Comparative Timings for a Neuron
Recognition Program on
Serial and Pyramid Computers

by

Ze-Nian Liand Leonard Uhr
Computer Sciences Technical Report #665

September 1986

COMPARATIVE TIMINGS FOR A NEURON RECOGNITION PROGRAM
ON SERIAL AND PYRAMID COMPUTERS

Ze-Nian Li and Leonard Uhr
Department of Computer Sciences
University of Wisconsin-Madison

ABSTRACT

This paper examines the time needed by a program that recognizes
neurons in photomicrographs when it is executed on a conventional
serial computer (a VAX 11/750), and compares this with the time
that would be needed if it were executed on an appropriate parallel-
serial pyramid multi-computer. As the size of the image array
increases from 64x64 to 4,096x4,096 the estimates of the pyramid’s
increases in speed grow from 350 times as fast as the VAX to
1,276,300 times as fast.

INTRODUCTION

Evaluations and benchmarks should compare different systems on simple algorithms
and also on whole programs that accomplish significant tasks. This paper evaluates and
compares two architectures - a conventional serial computer (exemplified by the VAX) and
a pyramid multi-computer. It examines their speed at executing a pattern perception
program that successfully recognizes neurons in photomicrographs, and it examines the
individual sub-algorithms that combine into the total program. Relatively few programs
have been coded and tested for their ability to recognize biological images like neurons that
are appropriate for execution on parallel computers. The program we have developed [1]
for perceptual recognition of objects, and used for neuron recognition, was able to
recognize a high percentage of the different neurons in an image. It makes use of a number
of micro-modular local transforming operations that are executed in a massively parallel
hierarchical fashion. It uses a relatively small set of relatively simple transforms, but one

that is sufficient to give good results on the neuron recognition task. When given a larger

number of each more powerful transforms it will become capable of recognizing a wider
variety of more complex objects. Since this program was coded with a pyramid structure,
it is amenable to parallelization. This paper shows how that can be done, and analyzes

and presents timings on a serial computer and on a parallel-serial pyramid.

NEURON RECOGNITION PROGRAM

Our program runs on a simulated pyramid on a VAX 11-750. The pyramid used in
this example has 10 levels (0 - 9). Each level k (0<% <9) has 2% * 2% nodes (simple
processors with their own registers and local memories). Each node at level k is hard-
wired to its 13 neighbors, i.e. 1 parent, 8 siblings and 4 children (except that level 9 nodes

have no child node, level 0 nodes have no parent node).
The recognition process consists of the following steps:

(1) Get Micro-Edges. A pyramidal median filtering operation is first applied to
preserve edges while reducing noise. An input image whose resolution is 64x64, will be
stored at level 6. Each node at level 5 takes the median intensity value of its 3x3 set of
children as its intensity value. After filtering, eight edge masks (encoded by 0,1,...,7) are
applied to the filtered image array (which is now at level 5). At each node of the array,
convolutions are computed using these eight masks. The result of this step is a micro-edge

map of the filtered image.

(2) Gather Short Curves. The concept of transforms in [2] is used for feature
extraction in the recognition of neurons. Basically, transforms are procedures that extract
or combine features. Often a parent executes some transform on its set of specified
children. When an operation involves processors in more than one level, it is named
‘pyramid operation’. With ‘pyramid operations’, the transforms are executed in a
hierarchical manner. Sometimes an ‘array operation’ is also used, in which only processors
in the same level are involved. The detection of micro-edges is one example of ’array

operation’.

It was found that a micro-edge map of any ellipse-shaped object can be divided into
eight segments. The places where micro-edges change directions, e.g. 0 = 1,1 = 2, etc, are
very important. For nearly round or elliptical objects, there are always eight such places.
This phenomenon is invariant to size, orientation and elongation of the cell; moreover it
can always be observed in a very small window, e.g. 3x3. Based on these observations, a
transform was built for short curves. At level 4, each node examines its 3x3 child set. It
will claim that it finds SHORTCURVEQ if there are a ‘micro-edge0’ at the upper left and a
‘micro-edgel’ at the lower right of its window, each with considerable weight. In the same

way, it finds SHORTCURVEL,..., SHORTCURVET.

