time. At each time
unit some selected buffers may be written into. All others retain their previous contents. This is

important in maintaining results from prior operations for future use.

Following the image buffers there are two sets of operations which can be performed. First,
an image can be input to an LUT unit (PRE-NBR LUT). The output of this unit is then piped into
both NBR’s. The NBR’s can compute separate functions. The second set of operations
following the stage buffers allows images to be combined using an I.UT and an ALU. The LUT
(TVF LUT) receives one or two images as input. The ALU (ALU C) requires two images as
input. The images input to the TVF LUT or ALU C may come from either of the stage buffers

or from any of the NBR’s.

Each PIPE stage has two additional operating modes which will be used in this paper. First,
. a "region of interest” (ROI) mode is used to specify on a pixel by pixel basis what particular
operation should be performed in any of the functional units. More precisely, the complete
operation of a stage at each time unit is controlled by a micro-instruction which specifies all
functions performed and data paths used. Up to 256 micro-instructions can be stored and which
of these instructions is used is selectable on a pixel by pixel basis using a designated second
image to map each pixel to one of the micro-instructions. Thus the value of a pixel in the ROI
map is an index into the proper micro-instruction for the corresponding pixel in the image being

processed.

A second mode of processing allows an image’s resolution to be changed. As an image is
being stored in an image buffer, its resolution can be simultaneously reduced by one-half. In

addition, the resolution of an image can be doubled as it is read from an image buffer.

Finally, images can be output from a stage in several ways. The first method of output
allows the contents one of the image buffers to be output to the host via a DMA bus. The second
method sends output to any subset of the forward, recursive and backward paths, and wildcard
buses VBUS A and VBUS B. The output to each is determined independently and may come

from any of the buffers, either NBR, the TVF LUT or ALU C.

3. Local Peak Detection

One common nonlinear local operation is the detection of peaks or local maxima with
respect to some local property computed at each pixel. For example, when edges are detected
using first derivative operators, a single edge will be detected in more than one position due to the
size of the operator. In order to detect the single best position of the edge, nonmaximum
responses of the operator can be suppressed in a neighborhood orthogonal to the direction of the
edge. More generally, when a matching operator is applied to an image, there is frequently a
region surrounding the best match position in which the operator gives some positive degree of
match. In order to isolate the single best match position, a match at a given pixel is rejected if
there is a better match in some neighborhood around the pixel. This procedure is frequently used
to suppress nonmaxima following matching operators such as cross-correlation and the Hough

transform.

In this section we describe the implementation of one particular algorithm for detecting
peaks in an image [3]. Briefly, the method is a nonlinear operation which compares each pixel’s
value with its eight nearest neighbors’ values and a predefined threshold to determine if the value
at the point should be suppressed (set to 0). More specifically, consider a pixel e and its eight

neighbors:

abce

def
ghi

e is considered a peak if there exists a one-dimensional cross-section in which e’s value is strictly
greater than both its two neighbors’ values in the given orientation. In particular, four
orientations are considered at each pixel corresponding to cross-sections oriented at multiples of
45°. For pixel e these four triples of pixels are ae i, b e h, c e g and d e f. The value at pixel e is

replaced by 0 if nonmax (e) is true, as defined below using the user-specified threshold T:

nonmax(a,e,i) = (e<a) OR (e<i) OR ((e =a) AND (e =i))

nonmax (b,e,h) = (e<b) OR (e<h) OR ((e =b) AND (e =h))

nonmax(c,e,g) = (e<c) OR (e<g) OR ((e =c) AND (e =g))

nonmax(d,e.f) = (e<d) OR (e<f) OR ((¢ =d) AND (e =f))

w = nonmax(a,e,i) AND nonmax(b,eh) AND nonmax(c,e,g) AND nonmax(d.e.f)
u=e<T

nonmax(e) =w OR u

3.1. Implementation

In order for PIPE to compare two pixels’ values they must be stored in the same position in
two different images. Creating a new image from a given original image by a uniform shift has
the effect of putting two neighbors in register throughout the two images. In PIPE this can be
accomplished for any pair of adjacent pixels by using the NBR unit to shift an image one pixel in
any of eight directions as shown in Fig. 3. For example, the mask SE shifts an image southeast so
that pixels e and a are aligned in the two images. These eight neighborhood operators will be

used in later sections for the same purpose.

Assuming an eight stage PIPE, the steps required to compute the given peak detection
algorithm are as follows. First the input image is broadcast to all eight stages. Next, the eight
neighborhood operations, SE, NW, S, N, SW, NE, E, and W, are performed at the stages 1
through 8, respectively. Thus the neighbors brought in register with e are a, i, b, h, c, g, d, and f,
at stages 1-8, respectively. Pairs of consecutive stages hold the images needed for the four
triples. In each of these stages the image produced by the neighborhood operation is immediately
subtracted from the original image e. Images e—a, e—b, e—c and e—d are output from their
respective stages via the recursive paths, while simultaneously images e—f , e—g, e~k and e—i
are output via the backward paths. All eight stages and the input stage also pass the original

image e through the forward paths.

10

100
000
000

A\ 4

SE

010
000

001
000
000

000
001
000

=

000
000
001

NW >
/ 000

000
010

000
000
100

l
|

000

0
E\oo

v

Fig. 3. Shifting an image one pixel in any one of
eight directions using the NBR unit of PIPE.

11

Next, all the odd-numbered stages perform an OR operation on the individual bits
(including the sign bit) of the pairs of images e—a and e—i, e—b and e—h, e— and e—g, and
e—d and e~f . Next in each odd stage the PRENBR LUT is used to determine if either the sign
bit of the result is 1 or the rest of the bits are 0. Thus stage 1 produces nonmax(a,e i), stage 3
produces nonmax(b,e,h), stage 5 produces nonmax(c,e,g) and stage 7 produces
nonmax(d e .f). Fig. 4 shows the network of operations required to compute nonmax(a e ,i)
from e. VBUS A is then used to send the result of stage 1 to stage 3 where an AND operation is
done, and the result of stage 7 is sent to stage 4 using VBUS B where an AND operation is done
with the output of stage 5. Meanwhile in stage 2, e—T is performed to produce «. Finally, in the
first half of stage 3 a final AND yields w which is ORed with u from stage 2 to produce v. In the
second half of stage 3 v is inverted and ANDed with e to give the final result image. Fig. 5 shows

the corresponding network for the complete algorithm.

