AUTOMATIC GENERATION OF
USER INTERFACES

by
Prasun Dewan

Computer Sciences Technical Report #666
September, 1986

AUTOMATIC GENERATION OF USER INTERFACES

by

PRASUN DEWAN

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN — MADISON
1986

© Copyright by Prasun Dewan 1986

All Rights Reserved

ii
ABSTRACT

In traditional interactive programming environments, each application individu-
ally manages its interaction with the human user. The result is duplication of effort in
implementing user interface code and non-uniform—hence confusing—input conven-
tions. It would be useful if the user interface of an application could be automatically
generated. This idea requires an application-independent model of user interaction

together with a programming environment that supports the model.

Recent work in user interface design has suggested that editing can be used as a
general model of interaction. This dissertation presents an approach that supports this

model.

This approach allows applications to be created as objects. An object is an
instance of a class that describes the data encapsulated by the object and the methods
to manipulate them. Between each object and the user is a dialogue manager. The
dialogue manager receives messages from the object, which name variables that can be
edited by the user. It displays the variables using the data definition in the class of the
object, offers the user a structure editing interface to modify them, and sends new
values back in messages to the object. The object can then execute methods to make
its internal data consistent with the displayed data. Thus, from the point of view of the
objects, the user appears to be another object that can send and receive messages.
From the point of view of the user, the objects appear to be data that can be edited.
The dialogue manager acts as an intermediary between the object and the user,
translating between the languages of object interaction and user interaction. A dialo-

gue manager is provided automatically by the environment.

The utility of our approach is demonstrated through discussion, examples, and

implementation of its major components.

iv

ACKNOWLEDGEMENTS

First, and foremost I would like to thank my advisor, Marvin Solomon. His con-
stant support, guidance, and ideas helped make this dissertation a reality. I would also
like to thank Charles Fischer for influencing almost all aspects of my graduate career.
His superlative teaching contributed to my interest in and knowledge of programming
languages and environments. Raphael Finkel and he, as members of my committee, '
provided invaluable help in the writing of this dissertation. Many thanks go to Tom
Reps, Shaike Artsy, Matthew Thazhuthaveetil, Bruno Alabiso, David Notkin, Ed Cana-
van, Michael Cockrem, Hari Madduri, Michael Scott, and Ravishankar, who provided
constructive comments on the presentation of my ideas. I would also like to thank Bill
Kalsow and Bryan Rosenberg for suggesting that I pursue Fraser’s idea of a general-
ized editor. I would like to thank Anoop Gupta for constantly sending me interesting
technical reports from CMU. I am grateful to Allan Bricker and Greg Myrdal for
being ever willing to help me with the Dandelions. I am also grateful to the members
of the Crystal and Charlotte Projects, through whose efforts this research was sup-
ported in part by NSF grant MCS-8105904 and Defense Advanced Research Projects
Agency (DoD) ARPA Order No. 4095, monitored by the Naval Research Laboratory
under contract No. N00014-81-C-2151.

Special thanks go to Anil Pal for being a constant friend and source of informa-
tion on almost all topics in which I have been interested. Several other friends have
also contributed to making my graduate career a pleasant one. Current and past
residents and guests of the Pitz including Cathy, Madan, Monica, Allan, Patti, Chou,
Kapoor, Kathy, Mohan, Pappu, Greta, Greg, Mary Beth, and Jim provided company
and support, as did Ed, Valentina, Jorge, Mike, Ann, Cheryl, Beth, Victor, Michiko,

Angela and other past and current Knappers. David Aslakson, Viggy and other
members of the Squash League made sure I maintained my sanity, while Yang, Artsy,
Hari, Dan, Carolyn, Michael and other current and past officemates made it easy to
sacrifice play for work. Toby and Kishore, fellow participants in the race to finish
Summer ‘86 Dissertations, helped break the monotony of thesis writing by providing
much needed company, ring toss competitions, and other fun diversions. Allan, Tad,
Udi, Sheryl, Lorene, Henry, Donde, Chahal, Kelkar and other current and past
members of the Computer Sciences Department made this place such a great one to be
in.

Finally, I would like to thank my family for everything.

CONTENTS

ABSTRACT

...

ACKNOWLEDGEMENTS ...c.ooiiiiiiiiiniiiieneiesiscsesesiessssesssssssesesseenes

Chapter 1: Introduction ...

...

1. Editing Model of INTETaCtiONcccoceviviivininiirierestinsesenennsiesnes e saessesesnas

2. ODbJects ..coveeriererenennne
Dialogue Manager ..

...

...

3.
4. Input/Output PrMItIVES ...ccoeveiririniivnirininiereisssessstssssssessssssesssssssssscssssssans
5.

The Thesiscuuu...

Chapter 2: Dost
1. Overviewccceeeenne
1.1. Example

2. Objects ...cevrceeecnnnes
2.1. Overview

...

...

...

...

...

...

2.2. Constructs to SUPPOTt ODJECES ..ccvevviriiririemnresreiniientsiesesssssassaansassseseans

3. Dialogue Manager ..

...

4. Input/Output PHMItIVES ...c.cccevvmirriniiniiimniinesnntesteisissnestssesnsssssessessessessesacsses

4.1, Overview

...

4.2, Object-Dialogue Manager Interactionceueeeesennscesnincensascesenenens
4.3. Displaying Variablesc...c.ccceieeninnnnsmessisscssssnsssesessecens
4.4, Display Nodes and AtrIDULESooviiieerrrennnntinineneneeeseesastcsenescennns
4.5. Naming a Display Nodecocevenrinuennanns tereeeeretee st ees e snas e s st e asens
4.6. Presentations of Display NOGESccuverrnesemierninnsisesesnscseniescennnenes
4.7. Optional Presentationsc.eeiveneimsesesissnsssnnsnns s s ssssssesniniins
4.8. Communicating Updates to an ODJECt ...ocviiviniiininneniniiinicinne

4.8.1. Update Methodsocuinineniininiiimnnnninieneneicssiessnn e

4.8.2. Invocation
4.9. Error Handling

of Update Methodscoeeereieiinienninnnstiinnesieines

...

4.10. Tailoring Editor Commandsceuveimcnisniennincienisiniiinenis
4.11. Attribute INHETIANCE ...ccovereecerniiininiinesiesrenestnssness st tssanssnnes
4.11.1. Setting Attributes from the ObJECE ...ccvuivvnirieiirinniiciniininiiannins

4.12. Miscellaneous

PriINItIVES woevirenrerremnncsiresssssitsnsssnsiinaassesanssasnsssanssaseass

4.13. Summary of AUIDULES ..ccccoiviiimnierenierenenienesie it

5. Model of Interaction

..

vi

O NN

10
10
11
19
19
21
24
25
25
27
29
29
34
42
46
48
48
51
55
56
58
61
65
67
68

6. Implementationccevveveveivneinnnennens et s e s entes e reeerens 73
6.1. Precompilerocovvminninniniinnicnnenn ceeeeenaes ceeseesten et enae s eanas 73
6.2. Object Managerccoeevuvnuns eeeeeeteeeseeesreeseeaseeeetae et et es st e e aa b e e e srar e s 75
6.3. Dialogue Manager Programcccoeeuene. rrererentesaensaeessaesrnenne reereeenee 75

Chapter 3: EXamplesccccoevveviriensnnnnnnns cterne et eaesaeeanee creerreaseeeeeeeenaeeas 76
1. Form veseans ceevesrannas crereer e et reeeereseeesseeseeessenerenes ceveranaennes 77
2. Extended Formccccoevereuinne rererrertenteetenaas ceeeeesaeseeanne reverteeteeseeeat e e e sraas 80
3. Roommate Expenses reesent et erae s reesereereanns creeereeeereeaens 84
4. Spreadsheetcccevvinnnene RETTRUR cereeneeees reeerernaesetanes rreeereesnseeeaesennee 89
5. Statement LiStccccecevrvievenannn ceeeeeerensesnaneranne rerereneeeteenaes cereeereeseeeseeeseneees . 92
6. Directory ceeeesreesraeesiesneses reeeeenteeaeenane ceeereenreesaeeeeaeesabe e anenbaeraes 98

Chapter 4: Discussionc.ccecenunen. ceeeeseeeesrareeeraranann rereeeeraeenanns creerennns eeraerenenns 105
1. Rationalecccceeievieenienne ceeerresenenes veereestetestee e seaanene creeerene ceereenneennes oo 105
1.1. Editing Model of Interaction vereteereeresennenane reeerrestenseeeeenenanes 105
1.1.1. Ease of Use eeerenannne terrrestarerereasessaerane gessenerenens eeeeeresearanaenees 106
1.1.2. Generality reeesteeranes reeenteestaet e earesaaeas ceeeeaes creeereeseenenaes 108

1.2. Objects wrveseaeans cevveenseeenee eeeeesveeensranens cevrereeearaeannanes crverenenns ceveeennes . 110
1.3. Dialogue Manager rrteerteeesteesraesereesataassaeasnansn verveeneeeenes cerveenes e 112
1.4. Input/Output Primitives reerierenenesaenenaenes ceeveeennnas veeereereessnesnenneene 112
2. What’s Missing? reteeesrereneeenas teeeeesteesesensaesssnaneas cervrrenesnes eeereeerareaesees carees 114
2.1. More Attributes creeeeeeaeens crereeesaeians rreeetesetessransasesesssntesreesanaenns 114
2.2. Displaying Objects creeereetenneaaeesasaenens creenane rveeeeesaesasesane eeeeenenee 114
2.3. More Commands rereeteenrstebess et esersseseresesetasssresasesasseseseessesssasses 113
2.4. Text Editing of Structuresccevevveeiennnene. veeaeeaanes reeverrereennerseseensenne 117
2.5. Automatic Saving of Attributes ceerteeseeeaeeseeesstesseseasenaeseseesrreean 119
2.6. Specification of Attributescccevevnieeenenenes reeveereresrsrensersssessesanneenee 120
2.7. Updating different Presentations creereeetesseerestenssbesssesrbensans . 122
3. EXPEIENCE ..ccvcvermvrinninrerveseensnasasaneas ceeerte e et esesaneas cerersreeeeeeens rereeseenenaes 122
4. Related Work ceerereeeeeeens treeereeneenteseane reesreeensesanearenns reeereeeaaes .. 124
4.1. Form Development SYStEINSceereriueessaresssessensascses creereeerenneessennes . 124
B2, BZ oooeeeeeeeeeeveseessesesssesesssssassss st essesessessesassassessasasasesessssssssssssessstensssas 123
4.3, DESCATLES «.v.vvorvesvereseeseeseesesemssssssssssssasssesssssssassassssssssasssessessosssssnssnssensss 120
4.4. Language-Oriented Editor GENETAtOTS ...ccvvereresesinsrerinisenanananans veee 127
4.5, AGAVE ..ooivierrietreresressssesstestessssssissesssessessssssansssassasssssossssssses veeeee 129
4.6. VoodoOccoceververurnnes eererereseesersaseecaensasaetessssesesssesnsnsteserassesesesscsesensnessss 130

5. Conclusi
e CONCIUSIONS eereeiiiririreerrrerererresseseesennserssesssnsnsesssssssesssnsasassensenenns ereeevanes vereens
6. Future Work creernseenaranneee etereserraesanssearatasesssernnsrnran creeeenens creevanens .

REFERENCEScccviiiininninannn SRR cereterrearens et e

131
131

133

Chapter 1

Introduction

In traditional interactive programming environments, the responsibility of pro-
viding the user interface of an interactive program is divided among the program itself,
subroutine libraries, the programming language, and the operating system. The
interactive program, however, shoulders most of the burden of providing its user inter-

face. This allocation of responsibility has three drawbacks.

First, interactive programs are bulky. Typically, an interactive program is con-
cerned with scanning and parsing input, reporting errors, converting correct input into
variable values, and displaying results. The code to perform these tasks can be the
major portion of an interactive program. A survey of commercial programs showed
that display generation and management code constituted 40-60 percent of the source

text of the programs sampled [43].

Second, there is inconsistency in the software environment. Different interac-
tive programs usually offer different ways to enter operations, and often the same
operation is called by different names. This problem is illustrated by considering how
the ‘delete’ operation is invoked through different interfaces of a Unix environment.
Assume that the environment comes with a window manager that can be used for
interaction through a bit-mapped display. Deleting a window is typically done by
using the mouse to select the appropriate operation name from a pop-up menu, deleting
a file from a directory is done by typing the operation name ‘rm’ and then the file
name, and deleting a character from a file is typically done by using the cursor keys to

select the character and typing the operation name ‘x’.

Third, most of the interfaces are primitive because they do not offer several
‘friendly’ features that are hard to implement. Examples of these features are menus
and templates for input data, incremental feedback, operations to view information at

various levels of detail, and operations to redo or undo other operations.

These three problems can be corrected if the user interface of an interactive pro-
~ gram is automatically generated. Several previous approaches have attempted to pro-
vide this solution. However, these approaches have one or more of the following limi-

tations, which are detailed in chapter 4:
e A large class of applications cannot use the approach.

® A programmer has to create duplicate descriptions of data structures in two dif-
ferent languages. As a result, the programmer has to learn multiple description

languages, and is responsible for keeping duplicate descriptions consistent.

D) A user is forced to interact with a single program at a time and a program is

forced to interact with a single user at a time.

This dissertation presents a new approach that overcomes the above drawbacks.
It consists of four components: an editing model of interaction, objects, dialogue
managers, and a set of input/output primitives. The following subsections describe

these components briefly.

1. Editing Model of Interaction

Our approach supports the editing model of interaction, which has been shown to
be suitable to interact with general applications [6,7,28,30,38,3,4]. The model
allows the user to view all applications as data that can be ‘edited’. We illustrate the

model through Fraser’s example of a directory manager that allows the user to manipu-

late a directory by editing its listing [6].

Figure 1 illustrates how a user may edit a Unix-style listing of a directory. Fig-
ure 1(a) shows an initial listing of a directory composed of two entries. A user can edit
the listing to modify the directory. For instance, he can edit a name field to change the
name of an entry (figure 1 (b)), edit an access field to change an access right to an entry

(figure 1 (c)), or delete a line to remove an entry from the directory (figure 1(d)).

Thus the interface presented by the directory manager to manipulate a directory
is similar to the interface presented by a text editor to edit a text file. There is, how-
ever, an important difference between the two interfaces. The directory manager can-
not allow the user to make arbitrary changes to a directory listing. For instance, in the
above example, it cannot let the user insert the character ‘q’ in an access field, it cannot
allow the editing of the date and size fields, and it cannot let an unauthorized user

change the editable fields of a directory.

It is easy to see how other applications may present editing interfaces. A ‘pro-
cess manager’ can allow a user to edit a visual representation of the current processes
to insert a process, delete it, or change its status. A ‘printer manager’ can allow a user
to edit a representation of the printer queue to submit ‘and remove files for printing. An
executive may allow a user to enter commands by editing a representation of the his-
tory of previous commands. In general, any interactive application can present an edit-
ing interface by displaying a visual representation of its data, allowing the user to edit
the representation in a syntactically and semantically consistent fashion, and reacting

appropriately to a change in the representation.

ACCESS LINKS OWNER SIZE DATE NAME

drw-rw-r-- 1 joe 512 Jun231985 src
-rw-rw-r-- 1 joe 111 Oct131984 todo

a) Initial Listing

drw-rw-r-- 1 joe 512 Jun231985 src
-rw-rw-r-- 1 joe 111 Oct 131984

b) User Edits File Name

drw-rw-r—- 1 joe 512 Jun231985 src
-rw-rw-rié: 1 joe 111 Oct 131984 done

) User Edits Access Field

drw-rw-r- 1 joe 512 Jun231985 src

d) User Deletes File

Figure 1: Editing a Directory

ties:

The editing model is not only general, but also has the following pleasant proper-

It has been successfully used by several applications such as text editors,
spreadsheets, language-oriented editors [5,44,11,32,50,51], form edi-
tors [37, 35], and document editors [41, 20].

It leads to uniformity since the different interfaces share a common set of editor
commands. For instance a single ‘delete’ command can be used to delete a file
from a directory, a process from the list of active processes, a file from a line

printer queue, and a user from the list of current users.

It removes the traditional distinction between ‘edit time’ and ‘run time’. In tradi-
tional environments, the interaction with a typical application can be divided into
two phases. During the first phase, a text editor is used to compose the input of a
program. Subsequently, during the ‘run time’ of the program, the input is
checked for errors, and output is produced. The editing model combines these
two phases into a single phase. As a result the user receives incremental feed-

back.

2. Objects

Our approach augments a traditional programming environment with extensions

to support the encapsulation of processes and the files they manipulate into indivisible

units called objects. Objects acquire properties of both processes and files. Like

processes, they are active entities capable of executing code. However, unlike

processes, but like files, they can become part of the permanent memory of the system.

3. Dialogue Manager

Between each object and a user is a dialogue manager. A dialogue manager
implements the user interface of an object. It displays one or more visual representa-
tions or presentations of the data in the object and provides a user an editing interface
to modify these presentations. It announces changes to a presentation in messages to
the object. Similarly, it updates a presentation in response to messages from the

object.

Thus from the point of view of objects, the user appears to be another object that
can send and receive messages. From the point of view the user, the objects appear to
be data that can be edited. The dialogue manager acts as an intermediary between the
object and the user, translating between the languages of object interaction and user
interaction (Figure 2).

A dialogue manager is provided automatically by our approach. Asa result, an
application programmer is concerned only with the specification of the user interface

of an object and not its implementation.

4. Input/Output Primitives

Our approach replaces traditional input/output procedures supported by conven-
tional programming languages with a new set of input/output primitives. Traditional
input/output procedures have several deficiencies that make them incompatible with an
approach that supports both editing and automation. We illustrate these deficiencies by

taking the example of the read and write procedures of Pascal.

Visual 4+
Representation of \ Object

Object /

i

4y 4 4

| |

i

i
! 1 EDITING MESSAGES

.<

Figure 2: A Dialogue Manager Translating between the Languages of
Object Interaction and User Interaction

The read procedure in Pascal forces a user to input data items sequentially. The

editing model, however, allows a user to edit several data items non-sequentially.

The read procedure advances the input buffer of an input stream. As a result, a
user cannot edit previous input and resubmit it to the program as new input. Similarly,
write advances the output buffer of an output stream. As a result, a program cannot
display new results by changing previous output. Finally, read and write streams are
disjoint. Therefore, a user cannot edit output and present it as input, nor can a program

update an input value displayed on the screen.

The parameters to read and write are predefined values like integers, reals, and
Booleans. Input and output of programmer-defined values is achieved by casting them
into these predefined values. As a result, the programmer has to be concerned with the
substantial work of ‘unparsing’ programmer-defined values into predefined values, and

‘parsing’ predefined input values into the corresponding programmer-defined values.

The input/output primitives supported by our approach overcome the above

drawbacks of conventional input/output procedures by providing the following:

® Modification of Previous Input/Output. A user can enter a new value for a vari-
able by editing its previous value. Similarly, an object can output a new value of
a variable by updating its previous value.

e Non-Sequential Input: A user can edit the variables displayed in a presentation
in any order. Our approach allows an object to react to changes to any one of the
variables displayed in a presentation.

® Input/OQutput of Programmer-Defined Values: An object can input and output
values of programmer-defined types such as arrays, records, variant records, and

recursive structures referred by pointers.

® Display Properties: A variable is associated with display properties, which an
object or user may change to control the format and other characteristics of the

variable.

) Inheritance Tree: The display properties of variables are arranged in an inheri-

tance tree. This tree provides a powerful mechanism to define default formats.

5. The Thesis

The thesis of this dissertation is two-fold: first, a general approach for automatic
generation of user interfaces exists; second, the approach can be effectively imple-

mented on top of existing software environments.

The rest of the dissertation is organized as follows. Chapter 2 describes the
approach through the example of the Dost environment. Dost is an extension of the
Mesa-based Xerox Development Environment (XDE) [48, 49], and its major parts have

been implemented on the Xerox 8010 (Dandelion) workstation.

Chapter 3 describes how Dost may be used, both to create classes and to interact
with their instances. It describes in detail six classes, representing a diverse range of
applications. For each class, it describes the user interface available to interact with

instances of the class, and the code required to create the class.

Chapter 4 describes the role played by different components of our approach,
discusses some useful features missing from it, describes our experience with Dost,
compares our work with related work, and presents conclusions and directions for

future research.

10

Chapter 2
Dost

In this chapter, we describe our approach through the example of Dost'. Dost is
an extension of the Mesa-based Xerox Development Environment (XDE), and its
major parts have been implemented on the Xerox 8010 (Dandelion) workstation. We
first give an overview of the environment. Next, we describe the four components of
our approach: objects, dialogue managers, the input/output primitives, and the interac-

tion model. Finally, we discuss the main features of the implementation.

In this dissertation we shall use the term Dost to express both the environment

. and the approach it illustrates.

1. Overview

Dost differs from XDE and other traditional environments in several important
ways. Application programmers do not write programs; instead they create classes.
Similarly, users of the system do not ‘run’ programs, instead they ‘edit’ objects. An
object is an instance of a class. The class describes the data encapsulated by the object
and the methods to manipulate them. The methods of an object are invoked in

response to messages from other objects and users (through dialogue managers).

An object is associated with one or more presentations that display the data

encapsulated by the object. Changes in the presentation cause corresponding changes

! Dost is a word in Urdu meaning friend. The name expresses our hope that both users and appli-
cation programmers will regard Dost as a friend.

11

in the object. Similarly, changes in the object due to internal changes or messages

from other objects cause its presentations to be updated.