(3) Combine to build long curves and whole cells. Our transforms detect such long
curves much as they detect short curves. Every node at level 3 examines its 3x3 window
at level 4. If, for example, SHORTCURVEQ is at the upper left and SHORTCURVEL1 at the
lower right of the window and their combined weights exceed certain threshold, they get
compounded to LONGCURVEO (SW) at level 3. Similarly the transforms that combine
long curves into cells first find the pairs of matched LONGCURVEs SW-NE and SE-NW
respectively, and then try to combine two such corresponding pairs into a whole cell at
level 2. Coordinates of the curve components are checked to reduce erroneous

compoundings.

See [1] for more description of this recognition program and its performance.

EXECUTION TIMES ON THE VAX 11/750

When running under the UNIX operating system, the time used for executing our
neuron recognition program on a VAX 11/750 can be acquired from execution time
measures provided by the UNIX system. With an input 64x64 image at level 6, the

execution time for each procedure is shown in Fig. 1.

task of procedure level type time (ms)
median filtering 5 P 5.420
micro-edge 5 A 17,390
thresholding 5 A 220
short curve 4 P 9.670
cleaning 4 A 1,260
long curve 3 P 2,030
cell (3x3) 2 P 1,240
cell (4x4) 2 P 2,850
total 40,080

A -- array operation

P —- pyramid operation

Fig. 1 Execution Time Measure on All Procedures

It is well understood that, for implementing the algorithms described in the previous
section, a 1-CPU computer has to iterate its same operation 2% X2* (k - level) times at the
corresponding levels, whereas a parallel multi-computer (with a sufficient number of
processors and memo.ry) need only do it once. Furthermore, a 1-CPU computer does the
following additional operations which are usually not needed for a parallel multi-
computer system. (a) Loop control: Taking care of branches of loops through 2D arrays at
each level. (b) Array indexing: Each time a node is accessed, the address of an array
element is calculated. For many compilers (including our C compiler), this requires several
instructions. Since a tremendous amount of array indexing is usually encountered in an
image understanding program, this becomes appreciable. (¢) Boundary checking: The
program checks boundaries for every iteration of a window operation. If an operand’s row
or column address is beyond the boundary, the neighboring border pixel is used instead.
(d) Procedure calls: For a better style, our program uses many procedure calls. In
particular, almost every node indexing is a procedure call. For example, if a node at row x,
column y of level 1 wants to get the value of its number c child, instead of doing some
in-line index calculation, a procedure will be called. This means thousands of procedure

calls for the neuron recognition program.

Since the program is written in C, we use assembly codes generated by the C compiler
and timing data available for each assembly instruction to get a rough estimation of its

execution time.

Many instructions (e.g., movl) have different addressing modes, and different timings
(e.g. movl reg.reg; movl reg,mem). For simplicity only one average time is used. The
averages were determined taking into consideration the number of occurrences of different
addressing modes in the program. They are not necessarily accurate, but they suffice our
requirement. Also the instructions were counted dynamically, i.e., only those actually

executed at the run time are gathered.

The estimated times were compared to the actual execution times as measured on our
VAX 11/750 to ascertain their accuracy. The purpose of doing this is to understand which
portion of the total execution time is due to operations common to the serial and parallel
approach, and which portion is due to one of the above additional operations needed

exclusively by serial computers.

Since the procedures for 'micro-edge’ and 'short curve’ extraction take 27,060 ms,
which is more than 67% of the total execution time, and they represent typical ‘array
operations” and "pyramid operations’ respectively, the analysis on the VAX 11/750 in this

paper examines these two procedures.

Analysis of Micro-Edge Extraction

This procedure does "array operations’ at level 5 (with a resolution 32x32). Eight 3x3
masks are used to detect micro-edges with eight different directions (0°, 45°, 90°, ...,

315°). Our analysis will start with a very simple example.
(1) Analysis on Sample Program 1

A simplified program for performing one 3x3 mask operation on a 32x32 array is
given in Fig. 2. To avoid boundary checking in this example, the mask operation is only on

nodes within row 1 to 30 and column 1 to 30.