3.2. Timing

The initial broadcast of the input image to all eight stages takes 1 time unit. The next time
unit is used to shift this image appropriately and subtract each from the original. In the third time
unit the nonmax results are computed in each direction. During the fourth time unit the partial
conjunction of these results is performed and the test that e is above threshold is done. In the
final time unit all partial results are combined and the original image is then used to produce the
output image in which all nonmaxima have been suppressed. Hence a total of five time units are

required to implement this peak detection algorithm on PIPE.

12

NW

Nga Ns

nonmax(a,e,i)

Fig. 4. Implementation of nonmax (a,e,i) in PIPE using 2 NBR's, 3 ALU's
and 1 LUT. Arcs are labeled with their associated image names.

13

nonmax

(a,ei)

nonmax

(d,ef)

nonmax

(g.ec)

nonmax

? negate

Fig. 5. Peak detection algorithm on PIPE. Six-sided nodes indicate
non-primitive operations. The nmax nodes consist of operations
shown in Fig. 4.

14

4. Median Filtering

Median filtering is a powerful smoothing technique that does not blur edges. This nonlinear
operator replaces the value at each pixel by the median value of its neighborhood. In this section

we describe methods for performing median filtering using five point neighborhood:

XXX

The basic operation required to perform median filtering is a comparator which takes two values
and outputs the minimum and maximum. Collections of these comparators can be combined to
implement sorting networks [4] which have a number of input lines equal to the number of
points, #, in a given median filter. In our case, we need a network of size n =5. Furthermore,
since we are only interested in the median value, we can prune the sorting network so that only
those comparisons which contribute to finding the median value are included. We call the
resulting network a "median network." A median network for n =5 is shown in Fig. 6(a). For
large n the number of comparators required can be reduced by computing an approximate median
value using a "median-of-medians" network [5]. For example, a median-of-medians network for

n =9 is shown in Fig. 6(b).

4.1. Implementation

A natural extension of median networks for n elements is median networks for » images.
Each image is connected to an input of the median network. Corresponding pixels are
synchronously pipelined through the network. The output of the network is an image in which
each pixel is the median value of all the values at the given position in the input images. Thus
the first step is to create a set of images in which the pixels in each median neighborhood are in
register. This is achieved by shifting the original image to the required positions in different

image planes as shown in Fig. 3. The resulting images are then input to a median network which

15

Fig. 6.

¢ 0@

()

(b)

(a) Median network for n = 5. Inputs are associated with the lines at the left end of the
network. Vertical lines indicate comparators applied to the two values associated with
the two input lines. The larger of the two values is output on the top line and the other
value is output on the bottom line to the right out of each comparator.

(b) Median-of-medians network for nine input values.

16

performs the desired median operation at each pixel.

To implement a median network on PIPE we must describe how a comparator is
implemented and how the comparator results are combined. Fig. 7 shows how the comparators
are combined to produce a complete median network for # = 5 on three stages. Fig. 8 shows how

the comparators are combined for a median-of-medians network for n = 9 using seven stages.

Comparators take two images as input and produce two images as output. Corresponding
pixels in the two input images are compared and the larger pixel value is written to one output
image while the smaller value is written to the other output image. To perform this operation, the
two input images are first subtracted and the resulting image of sign bits forms a mask, where 1’s
indicate positions where the larger pixel is in the first image and 0’s indicate positions where the
larger pixel is in the second image. Assuming each stage has at least three image buffers to store
the two input images and the mask, we can use the mask with PIPE’s region of interest (ROI)
mode to direct the greater pixels to one output image and the rest of the pixels to the other output

image. Fig. 9 shows this comparator network for PIPE.

4.2. Timing

A comparator takes one time unit if we assume that the two input images are already stored
in buffers in a stage (e.g. via the two wildcard buses) and are also input to the first half of the
stage via two input paths (forward, recursive or backward). Alternatively, a comparator can be
implemented in two time units using one of the wildcard buses to load one image and either the
forward, recursive or backward path at the second time unit to load the other image. A three-

time-unit solution is possible without using either wildcard bus.

In general, the timing of the median computation depends on the topology of the median
network. The median network for the n =5 case can be implemented with single-unit
comparators since at most two comparisons need be done at a time (there are four wildcard paths;

each comparator uses two of them). Thus five time units suffice for this case. The 9-input

17

median-of-medians network takes seven time units instead of six since three concurrent single-
time-unit comparators cannot be implemented on PIPE. The net time delay of one time unit is

achieved by careful placement of some two-time-unit comparators as shown in Fig. 8.

18

Time

Fig. 7. Median network for 5images using 3 stages. Each node
is a comparator labeled with the stage that performs it.

19

time

M

Fig. 8. Median of Medians network for 9 images mapped
onto PIPE stages 2-6. Each node is a comparator. The
image of medians occurs at M in stage 4 atthe end
time unit 7. Nodes are labeled with the stage number
in which the comparison is performed.

20

input 1 input 2

| ROl select

S

PO

output 1 output 2

Fig. 9. A comparator. The ROl selector determines,
on a pixel-by-pixel basis, the destinations of
two corresponding pixels among a pair of
output paths. The greater of the two pixel
values is sent to output 1, and the lesser is
sent to output 2.

21

5. Thinning

Thinning is an iterative, local process which successively shrinks an object by removing
border points. The result is a skeleton-like representation of the object which is useful for shape
analysis and description. In this section we describe the implementation of a version of the one-
pass thinning algorithm developed by Chin et al. [6]. In this algorithm a set of masks is used to
determine which border points can be safely removed without locally disconnecting an object.
We assume the input image is binary where pixels which are part of an object have value 1 and
background pixels have value 0. Objects are assumed to be 8-connected sets of 1’s. Fig. 10
shows the eight masks corresponding to the cases in which the center object pixel can be

removed.