Between each object and a user is a dialogue manager. A dialogue manager
handles user interaction on behalf the object. It offers the user a structure editor inter-
face to modify the presentations of an object. It announces user-caused changes to a
presentation in messages to the object. Similarly, it updates a presentation for the user

in response to messages from the object.

Thus from the point of view of objects, the user appears to be another object that
can send and receive messages. From the point of view the user, the objects appear to
be data that can be edited. The dialogue manager acts as an intermediary between the
object and the user, translating between the languages of object interaction and user

interaction.

A dialogue manager is provided automatically by the environment. As a result,
an application programmer is concerned only with the specification of the user inter-

face of an object and not its implementation.

1.1. Example

We illustrate the main features of Dost through a sample class ‘Bibliography’,
which defines bibliography databases. Each instance of the class manages a database,
and allows a user to add, delete, and modify entries. We first describe how a user

interacts with an instance, and then how a programmer defines the class.

To interact with an object, the user first loads its presentation(s) into a Dost win-
dow. A Dost window is like an XDE text window except that it is managed by a dialo-

gue manager instead of a text editor. An object of an arbitrary class can be edited in

12

such a window.

Figure 1 shows the structure of an empty Dost window. Let us assume the user
wants to create a new instance of the class ‘Bibliography’. He fills the class and
instance (‘myBib’) names in the appropriate fields of the window, and selects the
‘load’ command. Figure 2 shows the result of executing the command. A new object
~called ‘myBib’ is created, and its presentation is loaded in the window. Initially, the

object contains no entries. Therefore its presentation contains the placeholder

<ReferenceList>
which indicates that a new list of reference entries may be added to the presentation.

Figure 3 shows the sequence of actions a user may employ to replace this place-
holder with a list of references. Each box displays the current presentation of the
object. An arrow indicates an editor command invoked by the user, and the shaded

text in a box indicates the operand of the editor command.

The user can expand the initial placeholder to get a template for a new reference.
The template contains placeholders for the fields of the entry. In our example, these
may be replaced to enter the author name, title, and the kind of entry desired. An entry

may be a reference to a journal, book, or technical report.

13

...
..............._..............._......._........................“_“.u.........u...u....."."-u.u.".u.".".".“.“.“.u.u.".".u.“.u.“.u.".n.“.”-".".“.".“.".".u."_u.".".u.“.".u.u.“.".u.".".“.".".".“.".".".u_".".".".....".".".".".....u.u-“_u-u...........
..

Figure 1: An Empty Window

14

............................ TSSO g L R S W M M MM N NS M M et
B aBIatH R T I e
o e
) o
st)
+ 5y
o o
M KN
1 "
. e
e il
" o
" "
i o
) N
e et
. i
b IRy
I)
o M
" e
) IR
" !
. - -y .
£3ELTRoURJIR 43 » X

H o 2 =ueput daag iHdASud iHdIxaN ipuedxy japLId jusog ~idn
i Aychery i33say j3ABG ipeo] gLgfu ‘omey fydedboL oLy ‘sser)!

Figure 2: A Loaded Instance of ‘Bibliography’

l EXPAND

L |

title: <STRING>
kind: <ReferenceKind>

REPLACE

title: <STRING>
kind: <ReferenceKind>

l SELECT

author: John Smith
title: <STRING>

[

author: John Smith
title: <STRING>

Similar Commands l

EXPAND T l ELIDE

DELETE T l NEXT PLACEHOLDER

15

<Reference...>

X ey

"

ACCEPT l

Figure 3: Editing a New Instance of “Bibliography”

16

To enter the ‘author’ field, the user first selects it, and then replaces the place-
holder with the appropriate name. The ‘title’ field may be entered in a similar fashion.
The user chooses to consult a menu to enter the ‘referenceKind’ field. In the example,
the user selects a ‘Book’. In response, the dialogue manager replaces the field with
fields appropriate to a book reference. In this example, there is only one such field,
which prompts the user for the publisher of the book.. If the user were to select ‘Jour-
nal’ or ‘TechRept’, the dialogue manager would prompt the user for a journal name or

a university name.

Figure 3 illustrates other commands available to the user. The user can select the
whole entry by executing the up command, and then hide its details by executing the
elide command. The effects of these two commands may be reversed by executing the
expand and down commands respectively. The next placeholder command may be
executed to insert a template for a new entry. (This entry may be removed by execut-
ing the delete command.) The user may now fill this entry, and add other entries using
similar commands. After specifying all the elements of the list, the user may execute

the accept command. At this point, the new list of entries is sent to the object.

Figure 4 shows the text of the class ‘Bibliography’, which is written by the appli-
cation programmer to support the user interface we have just seen. The class declares
the variable ‘refList’, which stores the database of reference entries. The variable is a
pointer to a record containing a Mesa sequence of ‘Reference’ records. (A Mesa
sequence is an array of variable size). A ‘Reference’ is a variant record discriminated
by the ‘referenceKind’ field. These declarations are used by the dialogue manager as a

guide for the user interface of instances of the class.

Bibliography: CLASS = {

ReferenceKind: TYPE = {Journal, Book, TechRept};
Reference: TYPE = RECORD [
author, title: STRING;
info: SELECT referenceKind: ReferenceKind FROM
Journal: [journal: STRING],
Book: {publisher: STRING],
TechRept: [university: STRING]];
Referencelist: TYPE = POINTER TO RECORD [
list: SEQUENCE length: CARDINAL OF Reference];

refList: Referencelist;

Load: METHOD [dm: DialogueManager] = {
—set ‘alignment’ and ‘titled’ attributes of ‘STRING’
dm.Alignment[attrGrp: STRING, val: verticall;
dm.Titled[attrGrp: STRING, val: TRUE};
- set ‘titled'attribute of ‘Reference.ReferenceKind’
dm.Titled[attrGrp: Reference.ReferenceKind, val: TRUE];
-- set ‘selfUpdate’ attribute of ‘ReferenceList’
dm.SelfUpdate[attrGrp: Referencelist, value: RefListUpdated];
-- submit variable ‘refList’ for editing
dm.Edit[var: reflist]};

RefListUpdated: METHOD [newVal: ReferencelList] = {
reflist <- newVal};

MakeEditablefload: Load]};

Figure 4: The Class ‘Bibliography’

17

Name

Types

Variables

Methods

Body

18

The body of the class (which is executed by each new object) is the call Mak-
eEditable, which expresses the caller’s willingness to interact with users through dialo-
gue managers. The call registers with the system the method ‘Load’ as the load
method of instances of the class. This method is invoked when the user asks a dialo-
gue manager to load an instance in its window. Its parameter ‘dm’ contains the name
of the dialogue manager. The object uses this name to send messages to the dialogue -

manager.

The first two messages sent by ‘Load’ ask the dialogue manager to associate cer-
tain display properties with all variables of type ‘STRING’ in the object. The first asks
the dialogue manager to align these variables vertically, and the second asks it to ‘title’
them. (If a variable is ‘titled’, its name precedes its value. For instance, if an ‘author’
field of a ‘Reference’ record is ‘titled’, the name ‘author’ precedes the display of the
string value of the field). The third message asks the dialogue manager to ‘title’ the

discriminant ‘referenceKind’ in variables of type ‘Reference’.

The fourth message tells the dialogue manager about the method ‘ReferenceLis-
tUpdated’, which is to be called when variables of type ‘ReferenceList’ are updated.
The last message in ‘Load’ asks the dialogue manager to display variable ‘refList’ as
part of the presentation of the object. The dialogue manager uses the information in
the type declarations of the class and the initialization sent by ‘Load’ to allow structure
editing of the variable in the manner described earlier. Later, when the user executes
the accept command, the dialogue manager calls ‘ReferenceListUpdated’, passing the
new list of reference entries in the ‘newVal’ parameter. The object uses this value to

update its version of the list stored in ‘refList’.

19

Figure 4 demonstrates the automation in the environment. The class declaration
contains very little code to handle interaction with the user: the call ‘MakeEditable’
and the ‘Load Method’. This code ‘drives’ the dialogue managers of instances of the
class, which implement the user interfaces of these instances and are provided by the

environment,
2. Objects

2.1. Overview
Our approach augments a traditional programming environment with extensions

to support classes and objects. These extensions support the editing model of interac-

tion, as discussed in chapter 4.

Classes in Dost are a cross between Smalltalk [12] classes and traditional pro-
grams. Similarly, objects in Dost are a cross between Smalltalk objects and traditional
program instances. By a program we mean a separately compiled and linked unit of

code, and by a program instance we mean an execution instance of a program.

We illustrate the nature of Dost classes and objects by comparing them with their
counterparts in Smalltalk and traditional environments respectively.
Comparison with Smalltaik

A Dost class is similar to a Smalltalk class in that it defines the data encapsulated

by its instances and the operations to manipulate them.

A Dost object is similar to a Smalltalk object in two respects. First, it is part of
the permanent memory of the system. Thus it has a permanent name, and can be
activated and passivated. Second, it can communicate with other objects through

messages.

20

However, there are several key differences between Dost and Smalltalk, which

stem from the fact that Dost is an extension of a traditional environment.

First, Smalltalk is a toral-object system, that is, each entity in the system is an
object. Dost on the other hand, is a partial-object system. Objects in Dost are special
entities that coexist with ‘smaller’ entities such as integers, reals, and other data

described by Pascal-like type declarations.

Second, Smalltalk classes share code through the mechanism of inheritance. In
Dost, classes are extensions of Mesa programs, and share code by using Mesa con-
structs for importing and exporting declarations. Thus, the destination of a message is

determined at execution time in Smalltalk, but is bound at compile time in Dost.

Third, in the Smalltalk environment all objects are in a single virtual address
space and are activated and passivated automatically by the paging system. In Dost,
objects are not forced to share a single virtual address space and the system activates
and passivates objects in response to explicit requests from the active objects and
dialogue managers in the system. Moreover, an object is responsible for reading its
data structures from permanent storage when it it is activated and writing its data into
permanent storage when it is passivated. This feature keeps the design and implemen-
tation of Dost simple. Moreover, it allows our approach to be applied to (more or less)

traditional environments.
Comparison with Traditional Environments

We now describe the nature of Dost objects and classes by comparing them with
their counterparts in a traditional environment. Since the Dost environment is an
extension of XDE, we use the latter as a representative example of a traditional

environment.

21

A Dost object is similar to a Mesa program instance except for two differences.
First, an object is part of the permanent memory of the system, much as a file is a part
of the permanent memory of a traditional system. Thus it has a permanent name, and

can be activated and passivated.

Second, an object can receive messages from other objects. Sending a message
to an object in Dost is similar to invoking a procedure in a Mesa program instance.
The difference is that messages can be exchanged between arbitrary objects in Dost,
while in XDE arbitrary program instances cannot name and communicate with each

other.

A Dost class is like a Mesa program except that it contains constructs to support

objects. These constructs are described in detail below.

2.2. Constructs to Support Objects
Naming an Object

Object names are used by other objects and users. The cognates of objects in
traditional systems are files, so their naming scheme is borrowed from files. Each
object has an ascii permanent name, which is global to all users and objects. A user
may use this name to specify an object for editing. An object may use the name to get

a pointer to the named object, as described in the next section.

Object Pointers

Dost associates a type with each class in the system, and allows variables of
these types to point to instances of the classes. We call such variables object pointers.
The following is an example of a declaration of an object pointer to an instance of

class ‘Bibliography’:

22

bibPtr: CL.ASS Bibliography;

An object pointer, like a Pascal file pointer or a Mesa file handle, may be bound
to an existing object by a call to the predefined procedure OpenObject. The procedure

takes the name of the object and returns a pointer to it. Thus the call:

bibPtr <- OpenObject ["myBib"]
' returns a pointer to the object ‘myBib’ in ‘bibPtr’. Dost creates a new object of the
current class, if one with the specified name does not exist. (The body of the new

object is executed before the pointer is returned, allowing it to make itself editable for

example)
Activation and Passivation of Objects

The interaction model supported by Dost allows each object to represent per-
manent data that can be saved between editing sessions. Therefore, it is important that

the environment provide support for permanence in objects.

A programmer may make a class of objects permanent by including the parame-
ter dataFile (of type ‘STRING’) in the declaration of its parameter list. Dost associ-
ates each instance of such a class with a unique file called its data file, which may be
used by the object to store its stable data structures. When an existing instance is
activated, or a new instance is created, the ‘dataFile’ parameter contains the name of

the data file of the instance. The object can read its data structures from this file.

The object may ask Dost to unload it from memory by calling the predefined pro-
cedure Passivate, which takes no arguments. It is expected to save its data structures
in its data file before it calls the procedure. Moreover, it is responsible for ensuring

that other objects and dialogue managers do not refer to it. (Our approach assigns

23

these responsibilities to an object to keep the design and implementation simple.)

The following class fragment demonstrates how objects may be activated and

passivated:

ActivePassive: CLASS [dataFile: STRING] = {
-- declarations of variables

-- a procedure that saves the ‘permanent’ data structures into a file
SaveDataStructures: PROCEDURE [fileName: STRING] = {

)

-- a procedure that reads the ‘permanent’ data structures from a file
ReadDataStructures: PROCEDURE [fileName: STRING] = {

b
-- a procedure that decides to passivate the object
CallPassivate: PROCEDURE = {

SaveDataStructures [dataFile];

Passivate []}.
-- main body, called on each activation of the object
ReadDataStructures[dataFile] };

Methods and Messages

A class may contain method declarations, which define the methods that can be
invoked in its instances. Method declarations are similar to Mesa procedure declara-
tions. The differences are that the keyword PROCEDURE is replaced with METHOD,
a method can be invoked from another object, and methods may be declared only in
the outermost scope of the class. Figure 4 illustrates how methods are defined; it con-

tains declarations of the methods ‘Load’ and ‘RefListUpdated’.

A method is invoked in response to a message from an object or a dialogue

managef. The following is the syntax for sending a message:

<ObjectPointer>.<Message>

where <ObjectPointer> is a pointer to the destination object, and can be omitted if the

24

source and destination objects are the same. The syntax of <Message> is the same as
the syntax of a Mesa procedure call. The semantics of sending a message are similar
to the semantics of a Mesa procedure call except that a message can be sent to another

object.

(A Mesa procedure call is similar to a Pascal procedure call. The main differ-
ences between the two are that in Mesa (1) parameters may be specified using keyword
or positional notation, (2) arguments not explicitly specified may be supplied by
default, and (3) all arguments are passed by value. For instance, given the procedure

definition

ExampleProc: PROCEDURE [pl: INTEGER <- 0, p2: BOOLEAN <- TRUE] =
{..}s

the following are valid calls:

ExampleProc [1, FALSE]; -- positional notation
ExampleProc [p2: FALSE, p1: 1]; -- keyword notation
ExampleProc [p2: FALSE]; -- the default value ‘0’ is assigned to ‘pI’)

3. Dialogue Manager

An object interacts with the user through one or more dialogue managers. A
dialogue manager defines two interfaces: one for the user, and the other for the object.
The former describes the user interface of the object, and the latter describes the set of

input/output primitives available to the object.

At any moment, one or more dialogue managers may be active in Dost. Each
dialogue manager displays a window on the screen. A user starts interaction with an
object by asking a dialogue manager to display the presentations of the object in the

window. In response, the dialogue manager asks the object for the names of the vari-

25

ables that need to be displayed in the presentations of the object (by calling the load
method). The object responds by sending the appropriate information. The dialogue
manager uses this information and its knowledge about the types of these variables to
present to the user a default interface to edit the variables. An object may use the
input/output primitives provided by the dialogue manager to receive values of vari-
ables edited by the user, update the values of displayed variables, and override the

interface presented by the dialogue manager.
4. Input/Output Primitives

4.1. Overview

The choice of our input/output primitives was governed by our goal of automat-
ing the generation of editing interfaces while giving a programmer flexibility to choose
the characteristics of an interface. We describe below the main features of these primi-
tives:

Non-Sequential Input
The editing model allows a user to edit the variables displayed in a presentation

in any order. Our approach supports this model by allowing an object to react to

changes in any one of the variables displayed in a presentation.
Display Structure

A dialogue manager saves the values input and output by an object in a display
structure. The user inputs new values by editing the values stored in this struc-
ture. The object outputs new values by updaring the values stored in the struc-

tre.

26

Input/Output of Programmer-Defined Values

An object can input and output values of programmer-defined types. These
include arrays, records, sequences, records, variant records, and structures
referred by pointers. The dialogue manager converts user input into the internal
representation of these values. Conversely, it converts the internal representation
of these values into images on the screen. Thus a program is not concerned with
the task of parsing input to determine a programmer-defined value. Similarly, it
is not concerned with the task of unparsing programmer-defined values into out-

put on the screen.

Display Properties
A variable is associated with display properties, which an object or user may
change to control the format and other characteristics of the variable.

Inheritance Tree

The display properties of the variables displayed by an object are arranged in an
inheritance tree. The nodes of the tree inherit display properties from their
parents, which they can override. The leaf nodes of the tree are associated with
the displayed variables. The inheritance tree provides a powerful mechanism to

define default formats.

The following subsections discuss the Dost input/output primitives in more
detail. In particular, they answer the following questions:
® What are the primitives provided to support object-dialogue manager communi-

cation?

27

® How does an object display variables in its presentations?

® How can an object control the format of a displayed variable?

® How are user changes to a presentation buffered?

® How does an object receive changes to its presentations?

® How does an object specify the ‘granularity’ of the change transmitted to it?
e How are user errors handled?

) How can an object control the set of commands available to edit a variable?

® How can automation, which frees an object from the details of user interface
tasks, and flexibility, which allows an object to tailor the interface according to

its needs, both be provided?

4.2. Object-Dialogue Manager Interaction

An object communicates with users through one or more dialogue managers. In
this section we discuss the basic primitives provided in Dost for object-dialogue

manager communication.
Naming a Dialogue Manager

In Dost, an object names a dialogue manager the same way it names other
objects. A predefined type DM is provided, which may be used to declare pointers to
dialogue managers and send messages to them. The syntax for sending messages to
dialogue managers is the same as the syntax for sending messages to ordinary objects.
The ‘Load’ method in figure 4 shows how an object names a dialogue manager and

communicates with it.

28

Naming Presentations

Dost allows an object to display several presentations in different presentation
subwindows of a window. Thus an object can present several ‘views’ of itself. For
instance, a spreadsheet manager can show one view displaying the values of the
spreadsheet and another view displaying expressions that define the relationship

between these values.

An object names a presentation by using the subwindow number of the subwin-

dow in which the presentation is displayed.
Setting up Object-Dialogue Manager Communication

An object is connected to a dialogue manager when a user loads its presentations
in a window. This section discusses the primitives to set up communication between

an object and a dialogue manager.

An object can call the procedure MakeEditable, to express its willingness to
interact with users through dialogue managers. Through this call an object tells Dost
its load method and (optionally) the number of presentations it has. (This number is
fixed in Dost to keep the implementation simple. Its default value is 1.) The load
method is invoked in an object when a new dialogue manager is attached to it, and
receives in its parameter a pointer to the dialogue manager. An object may use this

pointer to send messages to the dialogue manager.
The class ‘Bibliography’ shown in figure 4 illustrates how object-dialogue
managef communication is set up. The main body calls the procedure ‘MakeEditable’,

which submits the method ‘Load’ as the load method.

29

An object may be attached to several dialogue managers at the same time. Thus
an object may be edited in several windows simultaneously. The load method is called

each time a user loads an object in the window managed by a dialogue manager.

4.3. Displaying Variables

An object displays a variable by sending an Edit message to a dialogue manager,
which asks the dialogue manager to append a presentation of a variable to the contents
of a presentation subwindow. The arguments of the message name the subwindow
number and the variable to be displayed. The subwindow number is an optional argu-

ment and defaults to zero.

An object may use ‘Edit’ messages to display variables of predefined and
programmer-defined types. As a result an object may include in its presentations the
display of not only integers, reals, and strings, but also, arrays, records, sequences,

variant records, and pointers.

4.4. Display Nodes and Attributes

A presentation of an object is composed of presentations of one or more display
nodes. A display node is associated with a variable displayed by the object and con-
tains editing information about the variable. A presentation of a display node displays
a ‘formatted’ value of the variable. A variable may be associated with several display

nodes, each providing a different ‘view’ of the variable.

A display node acquires the type of the associated variable, which determines its
various characteristics or attributes. One of the attributes is the value attribute, which
contains the value of the variable associated with the node. Another attribute is the

initialized attribute, which determines if the node is considered initialized or

30

uninitialized. This attribute influences two decisions: first, if the value of the node is

displayed to a user (§ 4.6), and second, if the value is sent to the object (84.7 & §4.8).
The other attributes, discussed later, determine:
(1) the presentation of a display node.
(2) the mechanism by which an updated value is communicated to the object.
(3) the commands available to the user to edit the presentation of the node.

A display node is created by a dialogue manager either in response to an ‘Edit’
message from the object or as a result of the execution of an editor command by the
user. Each ‘Edit’ message creates an initial display tree consisting of display nodes for
the variable and its components. The tree reflects the current value and structure of the
variable, and may be modified by the user commands that add or delete nodes from the
tree. The following discussion uses the ‘Bibliography’ example to illustrate the nature
of display trees of enumerations, records, variant records, and sequences, and struc-

tures referred by pointers.

Figure 5 shows initial display trees rooted by display nodes of of type ‘Referen-
ceKind’, ‘Reference’, and ‘ReferenceList’. Each node is labelled by its type name, if
defined, or the constructor used to create the type.

Simple Type

Figure 5(a) shows an initial display tree created in response to an ‘Edit’ message
that submits a variable of the enumeration ‘ReferenceKind’ for editing. The tree con-
sists of a single node, which is initialized with the value of the variable. The structure
of this tree, like the structure of the corresponding variable, is fixed, and no nodes inay

be added or removed from the tree.