/* Sample program 1 for micro-edge extraction. */
main ()
{int IJ K, L
short image [32][32], result [32][32];
int mask[3][3];
int temp;
getru0 (); /* start measuring time. */
for (I =1;1 <= 30; T++)
for J=1;7J <=30; J++)
{ temp = 0;
for (K = 0;K < 3; K++)
for (L=0;L < 3; L++)
temp = temp + image [+ K - 1][J + L - 1]
* mask [K]%L];
result [I][J] = temp;

etru (); /¥ get time measurement. */
g 8

Fig. 2 Sample Program 1

The assembly code of this sample program is in Fig. A1 in the appendix. The number
of assembly language instructions within the innermost loop (from L28 to L27 in Fig. A1)
is 23. Among these 23, 15 instructions are used for generating addresses for 'image’ and
‘mask’ array elements. Beside these 15 instructions, four instructions are used for loop
control. The remaining four are used for ‘mov’, 'add’ and 'mul’ ..., which are instructions
needed for both the VAX 11/750 and any parallel multi-computers to accomplish the
desired mask operation. We name them ‘core instructions’. The estimated times for "loop

control’, "core instructions’ and ‘array indexing’ are shown in Fig. 3.

Since this innermost loop will be executed 30 X 30 X 3 X 3 = 8,100 times, the total
number of the innermost loop instructions is 23 X 8,100 = 186,300; the total time spent
in the innermost loop is about 53.4 us X 8,100 = 432.5 ms. Taking all the instructions
outside this innermost loop into account, the total number of assembly instructions is
218.913. With a rough estimation (ignoring the fact that different instructions have

different execution time), the total time for executing one 3x3 mask operation on 30x30

218,913

nodes is about 432.5 X 186,300

= 508.2 ms.

Loop Control

Instruction | No. of inst. | Time / inst. (us)
cmpl 1 1.5
incl 1 1.2
jgeq 1 1.5
jbr 1 1.0
Subtotal 4 5.2

Core Instructions

Instruction | No. of inst. | Time / inst. (us)
addl2 1 1.2
cviwl 1 1.5
movl 1 1.5
mull2 1 8.8
Subtotal 4 13.0

Array Indexing

Instruction | No. of inst. | Time / inst. (us)
addl2 4 1.2
addl3 2 2.0
ashl 3 3.0
decl 2 1.2
movl 1 1.5
mull3 1 9.5
subl3 2 2.0
Subtotal 15 352
Total 23 534

Fig. 3 Estimated Execution Time for Sample Program 1

The actual execution time measured by UNIX system for this sample program 1 was

540 — 508.2

540 ms. Thus the relative error of our analysis is 520

= 5.9%.

(2) Analysis on Sample Program 2

Fig. A2 in the appendix, sample program 2, is a slightly simplified version of a
micro-edge detection procedure. This program is written in the style of the neuron
recognition program. Node accessing uses procedure calls. Boundary checking is also
invoked. To make it comparable to sample program 1, mask operations are still only on
nodes with 0 < row < 31 and 0 < col < 31. This means that no array index will be
‘out-of-bound’ in this sample program, but notice that the code for ’if-condition’ checking

is always executed.

Loop Control

Instruction | No. of inst. | Time / inst. (us)
cmpl 1 1.5
incl 1 1.2
jbr 1 1.0
jgeq 1 1.5
Subtotal 4 5.2

Core Instructions

Instruction | No. of inst. | Time / inst. (us)
addl2 1 1.2
cviwl 1 1.5
movl 1 1.5
mull2 1 8.8
Subtotal 4 13.0

Array Indexing

Instruction | No. of inst. | Time / inst. (us)
addl2 5 1.2
addl3 2 2.0
ashl 1 3.0
decl 3 1.2
movl 6 1.5
mull2 1 8.8
mull3 2 9.5
subl3 1 2.0
Subtotal 21 55.4