The first step of the algorithm is to match all eight masks at each pixel and if any of them
matches, the current (center) pixel is set to 0; otherwise it retains its previous value.
Unfortunately, this step will delete objects that are only two pixels wide. Therefore, the second
step "restores” two pixel wide object segments. In particular, we match two "restoring masks" at
each pixel to determine if a given object pixel should not be removed despite the results of step 1.

These two masks are:

O == O

These two steps are applied repeatedly until all objects in an image are shrunk to width less
than or equal to 2. Notice that because the shrinking process is stable, i.e., iterating after an
object has shrunk to a thin skeleton will not further change the object, we can most easily
implement this algorithm by iterating for a fixed number of cycles corresponding to the

maximum width of any object in the image.

22

000 01x x1x x10 x00 00x x1x x1x
111 011 111 110 110 011 011 110
x1x 01x 000 x10 x1x x1x 00x x00

Fig. 10. Eight thinning masks which are applied at each iteration of the algorithm. x indicates a
"don’t care” value.

5.1. Implementation

The input binary image is first broadcast to the first six stages of PIPE. In stages 1 through
4 the eight thinning templates are applied simultaneously, two per stage. As they exit from the
NBR'’s, pairs of results are immediately ORed together in the same stage. At the next time unit
the results of the first four stages are ORed together in stage 2. That is, the image from stage 1 is
output via the forward path to stage 2, the image from stage 2 is output via the recursive path, the
image from stage 3 is output via the backward path, and the image from stage 4 is output via
wildcard bus VBUS A. At the next time unit the resulting binary image is subtracted from the
original binary image in stage 2. The 4 X 1 and 1 X 4 restoring templates are simultaneously
applied, requiring two time units, in stages 5 and 6. The results of these two matches are ORed
together, and finally, at the fourth time unit, the result of stage 2 is ORed with the restored image
to produce the output of one iteration of the thinning process. This image is then broadcast to the

first six stages to begin the next iteration.

5.2. Timing

Each iteration takes 4 time units as described above. If the maximum width of any object in

the image is w, then w/2 iterations are sufficient, requiring a total of 2w time units.

23

6. Hough Transform

The Hough transform is a technique for detecting global image features such as curves and
lines by applying a coordinate transformation to an image such that all points which are part of a
single instance of the feature, map into a point in the transformed space [7]. For example, lines at

all possible positions and orientations can be specified using two parameters, p and 0, defined by
xcosO + ysinb=p

where 0 is the angle the line makes with the y-axis and p is the distance from this line to the
origin. Thus a point in (p, 8) space corresponds to a line in (x,y) space. Using this relation
between image space and parameter space, the Hough algorithm for line detection consists of
three steps. First, initialize an accumulator array, A (p, 8), to O for all possible values of p and 6.
Second, for each edge point detected in an input image at coordinates (x, y), increment all points
in A which satisfy the above equation. Finally, detect local maxima in A to determine the

locations of lines in the image.

In this section we describe how PIPE can be used for line detection using the Hough
transform. We assume that the input image is binary, a 1 indicating the presence of an edge point
and O indicating no edge. Assume p is quantized to R possible values, and 0 is quantized to T

values.

6.1. Implementation

The Hough transform can be implemented on PIPE by iterating through all T possible
values of 0. Thus, each iteration produces a row of the values in the accumulator array A. Given
0, p is computed for each possible value of x and y using the above equation, and the result is
stored at the corresponding pixel. The number of times a particular p value occurs in this image
is the final value of the accumulator cell A (p, 8). Hence the histogram of this image corresponds

exactly to one row of A. The operation of actually storing the histogram of values into the

24

appropriate row of A will be performed by the host in this implementation.

To compute p at each (x,y) position, we first multiply (at node N, in Fig. 11) the input
binary image by a constant image in which each pixel contains its x-address. The resulting
masked x -address image is then multiplied (at node N) by the constant cos 8 (0 is fixed for each
iteration). Similarly, and in parallel, the masked y-address image (produced at node N,) is
multiplied (at node N4) by the constant sin 6. These two product images are then summed (at
node Ns) to obtain p for each pixel. Finally, the resulting p image is input to the ISMAP
processor which computes the histogram of p values and outputs this histogram to the host. The
host stores these values in the appropriate row of array A. After T iterations the host performs

the final step of detecting peaksin A.

6.2. Timing

It takes one time unit to mask both the x - and y -address images with the input image. This
can be done in any two stages. At the second time unit the x-masked image is multiplied by
cos 0 in one stage while the y-masked image is multiplied by sin 0 in the same stage. Next, in
the same stage and time unit, these two results are summed. The resulting image is sent to
ISMAP which produces a histogram of the p values at the third time unit and then outputs this
structure to the host. Using three consecutive stages, i —1, i and i+1, the first time unit requires
use of stages i—1 and i+1 and the second time unit uses only stage ;. Only ISMAP is used at the
third time unit. Consequently, the operations for each successive 0 value can be pipelined so that
ISMAP will output a row of the accumulator array at each time unit beginning at time unit 3.
Hence the total number of time units required is 2+ T, where T is the number of 0 values

considered in Hough space.

25

000000000
000110000
001001000
001000110
001000010
000100100
111111111 000011000 123456789
222222222 123456789
333333333 123456789
444444444 123456789
555555555 123456789
666666666 123456789
777777777 123456789
N2
000000000 000000000
000220000 000450000
003003000 003006000
004000440 003000780
005000050 003000080
000600600 000400700
000077000 000056000
A4 A4
é *ame'g é *sin © %

———®» To ISMAP

Fig. 11. Computation of one row of Hough space. The inputs
to the LUT's remain fixed while the LUT's are
successively reprogrammed to multiply the input
image by cos® and sin© for each value of ©.

26

7. Photometric Stereo

One method for recovering the local surface orientation at each point in an image is called
photometric stereo [8]. It can be applied to scenes containing surfaces with known reflectance
properties using multiple images of the same scene but under different lighting conditions. For
each surface type and light source position we can precompute the reflectance map R(p, q)
which specifies the brightness at an arbitrary pixel as a function of surface orientation, specified
by p and q. (p, q) is called the gradient of the surface, the two components representing the
slopes of the surface in the x— and y-—directions. Although in general the mapping from
brightness to surface orientation is not unique, if we consider three images, f 1, f, and f 5 of the
same scene, but under different lighting conditions, we can uniquely solve for the two unknowns,

p and g, at each pixel. Thus we have a set of three equations with two unknowns of the form:

Ri(P:‘I)=fi(x,)’), i=1,2,3

for each pixel at coordinates (x, y).