31

ReferenceKind

a) Initial Tree of a ‘ReferenceKind’

Reference

ReferenceKind

b) Initial Tree of a ‘Reference’

Referencel.ist

ReferenceKind

¢) Initial Tree of a ‘ReferencelList’

d) Edited Tree of a ‘ReferencelList’

Figure 5: Display Trees

32

Variant Record

Figure 5(b) shows a display tree created in response to a message that submits a
variable of the record type ‘Reference’ for editing. The tree contains display nodes for
the fixed fields, the tag field, and the variant fields of the record. These are initialized
with values determined by the value of the variable. In this example, the structure of
 the tree is independent of the value of the tag field of the record. In general, however,
the structure of a display tree reflects the structure of the selected variants. A user may

alter the tree by changing the tag values.
Sequence Pointers

The description of the display tree for a variable of type ‘ReferenceList’ requires
a discussion of Mesa sequences. A Mesa sequence type is considered to be a union of
some number of array types, just as the variant part of a variant record type is a union

of an emumerated collection of record types. This has the following consequences:

A sequence type can be used only to declare a field of a record. At most one

such field may appear within a record, and it must occur last.

A sequence-containing record has a tag field that specifies the length of a

sequence, and thus the set of valid indices for its elements.

Mesa also places the restriction that sequence-containing records have to be allocated
dynamically and referenced through pointers. Thus in the class ‘Bibliography’, the
pointer ‘referenceList’ is used to define a sequence. We shall refer to pointers to

sequence-containing records as sequence pointers.

Figure 5(c) shows a display tree for a variable of type ‘ReferenceList’. The tree

consists of the singleton node of type ‘ReferenceList’, which is initialized with the

33

value of the variable. The user may ‘dereference’ a pointer by selecting its node and
executing the ‘expand’ command. In response the dialogue manager creates a display
tree for a variable of the type referenced by the pointer. In this example, the tree con-
sists of display nodes for the record, its sequence field, elements of the sequence, and

fields of the elements, which make the leaf nodes of the tree.

The nodes of the tree have default values (§4.10) if the pointer variable ‘refList’
stores the ‘NIL’ value. Otherwise they are initialized with values determined by the
value of the referent of the pointer. Figure 5(d) shows a display tree for ‘refList’ after
a user has executed the ‘expand’ command. We assume here that the value of ‘refList’
is not ‘NIL’ and there is one element in the sequence. The user may add new elements
to the sequence by executing the ‘next placeholder’ and ‘previous placeholder’ com-
mands, and delete them by executing the delete command. The user may also delete

the complete subtree rooted by the pointer node.

A new display tree is created every time an object submits a variable for editing,
or the user ‘dereferences’ an ‘unexpanded’ display node of a pointer variable. Thus, if
an object submits the same variable twice for editing, the dialogue manager creates
two trees with disjoint nodes. Similarly, if the user executes the ‘expand’ command on
two different ‘unexpanded’ display nodes of the same pointer variable, the dialogue
manager creates two different trees. It makes no effort to keep these trees consistent—
it is the object’s responsibility to do so. An object may use the ‘broadcast’ facility

described in §4.4 to keep different nodes displaying the same variable consistent.

These semantics of creating display trees associate an infinite tree of display
nodes with a recursive structure. The dialogue manager uses an algorithm of lazy

dereferencing to prevent itself from creating such a tree. The initial display tree for

34

any node does not contain ‘dereferenced’ pointer nodes. These nodes are ‘derefer-
enced’ on demand from the user, each time the ‘expand’ command is executed on an

‘unexpanded’ pointer node. As a result an infinite display tree is never created.

The lazy dereferencing algorithm is illustrated by the ‘Bibliography’ example. If
an object submits a non-NIL value of ‘refList’ for editing, the initial display tree is as
shown in figure 5(c). A user has to explicitly ‘dereference’ the node to display the

value to which the pointer refers.

4.5. Naming a Display Node

A display node may be named either by the object or the dialogue manager. An
object names a display node to change the ‘value’ and other attributes of the node. A
dialogue manager names it to inform the object about user changes to the ‘value’ and

other attributes of a display node.

In this section we discuss our approach to naming display nodes. The section is
organized into two parts. The first part discusses some of the factors we had to con-

sider in the design of the approach. The second part describes the approach.
Issues
The following factors had to be considered:

® An object or a dialogue manager may name any display node, including internal

nodes in a tree.

® An object receives node names in arguments of methods invoked by a dialogue

manager. Therefore, it should be able to declare variables that store node names.

e A dialogue manager uses node names to inform an object about user changes to

display nodes. In response, the object often updates the variables displayed by

35

the nodes. Therefore an object should be able to easily deduce from a node

name the variable displayed by the node.

® Conversely, an object should be able to easily refer to the display nodes of a vari-

able in response to changes in the variable.

® Display nodes can be updated with only those values that are allowed by their
types. The naming scheme should allow errors in updating display nodes to be

caught at compile time.
Approach
We now describe our approach to naming display nodes.

A node may be named by a a node name or a path name. The node name
directly names the node, while the path name addresses the node by specifying the

node name of one of its ancestors, and the ‘path’ from the ancestor to the node.

A node name may be a variable name or a node number. A variable name
names a node through the variable, while a node number addresses a node through an

‘index’ that identifies the node to the dialogue manager.
Variable Name

The variable name of a node allows an object to think of the node in terms of the
variable it displays. It is actually represented by the address of the variable it displays,
and may therefore be stored in pointer variables. The following are valid variable
names for nodes in a display tree for variable ‘refList’ of figure 4, assuming that the
value of ‘refList’ is not NIL when it is submitted for editing, the sequence component

has at least 1 element, and variable ‘p’ holds a pointer to ‘refList’:

36

@refList

P

@refList[0]
refList[0]
refList[0].author

The first and second names provide the address of the variable ‘refList’, and refer to
the display node for the variable. The third and fourth names refers to the display node
for the first element in the sequence field. In the fourth name, the object does not
explicitly give the address of the variable. Since the variable is not a pointer variable,
the system automatically ‘references’ it. Similarly, the last name refers to the display

node for the ‘author’ field of the first element of the sequence.

An object can use a variable name only if the node it names is registered. The
root nodes of display trees are always registered. A Boolean attribute registered deter-
mines if other nodes are registered or not. This attribute is defined to allow efficient
translation in the dialogue manager from a variable name to an ‘index’ that points to
the node in the data structures maintained by the dialogue manager. This translation
process may be expensive if every display node is addressable by a variable name.
The ‘registered’ attribute ensures that a dialogue manager searches only registered
nodes. Typically, there will be only a few nodes that need to be be named by variable
names. The others either do not need to be named, or can be specified by node

numbers or path names.

A variable may be associated with more than one display node, each storing
information about different views of the variable. In such a situation, the variable
name addresses all registered nodes that display the node. Thus if an object executes

the two messages to create two display nodes for ‘refList’:

37

Edit [refList]
Edit [refList]

and uses the name ‘@refList’ in a message to the dialogue manager, then the variable
name refers to both the nodes if they are both registered. Thus an object can broadcast

changes to all nodes of a variable.

It is possible that a display node may not be associated with a variable in the
object. This situation occurs when the object does not update its internal data struc-
tures on each change caused by a user. For instance, in the ‘Bibliography’ example, an
object submits a ‘NIL’ value of ‘refList’ to the dialogue manager. The user may create
a new sequence-containing record, and then add elements to the sequence. The object
does not receive information about these incremental changes to the variable ‘refList’,
and receives the new value only when the user selects the new list and executes the
‘accept’ command. At this point the display nodes added by the user are associated

with storage in the object.

A display node not associated with storage in the object cannot be named by a
variable name. In such a situation, an object has to use either a path name or a node

number to refer to it.
Node Number

A node number is the index of a display node in the data structures of a dialogue
manager. It is stored in node variables of the object, and may be used to name the
node. A node variable ‘n’ that stores a node number of a display node of type “T" is

declared as follows:

n: NODEOF T

38

An object can receive the node numbers of all display nodes created by a dialo-
gue manager. It receives node numbers of roots of display trees in in return values of
‘Edit’ messages. It can receive node numbers of other nodes in parameters of update
methods, which are discussed in §4.7. The object may choose to ignore a node

number, or store it in a node variable for later use.
Path Name

A node name (node number or variable name) may be qualified by a tag list and
a qualifier to form a path name of a descendant of the node. The following is the syn-

tax of a path name:

tag list>] <variable name>$<qualifier>

<path name> := [<
= [<tag list>] <node number> <qualifier>

<path name> :

A qualifier indicates either a field of a record node, an element of an array or
sequence node, or a referent of a pointer node. Its syntax is identical to the syntax of
the suffix attached to a Mesa variable to indicate a field, element, or referent. Thus the
qualifier ‘.author’ attached to a node name of a display node of type ‘Reference’
accesses the display node for the ‘author’ field. Similarly, the qualifier ‘[0]" attached
to a node name of variable of type ‘ReferenceList" accesses the display node for the
first sequence element.

(The separator ‘$’ is used to disambiguate variable names from path names. For
instance, consider a record variable ‘r’ that has a field ‘f1°. Then the name ‘r.f1’ is a
variable name while the name ‘r$f1’ is a path name. These two names may refer to
different display nodes, as illustrated below. Assume that the object sends the follow-

ing messages to a dialogue manager:

Edit[r];

39

Edit[r.f1];

The two messages display variable ‘r.f1’ twice: once as part of the display tree created
in response to the first message, and once as the root of the display tree created in
response to the second message. Assume that both nodes are registered. Then the path

name ‘r$f1’ refers to the first node, while the variable name ‘r.f1’ refers to both nodes.)

A tag list is used to access display nodes of fields of variant records. It is
required in Dost because fields in different variants of a Mesa record are not required
to be distinct. This list indicates the values of the tags of the variant records, and is
used to access the correct variants. The leftmost tag value specifies the innermost vari-
ant record, and the last specifies the outermost variant. Thus the tag list ‘Journal’ and
the qualifier ‘.journal’ may be attached to a node name far a variable of type ‘Refer-
ence’ to access the display node of the ‘journal’ field of ‘Journal’ variant of a display

node of type ‘Reference’.

Figure 6 shows how the display nodes in a display tree for the variable ‘refList’
may be named. We assume in this figure that the value of ‘refList’ is not ‘NIL’, the
sequence component has exactly one element, and the root node and the display node
of the author field of the sequence element are registered. The registered nodes in the
figure are shaded. We also assume that ‘n’ is a node variable that points to the display

node for the singleton element of the sequence.

Note the difference between the two names for the display node for the ‘author’
field. The first, ‘@refList$[0].author’, is a path name derived from the variable name
of the root node, while the second, ‘refList[0].author’ is the variable name of the node.

The second name is applicable only if the node is registered.

40

@reflist

RECORD...

@reflList$[0]

n

Reference

@reflist$[0].author,
refList[0] author

Journal @reflList$[0].journal
Journal n.journal

Figure 6: Naming Display Nodes in a Display Tree for ‘refList’

41

Choosing a Node Name

Variable names, node numbers, and path names are three different ways to name
a node. Each has its advantages, and is appropriate under different conditions, as dis-
cussed below. We first compare node numbers with variable names, and then path

names with both node numbers and variable names.

The advantage of variable names over node numbers is that they allow an object
to think of the nodes in terms of the variables they display. Thus, if an object wants to
update the value of the display nodes of a variable with the current value of the vari-
able, it does not have to compute the node numbers of the display nodes. It can simply
name the display nodes with the address of the variable. Similarly, when a dialogue
manager uses the variable name to inform the object about a change to a value of a
display node, the object can simply dereference the variable name to update the vari-
able. It does not have to translate from a node number to a variable address, which
may require the object to search for the variable address. Fihally, an object does not

have to allocate storage for variable names, while it has to do so for node numbers.

The advantage of node numbers over variable names is that they directly name
the node. As a result they uniquely identify a node whenever a variable name can
name several nodes, as we saw. Moreover, their use by an object does not require a
search by the dialogue manager. Finally, they can be used to name nodes that do not

have storage allocated for them.

Node numbers are particularly appropriate when the object does not have to
translate a node number to a variable name and vice versa. This situation often arises
when it receives from the dialogue manager the node number and value of a node that

has been changed by the user. The object can check the value for semantic consistency

42

and use the number to change those attributes of the node that announce and correct
the semantic errors of the node. It should not use the variable name to do so, since it
knows the node number, and thus, can save the dialogue manager from having to

search for it.

Path names have certain advantages over both node names and node numbers.
First, they limit the number of registered nodes, since descendants of such nodes can
be named by qualifying the variable names of the registered nodes. Second, they
limit the number of node numbers an object needs to store, since descendants of the
nodes for which the object has allocated node variables can be addressed by qualifying
these variables. Finally, they are useful if an object knows a node name for a parent,
wants to address one of its descendants, and must search for a node name of the des-
cendant. In this situation, the object may qualify the node name of the parent to form

the appropriate path name for the descendant.

There are two disadvantages of path names. First, the dialogue manager has to
follow the path from the ancestor node to the addressed node at execution time.
Second, an object often knows the node name of a node, but has no information about

its ancestors or their node names. In this situation, a path name cannot be used.

4.6. Presentations of Display Nodes

An object specifies how display nodes are to be presented by giving the dialogue
manager information about general characteristics about the presentation. These
characteristics are specified either as values of formatting attributes of display nodes,
or as display names of enumeration literals. A dialogue manager uses these charac-
teristics and its knowledge about the types of the nodes to construct appropriate

presentations of the node.

43

Formatting Attributes

In this section we present examples of formatting attributes that determine
® the alignment of a presentation,
® whether a presentation prompts the user for an input value,

® whether the presentation of a display node of a simple type shows a placeholder

or the value of the display node, and

° whether the presentation of a display node of a structure type hides or shows the

values of its components.

As examples of display nodes, we consider those that can be defined by the types
declared in figure 4.

Figure 7 shows two presentations of a display node of type ‘ReferenceKind’.
The first is an ‘initialized’ presentation, and displays the ‘value’ attribute of the node.
The second is an ‘uninitialized’ presentation, and shows a placeholder for a value of
type ‘ReferenceKind’. Such a presentation is appropriate for display nodes of vari-
ables that need to be initialized by the user. It serves two purposes: first, it tells the
programmer that an input value is expected for the variable, second, it describes the set
of legal input values. The ‘initialized’ attribute of a node determines if an ‘initialized’
or ‘uninitialized’ presentation is displayed for it.

Figure 8 shows several presentations of a display node of type ‘Reference’. The
presentations in figures 8 (a-f) are composed of the presentations of the fields of the
display node, while the presentations in figure 8 (g-h) are ‘elided’, and hide the details
of the node. A Boolean attribute elided determines if the presentation of a node is

‘elided’ or ‘expanded’.

Journal

a) Initialized

44

<ReferenceKind >

b) Uninitialized

Figure 7: Presentations of a Display Node of Type ‘ReferenceKind’

author: John Smith

title: <STRING> kind: <ReferenceKind>

a) ‘kind’ Field Horizontal

author: John Smith
title: <STRING>
kind: <ReferenceKind>

b) ‘kind’ Field indented

author: John Smith
title: <STRING>
kind: <ReferenceKind>

John Smith
<STRING >
< ReferenceKind >

author: John Smith
title: <STRING>
journal: <STRING >

¢) ‘kind’ Field Vertical

author: John Smith
title: <STRING>
publisher: <STRING>

f) '‘Book’ Variant

d) Untitled Fields

< Reference...>

g) ‘Auto’ Elided

e) “Journal’ Variant

<Smith...>

h) ‘Manual’ Elided

Figure 8: Presentations of a Display Node of Type ‘Reference’

< Referencelist>

a) NiL Pointer Value

< Reference...> < Reference...>

b) Non-NIL Pointer Value

Figure 9: Presentations of a Display Node of Pointer Type ‘Referencelist’

45

In figure 8(a) the presentation of the ‘kind’ field is placed horizontally with
respect to the presentation of the ‘title’ field, in figure 8(b) it is indented, and in figure
8(c) it is placed ‘vertically’. These variations are caused by different values of the

alignment attribute of the node.

Figures 8(c) and (d) show the difference between ‘titled’ and ‘untitled’ presenta-
~ tions of the fields of the record. The titled attribute determines which presentation is
chosen. Figures 8(d), 8(e) and 8(f) show the difference between initialized and unini-
tialized presentations of the variant part of the record. In figure 8(d) the presentation
of the variant field is the uninitialized presentation of the tag field, and in figures 8(e-f)

it is the presentation of the fields of the variant selected by the initialized tag value.

Figures 8(g) and (h) show two elided presentations of a ‘Reference’ node. The
first is the default presentation, while the second is a node-specific presentation deter-
mined by the object or the user. The elideString attribute determines the presentation

displayed when the ‘elided’ attribute of a node is ‘TRUE’.

Finally, consider a display node of the pointer type ‘ReferenceList’. The presen-
tation of the node is an uninitialized presentation if it contains the ‘NIL’ value, other-
wise it is a presentation of the display node to which it points. Figure 9 shows presen-
tations in the two cases— 9(a) shows a presentation corresponding to the ‘NIL’ value,

and 9(b) shows a presentation corresponding to two elements in the sequence.
Display Names

Dost associates each enumeration literal in a class with a display name. A
display name is an arbitrary string that displays the literal to the user. By default, it is
the identifier that names the literal. Thus the display name of the enumeration literal

‘ReferenceKind[Journal]’ is the string ‘Journal’, as illustrated by figure 7(a).

46

An object may override the display name of an enumeration literal by sending a

‘DisplayName’ message. The following is an example of such a message:

DisplayName [enum: ReferenceKind[TechRept], val: "Technical Report"];

Display names allow the display of non-alphanumeric strings for the values of

enumeration variables. Chapter 3 illustrates their use.

4.7. Optional Presentations

Several applications require that some parts of their presentations be optional.
For instance, an editor of a Pascal program requires that the else part of an if statement
be optional. Similarly, we can consider an extension of the class ‘Bibliography’,

which allows the users to fill an optional ‘otherAuthors’ field in an entry.

Dost provides support for these applications by dividing the display nodes asso-
ciated with the presentation of an object into optional and required nodes. If a node is
required, then an initialized value of it is required in an initialized value of its parent.
If, on the other hand, it is optional, the user does not have to initialize its presentation.
Moreover, its presentation may be deleted and inserted from the presentation of an

object.

Ideally, an object should have the choice of making any node optional. How-
ever, the following property of optional nodes restricts these nodes to pointers and ele-
ments of sequences. A node can be optional only if, when the node has not been ini-
tialized by the user, it is possible for a dialogue manager to either not send the object
the value of the node in a legal value of its parent, or send a value that can be easily
distinguished by the object as uninitialized. Otherwise, an object may mistake an

optional uninitialized node for an initialized node.

47

Since Mesa does not provide support for uninitialized variables, it is not possible
for the dialogue manager to meet either of the two conditions for most types. For
instance, a non-pointer element of an array cannot be optional, since the value of the
element is always included in a legal value of the array, and the value of the element
does not indicate to the object if the node is ‘initialized’ or ‘uninitialized’. Similarly, a

non-pointer field of a record cannot be optional.

Pointer nodes, string nodes, and elements of sequences, however, can be
optional. A dialogue manager sends the ‘NIL’ value for an uninitialized pointer or
string, and does not include uninitialized sequence elements in a sequence sent to the

object.

Thus the following criterion is used to decide if a display node is optional or
required. Display nodes of elements of sequence nodes are optional. Display nodes of
pointer and string variables are optional or required, depending on the value of the

Boolean optional attribute. All other nodes are always required.

The elements of sequences are always optional, since there does not seem to be
use for required sequence elements. Sequences store lists in which elements can be
inserted and deleted, and thus are optional. Pointers and strings on the other hand can
be optional or required. Examples in chapter 3 illustrate situations in which each is
appropriate.

We illustrate our approach to supporting optional presentations through an exam-
ple. Consider an extension of the class ‘Bibliography’ that includes an additional ‘oth-
erAuthors’ field in a ‘Reference’. Assume that the field is optional and is declared as

follows:

48

Reference: TYPE = RECORD [

otherAuthors: POINTER TO SEQUENCE size: CARDINAL OF STRING,
b

Thus the user has the choice of entering a valid value for the field, or leaving it unini-
tialized.

Now assume that the user fills a few entries for ‘refList’ and executes the
‘accept’ command. The dialogue manager responds by sending the object a sequence
containing only those entries initialized by the user. The ‘otherAuthors’ fields of these
elements either point to lists of authors input by the user, or contain the ‘NIL’ value,

depending on whether or not the user initialized their presentations.

4.8. Communicating Updates to an Object

In Dost, an object typically interacts with a user by first displaying several vari-
ables and then waiting for updates to them. The dialogue manager allows the user to
enter values for these variables in any order and update them several times. In this

section, we discuss our approach to communicating these updates to an object.

4.8.1. Update Methods
Simple Case
Assume that an object displays the variable ‘A’ declared as:

Alndex: TYPE = CARDINAL [1..10];
AType: TYPE = ARRAY Alndex OF INTEGER;
A: AType;

The object can bind the following method to the selfUpdate attribute of the display

node of ‘A’ (§4.11 discusses how values are bound to attributes)

49

AUpdated: METHOD [newVal: AType] = {
A <-newVal};

When the value of the display node for ‘A’ is changed by the user, the dialogue
manager calls this method with the new value of the node. (There are several condi-
tions that determine when a value of a display node is sent to the object. These are dis-
cussed later. Until then, we assume that the value of a display node is sent to the
object when it is changed by the user.) The object uses this value to update variable
‘A’

The attribute ‘selfUpdate’ is an update attribute and the method ‘AUpdated’ is
an update method. Update methods are used by an object to receive updates to its
display nodes. Update attributes either hold the ‘NIL’ value or are assigned update
methods.