Boundary Checking

Instruction | No. of inst. | Time / inst. (us)
cmpl 2 1.5
movl 2 1.5
jgeq 2 1.5
jlss 2 1.5
tstl 2 1.2
Subtotal 10 14.4

Procedure Calls

Instruction | No. of inst. | Time / inst. (us)
call+ret 2 20.9
jbr 4 1.0
movl 4 1.5
pushl 8 1.5
subl2 2 1.0
Subtotal 20 65.8
Total 59 153.8

Fig. 4 Estimated Execution Time for Sample Program 2
The estimated execution time for ‘loop control’, ‘core instruction’, "array indexing’,

‘boundary checking’ and ‘procedure calls’ is in Fig. 4.

Fig. 4 illustrates that in one innermost loop of sample program 2, the VAX 11/750
used 3.4% of the total execution time for "loop control’, 8.5% for 'core instructions’, 36%

for 'array indexing’, 9.4% for "boundary checking’ and 42.8% for "procedure calls’.

The total number of innermost loop instructions is 59 X 8,100 = 477,900, the total
time spent in the innermost loop is about 153.8 us X 8,100 = 1245.8 ms. The total

number of assembly instructions is 504,217. An estimate of total time for executing

. 504217 _ .
sample program 2 is 1245.8 X 477.900 1,.314.4 ms.

The execution time for sample program 2 measured by the UNIX system was 1,550

ms. Hence the relative error of our analysis on sample program 2 s

1,550 — 1,314.4
1,550

= 15.2%.

Sample program 2 does only one mask operation on a 30x30 subarray. For eight mask

1,550x8x32x32
30x30

operations and a 32x32 array, it would be = 14,108 ms. Considering

this is still a slightly simplified version of our micro-edge extraction routine, the execution

time of 17,390 ms in Fig. 1 is now reasonably well approximated and understood.

Analysis of Short Curve Extraction

The main part of the procedure for finding one type of short curves
(SHORTCURVE4) is extracted as sample program 3 (code not shown in this paper). All
the nodes at level 4 examine their 3x3 child nodes at level 5 ("pyramid operation’), to
combine micro-edges arranged in a certain way into possible short curves. Apparently, not
all the nodes will succeed in finding curves. In other words, the code related to processing
possible combinations will only occasionally be executed. In our neuron example, the
chance is about 10%. This part of the execution time can be prorated into the final
estimates. The estimated execution time for ‘loop control’, ‘core instruction’, ‘array

indexing’, "boundary checking’ and 'procedure calls’ is in Fig. A3 in the appendix.

10

Similar analysis shows that in one innermost loop, VAX 11/750 spends 1.4% of the
total execution time for ‘loop control’, 5.9% for ‘core instructions’, 20.6% for ‘array
indexing’, 5.2% for "boundary checking’ and 66.8% for 'procedure calls’. An estimate of

total time for executing this program is 666.9 ms.

The real time measure from the UNIX system for this sample was 770 ms. Hence the

relative error of our analysis on sample program 3 is _'_71(_)_:]‘7_(6)6_62 = 13.4%.

The above time estimates on three sample programs all have lower values with
relative error from 5% to 15%. The timing measure is higher on the VAX 11/750 because
of the overhead of the UNIX multi-user environment. Therefore these sample programs
were also run on a bare VAX 11/750 (one of the nodes of our department’s multi-
computer network), where the extra overhead from the multi-user environment is
eliminated. The timing measures are 494 ms, 1,430 ms and 709 ms as opposed to 540 ms,
1,550 ms and 770 ms respectively. Accordingly, the relative errors become 2.9%, 8.1%

and 5.9%.