7.1. Implementation

Given three images, f 1, f, and f 3, and their associated reflectance maps, R, R, and R,
the goal is to recover (p, q) at each pixel. Our implementation using PIPE will be to iterate
through all possible pairs of (p, g) values and identify those pixels in the image that have this
surface orientation. That is, given p =a, q =b, there is an associated unique triple of
reflectance values, (Ri(a,b),Ry(a,b),Rs(a,b)). The three images will be searched for all
occurrences of this particular triple of brightness values and each such pixel will be assigned the

current orientation value (a, b).

For example, consider the implementation for one iteration, corresponding to the surface
orientation p =0.6, ¢ =0.9. The left half of Fig. 12 shows all the operations performed in one

iteration. Assume the three reflectance maps imply the triple of brightness values

27

‘PLN pue LN 1e suoielado ayl yum parenosse sabewl syl ui
pale|nwinde aJe synsal 3yl "(Zb ‘zd) uonejuauo ayy spuiy ainbiy
ay1 4o ey ybu ayy (‘b ’td) uoneiuauo buineysjaxid jje spuly
24nbi} 9Y3 40 jjeYy U oYL €Y Ty 'Ly sdew adueldajyal pajeidosse
1nayy pue £} Ty Ly sabew £ uaalb wyrioble 0aia1s dudwWwoIoyd ‘gl bi4

Py
N mZ mZ
000 000 000
_ 0¢o 0‘bo | |otdo
000 000 | 000
&

oL _ 6N 8N m EN | IN IN |
m (Cb'Td)ey W & (Cb'd)y W &\ANQ.&VE W & A.&;&mmw Z ﬂc;&wm W 4 ((b'ld)ly “
7 / 7 / %

2

A A + A A
‘ H
A m+ m l }

R (.6, .9)=0.6, Ry(.6,.9)=0.7 and R5(.6,.9) =0.3. During the first time unit image f , is input
to stage 1, f, is input to stage 2, and f 5 is input to stage 3. At the second time unit the three
images are input to stage 2 using their respective stages’ forward, recursive, and backward paths.
The forward-path LUT is used to immediately mark those pixels in image f; which have
brightness value 0.6 (node N; in Fig. 12), outputting a 1 at each such pixel and a 0 otherwise.
The recursive-path LUT in stage 2 creates a similar mask image by identifying those pixels in f,
having brightness value 0.7 (node N,). The backward-path LUT also creates a mask by marking
pixels in f 5 having value 0.3 (node N3). The ALU’s in the first half of stage 2 then compute the
conjunction of these three binary mask images (node N,4). This image is multiplied by 0.6 (= p)
and by 0.9 (= g) and the two resulting images are then added into their respective output
accumulator images corresponding to p and g (at nodes N, and N 4, respectively). Multiplication
by p and by g is achieved by using the two neighborhood operators (N5 and N) in the second
half of stage 2. The mask used simply weights the center pixel by the desired value and the rest

by 0. These two images are sent to the p and g result images via the two wildcard buses.

With each iteration more and more pixels will have their (p, g) values determined and
filled into the two result images. Since three stages suffice to perform the above operations, other
stages can be used to simultaneously find points that have some other (p ,¢) value. In Fig. 12 we
show a second complete set of operations being performed at stages 4-6 as shown by nodes Ng
through N ;3. Notice that node N5 adds the results of nodes N5 and N ;,, thereby simultaneously
filling output values for two disjoint subsets of pixels corresponding to two different (p, g) pairs.
Similarly, node N4 adds the results of nodes N g and N 3. Notice the recursive paths at the nodes
N7 and N 4. Each one causes the two new values to be added to the result image that was output
by the node at the previous cycle. Therefore when all the (p ,g) pairs have been tested, the final p

and q result images will be stored in the image buffers associated with nodes N7 and N 4.

29

7.2. Timing

Using the wildcard buses it takes three time units to initially input f ; to stages 1 and 5, f,
to stages 2 and 4, and f 5 to stage 3. Thus f{, f, and f 5 are all permanently accessible at both
stages 2 and 4. At each time unit, stage 2 produces a p image which is sent to stage 7 to be added
to the p accumulator image, and stage 4 produces a ¢ image which is sent to stage 8 to be added
to the g accumulator image. Thus the entire process takes 3 + PQ/2 time units, where (p,q)

space is of size P X Q.

7.3. Comments

The method could be improved by using a coarse-to-fine strategy for the values of (p, q).
A first pass could be done using a coarse quantization of both p and ¢ ; the second pass would
concentrate only on refining the "interesting” regions of (p, ¢) space as determined by the host

using the output of ISMAP to find peaks or clusters of points.

30

8. n-bit Point Operations

A point operation is any operation on an image where the value of the resultant pixel
depends only on the value of the corresponding operand pixel. Such operations are useful for
performing selection functions, trigonometric functions, multiplication by a constant, bit pattern
rotation, etc. More generally, when there is more than one operand, functions such as maximum,
minimum, multiplication, division, and change of parameterization can be performed as point

operations using sufficiently large word sizes.

If enough memory is available to store the result of an arbitrary point operation function for
each possible input value (typically 2%), then a lookup table can be used to implement the
function directly. The advantage of this method is that the time needed to perform the operation
on one pixel is the time required for one memory access. To implement an arbitrary function of
two inputs, each containing an 8-bit value say, would require 2'¢ different input values. In this
case, a lookup table of the desired size is probably not available. We describe in this section how
to simulate a large lookup table by successive re-use of one or more strictly smaller lookup
tables. In this way »-bit precision in point operations can be achieved for n larger than the data

word size.