In this example, the object receives the whole array when an element is updated.
In several situations it is useful to receive incremental changes to a structure. It may
be more efficient to transmit just the part that changed rather than the complete value.

Moreover, an object may have to do less processing to find the part that changed.

We now discuss two ways to receive incremental updates to the array ‘A’. The
first can be used to receive incremental updates to any structure, while the second can

be used to receive incremental updates to only arrays and sequences.
Incremental Updates to any Structure
The object can bind the following update method to selfUpdate attributes of

display nodes of the elements of the array:

IncrementUpdated: METHOD [newVal: INTEGER,
varName: POINTER TO INTEGER] = {
varName" <- newVal };

50

Whenever a display node for an element of the array is updated, the dialogue manager
invokes the method with the value and variable name of the node. The body of the

method uses the variable name to update the value of the element.

The update method ‘IncrementUpdate’ has two parameters while ‘AUpdated’
has only one. In general, an update method takes as arguments (1) a description of the
_change to the value of the node, (2) the node number and (3) variable name of the
display node, (4) the number of the subwindow in which the node is displayed, and (5)
a pointer to the dialogue manager that displays the node. Here we used only (1) and
(3). The node numbers, the variable names, the subwindow number, and the pointer to
the dialogue manager are received in optional parameters, and are useful only if the
same method is associated with several display nodes. The object can use the input
parameters to check the change for semantic consistency, locate the variable to be
updated, update the variable if no semantic errors are found, transmit the new value to

other objects, or perform some other computation on it.
Incremental Updates to Arrays and Sequences

We now present a second way to receive incremental updates to the elements of
the array. It allows an object to receive the index of the changed element of the array.

The object can bind the following method to the elementUpdate attribute of the

array:

AElementUpdated: METHOD [index: Alndex, newVal: INTEGER] = {
A [index] <- newVal};

When a user changes the value of an element of the array, the dialogue manager calls
the method with the index and new value of the element. The body of the method

updates the element of the array.

51

The elementUpdate attributes are defined only for arrays and sequence pointers.
Methods assigned to them can be used by an object to receive updates to elements of

arrays and sequences.
Incremental Deletes and Inserts of Sequences

A sequence pointer is also associated with the insertUpdate and deleteUpdate
attributes, which may be assigned methods that allow an object to receive information
" about addition and deletion of elements in the sequence. A method may be assigned to
an ‘insertUpdate’ attribute, with parameters that identify the index of the new element,
and its value. Similarly, a method may be assigned to a ‘deleteUpdate’ attribute, with
parameters that identify the index of the deleted element. The following are examples

of ‘insertUpdate’ and ‘deleteUpdate’ methods:

RFInserted: METHOD [index: CARDINAL] = (
InsertSlotIntoList [index]};

RFDeleted: METHOD [index: CARDINAL] = {
DeleteFromFromList [index]};

The procedures ‘InsertSlotInList’ creates a position in the sequence to store a new ele-

ment, and the procedure ‘DeleteSlotFromList’ deletes an element from the sequence.

4.8.2. Invocation of Update Methods

We now discuss invocation of update methods. Our discussion consists of two
parts. The first part discusses the conditions that trigger an update method. The
second part discusses the order in which update methods are called when more than

one update method is triggered.

52

Triggering Conditions

Our choice of the conditions that trigger update methods was influenced by the

following goals:

A user should have the freedom of controlling when to receive feedback from the
object. For instance, a user who changes an element of the array ‘A’ should have
the option of either receiving instant feedback or receiving feedback after modi-

fying other related elements of the array.
An object should be able to specify the granularity of the change transmitted to

it. For instance, it should be able to receive changes to the array in increments of

elements of the array or in increments of the array.

An object should not receive uninitialized values of required nodes. For
instance, the method ‘AUpdated’ should be activated only if the display nodes of
all elements of the array have been initialized by the user. Otherwise, an object

may mistake an uninitialized value for an initialized one.

We meet the last goal by sending the value of a required node in an update

method only if it is initialized. §4.8 discusses the condition for optional nodes. We

meet the other goals by associating a Boolean incFeedback attribute with each node

and specifying the following additional condition for sending the value of a node in an

update method:

the node is a leaf node, and its ‘incFeedback’ attribute is “‘TRUE’, and the user

changes its value, or

the user executes the ‘accept’ command on the node, or

53

® the node is a structure node and the user either changes the value of a descendant

of the node or executes the ‘accept’ command on a descendant.

The user is provided with a command to change the ‘incFeedback’ attribute of

aﬁy attribute group (§4.11).
Invocation Order

A single user command may trigger the invocation of a sequence of methods.

We illustrate the nature of this sequence through an example.

Figure 10 shows a display tree a variable of type ‘ReferenceList’, and values of
the update attributes of the nodes of the tree. The ‘NIL’ values for these attributes are
not shown. Assume that all nodes of the tree are initialized, except for the ‘author’
field of the singleton element in the sequence (marked by an arrow). Then the follow-
ing sequence of methods is called when the user initializes the ‘author’ field and exe-

cutes the ‘accept’ command:

STUpdated
ReferenceUpdated
RFInserted
ElUpdated
RFUpdated

That is, the order is bottom-up, and in one node an ‘insertUpdate’ or ‘deleteUpdate’
method is called before an ‘elementUpdate’ method, which is called before a ‘selfUp-
date’ method.

selfUpdate = RFUpdated
elementUpdate = ElUpdated
insertUpdate =RFinserted
deleteUpdate = RFDeleted

Referencel.ist]

RECORD...

selfUpdate = ReferenceUpdated

Reference

selfUpdate = STUpdated

Figure 10: Update Methods of a Display Tree for a ‘ReferencelList’

54

55

The method ‘STUpdated’ is called with the new ‘STRING’ value of the field. It
can check the semantics of the change to the ‘author’ node. Then the method
‘ReferenceUpdated’ is called with the new value of the sequence element. It can check
for any inconsistencies between the different fields of the reference element. Next the
the method ‘RFInserted’ is called informing the object about a new initialized element

in the sequence. The value of the element is then transmitted to the object as an argu-

ment of ‘ElUpdated’.

The value of a node is communicated to the object only if an appropriate update
method is defined. This feature allows an object to control the granularity of the
change transmitted to it. Thus, if the object did not need to check the ‘author’ field for

semantic consistency, it could set the ‘selfUpdate’ attribute of the node to ‘NIL’.

4.9. Error Handling

A user can make an error in changing the value of a display node. The erroris a
syntax error if the value does not conform to the type of the variable. Otherwise it isa

semantic error.

In Dost, syntax errors are detected and reported by the dialogue manager, which
uses the information about the type of the display node to handle these errors. Seman-
tic errors, on the other hand, have to be handled by the object. The object checks and

reports these errors when it receives the values of display nodes in its update methods.

Semantic errors are reported in two ways. First, a message can be written in the
‘message subwindow’ (§5). Both the dialogue manager and the object can write into
this window. Second, the Boolean highlighted attribute of the display node can be set
to ‘TRUE’, which causes the presentation of the display node to be highlighted.

56

The following example illustrates how syntax and semantic errors are handled in

Dost. Consider the following declaration of the variable ‘date’:

Day: TYPE = CARDINAL [1..31];
Month: TYPE = {January, February, ..., December};
date: RECORD [day: Day, month: Month, year: CARDINALYJ;

Now assume that the variable is submitted to a user for editing. If the user types a
value of ‘day’ that is not in the range ‘1..31’, or a value of month that does not indicate
one of the months in the range ‘January..December’, or a non cardinal value for the
year, then the dialogue manager immediately detects the syntax error and reports it to

the user. If on the other hand, the user enters the date:

29 February 1986

the semantic error is not detected by the dialogue manager. It is the object’s responsi-

bility to report the error when it receives the new value of ‘date’.

4.10. Tailoring Editor Commands

Section 1 illustrated some of the commands that can be applied to the presenta-
tion of a display node. A dialogue manager normally implements these commands,
and decides which commands are available to edit a presentation of a display node.
An object may, however, tailor its user interface by restricting the use of current com-

mands, changing their implementation, or defining new commands.

For each command, each display node has a Boolean attribute that determines if
the command may be applied on the presentation of the node. For instance, each node
has a Boolean expandEnable attribute, which determines if the ‘expand’ command
may be applied to it. An object may change the values of these attributes to restrict the

set of commands that may be applied to a presentation of a node.

57

An object may override the implementation of a current command by providing
an override method and assigning it to the override attribute of a node. When the user
invokes the command, the dialogue manager checks the value of this attribute. If it is
‘NIL’, it uses the default implementation, otherwise it calls the override method for the

command.

Similarly, an object may add a new command by providing a command method
that implements the command. The object introduces the new command by sending a
message to the dialogue manager that names the new command the group of nodes for
which the command is applicable and the command method. This group is defined by
an ‘attribute group’ (§4.11), and includes the display nodes corresponding to the leaf

nodes of the inheritance tree rooted by the group.

The following is an example of a message that an instance of ‘Bibliography’ may
send to a dialogue manager to add the sort command for a display node of type

‘ReferenceList’:

AddCommand [attrGrp: ReferenceList, name: "sort", cmdMethod: sort];

An object-defined implementation of an editor command is often most con-
veniently implemented using the default or current implementation of another com-
mand. Therefore Dost allows an object to send messages to the dialogue manager that
ask for editor commands to be invoked. Each such message indicates the command to
be invoked, the display node that forms the operand, and whether the default or current
implementation is to be used. The following two examples illustrate the use of these

messages.

58

Consider first the ‘next placeholder’ command when applied to an element of a
sequence. The default implementation inserts an new element after the current node.
Assume that an object wishes to change the implementation such that a new element is
always appended to the list. The object can override the default implementation by
supplying a command method that always invokes the default implementation on the

last node of the sequence.

Now assume that an object wishes to add a new command called append, which,
when applied to an element of a sequence, appends a new element to the list. The
command method supplied for the new command can invoke the current implementa-

tion of ‘next placeholder’ command on the last node of the sequence.

4.11. Attribute Inheritance

Dost provides a mechanism for inheriting attributes, which relieves a program-
mer of the task of specifying all the attributes of all the display nodes in the presenta-
tion of an object. A presentation of an object is associated with a tree of attribute
groups. The tree consists of four levels, and defines an inheritance relation among its

nodes.

The nature of the attribute groups and the structure of the inheritance tree is illus-
trated by an example. Consider a presentation of an object that displays the variable

‘refVar’ described by the following declarations:

SimpRef: TYPE = RECORD [
author, title: STRING];
refVar: SimpRef;

Figure 11 shows the inheritance tree associated with the presentation. The attri-

bute groups of the tree can be divided into the default group, the type groups, the field

59

groups and the display nodes. The default group roots the tree and defines attributes
common to all display nodes. A type group defines attributes common to all display
nodes of a type. A field group is associated with a field of a record type, and defines
attribute values common to display nodes corresponding to the field. A display node

defines attributes special to the node.

In figure 11, the attribute groups ‘STRING’ and ‘SimpRef’ are the type groups,
which define attribute values common to display nodes of types ‘STRING’ and
‘SimpRef’ respectively, The groups ‘SimpRef.author’ and ‘SimpRef.title’ are the field
groups. These define attribute values common to display nodes corresponding to the
‘author’ and ‘title’ fields of any display node of type ‘SimpRef’. Finally, the leaf
nodes of the tree are the display nodes. which describe attribute values specific to the

display nodes corresponding to ‘refVar’ and its two fields.

Each attribute group begins with an initial value of each attribute, which may be
explicitly changed. The new value of is propagated to all children in which the value

has not been redefined.

An attribute may be explicitly changed either by the object sending the dialogue

manager a message (§4.11.1), or by a user executing an editor command (§5).

An attribute ‘a’ is considered redefined in an attribute group if either the initial
value of ‘a’ in the attribute group is not the same as the initial value of ‘a’ in the parent

of the attribute group, or it has been explicitly changed by the object or the user.

DEFAULT

/\

SimpRef

refVar

STRING
SimpRef.author SimpRef.title
refVar.author refVar.title

Figure 11: AnInheritance Tree

<SimpRef..>* :/

<Hidden...>

SimpRef

DEFAULT

<SimpRef...>

<STRING...>*
| STRING

<STRING...> /\ <STRING...>

refVar

SimpRef.author SimpRef.title
<STRING...> <STRING...>
refVar.author refVar.title

Figure 12: Initial Values of the “elideString’ Attribute

61

Figures 12-16 illustrates how explicit changes to the ‘elideString’ attribute are
propagated in the inheritance tree of figure 11. The ‘starred’ values indicate redefined

attributes.

Figure 12 shows initial values of the attributes. The attribute is redefined in
‘SimpRef’ and ‘STRING’, since the values of the attributes in the two nodes are not
the same as the value of the attribute in the default group. Therefore, when the value
of the attribute is changed in the default group, as shown in figure 13, the new value is

not propagated to its children.

On the other hand, when the value is changed in ‘SimpRef’, as shown in figure
14, the new value is propagated to ‘refVar’. Figure 15 shows redefinition of the attri-
bute in ‘refVar’. Now if the attribute is changed in ‘SimpRef’, as shown in figure 16,

the value is not propagated to ‘refVar’.

Attributes and attribute inheritance, together, provide a balance between flexibil-
ity, which allows the interface of an object to be tailored according to the specific
needs of the object, and automation, which frees the programmer or the user from the
task of implementing the interface of an object. Attributes provide the mechanism for

flexibility, while attribute inheritance provide the mechanism for automation.

4.11.1. Setting Attributes from the Object

An object may send a dialogue manager messages to change the attributes of an
attribute group. The message name indicates the attribute, and its parameters name the

attribute group and the new value for the attribute.

<..>
cr v
DEFAULT
<SimpRef...>* / T~ <STRING..>*
SimpRef STRING
<STRING...> /\ <STRING...>
SimpRef.author SimpRef.title
<SimpRef...> <STRING...> <STRING...>
refVar refVar.author refVar.title

Figure 13: Explicit Change in ‘DEFAULT’

Simple Reference...

<..>*

DEFAULT

Simple Reference..* */\ <STRING...>*

SimpRef STRING

Simple Reference...

<STRING...> \ <STRING...>

SimpRef.author

SimpRef.title

<STRING...>

refVar

refVar.author

Figure 14: ExplicitChange in ‘SimpRef’

<STRING...>

refVar.title

62

<..

>l

DEFAULT
Simple Reference..” /\ <STRING..>*
SimpRef STRING
<STRING...> /\ <STRING...>
Smith... simpRef.author SimpRef.title
Smith..." <STRING...> <STRING...>
refVar refVar.author refVar.title

Figure 15: Explicit Change in ‘refVar’

<.>*
Reference...
DEFAULT
Reference...* L /\ <STRING...>*
SimpRef STRING
<STRING...> /\ <STRING...>
SimpRef.author SimpRef.title
Smith...” <STRING...> <STRING...>
refVar refVar.author refVar.title

Figure 16: Explicit Changein ‘SimpRef’

63

64

An attribute group may be the default group, a type group, a field group, or a
display node. The default group is named by the symbol ‘*’. A type group, which is
an attribute group that defines attribute values common to a type, is specified by nam-
ing the corresponding type.

A component group, which is an attribute group that defines attribute values
common to fields of a record type, or elements of an array type, or elements of a

sequence, is specified by a name that has the following syntax:

<component group> := <Tag List> <Record Type>.<Field>
<component group> := <Array Type> []
<component group> := <Tag List> <Sequence Pointer Type> []

The first alternative names component groups associated with fields of record types,
the second names component groups associated with elements of an array type, while
the third names component groups associated with elements of the sequence field of
the referent of a sequence pointer type. The <Tag List> is similar to the tag list used to
specify the path name of a display node, and indicates the tag values of the variants in

which the field is defined.
A display node is specified by its node or path name.

The following are examples of messages that may be sent to change attributes of

attribute groups associated with the ‘Bibliography’ example:

Value [attrGrp: refList[0].author, val: "John Smith"];

Titled [attrGrp: STRING, val: TRUE];

Alignment [attrGrp: *, val: vertical];

Registered [atrGrp: ReferenceList(], val: TRUE];

SelfUpdate [attrGrp: Journal Reference.journal, val: JournalUpdated];
Titled [attrGrp: refList[0], val: FALSE, range: children];

Titled [attrGrp: refList[0], val: FALSE, range: deep];

AR A R Ly

65

The first message sets the ‘value’ attribute of the display node for the ‘author’
feld of the first reference element of ‘refList’ to "John Smith", the second sets the
‘titled’ attribute of the type group ‘STRING’ to ‘TRUE’, the third sets the ‘alignment’
attribute of the default group to ‘vertical’, the fourth sets the ‘registered’ attribute of
the component group ‘ReferenceList[]’ to “TRUE’, and the fifth sets the ‘selfUpdate’

attribute of the component group corresponding to the ‘journal’ field of the ‘Journal’

variant of a ‘Reference’ to the method ‘JournalUpdated’.

The last two messages show the function of the optional ‘range’ parameter of
some attribute-setting messages. In the fist of these messages, the ‘titled” attributes of
the fields of the display node are set to ‘FALSE’, and in the second message, the
‘titled’ attributes of the display nodes and its fields are set to ‘FALSE’.

4.12. Miscellaneous Primitives
Saving and Resetting an Object

Most conventional text editors provide commands to save and reset user changes
to the file being edited. The changes are saved by writing the editor buffer into stable

storage, and reset by loading the buffer with the saved version.

An object in Dost can provide a similar interface to save and reset changes to its
presentations. It can send messages to a dialogue manager indicating its save method
and reset method. The save method is expected to save appropriate data of the object
in its data file. The reset method is expected to read the saved data, and reset the
values of the display nodes with the saved ones. A user can invoke these methods by

executing the ‘save’ and ‘reset’ commands respectively.

66

Insertion and Deletion of Sequence Elements

Dost allows an object to send messages to a dialogue manager asking it to insert

or delete an element in the display tree for a sequence. For example, the message:
InsertAfter [seq: @refList, index: 4];

asks the dialogue manager to insert a new element after the fourth element of the

sequence node in the display tree for the node ‘@refList’.
Readonly Presentations

Several applications require that some parts of their presentations be readonly.
For instance a directory manager requires that the ‘size’ field of an entry be readonly.
Dost provides support for the above applications by dividing the display nodes into
editable and readonly nodes. The value of a readonly node cannot be changed by the

user. A Boolean attribute determines if a node is required or optional.
Prompts and Suffixes

Dost allows the value of a display node to be preceded by a ‘prompt string’ and
succeeded by a ‘suffix string’. These strings are stored in the prompt and suffix attri-
butes respectively of a display node. The ‘prompt string’ of a node is displayed only if
its ‘titled’ attribute is ‘FALSE’. Examples in chapter 3 illustrate the use of these attri-

butes.
Hidden Presentations

A display node is associated with a Boolean attribute hidden, which determines
if the presentation of the node is displayed to the user or is hidden from him. An
object can use this attribute to show different views of a structure variable by hiding or

displaying the components of the structure. For instance, a directory manager can

67

show a ‘long’ listing of a directory by displaying all fields of a directory entry, and a

‘short’ listing by hiding some of these fields (Chapter 3, §6).

4.13. Summary of Attributes

The previous sections described the attributes defined in Dost. The following

table gives a summary of these attributes together with the sections in which they were

introduced:

value

initialized

registered

elided

alignment

titled

elideString

optional

selfUpdate

elementUpdate

insertUpdate

deleteUpdate

incFeedback

highlighted

command enable (per command)
command override (per command)
readonly

prompt

suffix

hidden

§4.4
§4.4
§4.5
§4.6
§4.6
§4.6
§4.6
§4.7
§4.8.1
§4.8.1
§4.8.1
§4.8.1
§4.8.2
§4.9
§4.10
§4.10
§4.12
§4.12
§4.12
§4.12

68

5. Model of Interaction

At any instant, the screen is composed of one or more Dost windows, as shown
in figure 17. A Dost window is like an XDE text window except that it is managed by
a dialogue manager instead of a text editor. As a result an object of an arbitrary class
can be edited in such a window. A window is composed of the following subwindows:
the message subwindow, the command subwindow, and one or more presentation

subwindows.

The message subwindow displays error messages. The command subwindow is
used to select commands and enter the name and class of the object to be edited. The

presentation subwindows display presentations of the object.

The user interacts with an object by loading its presentations in the window, and
editing them. The interface presented to edit presentations is an extension of the XDE

text editor interface.

The editor commands available to the user are divided into the following

categories:
(1) Window editing commands.
(2) Object editing commands.
(3) Text editing commands.
(4) Structure editing commands.
(5) Aunribute editing commands.

(6) The accept command.

69

T+
L

00 <Jdx3uy> JTIHM
a573

CISLTIUANAIRICY)
NIHL <Jdxauy> 4T

C 1 uL Jau

2 =juapuL doog HdAaud iHAYeN jpuedxg i9pL 13 jusog idn
i Radery 119S9y | 2ABG ipeo] Bouddues :amey a|dse !ssey)

B PEJBLOSP LBAY JI0U SBY Y PT sanlOUdT |
. a{daw 13383 Jo hoddawes bueaLpl
Wm 1-g :sabey
m% 98 Ltudy aaeg
i fALsdanLun snoLaLaoLd PRytsuamiun

apaL] aidueg Jayaouy eIty

e oo o e

i buep Burd i sJoyanydayag |
B YILwg uyor ‘Joyany
Mm <" LRUdnOr
i alat] ajdwes v iagar)
" ang 80(Joyiny

¢ =juapuL a33(] iHdASId iHJYaN jpuedg i9pL 3 | UROg i {]
jRade 1953y jaARg ipeoy Jaydums ‘omuy S20U3U349J SSRL)

T T T e e e T

T

afiegase < mmmaumgpm **Logamm

O O OO NN MOS0 SNOODOOO0OSOINMT]

MR s e et T T T T N

Sample Presentations of Instances of ‘References’ and ‘ASPLE’

Figure 17

70

The window editing commands include commands to manipulate windows. The
XDE window manager provides most of these. Dost provides the commands to create
and delete windows, since they result in activation and deactivation of dialogue

managers.

The object editing commands are used to load and empty the presentations of an
~ object from the window, and to save and reset user changes to the presentations of the
object. They replace similar commands provided by the XDE text editor to load and
empty the contents of a text file into a window, and to save and reset user changes to

the file.

The text editing commands are supported by the XDE text editor, and allow a
user to manipulate a presentation of an object as text. They include commands for
selecting text, modifying the presentations of leaf nodes, searching for patterns, scrol-

ling, and so on.

The structure editing commands allow a user to view a presentation as structured
text. They include commands for selecting nodes, ‘dereferencing’ pointer nodes, and

inserting or deleting templates of optional nodes.

The attribute editing commands are used to change attributes of attribute groups.
A user changes an attribute of a display node by selecting the corresponding display
node and executing an appropriate command. The attributes of component groups,
type groups, and the default group are set by selecting a display node that has the
appropriate attributes, and executing the component, type, or default command. The
first command checks if the display node is a field of a record or an element of an array
or sequence, and sets the attributes of the corresponding component group. The

second command sets the attributes of the group associated with the type of the display

71

node. The last command sets the attributes of the default group.

Figures 18 and 19 illustrate the use of the ‘component’ and ‘type’ commands. In
figure 18 the user sets the alignment attribute of a ‘kind’ field of a ‘Reference’ record
to ‘indented’, and the titled attribute to ‘FALSE’, and executes the component com-
mand. The appropriate values are propagated to all ‘kind’ fields of nodes of all ‘Refer-
ence’ records. Similarly, in figure 19 the user sets the ‘titled’ attribute of a display
node of type ‘STRING’ to “TRUE’. The value of the attribute is changed in all
‘STRING’ nodes.

The ‘component’, ‘type’, and ‘default’ commands are used, typically, to interac-
tively define the format of display nodes. A user can define the format for one display
node, and propagate the change to either all nodes, or all nodes that share its type or

component group.

The ‘accept’ command is used to send the new value of a display node to an
object. The dialogue manager reacts to the command by invoking appropriate update

methods in the object, as discussed in §4.8.

In the design of the user interface of Dost, we have made a distinction between
the abstract command and the mechanism provided to invoke it. For instance the
abstract command ‘replace’, which changes the value of a leaf node, is invoked by
selecting appropriate characters in the presentation of the node with the aid of the
mouse, deleting them using the delete key, and inserting the new characters. The ‘next
placeholder’ command is invoked by selecting a display node with the aid of the
mouse, and then clicking the mouse at the command item ‘NextPH’ in the command

window.

author: <STRING >

author: <STRING>

title:
kind:

<STRING>

< ReferenceKind >

72

INDENTED

title:
kind:

author: <STRING >

author: <STRING>
<STRING >
< ReferenceKind >

UNTITLED

title:

title:
kind:

author: <STRING>
-<STRING>

author: <STRING>
<STRING >
< ReferenceKind >

COMPONENT

author: <STRING>
title: <STRING>
< ReferenceKind >

author: <STRING>
<STRING >

title:

Figure 18: Changing Attributes of a Component Group

<STRING>

< ReferenceKind>

: TYPE
<ReferenceKind> TITLED < ReferenceKind >
TRIN
<STRING> <<SSTR||N(§5>>
<STRING >

< ReferenceKind >

author: <STRING>
title: <STRING>
< ReferenceKind >

author: <STRING>

< ReferenceKind >

Figure 19: Changing Attributes of a Type Group

73

In general a user invokes a command with the aid of the mouse, keyboard, and

menus.

6. Implementation

We have implemented and tested the major components of Dost. We have built
a dialogue manager program, which can be instantiated to produce dialogue managers
that support most of the input/output primitives discussed in section 4. Currently, it
supports all the features described in this chapter except:
(1) ‘elementUpdate’, ‘insertUpdate’, ‘deleteUpdate’, ‘highlighted’, ‘registered’,
and ‘elideString’ attributes (§4.13),

(2) ‘insertAfter’ message (§4.12),
(3) overriding of display names (§4.6), and
(4) tailoring of editor commands (§4.10).

We have also built an object manager, which supports objects. Finally, we have
designed a precompiler which translates Dost classes into Mesa programs. It performs
the translation by inserting procedures that allow an object to communicate with the
dialogue and object managers. Since the precompiler has not been implemented, we
have tested the system by hand-translating Dost classes into the equivalent Mesa pro-
grams.

The following subsections discuss the salient parts of the three components.

6.1. Precompiler

The precompiler takes a Dost class and translates it into a Mesa Program, which

is called its class program. The class program contains code that handles the con-

74

structs in the class not available in Mesa programs.

The methods in the class are translated into procedures. The class is associated
with a method record type, which defines fields that can point at these procedures. An
instance of the class is associated with a variable of the type, called its method record.
A pointer to the method record of an object is stored by the object manager. Other
objects can query the object manager for this pointer by making the ‘OpenObject’ call

described in section 2.2.

The declaration of an object pointer in a class is translated into the declaration of
a pointer to the appropriate method record type. It can then be used to refer a method
record of an object. A message that names the pointer is converted into a call to the

appropriate field of the method record.

A message to a dialogue manager is handled differently. Typically, it requires
special processing of its parameters, as illustrated by the following example. Consider

the message:
SelfUpdate [attrGrp: ReferenceList, value: RefListUpdated]

sent by an instance of ‘Bibliography’ of figure 4. It asks the dialogue manager to call
the procedure ‘RefListUpdated” when a display node of type ‘ReferenceList’ is
updated. This message cannot be simply converted to a Mesa procedure call in the
dialogue manager, for two reasons. First, the type of the parameter ‘attrGrp’ cannot be
described by a Mesa type. The precompiler needs to process the parameter to deter-
mine if it should send a variable address, a node number, or a string indicating a type
or component group. Second, the dialogue manager calls the method ‘RefListUp-
dated’ with the value of a display node of type ‘ReferenceList’. Therefore, the

precompiler needs to check that the parameter ‘newVal’ of the method

75
‘RefListUpdated’ is of type ‘ReferenceList’,

6.2. Object Manager

The object manager performs several functions. It load and unloads objects and
maintains the list of all the objects that are created. For each object, it maintains the
class name, the data file, the name of the class program, a pointer to the method record,
* a pointer to the load method, and other information about the object. The information
is used by it to define procedures that a precomplier inserts into a class to process the

‘OpenObject’, ‘Passivate’, and ‘MakeEditable’ calls.

The object manager is about 200 lines of Mesa code.

6.3. Dialogue Manager Program

The dialogue manager program is a Mesa program that can be executed to create
a dialogue manager. It maintains two main data structures to allow editing of an
object. The first is a table of the display nodes and other attribute groups associated
with the presentation of an object. The second is the symbol table produced by the
Mesa compiler after compiling the class program of the object. These two data tables
are used by the dialogue manager to process editor commands executed by the user and

messages sent by the object.

The dialogue manager uses the text editing and window management modules

provided by XDE, and is about 7000 lines of Mesa code.

76

Chapter 3

Examples

In this chapter, we describe how Dost may be used, both to create classes, and to
interact with their instances. We describe in detail six classes representing a diverse
range of applications. For each class, we describe the user interface of instances of the

class, and the code required to create the class.

We first describe two classes, ‘Form’ and ‘ExtendedForm’, whose instances
present forms for the user to fill. These two classes are trivial but important applica-
tions of Dost. The class ‘Form’ includes the basic code needed to display a form on the
screen and receive user input. The class ‘ExtendedForm’, includes, in addition, code
required to save a form in stable storage and reset the screen with the saved version of

the form.

Next, we consider a class called ‘RoommateExpenses’. An instance of the class
stores the common expenses of three roommates, and allows a user to insert, delete, or
modify an expense entry. It displays each roommate’s credit after each incremental
change to an entry.

We then consider a more general application of Dost— a class whose instances
store simple spreadsheets. A spreadsheet is displayed in two presentation subwindows:
One shows the values of the spreadsheet, and the other shows the relationships among
these values.

Next, we describe a class that defines lists of statements in a toy programming

language. It illustrates how programming language constructs are defined and edited

77

in Dost.

Finally, we present a class that defines editable file directories. It illustrates how

an object can show different views of a data structure.

The six examples are ‘graded’, each shows the use of new features of Dost. We

discuss only those aspects an example that distinguish it from other examples.

1. Form

The class ‘Form’ defines a simple form that allows a user to enter the age, status
(married, single, widowed, or divorced), permanent address, and mailing address of a

person.

Figure 1 shows how a user may edit the presentation of an instance of the class.
The topmost box displays the initial presentation, which names the fields in the form,
and displays placeholders for them. The user may use the editor commands described

in chapter 2 to replace the placeholders with appropriate values.

The last field of the form is optional, and needs to be filled only if the user’s
mailing address is not the same as the permanent address. Therefore it may be deleted

from the form and reinserted, as shown in figure 1.

Once the user has filled all the fields, he can select the whole form by executing
the ‘up’ command, and then hide its details by executing the ‘elide’ command. The
effect of these two commands may be reversed by executing the ‘expand’ and ‘down’

commands in succession.

Form

name: <STRING>
status: <Status>
permanentAddress: <STRING>
mailingAddress: <STRING>

l EDITOR COMMANDS

Form

name: Joe Doe
status: single

11

NEXT PLACEHOLDER T l DELETE

permanentAddress. 520 Was_gington St.

Form

name: Joe Doe
status: male

EXPAND T l ELIDE

Form

Figure 1: Editinga Form

78

79

Figure 2 shows the definition of the class ‘Form’. The types ‘Status’ and ‘Form’

describe the contents of the form, and the variable ‘form’ stores an instance of it.

The method ‘Load’ is the load method of the class, and is invoked when a user
asks a dialogue manager to load the presentation of the form in its window. The
method sends initial messages to the dialogue manager, which submit the variable
‘form’ for editing, and specify various attributes of attribute groups. An example of

these messages is the message:

Form: CLASS = {

-- type declarations

Status: TYPE = [married, single, widowed, divorced};

Form: TYPE = RECORD [-- contents of the form
name: STRING,
status: Status,
permAddress: STRING,
mailingAddress: STRING];

-- variable declarations

form: Form <- [NIL, single, NIL, NIL}; -- variable that stores the form

-- the load method

Load: METHOD [dm: DM] = {
OPEN dm;
Edit [var: form]; -- submit ‘form’ for editing
Prompt [attrGrp: form, val: " Form"]; -- specify the prompt of ‘form’
SelfUpdate [attrGrp: form, val: FormUpdated]; -- specify the ‘selfUpdate’ method
Initialized [attrGrp: form, val: FALSE, range: children]); -- make all fields uninitialized
Alignment [attrGrp: form, val: vertical, range: children]); -- align each field vertically
Titled [atrGrp: form, val: TRUE, range: children]; -- title each field
Required [attrGrp: form.mailingAddress, val: FALSE]; -- make ‘mailingAddress’ optional

-- a method that updates the value of ‘form’
FormUpdated: METHOD [newVal: Form] =
{form <- newVal};

-- main body
MakeEditable [load: Load]};

Figure 2: The Class ‘Form’

80

Initialized [attrGrp: form, val: FALSE, range: children]

which asks the dialogue manager to make the fields of the form uninitialized. As a
result the dialogue manager displays placeholders for the fields of a new form. The

comments in the figure explain the function of other messages.

The method ‘FormUpdated’ is the ‘selfUpdate’ method of ‘form’, and is called
when a user modifies the form. It updates the variable with the current values of the
fields of the form. The method is called when any field changes, and it receives the
values of all its fields in the ‘newVal’ parameter. Later examples illustrate how an

object can receive incremental changes.

In the above example, several dialogue managers may be used to interact with
the object simultaneously. Each dialogue manager calls the load method, receives the
messages from the object, displays a form, and sends the updated value in the parame-
ter of the ‘FormUpdated’ method. The next example shows how an object can ensure

that it talks to no more than one dialogue manger at a time.

The main body contains a call to ‘MakeEditable’, which registers the load
method with the system.

2. Extended Form

We now describe the class ‘ExtendedForm’, which is an extension of the class
‘Form’. It forces an instance to interact with only one dialogue manager at a time, and
allows it to react to the ‘save’, ‘reset’, and ‘empty’ commands. Figure 3 shows how

these commands are used.

81

Form

name: Joe Doe

status: married
permanentAddress: 205 King
mailingAddress: <STRING>

l LOAD

l RESET

Form

name: <STRING>

status: <Status>
permanentAddress: <STRING >
mailingAddress: <STRING>

Form

| name: John Smith

status: single
permanentAddress: 305 Monroe
mailingAddress: <STRING>

l EDITOR COMMANDS

l EMPTY

Form

name: John Smith

status: single
permanentAddress: 305 Monroe
mailingAddress: <STRING>

l SAVE

l LOAD

Form

name: John Smith

status: single ‘
permanentAddress: 305 Monroe
mailingAddress: <STRING>

Form

name: John Smith

status: single
permanentAddress: 305 Monroe
mailingAddress: <STRING>

l EDITOR COMMANDS

Figure 3: Editing an Extended Form

82

In the figure, the user loads an empty subwindow with an uninitialized presenta-
tion of a new instance of the class, fills the form, and executes the ‘save’ command to
save the values in stable storage. He then changes the fields of the form, realizes it was
a mistake to do so, and executes the ‘reset’ command to replace the current values to
the saved ones. Next, he unloads the presentation from the window by executing the
‘empty’ command, and loads it again by executing the ‘load’ command. The fields of

the form are initialized with the saved values.

Figure 4 gives an outline of the class. The header of the class declaration con-
tains the the parameter ‘dataFile’. As a result, instances of the class are associated

with data files, and can read and write their variables into these files.

The variable ‘curDm’ stores a pointer to the current dialogue manager. The vari-
able ‘newForm’ tells the instance if the value stored in the variable ‘form’ has ever

been initialized by the user. This information is used by the load method.

The load method is similar to the corresponding method of ‘Form’. There are
three main differences. First, the method ensures that only one dialogue manager is
connected to the object at a time. It checks the value of the variable ‘curDM’, which is
initialized to ‘NIL’ when an object is activated. If the value is ‘NIL’, it initializes the
variable with the value of the parameter ‘dm’, and sends appropriate messages to the
dialogue manager. Otherwise, it sends an error message saying that object is currently

being edited in another window. No variables are displayed in the new window.

Second, it submits methods to the dialogue manager to handle the ‘reset’,
‘empty’, and ‘save’ commands. Third, it initializes the fields of the form only if the

form has not been initialized in current or past activations of the object. (A more

ExtendedForm: CLASS [dataFile: STRING] = {
-- type declarations

curDM: DM <- NIL;
newForm: BOOL <- TRUE;

Load: METHOD [dm: DM] = {

OPEN dm;
IF curDM = NIL THEN {
curDM <- dm;

ResetMethod [val: Reset];
SaveMethod [val: Save];
EmptyMethod {val: Empty];

IF newForm THEN
Initialized {attrGrp: form, val: FALSE,
range: children])
ELSE
Message ["..."1};

FormUpdated: METHOD [newVal: Form] = {
newForm <- FALSE;
)i

Save: METHOD [] = {
WriteDataStructures [1};

Reset: METHOD [] = (
ReadDataStructures [];
IF newForm THEN
Initialized [var: form, val: FALSE,
range: children]
ELSE
Value [attrGrp: form, val: form]};

Empty: METHOD [] = {
curDM <- NILJ;

ReadDataStructures: PROCEDURE ...
WriteDataStructures: PROCEDURE ...

MakeEditable [load: Load]};

83

-- the current dialogue manager
-- tells the instance if form is uninitialized

-~ the load method

-- send messages to 'dm’

-- if the object is not connected
-~ to any other dialogue manager
-~ submit the reset method

-- submit the save method

-- submit the empty method

-~ other messages

-- uninitialize the fields of the form

-~ send error message to user

-~ the save method
-- save data structures into data file

-- the reset method
-- read data structures from data file

-- the empty method
-- reset curDM

-- reads data structures from data file
-- writes data structures into data file

-- main body

Figure 4: The Class ‘ExtendedForm’

advanced class would receive updates to the fields of the class incrementally, store for

84

each field a variable which tells an instance if the field is initialized, and uninitialize a

field only if it is not initialized.)

The method ‘FormUpdated’ is similar to its counterpart in ‘Form’ except that it
sets the variable ‘newForm’ to ‘FALSE’ (the method is called only if the form is ini-
tialized). The method ‘Save’ is called when the user wishes to save his changes in
stable storage. It calls the procedure ‘WriteDataStructures’, which writes the value of

‘form’ and ‘newForm’ to the data file.

The method ‘Reset’ is called when the user wishes to reset the contents of a win-
dow with the saved data structures. It reads the values of the variable ‘form’ and
‘newForm’ from the data file, and either uninitializes all fields of the form, or updates

them with the saved values.

The method ‘Empty’ is called when the user executes the ‘empty’ command,
which unloads the presentation of the object from the window, and breaks the connec-
tion between the object and the dialogue manager. The method resets the value of

‘curDM’ to ‘NIL”’,

3. Roommate Expenses

We now describe the class ‘RoommateExpenses’. An instance of the class
allows three roommates, called ‘A’, ‘B’, and ‘C’, to enter their expenses incurred on
behalf of the group, and displays, after each modification, deletion, and insertion of an
expense, the money owed to each roommate. (We have considered here a fixed
number of roommates to keep the example simple. Dost can easily handle a variable

number, since an object can create display nodes dynamically.)

85

Figure 5 shows how a user may edit the presentation of an instance of the class.
A presentation displays the money owed to the three roommates and the lists of
expenses incurred by them. A user may insert, delete, or modify an element in a list.
The object responds by updating the money owed to each roommate. T he figure shows

the insertion of a new element to the list of expenses incurred by ‘B’.

Figures 6 contains an outline of the class. Like the classes ‘Form’ and ‘Exten-
dedForm’, and the the class ‘Bibliography’ described in chapter 2, it contains declara-
tions that define the variables displayed in a window, a load method that sends initial
messages to a dialogue manager, and methods to receive updates to a presentation
displayed in a window.

Two important features of the class distinguish it from other classes defined so
far. First, it incrementally updates each expense list submitted to the dialogue
manager. This manner of updating a list can be contrasted to the one used by ‘Bibliog-
raphy’, which updates a reference list in ‘batch’ when the user executes the ‘accept’

command.

Second, it keeps the contents of all windows displaying an object consistent by
keeping track of all the dialogue managers that have invoked the load method, and
announcing each change to all of them.

The type ‘Expenses’ describes lists of expenses. It is used to declare the variables
‘AExpenses’, ‘BExpenses’, and ‘CExpenses’, which store the expenses of ‘A’, ‘B’, and

‘C’ respectively.

m

C
3.
5.
7.

(o N oo N]

xpenses:

ACredit: 8.0
BCredit: -7.0
CCredit: -1.0
NEXT PLACEHOLDER
AExpenses: <Expenses...>
B

REPLACE

—_—

ACredit: 8.0
BCredit: -7.0
CCredit: -1.0

AExpenses: <Expenses...>

BExpenses:

CExpenses:

Nuw
ococo

ACCEPT

—_—

86

ACredit: 8.0
BCredit: -7.0
CCredit: -1.0

AExpenses: <Expenses...>

BExpenses:

¥ e

Expenses:

0
0
0

C
3
5
7

.

ACredit: 6.0
BCredit: -3.0
CCredit: -3.0
AExpenses: <Expenses...>

BExpenses:

Figure 5: Editing Roommate Expenses

87

The variables ‘ACredit’, ‘BCredit’, and ‘CCredit’ store the money owed to each
roommate. The variable ‘dms’ keeps track of all the dialogue managers interacting
with the object.

The load method sends messages to a dialogue manager. It sets the attributes of
different attribute groups, and submits the variables ‘ACredit’, ‘BCredit’, ‘CCredit’,
‘AExpenses’, ‘BExpenses’, and ‘CExpenses’ for editing.