Assume, for example, that only one 8-bit lookup table is available and that there are 213
different input values. By successively reprogramming the 8-bit lookup table 2° times all 21
different input values are considered (see Fig. 13). Each table can look at only eight of the
thirteen bits. Each lookup implements the result assuming a fixed value for the other five bits of
the input. However the lookup table is applied to the 8-bit values regardless of the values of the
other five bits. One way to correct these results is to first mask out (by setting to 0) those pixels
which do not have the correct five-bit pattern for the current iteration. Finally, we must sum the
resulting 2° images. Alternatively, after each lookup table operation we can immediately add the

masked result to an accumulator image. If more lookup tables are simultaneously available, they

3

input value output value
bits ignored
by LUT LUT input

00000 00000000 LUTo(0)
00000 00000001 LUTo(1)
00000 00000010 LUTo(2)
00000 00000011 LUTo(3)
00000 00000100 LUTo(4)
00000 00000101 LUTo(5)
00000 00000110 LUTo(6)
00000 11111111 LUTo(255)
00001 00000000 LUT4(0)
00001 00000001 LUT1(1)
00001 00000010 LUT1(2)
00001 00000011 LUT1(3)
00001 00000100 LUT4(4)
00001 00000101 LUT1(5)
00001 00000110 LUT4(6)
00001 11111111 LUT1(255)
11111 00000000 LUT34(0)
11111 00000001 LUT34(1)
11111 00000010 LUT31(2)
11111 00000011 LUT31(3)
11111 00000100 LUT31(4)
11111 00000101 LUT31(5)
11111 00000110 LUT34(6)
11111 11111111 LUT31(255)

Fig. 13. 13-bit point operation with 8-bit output using an 8-bit LUT 32 times.

32

can be used to partition the work and save time. The corresponding accumulators will have to be

added together finally as was done in the previous section.

8.1. Implementation

Let n be the number of input bits and m be the number of output bits. Viewing the output
word as a sequence of [m/8 bytes, we compute [m/8] independent images in sequence, each
encoding a byte of the result. Henceforth we will assume m < 8. If n < 8 as well, the operation
can be implemented using a single LUT on PIPE. If n <12, the operation can also be
implemented directly using PIPE’s TVF LUT. Since there are two tables available when the TVF
LUT is programmed with 12 input bits, the ROI mode allows us to take advantage of one
additional bit of the input to indicate which of the tables should be used. Thus if n <13 the

operation can still be done in one stage.

When n > 13, 2"713 iterations are needed. The ROI mode can also be used to select
positions based on the »—13 ignored bits so that the TVF LUT is applied only to positions of the
input having a certain combination of the ignored bits. Pixels at the other positions are left at their
previous (initially 0) values. Of course we require that n—12 < 8 in order for the ROI mask image
to have 8-bit values. If n > 20, the scheme described in the example above should be used. That
is, the TVF LUT is applied to all positions (the ROI mode being used only to decide which TVF
LUT table to apply); O’s are stored at positions where the input failed to have the proper

combination of the eight ignored bits. Each iteration still takes one time unit.

If there are between nine and sixteen bits ignored (i.e. 21 < n < 30), then each iteration
takes two time units. In this case an iteration involves computations that cannot all be performed
in one time unit; i.e., selecting pixels from two images of ignored input values, ANDing the
results together, ANDing this with the output of the previous TVF LUT, and finally adding the
result to the accumulator. If 29 <n < 38, there are three images of ignored input values.

Nevertheless two time units still suffice for each iteration; there are enough resources for one

33

more selection and conjunction before the addition of the result to the accumulator image.

With s stages available the work is essentially divided by s since all the iterations are

independently computable.

8.2. Timing

Assuming n is the number of input bits and m is the number of output bits, we compute
[m/87] independent images in sequence, each encoding a byte of the result. If there are s stages
available, each 8-bit result requires 2" 13/s iterations plus the time to sum together the
accumulators. Let A (s) be the number of time units needed to sum s images located in s stages.

A(s) is bounded above by logys. If 13<n <21, the entire point operation takes
[m/8] x 2" /s +A(s)) time units. If 21 < n <38, [m/8] x [2"“1%] +A(s) time units are
required.

In some cases the [m/87 result images can be computed in parallel. For example if s is

divisible by [m/8] , the entire point operation takes [2"‘13 x [m/8] +A(s/[m/8])-l time units

if13<n <21, and [2"*12>< [m/8] +A(s/[m/8])] time units if 21 < n < 38.

8.3. Comments

One application of this method is the photometric stereo problem described in Section 7. In
that case the 8-bit value of the resultant pixel depends only on the values of the corresponding
pixels in each of three input images. Hence m =8 and n =24. If s = § stages are available, the
entire operation takes 259 (= 284 3) time units. However, if we first reduced the quantization of
the input images to seven bits, then n =21 and the entire operation takes 35 time units plus the

time units to properly reorganize the 21 significant input bits in the three images.

34

9. Computing Multiresolution Representations

This section considers the problem of detecting edges at multiple resolutions of an image.
The two ideas underlying their detection are that 1) brightness changes occur at different scales in
an image, and 2) a sudden brightness change will give rise to a peak or trough in the first
derivative or equivalently a zero-crossing in the second derivative. We will detect zero-crossings
at each level of a pyramid of images. Each image is obtained from the original by approximating
the result of a Laplacian operator applied to a Gaussian smoothed version of the original image.

This is done at multiple resolutions resulting in a pyramid of images.

We describe the construction of three multiresolution representations of an image: the
Gaussian pyramid, the Laplacian pyramid, and the zero-crossing pyramid. The algorithms we
implement are similar to those defined by Burt [9]. The Gaussian pyramid is a sequence of low-
pass filtered images, G, Gy, ..., G,, where G is the input image. G;,; is constructed by
sampling G; at every other row and column, and then applying a low-pass Gaussian filter to the

sampled image.

The Laplacian pyramid is a sequence of images Lg, Ly, ...,L,_3. L; is constructed by
expanding G;,; and subtracting the result from G;. The expansion process is the reverse of the
sampling process: We first move all pixels in G;,; into positions with odd row and column
numbers in a new higher resolution image and then this image is convolved with a low-pass
Gaussian filter to produce the expansion of G;,;. This expansion and differencing of Gaussians

approximates the Laplacian operator.