The methods ‘Alnserted’, ‘ANewExpense’, and ‘ADeleted’ are the ‘insertUp-
date’, ‘elementUpdate’, and ‘deleteUpdate’ methods of ‘AExpenses’. They are called

when an element is inserted, modified, and deleted, respectively, in a presentation of

RoommateExpenses: CLASS = (
Expenses: TYPE = POINTER TO SEQUENCE [
content: SEQUENCE length: CARDINAL OF REAL];

ACredit, BCredit, CCredit: REAL; -- credits of A, B, and C

AExpenses, BExpenses, CExpenses: Expenses <- NIL; -- expenses of A, B, and C

-- other variables

dms: POINTER TO RECORD [-- the dialogue managers
contents: SEQUENCE length: CARDINAL OF DM]; -- connected to an object

Load: METHOD [dm: DM] = { -- the load method
OPEN dm;
AddDM [dm]; . --add ‘dm’ to ‘dms’
InsertUpdate [attrGrp: AExpenses, val: Alnserted]; -- set ‘insertUpdate’,
ElementUpdate [attrGrp: AExpenses, val: ANewExpense]; - ‘elementUpdate’,
DeleteUpdate [atrGrp: AExpenses, val: ADeleted]; -- & ‘deleteUpdate’ attributes
ReadOnly [attrGrp: ACredit, val: TRUE]; -- user cannot edit ‘ACredit’

--set other attributes

--submit variables for editing
Edit [var: ACredit];

Edit [var: BCredit};

Edit [var: CCredit];

Edit [var: AExpenses]...};

Figure 6(a): The Class ‘RoommateExpenses’

88

-- ‘insertUpdate’ method of ‘AExpenses’
Alnserted: METHOD [index: CARDINAL, dm: DM] = {
InsertSlotInAExpenses[index]; -- insert a slot in ‘AExpenses’
-- announce insertion to other dialogue managers
FOR i IN [0..dms.length) DO
IF dm[i] # dm THEN
dm[i].InsertAfter[seq: AExpenses, index: index]};
ENDLOOP :
-- ‘elementUpdate’ method of ‘AExpenses’
ANewExpense: METHOD [index: CARDINAL,
newVal: REAL, dm: DM] = {
Value [attrGrp: ACredit, val: ACredit]; -- update ‘ACredit’
Value [attrGrp: BCredit, val: BCredit]; -- update ‘BCredit’
wli

-- ‘deleteUpdate’ method of ‘AExpenses’
ADeleted: METHOD [index: CARDINAL, dm: DM] = (

K

-- similar methods for ‘BExpenses’ & ‘CExpenses’
Blnserted: METHOD...

InsertSlotinAExpenses: PROCEDURE...}; -- other code

Figure 6(b): The Class ‘RoommateExpenses’(contd.)

‘AExpenses’.

The object responds to an insertion in the presentation of ‘AExpenses’ in one
window by creating a slot for the new element in the variable, and inserting a
corresponding entry in all other windows displaying the object. It responds to a
modification in one window by updating other windows, calculating the change in the
credits of each roommate, and updating the new credits in all windows. It responds to
a deletion by deleting the appropriate slot in the variable ‘AExpenses’, informing other
dialogue managers about the deletion, recalculating the credits, and updating all win-

dows with the new values.

89

4. Spreadsheet

We now describe a generalization of ‘RoommateExpenses’, a class whose
instances store simple spreadsheets. Each instance of the class is associated with two
presentations, which are displayed in different presentation subwindows. The top
subwindow shows a 5 by 5 matrix that defines the spreadsheet, and the bottom one
shows expressions that define an element of the matrix with respect to other elements
of the matrix. Figure 7 illustrates how a user may edit the presentations of an instance

of the class.

Figures 8(a) and (b) shows an outline of the class. There are two features of the
class that distinguish it from other classes presented so far. First, an instance of the
class has multiple presentations displayed in different subwindows. Second, the object

uses path names and node numbers to name display nodes.

In the discussion of the class ‘Spreadsheet’ and the remaining classes in this
chapter, we will assume that the an object is connected to at most one dialogue

manager.

The type declarations define the variables ‘values’ and ‘definitions’. The former

stores the values of the matrix, and the latter stores the definitions.

The load method, like other load methods discussed so far, sends initial messages

to a dialogue manager.

The methods ‘ColUpdated’ and ‘RowUpdated’ are the ‘elementUpdate’ methods
for attribute groups ‘ValRow’ and ‘Values’ respectively, and are called in succession
when a user changes an element of the spreadsheet. They use the values of their
parameters to determine the row index, column index, and the value of the changed

element, and call the ‘PropogateValChange’ method described below.

moN®w>
OO0OOOO —
OOOOON<
OOOQOU)%
oocoocoMmaN
[Yo NoNoXwl§,]

Definitions
A1 <Expression>
A2 <Expression>

E5 < Expression >

a) Initial Presentations

Values
1 2 3 45
A0OO0OOUO0DO
B O0O0O0O
C00O0O0O O
DOOOOO
EO0O0O0O00O

A2 <Expression>

E5 < Expression >

b) New Definition

Value
2

3
0
0
0

0
0
00

mogNnwp»
OOO0O0O =
OO0 O0OORAWV
ocooocown

moN®m>
coocoowg
cocococon®
coocoown

0
0
0

Definitions
A1 A2 + ES
A2 <Expression>

E5 < Expression >

Definitions
A1 A2 + ES
A2 <Expression>

E5 < Expression >

¢) New Value of A2

d) A1 Changes

Figure 7: Editing a Spreadsheet

90

91

The procedure ‘PropogateValChange’ propagates the change in an element of
the spreadsheet to the elements that depend on it. It uses path names to update nodes,
as shown in the figure. The use of path names does not incur any runtime overhead,
since elements of display nodes of arrays can be randomly accessed by a dialogue

manager.

The method ‘DefUpdated’ is called when a user makes a new definition. It
checks the definition for errors. If there is an error, it uses the node number to
highlight the node. If there are no errors, it calls the ‘PropogateDefChange’ method to

update appropriate nodes in the presentation of ‘values’.

Spreadsheet: CLASS = {
-- type definitions

ValRow: ARRAY ColIndex OF CARDINAL;
Values: ARRAY RowlIndex OF ValRow;
Definitions: ARRAY DefIndex OF Expression;

-- variable declarations

values: ARRAY RowIndex OF ValRow; -- the matrix of spreadsheet values
definitions: ARRAY DefIndex OF Expression; -- the definitions
Load: METHOD [dm: DM] = { -- the load method

OPEN dm;

-- set ‘elementUpdate’ attributes

ElementUpdate [attrGrp: ValRow, val: ColUpdated];
ElementUpdate [attrGrp: Values, val: RowUpdated];
ElementUpdate [attrGrp: Definitions, val: DefUpdated];

-- set other attributes
Edit [var: values, pres: 0]; -- display ‘values’ and ‘definitions’
Edit [var: definitions, pres: 1]}; -- in appropriate subwindows

Figure 8(a): The Class ‘Spreadsheet’

92

-- method called when an element of a row of

-- ‘values’ changes

ColUpdated: METHOD [index: ColIndex,
newVal: CARDINAL] = {
curCol <- index; -- save the column position
colVal <- newVal}; -- save the column value

-- method called when a row of ‘values’ changes
RowUpdated: METHOD [index: RowIndex,
newVal: ValRow] = {
values [index][curCol] <- colVal;
PropogateValChange[index, curCol]};

-- method called when a definition changes
DefUpdated: METHOD [index: DefIndex,
newVal: Expression,
dn: NODE OF Definitions] = {
IF NOT ExprError[newVal] THEN {
definitions [index] <- newVal;
PropagateDefChange[index] -- if not error propagate changes
ELSE Highlighted [attrGrp: dn, val: TRUE]}}; -- if error highlight node
-- propagate the change to a value
PropagateValChange: PROCEDURE...
[row: RowIndex, col: Collndex] = {
-- calculate ‘tRow', “1Col’, ‘tVal':
-- the row, column, and new value
-- of a dependent element

Value [attrGrp: values$[tRow, tCol], val: tVal]; -- update dep.
element

-

-- propagate the change to a definition
PropagateDefChange: PROCEDURE...

MakeEditable [load: Load, numPres: 2]}; -- main body
Figure 8(b): The Class ‘Spreadsheet’(contd)
5. Statement List
We now present a class called ‘StatementList’. Instances of the class check the

static semantics of statement lists of the programming language ASPLE, which has

been used to compare several formal mechanisms for defining the semantics of

93

programming languages [23].

Figure 9 shows how a user may edit the presentation of an instance. The initial
presentation shows a placeholder for a statement list. A user may ‘expand’ it to create
a placeholder for a statement. A statement can be an assignment, if, while, input, or
output statement. The user may execute the ‘menu’ command to select the kind of
statement desired. In this example, he selects an if statement. The dialogue manager
responds by showing a template for the statement. The user selects the else part of the
statement, expands it, inserts a while statement, and elides it. He then inserts an if stat-
ment for the then part, deletes the else part of the new statement, and elides the state-
ment. The else part is optional, and may be reinserted by executing the ‘next place-

holder’ command.

Figures 10(a) and 10(b) describe the class. The types ‘Expression’ and ‘ID’
define expressions and identifiers of ASPLE. The type ‘Statement’ describes the struc-
ture of a statement and ‘StatementList’ defines the structure of a statement list. The

variable ‘stmtList’, stores the list of statements defined in an instance.

The type ‘Expression’ may be declared as a structure or as text. Dost allows
presentations to be edited as both structures and text. The presentations of simple
display nodes such as strings and integers are edited as text. The presentations of
structure nodes such as records, arrays and sequences are edited as structures. There-
fore, if expressions are defined as strings, they may be edited as text. If they are

defined using structure types, they can be edited as structures.

assign

).
L

EXPAND

<

SELECT &
EXPAND

IF <Expression > THEA

assign

IF <Expression> THEN
<StatementList>

ELSE

ELIDE

IF <Expression> THEN
— < StatementList>

94

MENU

MENU &
DOWN

<while...>

IF <Expression > THEN DELETE
IF <Expression> THEN
ELSE D EE——
<while...>
NEXT PLACEHOLDER
UP & ELIDE
_

<while...>

Figure 9: Editing a Statement List

95

The load method sends initial messages to a dialogue manager. These messages
define formats, specify ‘selfUpdate’ methods, and submit the variable ‘stmtList’ for

editing. We describe below the function of some of these messages.

The first message sets the alignment attribute of the ‘default’ group to ‘horizon-
tal’. All attribute groups inherit this value. The ‘Identifier’ message asks the dialogue
manager to ensure that the presentations of display nodes of type ‘ID’ are restricted to
alphanumeric strings starting with a character. The next two messages define the

alignment of ‘StatementList’ and ‘Statement’ respectively. The ‘Required’ message

StatementList: CLASS = {

-- type declarations
StatementKind: TYPE = {assign, if, while, input, output}; -- the five kinds of statements
ID: TYPE = STRING; -- definition of identifiers
Expression: TYPE = ...; -- definition of expressions
Statement: TYPE = RECORD | -~ declaration of a statement
info: SELECT kind: StatementKind FROM
assign => [-- structure of an assign statement
lhs: ID,

rhs: Expression],
if => [expr: Expression,
thenPart: StatementList,
elsePart: StatementList],
while => [
expr: Expression,
doStmts: StatementList],
input => [
id: Id],
output => [
expr: Expr];
ENDCASE];
StatementList; TYPE = POINTER TO RECORD [-- structure of a statement list
contents: SEQUENCE size: CARDINAL OF Statement];

-- variable declarations
stmtList; StatementL.ist <- NIL; -- variable to store the statement list

Figure 10 (a): The Class ‘StatementList’

96

Load: METHOD [dm: DM] = { -- the load method
OPEN dm;
Alignment [atrGrp: *, val: horizontal]; -~ default alignment
Alignment [atrGrp: StatementList, val: indented]; -- indent statement lists
Alignment [atrGrp: Statement, val: vertical]; -- align statements vertically
Required [attrGrp: if Statement.thenPart, val: TRUE]; -- then parts are ‘required’

-- format input & output statements
Prompt [attrGrp: input Statement.id, val: "INPUT "];
Prompt [attrGrp: output Statement.id, val: "OUTPUT "];

-- format assign statements
Prompt [attrGrp: assign Statement.rhs, "<- "];

-- format while statements
Prompt [attrGrp: while Statement.expr, val: "WHILE "];
Suffix (attrGrp: while Statement.doStmts, val: "DO"];

-- format if statements

Prompt [attrGrp: if Statement.expr, val: "IF "];

Suffix [attrGrp: if Statement.expr, val: "THEN"];

Prompt [attrGrp: if Statement.elsePart, val: "ELSE "];

Alignment[attrGrp: if Statement.elsePart, val: vertical]; -- override 'StatementList’
Alignment [attrGrp: if Statement.elsePart[], val: indented]; -- override ‘Statement’

-- specify ‘selfUpdate’ methods
SelfUpdate [atrGrp: Expression, val: ExprUpdated];
SelfUpdate [attrGrp: Statement, val: StatementUpdated];

Edit [var: stmtList]}; -- display ‘stmtList’

- ‘selfUpdate’ method for nodes of type ‘Statement’
StatementUpdated: METHOD [newVal: Statement,
dn: NODE OF Statement] = {
WITH newVal SELECT FROM
assign => {...};
if =>{(}
)

-- ‘selfUpdate’ method for nodes of type ‘Expression’
ExpressionUpdated: METHOD [newVal: Expression,
dn: NODE OF Expression] = { ... } ...};

Figure 10(b): The Class ‘StatementList’(contd)

tells the dialogue manager that the ‘thenPart’ field of the ‘if* variant of a ‘Statement’ is

97

required in an initialized presentation of the variant. A similar message is not sent for

the ‘elsePart’ field, since else parts of if statements are optional.

The next group of messages defines the syntactic sugar of the different kinds of

statements. For instance, the messages:

Prompt [attrGrp: while Statement.expr, val: "WHILE "];
Suffix [attrGrp: while Statement.expr, val: "DO"];

ensure that the display of the conditional expression in a while statement is preceded
by the string "WHILE ", and succeeded by the string "DO". Thus, while statements
are displayed as shown in figure 9. Since the ‘alignment’ attribute of ‘StatementList’
is ‘indented’, the beginning of the ‘doStmts’ field is indented with respect to the
beginning of its parent. Moreover, since the ‘alignment’ attribute of ‘Statement’ is
‘vertical’, the beginning of the presentation of an element of ‘doStmts’ is aligned verti-

cally with the beginning of the presentation of ‘doStmts’.

The definition of the format of an if statement is slightly more complex. The
component groups for ‘elsePart’ and its elements override the ‘alignment’ attribute of
‘StatementList’ and ‘Statement’ respectively. The alignment attribute of ‘elsePart’ is
‘vertical’. As a result, the keyword ‘ELSE’ is aligned vertically with ‘IF’. The align-
ment attribute of an element of ‘elsePart’ is ‘indented’. As a result, elements of

‘elsePart’ are indented with respect to the keyword ‘ELSE’.

The method ‘StatementUpdated’ checks the static semantics of statements. The
role of ‘ExpressionUpdated’ depends on the declaration of ‘Expression’. If expres-
sions are declared as text, the method checks their static semantics. Otherwise, it first

parses them and then checks their static semantics.

98

The example demonstrates the overhead of defining structures as text. An object
is responsible for parsing these structures. However, we expect that in most cases, the
task of parsing will be handled by standard library routines. (See Chapter 4 §2.4 for

more discussion on this topic.)

In this example, we have considered only the static semantics of statement lists

of ASPLE. A more advanced class would compile or interpret these statement lists.

6. Directory

Our last example is the class ‘Directory’, whose instances store editable Unix-
like directories. An instance can present several views of the directory. It can show a
‘long listing’, which displays all the fields of an entry, or a ‘short listing’, which
displays only the names of the entries. Moreover, it can sort the displayed entries by

name or creation time.

Figure 11 shows how a user may edit the presentation of an instance of the class.
Figure 11(a) displays a ‘long listing’ of the files in the directory sorted by name. The
‘file’ field is used to specify the operand of the ‘copy’ command, which is a command

special to directories. It creates in an instance a copy of an existing file or directory.

The user may edit the presentation to manipulate the directory. Changes in the
presentation cause corresponding changes in the object. For instance, if the user
changes the name ‘test.p’ to ‘prog.p’, as shown if figure 11(b), the object registers the

change, and resorts the directory if necessary.

sortedBy: name
file: <File>

listing: long

-rw-rw-r-- 1 joe 481 Feb 04 10:02 test.c
-rw-rw-r-- 1 joe 835 Jan 29 22:01 test.p

a) A Presentation

99

sortedBy: name
file: <File>

listing: long

-rw-rw-r-- 1 joe 835 Jan 29 22:01 @
-rw-rw-r-- 1 joe 481 Feb 04 10:02 test.c

b) User Changes Name of test.p

sortedBy: name
file: <File>

listing: long

sortedBy: name
file: <File>

listing: long

-rw-rw-r-- 1 joe 835 Jan 29 22:01 prog.p
-rw-rw-r-- 1 joe 481 Feb 04 10:02 test.c

¢) User Inserts New Template

sortedBy: ¢
file: <File

listing: long

-rw-rw-r-- 1 joe 835 Jan 29 22:01 prog.p
-rw-rw-r-- 1 joe 481 Feb 04 10:02 test.c
-rw-rw-r-- 1joe 0 Mar0511:03 ab.c

e) User Changes Sorting Criterion

sortedBy: date

listing: short

prog.p
test.c
ab.c

g) User Names File to Copy

d) User Fills Template

sortedBy: date
file: <File>

listing

prog.p
test.c
ab.c

f) User Changes Listing Kind

sortedBy: date
file: ../test.m

listing: short

prog.p

‘test.c
ab.c

h) User Executes Copy Command

Figure 11: Editing a Directory

100

A user can create a template for a new entry by selecting an existing entry and
executing either the ‘next placeholder’ or the ‘previous placeholder’ command. The
template shows a placeholder for the name field, and initial values for the others. The
user may initialize the placeholder, and modify the editable fields. The directory is
resorted if necessary, as shown in figure 11(d).

The user may change the sorting criterion by editing the ‘sortedBy’ field, as
shown in figure 11(e). Figure 11(f) shows how a user may change the ‘long listing’ to
‘short listing’. Figure 11(g) and 11(h) show how a user may insert a copy of an exist-
ing file or directory. He fills the ‘file’ field and executes the ‘copy’ command. The
new entry is inserted in the appropriate position. The user may change its name and

other editable fields.

Figures 12(a) and 12(b) show how the class may be programmed. Four features
of the directory make the class different from others presented so far. First, unlike the
lists defined by previous classes, a list of directory entries can be sorted by different
criteria. Second, certain fields of an entry may be included or excluded from the
display, depending on the value of the ‘listing’ field in the presentation. Third, the
class tailors the user interface of its instances by defining the ‘copy’ command.
Finally, the class has to define display names for some of the enumeration literals it

defines.

The type ‘EntryRec’ defines the contents of a directory entry, and the type
‘Entry’ defines a pointer to it. A directory list is stored in a variable of type ‘Direc-
tory’. A list is composed of variables of type ‘Entry’, and not ‘EntryRec’. Each
instance stores two such lists. One list, stored in ‘nameSorted’, sorts the entries

according to the ‘name’ field, while the other list, called the ‘timeSorted’, sorts it

Directory: CLASS = {

-- type declarations

SortedBy: TYPE = {name, date};
ListingKind: TYPE = {short, long};
ReadAccess: TYPE = [read , noRead};

DirOrFile: TYPE = {dir, file};
Access: RECORD [
selfR : ReadAccess,
self W: WriteAccess,
selfX: ExecuteAccess,
groupR: ReadAccess,

othersX: Executeccess];

Time: TYPE = RECORD [

day: Day, month: Month, hour: Hour, min: Min];
File: TYPE = STRING;
EntryRec: TYPE = RECORD [

dirOrFile: DirOrFile,

access: Access,

numLinks: CARDINAL,

owner: STRING,

size: CARDINAL,

time: Time,

name: File];
Entry: TYPE = POINTER TO EntryRec;
Directory: POINTER TO RECORD [

content: SEQUENCE size: CARDINAL OF Entry];

-~ variable declarations

sortedBy: SortedBy <- name;
listing: ListingKind <- long;

file: File;

nameSorted, timeSorted: Directory;

Load: METHOD [dm: DM] = {
OPEN dm;
ReadOnly [ataeGrp: Entry.date, val: TRUE};
Value [attrGrp: Access.selfR, val: read];
AddCommand [attrGrp: Entry, name: "copy”,
comMethod: Copyl; ‘
DisplayName [enum: ReadAccess[read], val: "r"};

DisplayName [enum: ReadAccess[noRead], val: "-"];

)

101

-- read access

-- other accesses

-- directory or file
-- different accesses

-- other declarations

-- definition of a directory entry

-- defines sorting criterion

-~ defines desired listing

-- name of file to be copied

-- the two sorted versions of dir.

-- the load method

Figure 12(a): The Class ‘Directory’

102

according to the ‘time’ field. Since both lists are composed of pointers, the informa-
tion about an entry does not have to be duplicated. Each entry is associated with two
pointers, one in the ‘nameSorted’ list, and the other in the ‘timeSorted’ list. The two

pointers share a common referent.

The method ‘Load’ is the load method of the class. It sends initial messages to a
dialogue manager, which, submit variables ‘sortedBy’, ‘listing’, ‘file’, and one of the
variables ‘nameSorted’ or ‘timeSorted’ for editing, set attributes of attribute groups,
submit the command method of the ‘copy’ command, and sets the display names of
access fields. The variable ‘nameSorted’ is submitted if the current value of ‘sortedBy’

is ‘name’, otherwise ‘timeSorted’ is submitted.

Figure 12(b) outlines the other methods of the class. These are concerned with
resorting the directory when a new entry is inserted, changing the directory list
displayed when the user changes the sorting criterion, changing the listing when the
user changes the ‘listing’ field, initializing a new entry with the current time, and

implementing the command method of the ‘sort’ command.

The method ‘EntryUpdated’ is called when an entry is updated. It stores the new
value in the variable ‘newEntry’, and updates it witﬁ the current time. This value is
used by the method ‘EntryInserted’, which is called when a user enters initializes a
new entry in a directory. Note that the order in which the two procedures are called is
important. A call to ‘Entrylnserted’ is always preceded by a call to ‘EntryUpdated’
(Chapter 2).

The method ‘EntryInserted’ performs the following tasks. First, it inserts a

pointer for the new element in both the ‘nameSorted’ and the ‘timeSorted’ list. Next, it

103

-- ‘selfUpdate’ method for ‘Entry’

EntryUpdated: METHOD [new Val: Entry] = {
insertedEntry <- newVal; -- save the new entry for ‘Entrylnserted’
insertedEntry.time <- curTime}; -- set the current time

-- ‘insertUpdate’ method for ‘Directory’
EntryInserted: METHOD [index: CARDINAL, dn: NODE TO ENTRY, dm: DMJ;
OPEN dm;
... insert element in ‘nameSorted’ and ‘timeSorted’
Delete [dn: dn];
IF sortedBy = nameSorted THEN {
-- find the new insertion position according to sorting criterion
i <- FindNewPos [insertedEntry];
InsertAfter [dn: nameSorted, index: i];
Value [attrGrp: nameSorted!i], val: nameSorted[i]]}
ELSE {
.. == insert in ‘timeSorted’};

-- ‘selfUpdate’ method for ‘sortedBy’
ChangeSorting: METHOD [newVal: SortedBy] = {
OPEN dm;
IF (newVal = name) AND (sortedBy # name) THEN {
Delete [var: timeSorted];
Edit [var: nameSorted]}
ELSE {..});

-- ‘selfUpdate’ method for ‘listing’
ChangeL.isting: METHOD [newVal: Listing] = {
OPEN dm;
IF newVal = long THEN {
Hidden [atrGrp: Protection, val: FALSE];
)
ELSE {
Hidden [attrGrp: Protection, val: TRUE];
I H
- ‘selfUpdate’ method of ‘file’
FileUpdated: METHOD [newVal: File] = (
IF ValidName [newVal] THEN file <- newVal
ELSE Highlighted[attrGrp: file, val: TRUE]};

-- command method for the ‘copy’ command
Copy: METHOD [} = {...}; ...};

Figure 12(b): The Class ‘Directory’ (contd)

inserts the new element in the display according to the current sorting criterion.

104

Finally it deletes the old element from the display.

The method ‘ChangeSorting’ is called when the user changes the variable ‘sort-
edBy’. It replaces the a presentation of ‘timeSorted’ with a presentation of
‘nameSorted’, if the new value of ‘sortedBy’ is ‘name’, and vice versa, if the value is
‘time’.

The method ‘ChangeListing’ is called when the value of the variable ‘listing’ is
changed by the user. If the new value is ‘short’ it sets the ‘hide’ attribute of the
appropriate attribute groups to “TRUE’. For instance, it sets the ‘hide’ attribute of

‘Protection’ to “TRUE’ to hide all protection fields of the directory. If the new value is

‘long’ it sets the ‘hide’ attribute of the above attribute groups back to ‘FALSE’.

The method ‘FileUpdated’ is called when the value of the variable ‘file’ is
changed. It updates the value of the variable if the new value is a legal file name. Oth-

erwise it reports the error to the user.

The method ‘Copy’ is the command method for the ‘copy’ command. It uses the

value of the variable ‘file’ to implement the command.

105
Chapter 4
Discussion

This chapter describes the role played by different components of our approach,
discusses some useful features missing from it, describes our experience with Dost,
compares our approach with related work, and presents conclusions and directions for

future research.

1. Rationale

Our approach consists of four components: the editing model of interaction,
objects, the dialogue manager, and the input/output primitives. Our design of these
components was influenced by our goal of making general interactive programs both
easy to use, and easy to implement. In this section we discuss the role played by each

compohent in meeting this goal.

1.1. Editing Model of Interaction

The editing model can have several variations [25,26,14,46,13,45,5,32, 44]
of which the model supported by Dost is one example. In the rest of this dissertation,

we shall use the Dost variation as a representative example of the editing model.
"This model was supported by Dost for two reasons:
(1) User interfaces that follow the model are easy to use.
@) Itis a general model.

The following two subsections defend these claims.

106

1.1.1. Ease of Use

We discuss below the properties of the editing model that, we believe, contribute

to the usability of user interfaces that follow it.
Point and Select Paradigm

Operands of editor commands are selected by the point and select paradigm. As
- a result a user does not have to provide a description of the operand. For instance, to
delete an entry from a directory, the user can select the entry by directly pointing at it,

instead of typing its name.
In Place Updates

Modifications to displayed values are made in place. A user changes a value by
directly editing its presentation. As a result, the user can reuse parts of the old presen-
tation. Similarly, an object displays a new value by directly updating its presentation

in a window. It does not have to redisplay the entire contents of the window.

As an example, consider a modification to the name of a directory entry, both by
a user and the object that manages the directory. A user can change the name by
changing the desired characters in the presentation of the current name, instead of typ-
ing the complete name in a separate portion of the screen. Similarly, the object (possi-
bly in response to some message from another object) can change the name by directly

updating its presentation. It does not have to redisplay the entire directory.
Automation of Input

When appropriate, templates and menus are provided to automate the entry of
input. Templates free the user from entering the ‘syntactic sugar’ around values of

variables, while menus save the user from entering the values themselves.

107

Structure Commands

The structure of values is made available to the user. The interface provides
commands to move up or down in a structure, travel a presentation in increments of the

currently selected structure, and hide or show the details of a structure.
Aids User Input

Facilities are provided to aid the user in entering input. These include titled
presentations, uninitialized presentations, and menus. Titled presentations provide
prompts for user input. Uninitialized presentations provide placeholders that describe
the set of values that can replace them. Menus allow a user to examine his input

choices.
Interactive Formatting

The model supports interactive formarting, which allows a user to override the
default formats defined by the object. While we do not expect this feature to be used
very often, there are several situations in which it can be useful. For instance, consider

the following default format for an if statement:

IF <Expr> THEN
<StmtList>

ELSE
<StmtList>

Now consider an application of the above format to the following instance of the state-

ment:

IFb=1THEN
a<-0

The presentation uses two rows in the display, and may be undesirable in a situation

where maximum use of the available screen space is important. In Dost, the user can

108

select the assignment statement and execute the ‘horizontal’ command to change the

display to:
IFb=1THENa<-0

Miscellaneous

The user has control over the order in which input is specified. Moreover, he can
decrease screen clutter by removing optional entries from the display. For instance a
user interacting with an instance of the class ‘Form’ (Chapter 3) can fill the form items

in any order. Moreover, he can delete the optional ‘mailingAddress’ field.

1.1.2. Generality

Chapter 2 and 3 described in detail how editing interfaces can be used to interact
with a diverse range of applications. In this section, we describe, informally, some
other applications that can fruitfully present such interfaces.

Sending Mail

A system could provide a special object responsible for sending messages. The
object could display fields to specify the destination, subject, contents and other
characteristics of the message to be sent. It could ensure that a user does not make

syntax or semantic errors such as entry of an invalid user name in the destination field.

([1] and [28] contain related discussions on this topic.)
Debugger

We now illustrate how a debugger can present an editing interface. The
debugger could have several presentations: one presentation to display the list of

breakpoints, another to display variables of current interest (perhaps using some of the

109

ideas presented in [27]), and so on. A user could edit these presentations to debug a
program. For instance, he could remove a breakpoint by deleting its entry from the list
of breakpoints. Similarly, he could changes the value of a variable by editing its

presentation.
Command Interpreter

An editing interface would also be useful for interacting with a command inter-
preter. A command interpreter could display the the history of commands specified by
the user. A user would specify new commands by either entering a new command or
selecting a previous command and executing the ‘accept’ editor command. The com-
mand interpreter could also allows deletion of selected commands to allow them to be

undone.

An application such as a command interpreter may seem anomalous in an
environment in which all applications offer editing interfaces. Command interpreters
are traditionally used to send mail, manipulate directories, print files, and so on. How-
ever, we have argued earlier for editing interfaces to specify these operations. For
instance, we have illustrated the advantages of using an editing interface to manipulate
a directory.

Nonetheless, a command interpreter has an important role in an editing environ-
ment. It provides a central place to specify operations on a large number of objects.
Moreover, it typically provides facilities to program a sequence of operations. We
have shown in this example how a command interpreter could itself provide an editing

interface.

110

Languages

The class ‘StatementList’ illustrated the usefulness of an interface that under-
stands the structure and semantics of the constructs of ASPLE. Similar interfaces may
be used to enter constructs of other languages including programming languages,

configuration languages, and specification languages [5,44, 11,32, 50, 51, 29].
Databases

The class ‘Bibliography’ illustrated how a database of reference entries may by
manipulated by editing its presentation. Other databases may be similarly manipu-

lated.

1.2. Objects

Dost augments a traditional computing environment with extensions that allow
applications to be created as objects. Objects have the following two properties that

distinguish them from traditional applications (Chapter 2):

(1) They are part of the permanent memory of the system. They are associated

with permanent names, and can be activated and passivated.

(2) They can communicate with each other and dialogue managers through mes-

sages.
This section discusses the rationale for supporting objects in Dost.
Object-Oriented Permanent Memory

The interaction model supported by Dost allows each application to act as an edi-
tor of permanent data that can saved between editing sessions. Therefore, it is impor-

tant that the environment provide support for naming and accessing these data.

111

In traditional systems, permanent data are named and accessed through files.

There is one drawback with this scenario: files are ‘untyped’. There is no information

in files about the programs that can manipulate them. Thus a user may ask a program

to manipulate data it cannot process.

In Dost, files and the programs that manipulate them are kept together as objects.

“Therefore, a user is not responsible for connecting programs with files. As a result,

there is no danger of an object being asked to manipulate data it cannot handle.

Application-Dialogue Manager Separation

The communication primitives in Dost allow an application and a dialogue

manager to be two separate programs communicating with each other through mes-

sages. This separation offers several advantages:

The different dialogue managers share a common code segment. In the absence
of object-dialogue manager separation, a copy of the dialogue manager code
neeeds to be linked to every class in the system. The dialogue manager code, in
most cases, will be several times the size of a class. Therefore, it is important to

have only one copy of it resident in memory.

An object can be connected to several dialogue managers simultaneously. Thus
it can be edited in several windows at the same time. In a multi-user environ-
ment, these windows can be on the screens of different users. As a result, several
users can simultaneously examine and manipulate data of common interest.
Examples of such data are directories, printer queues, and process lists, and data-

bases.

An object and a dialogue manager can reside on different computers, such as a

workstation and a mainframe host.

112

Cooperation between Applications

Objects can communicate with each other. As a result, related objects can keep
their data consistent. As an example, consider managers of Unix-like directories,
which can share entries with other directories. In Dost, these managers can communi-

cate with each other to keep the fields of a common entry consistent.

1.3. Dialogue Manager

The dialogue manager handles user interaction on behalf of the object. It
presents a default user interface, which few objects need to change substantially. Thus
an object is relieved from the task of converting user input into values of variables,
specifying details of displaying data, and interpreting any of the default commands
provided by the default interface. In our implementation, approximately thirty such

commands are provided.

1.4. Input/Qutput Primitives

Our approach replaces traditional input/output primitives supported by conven-
tional programming languages with an new set of primitives that support both editing
and automation. In this section, we discuss the role élayed by the main components of

the set of input/output primitives supported by Dost.
Display Nodes

Display nodes support the editing model of interaction. They provide an exter-
nal representation of the data in an object that can be edited by the user and updated

by an object.

113

Edit Messages and Update Methods

The ‘Edit’ messages and update methods replace traditional input and output
procedures. They are necessary for an object to display variables and receive updates

to them.
Input/Output of Programmer-Defined Types

The parameters of ‘Edit’ messages and update methods can be values of
programmer-defined types such as variant records, sequences, and recursive structures
referred by a pointer. As a result, an object is relieved from the substantial task of
parsing input and displaying output.

Formatting Attributes

The formatting attributes allow an object to specify géneral properties about for-
matting information. As a result, an object is relieved from specifying the details of

displaying data on the screen.
Attribute Inheritance

Attribute inheritance gives the object a powerful tool for specifying default attri-
bute values. As a result, an object is responsible for specifying a small number of attri-

butes.
Attribute-Changing Messages

Messages to a dialogue manager that change the attributes of display nodes allow
an object to dynamically modify the values, formats, and other properties of display

nodes.

114

2. What’s Missing?

We now discuss some useful features missing from Dost and outline possible

ways to include them.

2.1. More Attributes

Attributes are used by an object to specify various characteristics of a displayed
variable: the format, the commands available to edit its presentation, the update
methods, and so on. A dialogue manager uses the ‘high level’ description provided by =

these attributes to handle the ‘low-level’ details of user interaction.

One drawback with an approach using attributes is that a dialogue manager can
support only a limited number of attributes. Therefore attributes can provide only lim-
ited flexibility in specifying user interfaces. For instance, currently the flexibility of
our approach is limited by the lack of attributes to specify fonts and sizes of characters,

spacing between lines on the screen, and graphic presentations.

However, our hope is that a finite but large set of attributes will be able to pro-
vide sufficient flexibility for most applications. Further research is needed to deter-

mine this set.

2.2. Displaying Objects

Tt would be useful if objects could display other objects in their presentations, as
illustrated by the following example.

Consider the class ‘Form’, which allows a user to enter information about a per-
son. Now assume that a programmer wishes to create a class that defines a variable

declared as follows:

115

personDatabase: POINTER TO RECORD [
contents; SEQUENCE size: CARDINAL OF CLASS Form]

It would be useful if an instance of this class could display the elements of the
sequence in its presentations. The class could reuse code that describes how instances

of ‘Form’ are displayed and edited.

Currently, Dost does not allow an object to display the presentations of other
objects in its presentations. Each object is displayed in a separate window, which is
managed by a single dialogue manager. While a window may contain subwindows
that show different presentations of an object, a window cannot be contained in another

window.

There are several possible extensions to Dost to allow objects to be displayed
within other objects. The presentations of a subobject could be displayed in a separate
window nested within the window of its parent, as illustrated by figure 1(a), or they
could be displayed directly in the window of the parent, as shown in figure 1(b).
Further research is needed to determine other extensions to support displaying of

objects as parts of other objects.

2.3. More Commands

The generality of the Dost interaction model stems from the large number of
editing commands provided by it. These include window editing, object editing, text
editing, structure editing, and attribute editing commands. In the Dost implementation
these commands number 30. Experience with Dost has shown that a typical object can
use most of these commands. Moreover, it needs to provide very few object-specific

commands.

Figure 1:

Person Database

Form

name: Joe Doe
status: single

mailingAddress: <STRING>

permanentAddress: 520 Washington St.

otherinfo....

a) Nested Windows

Person Database
Form
name: Joe Doe
status: single
permanentAddress: 520 Washington St.
mailingAddress: <STRING>

otherinfo....

b) Single Window

116

Displaying an Objectin the Presentation of another Object

117

However, the commands provided by Dost are by no means an exhaustive set of

commands. We outline below some of the commands currently missing in Dost.

Several editors provide a command to ‘pick’ an operand in a buffer, and insert it
elsewhere [5]. Such a command would be useful in Dost to copy data from one display
node to another. The two nodes could be in the presentations of the same or different
objects. For instance a user could ‘pick’ a reference entry from the presentation of one

instance of ‘Bibliography’ and ‘put’ it in the presentation of another instance.

The ‘pick’ and ‘put’ commands can be implemented in Dost by providing one or
more central buffers to hold data ‘picked’ from presentations of objects. These buffers
would be accessible to all the active dialogue managers and objects in the system.

Thus objects can override these commands if they wish to.

Two other important commands missing in Dost are commands to undo and redo
other operations. Currently, an object is responsible for implementing these com-
mands. Further research, perhaps using the ideas presented in [47,22, 5], is needed to

define a general undo/redo facility in Dost.

Further work is also needed to determine other default commands that may be

provided by a dialogue manager.

2.4. Text Editing of Structures

Dost allows presentations to be edited as both structures and text. The presenta-
tions of simple display nodes such as strings and integers are edited as text. The
presentations of structure nodes such as records, arrays and sequences are edited as

structures.

118

In some situations, it is useful to edit structures as text. For instance, consider

the following declaration of a date:

Day: TYPE = CARDINAL [1..31];
Month: TYPE = {Jan, Feb, ..., Dec};
Year: TYPE = CARDINAL;
Date: TYPE = RECORD [

day: Day,

month: Month,

year: CARDINAL];

day: Day
Assume that the user wishes to enter the date
1 Jan 1986
He may prefer replacing the placeholder
<Date>
with the string "1 Jan 1986" to replacing each of the placeholders
<Day> <Month> <Year>
with the values ‘1°, ‘Jan’, and ‘1986’ respectively.

Currently, an object may allow text editing of a structure by displaying it as a
string and parsing the string to determine the values input (Chapter 3, example: ‘Sta-
tementList’). Our hope is that that in most cases, the task of parsing input will be han-

dled by standard library routines.

Nonetheless, it would be useful if a dialogue manager could relieve an object
from the task of parsing input. For instance, it could create a grammar that describes
the syntax of the presentation of a date, and use this grammar to parse input and return

appropriate values to the object. It could use the help of a parser generator to generate

119

parsing and scanning tables.

A dialogue manager may not be able to parse all possible presentations
(definable by different formatting attributes) due to limitations in the parser generator
it uses. Moreover, it may have to disallow certain attribute changing commands on
presentations it parses. If it builds all parsing and scanning tables at compile time, it
cannot let a user or an object change attributes that change the syntax of the presenta-

tions it parses.

For similar reasons, a dialogue manager may have to disallow dynamic

modification of display names of certain enumeration literals.

2.5. Automatic Saving of Attributes

A user may edit an object in several editing sessions, between which it important
that user changes to the values and other attributes of display nodes be saved in per-

manent storage.

The ‘ExtendedForm’ example showed how the values of display nodes are
saved. An object receives these values in parameters of update methods, and saves
them in permanent storage when a user executes the ‘save’ method. It reloads these

values in a presentation each time a user executes the ‘reset’ command.

Methods similar to the update methods could be defined in Dost to allow an
object to save the values of other attributes of display nodes. For instance the attribute
‘elided’ could be associated with the ‘elideUpdate’ method which would be called with
the value of the ‘elided’ attribute each time the user executes the ‘elide’ command.
Thus the object could save and restore the values of all attributes of the display nodes

edited by a user.

120

This approach of making an object responsible for saving its atiributes is not

very satisfactory. It burdens an object with the following tasks:

(D

@)

©))

(N

)

€)

saving attribute values into permanent storage each time the user executes the

‘save’ command

reading attribute values from permanent storage each time the object is

activated or the user executes the ‘reset’ command

resetting the display with the saved attribute values each time the user executes ..

the ‘reset’ command.

We outline below some some extensions that relieve an object from these tasks:

The object could declare certain variables as permanent. The system could
ensure that these data are automatically saved in permanent storage when an
object is passivated and loaded into memory when the object in activated.
Thus an object would not have to explicitly save and restore data from its data

file.

Each dialogue manager could save its state in permanent storage when a user
executes the ‘save’ command. It could restores this state when the user exe-

cutes the ‘reset’ command.

A variable in an object would be allocated at the same virtual address each
time the object is activated. Thus variable names of display nodes would

remain constant over different activations of the object.

2.6. Specification of Attributes

Dost provides two ways to specify attributes: one for the applications program-

mer defining a class of objects, and another for a user interacting with a specific object.

121

The application programmer specifies attributes of attribute groups by writing
procedural code to send attribute changing messages to a dialogue manager. The user
specifies attributes of attribute groups interactively by using attribute editing com-

mands.

It would be useful if an application programmer could also specify attributes of
attribute groups interactively. The programmer could create a ‘dummy’ instance of a
class and use the attribute editing commands to set default values of the formatting
attributes of different attribute groups. He could experiment with different attribute
values until the presentations are formatted to his satisfaction. He could then execute
an accept command to ‘freeze’ these attribute values. The system would respond to
this command by creating appropriate code that may be linked with the class to ensure
that the attribute groups of all instances of the class are initialized with these default

values.

Tt would also be useful if Dost allowed attributes to be specified declaratively. A
declarative specification of attributes would allow definition of initial or constant
values of attributes. The following is an example of a declarative specification to set

the ‘alignment’ attribute of ‘Reference.author’ to the constant value ‘horizontal’:

Reference: RECORD [
author: STRING ATTRIBUTES alignment = horizontal END,

.
o

Further research is needed to determine how procedural, declarative, and interac-

tive specification of attributes may be integrated with each other.

122

2.7. Updating different Presentations

In Dost, a variable in an object may be displayed by several display nodes
managed by the same or different dialogue managers. It is the object’s responsibility
to ensure that the changes to one display node of a variable are reflected in other nodes
displaying the variable. It would be useful if the dialogue managers of an object could

communicate with each other to directly to keep related nodes constant.

3. Experience

We have used Dost to define the class ‘Bibliography’ described in chapter 2, the
classes ‘Form’, ‘ExtendedForm’, and other classes described in chapter 3, and the

classes ‘References’ and ‘ASPLE’ described below.

The class ‘References’ is an extension of ‘Bibliography’. It defines more realis-
tic fields for a reference entry. Moreover, its instances can send entries to other
objects. Thus entries of common interest can be exchanged by the bibliography data-

bases of different users.

The class ‘ASPLE’ checks the static semantics of the programming language
ASPLE, which has been used to compare several formal mechanisms for defining the
semantics of programming languages [23]. An ASPLE program is composed of a
declaration list and a statement list. The data types of the language are integers, boole-
ans, and pointers to booleans. The statements include if, while, assignment, input,
and output statements, as described in chapter 3. Figure 17 in chapter 2 displays

presentations of instances of ‘References’ and ‘Bibliography’.