The zero-crossing pyramid is computed from the Laplacian pyramid by detecting all pixels
at each level where a zero-crossing occurs at the corresponding pixels in the Laplacian image. A
zero-crossing occurs at a pixel if its sign differs from any of its eight nearest neighbors; thus
detecting zero-crossings is a 3 X 3 neighborhood operation. Different scales of brightness changes

are detected by zero-crossings at different resolutions. The zero-crossing pyramid will also be

35

used in the next two sections for performing coarse-to-fine operations in stereo vision and two-

dimensional object recognition.

9.1. Implementation

A PIPE implementation is now briefly described which computes the levels of the zero-
crossing pyramid in sequence from finest to coarsest resolution. Although each level must be
explicitly programmed, the algorithm is illustrated in Fig. 14 as an iterative process, producing
one level of the pyramid at a time starting at the base. A 5 X 5 low-pass filter will be used for
computing the Gaussian pyramid; details are deferred until the end of this section. Suffice it to
say that a 5 X 5 neighborhood operation can be implemented using two consecutive stages in 3 %4

time units.

Initially, image G is stored in stages 1, 5 and 6. At the ith iteration, one level in each of
the three pyramids is constructed, i.e., G, L; and the ith level of the zero-crossing pyramid. In
stages 5 and 6 G; is sampled and the 5 X 5 low-pass filter is applied. At the first half of the fourth
time unit G;,, is produced. This image is then sent to four different stages for the following
purposes: the start of the next iteration in stages 5 and 6, the expansion of G;,; starting in stage 4,
and storage for later use in stage 1. To compute L;, G;,; must be expanded and then subtracted
from G;. Stage 4 doubles the resolution of G;,; using PIPE’s resolution mode, and, using ALU
C, this is ANDed with a Boolean mask image containing 1’s at coordinates with two odd values.
The result is sent via a wildcard bus to stages 2 and 3 where a 5 X 5 neighborhood operation is
performed to produce the expansion of G;,;. This image then goes to stage 1 to be subtracted
from G;, which was stored there 7 time units earlier. Thus image L; is produced in the first half of
stage 1. A 3 X 3 neighborhood operator is then applied to produce the ith level zero-crossing
image. In the same manner, successive iterations begin at times 1, 4, 7, ..., and zero-crossing

images are produced at times 8, 11, 14, ...

36

ésample N1

Fig. 14. Computing the ith level of the Laplacian and Zero-
crossing pyramids, and the i + 1st level of the Gaussian
pyramid. The sample and double operations are
primitive to PIPE.

37

With the exception of the 5 X 5 neighborhood operation, all the operations above are
primitive to PIPE. The required Gaussian filter requires a 5 X 5 mask and therefore cannot be
performed by a single functional unit of PIPE. As shown in Fig. 15, four 3 X 3 sub-mask
convolutions are necessary (in general); the partial results are put in register by diagonal shifting
and then added together to produce the result of the 5 X 5 convolution. Since these neighborhood
operations represent natural bottlenecks in the algorithm above, we have emphasized speed in our
implementation at the expense of extra stages and buses. Using two consecutive stages it takes 3
time units to perform all of the operations associated with nodes N, through N, in Fig. 15: N,
through N, are done in the first time unit, N5 and N in the second, and N through N, in the
third. Wildcard buses must be used to pass the results of nodes N; and N, to nodes N and N,
At the beginning of the fourth time unit the results of nodes Ng and N g are sent to stages 1, 4, 5,

and 6 where N ; is performed.

9.2. Timing

The number of time units required to compute a zero-crossing pyramid with » levels is

3n+5 since iterations are pipelined, beginning every 3 time units and ending 8 units later.

38

aiazas
b1 bz b3
c1 C2¢3

0 agas
0 bgbsg
0 cgcs

N2

Ng

equivalent to

000
didads
e1 e2e3

000
0 dgds
0 esges

39

.
>

ajazajlagas
b1 by b3z bgbsg
€1 C2 €3 C4C5
did>d3dads
ejezxe3zeges

Fig. 15(a). Computation ofa5x5 convolution operation
using four 3 x 3 convolutions.

from from from from
Ns Ng Neg N7

N1j

Fig. 15(b). Expansion of the PLUS node in (a).

40

10. Stereo Vision

Stereo vision requires three steps: (1) the point in one image corresponding to the projection

of a point on a surface is located, (2) the point in the other image corresponding to the projection

of the same surface point is located, and (3) the difference in the projection of the corresponding

points is used, together with estimates of the parameters of the imaging geometry, to determine a

measure of the distance to the surface point. In this section we describe a PIPE implementation

of a version of the Marr-Poggio stereo algorithm [10]. The Marr-Poggio algorithm for solving

the correspondence problem (step 2 above) can be best summarized as a feature-point-based

matching procedure using a coarse-to-fine control strategy to limit the search space of possible

matches. The main steps of the implementation are:

1.

Image filtering. Laplacian pyramids of the left and right images of a stereo pair are

constructed as described in Section 9.

Symbolic Feature Detection: Zero-crossings in the filtered images mark the locations of
significant brightmess changes in the original image at different resolutions and define the
basic representations used for matching. An implementation of this step was also described

in Section 9.

Matching: Assuming epipolar lines are horizontal, matching can be restricted to
corresponding rows of the left and right zero-crossing images. For simplicity the
orientations of the zero-crossings are not considered. Matching proceeds in a coarse-to-fine
manner. The idea is to use a sparse representation of the features using a coarse level of the
zero-crossing pyramid for the initial matching of points. The reduction in the number of
feature points and the number of image sample points greatly reduces the search space
required for matching. The initial coarse-level match can then be used to constrain the
matching of finer detailed representations, again reducing the search space of the matching

process while allowing finer detailed disparity information to be computed.

41

Feature point matching at each level of resolution (except the coarsest) assumes we are
given an estimate d;(x,y) of the horizontal disparity at every position in the image, computed at
the previous level of resolution. Given a zero-crossing in one image (say the left) at position

(x,y), the search for a matching zero-crossing in the right image is constrained to the region
{ &,y T x+di(x,y)-w < ¥ <x +d,-(x,y)+w}, where w is the width of the central

region of the (approximate) Laplacian filter used to produce the zero-crossing images at the
current resolution. Once this matching has been performed at a level, the new disparities are used

to align the images and the same process is then begun at the next finer resolution.