Figure 2 shows the sizes of the interaction code of these classes. The interaction

code of a class, intuitively, is the code required to ‘drive’ the dialogue managers of an

123

Bibliography 6

Form 8

ExtendedForm 13
RoommateExpenses* 30
Spreadsheet* 14
StatementList 18
Directory* 39
References 16
ASPLE 31

Figure 2: Size (in source lines) of the Interaction Code in Different Classes
instance. It includes any code in the class that uses the input/output primitives
described in chapter 2. Thus, it includes the code required to specify the attributes of
attribute groups, submit variables for editing, specify update and command methods,
specify ‘save’, ‘reset’, and ‘empty’ methods, and specify display names. It does not
include the code required to define the data encapsulated by an instance, or the code

required to manipulate them.

All classes except ‘RoommateExpenses’, ‘Spreadsheet’, and ‘Directory’, were
actually implemented. These three classes were not implemented because of limita-

tions of the current implementation, discussed in chapter 2 §6.
Two preliminary conclusions can be drawn from our experience:
(1) Dost objects are easy to use. While this is a highly subjective opinion, it
appears to be the consensus of those who have seen demonstrations of Dost.
Our implementation on a workstation also shows negligible response times to
user commands, an important concern in determining the usability of an inter-

face.

124

(2) Dost classes are easy to implement. The size of the interaction code a class is
insignificant compared to the size of the dialogue manager code it drives. In
our implementation, the latter is about 7000 Mesa lines. This number does not
include the thousands of lines of code in the XDE libraries used in the imple-

mentation.

4. Related Work

The idea of generating user interfaces is not new. Previous approaches range in
scope from form development systems to environments that support the editing model

of interaction. In this section we compare our work with these approaches.

4.1. Form Development Systems

Several systems support a model of interaction based on forms [21,35,37,36].
An application interacts with a user by displaying one or more forms to the user. Each

form consists of one or more items, which a user fills with appropriate values.

There is an important similarity between the form model of interaction and edit-
ing model supported by Dost: A user can fill the items in any order. Thus interaction is

not constrained to be sequential.

However, the form model is not as general as the editing model. It imposes three
main restrictions:

(1) The number of items in a form is static and not a function of input.

N
(2) The values of items are restricted to simple types. Thus none of the structure

editing commands are available to interact with forms.

125

(3) An application does not receive incremental updates to the items on the
screen. It receives the values of all items together when the user executes the

equivalent of an ‘accept’ command.

As a consequence of these restrictions, the model is unsuitable to interact with a
large number of applications. For instance, it cannot be used to define any of the inter-
faces discussed in chapter 3. Typically, the use of forms is restricted to entering tuples

in databases or setting initial parameters of an application.

4.2. EZ

Fraser and Hanson have built a software system called EZ [9, 10] based on a
high-level string-processing language derived from SNOBOLA4, SL5[16], and
Icon [15]. The language supports four basic types of values: numerics, strings, pro-
cedures, and SNOBOLA4-like tables. The system has ‘persistent’ memory much like an
APL workspace in which values exist until changed. As a result it integrates the tradi-
tionally distinct facilities of programming languages and operating systems into a sin-
gle system. Files are represented as strings, and directories are provided as tqbles.

EZ provides a screen editor that edits all EZ values using the same interface. As
a result it can be used to edit text files, directories, and relational data bases represented
as tables. Moreover, procedure activations in EZ are just EZ tables. Therefore the edi-
tor is automatically a debugger as well.

There are two striking similarities between EZ and Dost. First, EZ’s ‘persistent’
data corresponds to Dost’s ‘persistent’ objects. Second, the EZ editor is similar to a
Dost dialogue manager: Both are capable of editing instances of the types defined by a

programming language.

126

There are, however, several important differences between Dost and EZ. First,
the EZ editor and a Dost dialogue manager manage different data structures because of
differences in the programming languages supported by them. The EZ editor manages
only two types: strings, and tables. (Procedures and numerics are automatically con-
verted to strings by the language.) A Dost dialogue manager, on the other hand,
manages numerics, strings, enumerations, arrays, records, variant records and other

data structures defined by Mesa types.

Second, the éditing commands presented by the EZ editor and a dialogue
manager are different. The EZ editor provides only fext editing commands. Thus it
does not provide equivalents of the structure editing and attribute editing commands
provided by a dialogue manager. On the other hand, it provides an ‘enter’ command,
which may be applied to a line displaying a key of a table. The command recursively
invokes the editor on the value associated with the key. The value may be another
table, so the editor can be used to ‘walk’ tables. A dialogue manager, currently, does

not provide an equivalent of the ‘enter’ command.

Third, an EZ editor does not provide an application programmer facilities to for-
mat data. Fourth, it cannot be used to check user input for semantic consistency. Fifth,
and lastly, the EZ editor can be used as a debugger since EZ stores procedure activa-

tions as tables. An equivalent facility is not provided in Dost.

4.3. Descartes

Descartes [39,40] is a framework for building user interfaces having several
characteristics in common with Dost. It allows an application to input and output
values of programmer-defined types. Moreover, an application’s interaction with the

user is managed by an application-specific module called a compositor.

127

The compositors in Descartes corresponds to dialogue managers in Dost. There
are two main differences between the two. First, a dialogue manager is provided
automatically for each Dost object and is ‘driven’ by a small amount of application-
specific code. On the other hand, a compositor has to be developed manually for each
Descartes application using the urility code shared by all interfaces and provided by
the system. Thus, Descartes provides less automation in generating a user interface,
but gives an application programmer more flexibility in specifying an interface.

Second, Descartes supports only sequential interaction. An application asks for
values it needs in a particular order and the user is constrained to supply each value as
it is requested. Dost, on the other hand, allow the variables displayed in a presentation

to be edited in any order.

Finally, Descartes supports a tight coupling between the variables in an applica-
tion and their display: Every assignment to a variable causes its display to be updated.
Dost provides a looser coupling which requires that an application explicitly update a

display in response to changes in its variables.

4.4. Language-Oriented Editor Generators

Dost is closely related to the Synthesizer Generator [34], POE[5],
ALOE [24,29], sds[8], PECAN [32], PSG[2] and other language-oriented editor
(LOE) generators. An LOE generator provides a specification language, which may
be used to define the syntax and semantics of a target language. Traditionally, LOEs
have been used to edit programs written in conventional programming languages.
However, they have also been used to edit other structures such as documents, a desk

calculator, and the specification language itself.

128

There are several similarities between Dost and LOE generators. The target
language description used by an LOE generator corresponds to a Dost class, and the
LOE generator corresponds to a dialogue manager. There are also several important
differences between the approaches used by Dost and LOE generators. These are out-

lined below.

First, current LOE generators are special programs in a traditional software
development environment. As a result, the environment consists of a set of standard
programs that manipulate unstructured text, and a set of editors that manipulate syntax
trees. Dost on the other hand is an environment in which all programs offer editing

interfaces.

Second, the language for describing Dost classes is an extension of a conven-
tional general-purpose programming language. On the other hand the specification
language of a LOE generator is based on BNF grammar descriptions embellished with
constructs for describing semantics such as action routines [24], attributes [34], attri-
butes and action equations [18,19], and denotational definitions [2,42,31]. These

descriptions have been used mainly for describing programming languages.

Third, Dost allows an object and a dialogue manager to be two separate pro-
grams communicating with each other through messages. Thus, an object and a dialo-
gue manager can reside on different machines, such as a workstation and a mainframe
host. Moreover, an object can be connected simultaneously to several dialogue
managers. As a result, several users can edit the object at the same time. LOE genera-
tors, on the other hand, do not provide an equivalent of the object-dialogue manager

separation.

129

Fourth, since Dost classes are extensions of Mesa programs, they can use Mesa
constructs for sharing declarations. The specification languages of current LOE gen-

erators do not provide similar constructs for sharing code.

Fifth, Dost objects can share data by exchanging messages. As a result, related
objects can be kept consistent with respect to each other. An equivalent facility to

share information is not provided by LOE generators.

Finally, LOE generators based on attribute grammars [34, 33,5, 17] allow a pro-
grammer to specify the semantics of user interaction declaratively. This feature is use-
ful for specifying the static semantics of a target language, since it relieves a program-
mer froﬁn the task of explicitly calling procedures that check related values for seman-
tic consistency. Dost is based on a procedural language, and therefore, does not pro-

vide an equivalent facility to specify semantics declaratively.

4.5. AGAVE

Recently, Notkin [28,30] has proposed an environment called AGAVE that
replaces standard programs with editor modules written in a language based on the
ALOE specification language. He has augmented the ALOE specification language
with primitives that allow sharing of code between different modules. He has also
proposed capability-based addressing to allow sharing of data between different syntax

frees.

Dost and AGAVE are both environments in which all interaction is through
structure editor interfaces. However, there are two significant differences between the
two systems, which stem from the fact that AGAVE is derived from ALOE. First,
AGAVE offers a grammar-based specification language for describing editors, while

130

Dost offers a Mesa-based programming language.

Second, AGAVE replaces a traditional operating system kernel with an editor
kernel, which implements the editing interfaces. The kernel is (dynamically) linked to
all the editor modules in the system and acts as the controlling module of a monolithic
program. Dost, on the other hand distributes control over all the objects and dialogue
managers in the system. As a result, AGAVE can edit only one syntax tree at a time,
while Dost allows multiple objects to be edited simultaneously. Moreover, AGAVE
cannot offer the advantages of object-dialogue manager separation described in the
previous section. Finally, the AGAVE kernel is responsible for activating and pas-
sivating the syntax trees in the system. Dost, on the other hand, makes each object

responsible for activating and passivating its data.

4.6. Voodoo

Voodoo [38] is a framework that supports the generation of editing interfaces in
an object-oriented system. It divides the objects in the system into emenands, images,
and editors. Each emenand is associated with with one or more images and one or
more editors. An image consists of an abstract syntax tree, which describes the exter-
nal structure of the emenand. The image is used by an editor to allow the user to

interact with the emenand.

Both Dost and Voodoo (which were developed independently and contem-
poraneously) support editor-oriented interaction in an object-oriented system. A dialo-
gue manager in Dost corresponds to an editor in Voodoo. There are two main differ-
ences between the two systems. First, a dialogue manager in Dost is created automati-
cally, while an editor in Voodoo is created manually using the primitives for inheri-

tance offered by the host object-oriented system. Second, an emenand in Voodoo is

131

associated with both an internal structure and an external structure. As a result, an
emenand’s internal structure can be changed without affecting the user’s view of the
object. However, the implementor of a new application has to be concerned with
creating two structures, and keeping them consistent. In Dost, only one structure is

created.

5. Conclusions

Our work presents an approach to automatic generation of user interfaces and
demonstrates the usefulness of this approach through examples, discussion, and imple-

mentation of its major components.
In comparison to previous approaches, our approach
® supports the editing model of interaction,
® is based on a conventional procedural programming language,
e allows a user to interact with several applications at the same time,
® offers the advantages of object-dialogue manager separation, and

® allows an implementor to provide a single description of displayed information.

6. Future Work

To date, Dost has been tested by only one user, its author. More experience with
programmers and users unfamiliar with its working is needed to prove that it may be
used to create interfaces that are both easy to use and easy to implement.

Section 1.1.2 discussed several applications that can fruitfully present editing

interfaces. These need to be implemented to show the generality of our approach.

More creative ways of using editing interfaces also need to be explored.

132

Section 2 discussed several current limitations of Dost, and possible extensions
to overcome them. These and other extensions need to be explored in depth. In partic-
ular it needs to be researched if attributes to display graphical presentations of vari-

ables can be included in our approach.

Our approach forces a programmer to specify semantics procedurally. Ways to
~ support declarative specification of semantics need to be explored, perhaps using the

ideas presented in [21, 34,33, 5, 17].

Notwithstanding the current limitations of Dost, our work has presented an
approach that can be used as a basis for future research in automatic generation of user

interfaces.

133

REFERENCES

(1]

[2]

(3]

(4]

[5]

[6]

[7]

(8]

(91

[10]

[11]

G.T. Almes and C. Holman, ‘‘Edmas: An Object-Oriented, Locally Distributed
Mail System,’’ Technical Report 84-80-03, Department of Computer Science,
University of Washington, August 1984.

Rolf Bahlke and Gregor Snelting, ‘‘The PSG - Programming System Genera-
tor,”’ Proceedings of the ACM SIGPLAN 85 Symposium on Language Issues
in Programming Languages, June 1985, pp. 28-33.

Prasun Dewan and Marvin Solomon, ‘‘An Approach to Generalized Editing,”’
Proceedings of the IEEE Ist International Conference on Computer Worksta-
tions, November 1985, pp. 52-60.

Prasun Dewan and Marvin Solomon, ‘‘Dost: An Environment to Support
Automatic Generation of User Interfaces,”” Proceedings of the Second ACM
SIGSOFTISIGPLAN Symposium on Practical Software Development
Environments, to appear in December 1986.

C. N. Fischer, Gregory F. Johnson, Jon Mauney, Anil Pal, and Daniel L. Stock,
“The POE Language-Based Editor Project,”” Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, April 1984, pp. 21-29.

Christopher W. Fraser, ‘‘A Generalized Text Editor,”” CACM 23:3 (March
1980), pp. 154-158.

Christopher W. Fraser and A. A. Lopez, “‘Editing Data Structures,”” ACM
Transactions on Programming Languages and Systems 3:2 (April 1981), pp.
115-125.

Christopher W. Fraser, ‘‘Syntax Directed Editing of General Data Structures,”
Proceedings of the ACM SIGPLAN SIGOA Symposium on Text Manipulation,
SIGPLAN Notices 16:6 (June 1981).

C.W. Fraser and D.R. Hanson, ‘‘A High-Level Programming and Command
Language,’’ Sigplan Notices : Proc. of the Sigplan’83 Symp. on Prog. Lang.
Issues in Software Systems 18:6 (June 1983), pp. 212-219.

C.W. Fraser and D.R. Hanson, ‘‘High-Level Language Facilities for Low-Level
Services,”’ Conference Record of POPL, 1984, pp. 217-224.

David B. Garlan and Philip L. Miller, ‘‘GNOME: An Introductory Program-
ming Environment Based on a Family of Structure Editors,”’ Proceedings of
the ACM SIGSOFTISIGPLAN Software Engineering Symposium on Practical
Software Development Environments, April 1984, pp. 65-72.

[12]
[13]

[14]

[15]
[16]
[17]

[18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

134

Adele Goldberg and David Robinson, Smalltalk-80: The Language and its
Implementation, Addison-Wesley, Reading, Mass., 1983.

Adele Goldberg, Smalltalk-80: The Interactive Programming Environment,
Addison-Wesley, Reading, Mass., 1984.

Michael Good, ‘‘Etude and the Folkore of User Interface Design,’’ Proceed-
ings of the ACM SIGPLAN SIGOA Symposium on Text Manipulation, SIG-
PLAN Notices 16:6 (June 1981), pp. 34-43.

R.E. Griswold and M.T. Griswold, The Icon Programming Language, Prentice
Hall, Englewood Cliffs, NJ, 1983.

D.R. Hanson and R.E. Griswold, ‘“The SL5 Procedure Mechanism,”” Comm.
ACM, May 1978, pp. 392-400.

Gregory F. Johnson, ‘‘An Approach to Incremental Semantics,”” Ph.D. Thesis,
University of Wisconsin - Madison, August 1983.

Gail E. Kaiser, ‘‘Semantics for Structure Editing Environments,”” PhD Thesis
and Tech. Report, CMU-CS-85-131, Department of Computer Science,
Carnegie-Mellon University, May 1985.

Gail E. Kaiser, ‘“Generation of Run-Time Environments,’’ Proceedings of the
SIGPLAN ’ 86 Symposium on Compiler Construction, June 1986, pp. 51-57.

G. D. Kimura, ‘‘A Structure Editor for Abstract Document Objects,”’ IEEE
Transactions on Software Engineering 12:3 (March 1986), pp. 417-436.

JM. Lafuente and D. Gries, ‘‘Language Facilities for Programming User-
Computer Dialogues,”’ IBM J. Res. Develop. 22:2 (March 1978), pp. 145-158.

George B. Leeman, Jr., ‘A Formal Approach to Undo Operations in Program-
ming Languages,”’ ACM Transactions on Programming Languages and Sys-
tems 8:1 (January 1986), pp. 50-87.

Michael Marcotty, Henry F. Ledgard, and Gregor V. Bochmann, *“A Sampler
of Formal Definitions,’’ Computing Surveys 8:2 (June 1976), pp. 194-275.

Raul Medina-Mora, ‘‘Syntax-Directed Editing: Towards Integrated Program-
ming Environments,”” PhD Thesis, Department of Computer Science,
Carnegie-Mellon University, March 1982.

Norman Meyrowitz and Andries van Dam, “‘Interactive Editing Systems: Part
1,”” Computing Surveys 14:3 (September 1982), pp. 321-352.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

135

Norman Meyrowitz and Andries van Dam, “‘Interactive Editing Systems: Part
2.’ Computing Surveys 14:3 (September 1982), pp. 353-416.

Brad A. Myers, ‘‘Displaying Data Structures for Interactive Debugging,’’
Technical Report CSL-80-7, Xerox Corporation, Palo Alto Research Centers,
June 1980.

David Notkin, ‘‘Interactive Structure-Oriented Computing,”” PhD Thesis and
Technical Report, CMU-CS-84-103, Department of Computer Science,
Carnegie-Mellon University, February 1984.

David Notkin, ‘“The Gandalf Project,”” The Journal of Systems and Software
5:2 (April 1985).

David Notkin, ‘‘Sharing and Modularization in Structure Editing Environ-
ments,”’ Proceedings of the 19th Hawaii International Conference on Systems
Sciences, January 1986.

Anil Pal, ‘“‘Generating Execution Facilities for Integrated Programming
Languages,’”’ Ph.D. Thesis (in preparation), University of Wisconsin-Madison,
December 1986.

S. P. Reiss, ‘‘PECAN: Program Development Systems that Support Multiple
Views,”’ IEEE Transactions on Software Engineering SE-11:3 (March 1985).

Thomas Reps, Tim Teitelbaum, and Alan Demers, ‘‘Incremental Context-
Dependent Analysis for Language-Based Editors,”” ACM Transactions on Pro-
gramming Languages and Systems 5:3 (July 1983), pp. 440-477.

Thomas Reps and Tim Teitelbaum, ‘‘The Synthesizer Generator,”” Proceed-
ings of the ACM SIGSOFTISIGPLAN Software Engineering Symposium on
Practical Software Development Environments, April 1984, pp. 42-48.

Lawrence A. Rowe and Kurt A. Shoens, ‘‘A Form Application Development
System,’’ Proceedings of the ACM-SIGMOD International Conference on the
Management of Data, 1982, pp. 28-38.

L. A. Rowe and K. A. Shoens, ‘‘Programming Language Constructs for Screen
Definition,”’ IEEE Transactions on Software Engineering SE-9:1 (January
1983), pp. 31-39.

Lawrence A. Rowe, ‘‘‘Fill-in-the-Form’ Programming,”” Proceedings of
VLDB, 1985, pp. 394-404.

Jeffrey Scofield, ‘‘Editing as a Paradigm for User Interaction,”” Ph.D. Thesis
and Technical Report No. 85-08-10, University of Washington, Department of
Computer Science, August 1985.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

(501

(511

136

M. Shaw, E. Borison, M. Horowitz, T. Lane, D. Nichols, and R. Pausch, “Des-
cartes: A Programming-Language Approach to Interactive Display Inter-
faces,”” Sigplan Notices : Proc. of the Sigplan '83 Symp. on Prog. Lang.
Issues in Software Systems 18:6 (June 1983), pp. 100-111.

M. Shaw, ‘‘An Input-Output Model for Interactive Systems,”” CHI’'86
Proceedings, April 1986, pp. 261-273.

David Canfield Smith, Charles Irby, Ralph Kimbali, Bill Verplank, and Eric
Halsem, ‘‘Designing the Star User Interface,”’ BYTE 7:4 (April 1982).

Gregor Snelting, ‘‘Unification in Many-Sorted Algebras as a Device for Incre-
mental Semantic Analysis,”’ Conference Record of the Thirteenth Annual
ACM Symposium on Principles of Programming Languages, January 1986,
pp. 229-235.

J. Sutton and R. Sprague, ‘A Study of Display Generation and Management in
Interactive Business Applications,”” Tech. Rept. RJ2392(#31804), IBM San
Jose Research Laboratory, November 1978.

Tim Teitelbaum, Thomas Reps, and Susan Horwitz, ‘“The Why and Wherefore
of the Cornell Program Synthesizer,”” Sigplan Notices 16:6 (August 1981).

W. Teitelman, ‘A Tour through Cedar,” IEEE Transactions on Software
Engineering SE-11:3 (March 1985).

Larry Tesler, ‘“The Smalltalk Environment,’’ Byte 6:8 (August 81), pp. 90-146.

Jeffrey Scott Vitter, ‘“USER: A New Framework for Redoing,”” Proceedings of
the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical

_Software Development Environments, April 1984, pp. 168-176.

Xerox Corporation, ‘‘Xerox Development Environment: Concepts and Princi-
ples,”’ XDE3.0-1001, November 1984.

Xerox Corporation, ‘‘Mesa Language Manual,” XDE3.0-3001, November
1984.

Marvin V. Zelkowitz, ‘A Small Contribution to Editing with a Syntax Directed
Editor,”” Proceedings of the ACM SIGSOF TISIGPLAN Software Engineering
Symposium on Practical Software Development Environments, April 1984,

pp- 1-6.

Marvin V. Zelkowitz, Jennifer Elgot, David Itkin, Bonnie Kowalchack, and
Michael Maggio, ‘‘The Engineering of an Environment on Small Machines,’’
Proceedings of the IEEE Ist International Conference on Computer Worksta-
tions, November 19835, pp. 61-69.