10.1. Tmplementation

Implementation of steps 1 and 2 of the algorithm was described in Section 9. We will
assume that the zero-crossing pyramids for the left and right images are available for the

matching step described below.

Since the process involves the same operations at each resolution, we describe just one
level. Let L; and R; be the left and right zero-crossing images at the current resolution, and let
L;,, and R, be those at the next finer resolution. Each iteration consists mainly of computing
the estimate d;,;(x,y) given d;(x,y), L; and R;. Due to the sparseness of the zero-crossing
images and the need to compare pairs of pixels which are not in register, the host rather than
PIPE is used to find matching zero-crossings (see comments below). ISMAP summarizes the
sparse zero-crossing images in order to save the host from having to search for feature points. As
the host does the matching it computes the new disparities and updates d; (x, y) where necessary.

The result is sent back to PIPE, where d;,;(x, y) is then constructed.

ISMAP is designed to quickly compute the gray level histogram of an image and store with
each "bin" of the histogram the addresses of the contributing pixels. The histogram of a binary

zero-crossing image is not very useful, however. Therefore, each zero-crossing image is first

42

modified by ANDing it with the following image:

1 1.1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 3

As a result, bins of the histogram partition the zero-crossings by row. Furthermore, non-zero-
crossings have value 0 and are all associated with the Oth bin. Thus each bin of the histogram
except the Oth holds the addresses of the zero-crossings contained in the associated row of the
image. Hence only corresponding bins from the right and left image histograms need to be

matched.

Given the output of ISMAP for the modified (i.e., after ANDing) L; and R; images and the
disparity image d;, the host performs the actual matching step as follows. For each Zero-crossing
point (x,y) in the yth bin of L’s histogram we index into the disparity image d;(x,y) to
determine by approximately how much x should differ from the matching point’s x -coordinate.
Then we search for such a point in a restricted range of x values in the y th bin of R ’s histogram.
Only a small number of the elements in the bin need to be searched since ISMAP orders the

elements of the bin by x -coordinate.

Some additional calculations may be necessary to find the best matching pairs. The image
d;(x,y) is updated at points where new disparities are implied as a result of the matching.
d;(x,y) is then sent back to PIPE where it is multiplied by 2 and doubled in resolution to
produce d;(x,y). Concurrently with this match-update-double phase in the host, PIPE ANDs
L;yy and R;,; with the "row mask" and then sends them to ISMAP where the next pair of
histograms is produced. Fortunately there is no need to actually "realign” images because the

disparity map includes the shift information.

43

10.2. Comments

In general, implementing nonlinear functions of a pixel and its neighborhood requires
bringing all the pixels involved into register at some point. This is due to PIPE’s strict spatial
indexing. The shift(s) required can only be done by the NBR units. Often no other operation can
be performed in the same stage with this shift. This leads to bottlenecks in all but the simplest of
neighborhood operations. The necessary redundancy also leads to space problems and data path
contention. Finally, because of the restricted communication between stages, considerable time is
spent bringing together the many images involved in the computation of a complex neighborhood
operation. The problem in this section of matching two image rows is a case in point. Due to the
sparsity of zero-crossings, the inability of PIPE to take advantage of this, and the complexity of
the implementation on PIPE, we felt it preferable to set up an interface with the host which could

more easily perform the matching.

44

11. Model-Based Object Recognition

In this section we describe a PIPE implementation of a multiresolution model-based
matching technique for coarse-to-fine object recognition described by Neveu et al. [11]. Each
two-dimensional object is modeled as a directed acyclic graph as follows. Each node in the graph
stores a boundary segment of the object model at a selected level of resolution. The root node of
the graph contains the coarsest resolution representation of the boundary of the object. Arcs are
directed from boundary segments at one level of resolution to spatially related boundary

segments at finer levels of resolution.

Given an input image’s zero-crossing pyramid and the model graphs for several two-
dimensional objects (created as described in [11]), matching can be carried out in a coarse-to-fine
manner by following arcs of the graph representing a two-dimensional object to be recognized.
That is, first the root node of the model graph is matched with the coarsest level of the input
image pyramid, and an ordered list of hypothesized positions and orientations (poses) for the
object is generated. These hypotheses limit the area in which the search for sub-objects (children
nodes) must be conducted. If the sub-objects of a hypothesis are not found, the next best

hypothesis for the pose of the object at the coarsest level is tried.

11.1. Implementation

Assume that each node stores a 15 X 15 binary template describing a segment of the object
boundary at a given resolution. The node’s parent describes a segment of the object boundary at
the next coarser resolution. Hence the template at a node represents an area one quarter the size of
that represented by its parent. Also stored at the node is the relative pose of the template (within
the area represented by the parent’s template), and a weight indicating the importance of the
boundary segment in recognizing the object. Assume further that the coarsest level of the

pyramid is 16 X 16, and the finest is 256 X 256.

45

Cross-correlation is used to match a model node’s template with one level of the zero-
crossing pyramid. The initial estimate for the best match pose of a template is determined from
the match pose of its parent’s template and the known relative pose of the given node with
respect to its parent. The best match pose is then determined by trying a range of poses centered
on this estimate. For each candidate orientation we construct a mask containing the appropriate
rotation of the given template. For each candidate position we set the corresponding pixel in a
ROI mask image which will be used to restrict the correlation operation to these marked
(nonzero) candidate positions. PIPE will perform each of these correlations and send the results to
ISMAP. The host will then determine the best match pose. The degree of match, weighted by the
importance of the model template, indicates whether the process should be continued at each of

the node’s children. If this is the case the same process is applied at each of the node’s children.

PIPE’s ROI mode allows us to simultaneously perform the entire set of cross-correlations
for a single node. Consider for example the 128 x 128 level of resolution. Four copies of the 128
X 128 zero-crossing image can be stored in one PIPE image, one in each quadrant. Each quadrant
is then correlated with a different orientation of the current node’s template as shown in Fig. 16.
The ROI mode enables two restrictions in this process. First, it restricts the correlation operation
for a single mask to one quadrant. Second, it further restricts the correlation operation to the
candidate region of marked positions in this quadrant. Each such region is marked with a unique
nonzero value. Hence four nonzero values are contained in the ROI mask image, one for each of
four orientations of the template. Note, however, that only one of these four oriented-templates is
cross-correlated at each marked position. The ROI mode allows the template to vary over the
image by indicating which template is to be applied where. By having a copy of the image in
each quadrant we effectively achieve four different correlations simultaneously. The results of

the four correlations appear in the four quadrants of the image produced.

In [12] it was shown how convolution of an image with a 15 X 15 mask can be done on

PIPE in 13 time units. The method is an extension of that described in Section 9. Each 15 x 15

46

4 copies of zero-crossing image ROl image
1 2
111 222
11 22
o o
3 4
333 444
33 44
o PN

mask0 if ROl =1
mask1 if ROl =2

4 orientations of template

mask0 mask1

mask2 mask3

ALY S

iy

<__
mask2 if ROl =3
mask3 ifROl =4
positional positional
degree of degree of
correlation correlation
with with
mask 0 mask 1
positional positional
degree of degree of
correlation correlation
with with
mask 2 mask 3

—» to ISMAP

Fig. 16. Cross correlation of four different masks with a 128 x128
zero-crossing image at hypothesized positions and

orientations.

47

correlation operation consists of a network of 3 x 3 neighborhood operations cascaded together.
If there are four different templates being applied as described above, sets of four 3 x 3 masks are
loaded into the mask tables of the NBR units. A ROI mask image is then used to select the
appropriate 3 X 3 neighborhood operation of the four stored in each NBR unit. All of the 3 x 3

operations in the network are handled similarly. The final result image is then sent to ISMAP.

ISMAP and the host are then used to decide which match is best. Each correlation image is
sent to ISMAP which computes a histogram and this is then sent to the host. Assuming all masks
associated with a node are normalized, the host finds the coordinates of the pixel p with
maximum value in the histogram. Four candidate orientations should be sufficient; however, the
number can be doubled by using both NBR’s in each stage in which the correlations are
performed. Up to sixteen mask tables can be used by an NBR unit. Thus we may have up to
thirty-two candidate orientations at each of the coarser levels. This should be sufficient

particularly at the coarsest level when all orientations are possible.

The most time-consuming task of the host is to compute the candidate rotations of each
node’s template (assuming sufficient space is not available to precompute and store all possible
rotations of all templates). The host must also store alternative pose hypotheses for each node in

case backtracking is necessary.

In general the host and PIPE can perform few operations concurrently unless there are many
nodes at each level of the model graph. When there are many nodes at each level, the completion
of matching one node requires the generation of tasks for PIPE for each child node. The host can
work constantly at preparing tasks and placing them in a task-queue for PIPE while PIPE
performs them and places its results in a result-queue for the host. Since PIPE performs its work
and reports its results in first-come-first-serve order, task ordering is preserved. Some additional
synchronization may be required, however. That is, the host or PIPE may need to be suspended if

either queue becomes empty or too large. To some extent this problem may be avoidable by

48

having the host select a node from the result-queue which generates more or less children, as

needed.

11.2. Timing

Each node visited in the model graph represents one task to be generated by the host and to
be performed by PIPE. In general each node may be visited several times due to backtracking,
Visiting a node involves the time to prepare the task in the host, plus 13 time units in PIPE, plus
two time units in ISMAP. However, as long as the two queues are neither empty nor full, these
are done concurrently (for different nodes). The sizes of the two queues are a function of the
width of the model graph and the relative speeds of PIPE and the host. Ideally, the lengths of the

queues would stabilize and a new node would be visited every 13 time units.

11.3. Comments

It was noted that the number of possible orientations reduces greatly following the cross-
correlation at the coarsest level. Hence it is not always necessary to perform correlations for
thirty-two different orientations, although PIPE has the ability to do so with no additional time
delay. Different templates at various orientations can be searched for just as easily as one
template at many orientations. This corresponds to searching in the zero-crossing image for
several children at once. However this involves a slightly more complex scheme for computing

the best pose {from the histogram.

49

10.

11.

12.

References

E. W. Kent, M. O. Shneier, and R. Lumia, PIPE — Pipelined Image-Processing Engine, J.
Parallel and Distributed Computing 2, 1985, 50-78.

Digital/Analog Design Associates, Programming the PIPE, 1985.

T. Maruyama and T. Uchiyama, Real-time image processor with two convolution filter
modules and a peak extraction module, Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 1983, 546-549.

D. E. Knuth, The Art Of Computer Programming, Vol. 3: Sorting and Searching, Addison-
Wesley, Reading, MA, 1973.

M. I. Shamos, Robust picture processing operators and their implementation as circuits,
Proc. Image Understanding Workshop, November 1978, 127-129.

R. T. Chin, H. K. Wan, D. L. Stover, and R. D. Iverson, A one pass thinning algorithm and
its parallel implementation, submitted for publication.

D. H. Ballard, and C. M. Brown, Computer Vision, Prentice-Hall, Englewood Cliffs, NJ,
1982.

R. J. Woodham, Photometric stereo: a reflectance map technique for determining surface
orientation from a single view, Proc. SPIE, Vol. 155, 1978, 136-143.

P. J. Burt, The pyramid as a structure for efficient computation, in Multiresolution Image
Processing and Analysis, A. Rosenfeld, ed., Springer-Verlag, Berlin, West Germany, 1984,
109-120.

D. Marr and T. Poggio, A computational theory of human stereo vision, Proc. Royal
Society of London B 204, 1979, 301-328.

C. F. Neveu, C. R. Dyer, and R. T. Chin, Two-dimensional object recognition using
multiresolution models, Computer Vision, Graphics, and Image Processing 34, 1986, 52-
65.

C. V. Stewart and C. R. Dyer, Convolution algorithms on the Pipelined Image-Processing
Engine, Technical Report 643, Computer Science Department, University of Wisconsin—
Madison, May 1986.

50