Fig. 5 summarizes the discussion in this section by listing the statistics on
distributions of the execution time for extracting micro-edges and short curves. The data
are initially obtained from the analysis on innermost loops. This is sufficient for our

purpose, since these procedures spend most of their time in innermost loops.

sample program 2 | sample program 3
loop control 3.4% 1.4%
core instructions 8.5% 5.9%
array indexing 36.0% 20.6%
boundary checking 9.4% 5.2%
procedure calls 42.8% 66.8%

Fig. 5 Statistics of Time distribution

At this point, we want to discuss some optimization issues. (a) Generally the speed of
a program depends heavily on the style and skill of the programmer. For instance, since

procedure calls (mainly for node indexing) take so much time, people in real application

11

program development may want to replace most of them by in-line index calculation. (b)
The quality of the compiled code contributes significantly to the speed of a program. Our C
compiler shows poor performance on many aspects (e.g., register utilization, loop
invariant), that produces a larger overhead on the "array indexing’ part. (c) The boundary
checking in this program can be replaced by duplicating the border columns and rows, to
have larger arrays with expanded borders. (But note that this may not be trivial for VLSI

fabrications.)

EXECUTION TIMES ON A PYRAMID

In this section, estimated times are given for the neuron recognition program executed
in a pyramid. The assumptions on the pyramid are: (a) its nodes are 1-bit processors with
their own registers and local memories; (b) basic instructions are similar to the VAX
instructions, i.e. mov, add, mul ..., except they have to be executed bit-serially; (c) if an
instruction takes t us to finish and the word length of its operands is w bits, then it takes
t Xw us to finish in this pyramid. The maximum word length needed for executing our
program is 16. Thus we are assuming all the instructions will take 16 times longer to

finish, e.g., an ‘add’ will take 1.2 X 16 = 19.2 us, etc.

As described above, a pyramid node is hard-wired to 13 neighboring nodes (1 parent,
8 siblings and 4 children). If we define the ‘distance’ between two nodes as the number of
links through which the information has to travel from one node to the other, then a node
will have distance one to any of its 13 neighbors. We name them ’direct parent’, 'direct
sibling” and "direct child’ respectively. For a 'pyramid operation’, any window size bigger
than 2x2 will produce distances greater than one between some of the children nodes and
their parent node. If the distance is d, it will basically take d fetches to access a non-direct

neighboring node.

Several orders of magnitude speed-up are expected. First, thousands of parallel

processors are used. Second, The instructions for ‘loop control’, 'array indexing’ and

12

"boundary checking’ are no longer needed. Numerous "procedure calls’ due to node indexing
are also saved. On the other hand, we should point out that, in the last section, some
instructions contributed much less to the total execution time than others, because they
were in the ‘then’ part of a if-statement, and the 'if -condition” had very little chance to be
true. For example, only 10% of the nodes had a chance to execute the code related to
successful short curve combinations. With SIMD multi-computers at each level of the
pyramid, while 10% of the nodes are combining curves, the remaining 90% are 'masked

out’ and sitting idle. Thus these instructions are always executed to completion.

Estimations for "Micro-Edge” Extraction

Pseudo code for this "array operation’ is given below. This is not optimized code. It is
written to imitate the assembly code generated by our C compiler, so as to make more
reasonable comparisons on time measures. The main operations for each mask are 9

multiplications, 9 additions, 9 fetches and 9 stores.

for each of the eight masks do:
{mov #0, result
mov #0, weight
for each of the nine mask elements i, do:
{clr regl ; or “set’, according to the
value of mask element.
mov mem(i), reg2 ; mem (i) - intensity value
mul regl, reg2
add result, reg2
mov reg2, result

}
cmp result, weight ; result > old weight ?
jleq L1
mov result, weight
mov i, direction ; store edge direction
L1:
}

The two 'for’ loops are stated only for simplicity. They can be expanded. Therefore
no count is made for 'loop control’ instructions. Fig. 6 illustrates the execution time for
one mask operation. Since the distance between a node and its direct sibling is one, a fetch

or store ('mov’) takes 1X 1.5X 16 = 24 us. (movl’ is used to indicate a move with

13

distance one; accordingly 'mov2’ will indicate a move between nodes with distance two
and takes 48 us.)

Two ‘'movl’s, one ‘clr’, one 'mul’ and one ‘add’ are iterated nine times, the rest are just
executed once. Notice that the last two ‘'movl’s do not get executed every time at all the
nodes. While some processors are doing these two 'movl’s, others are idle. The time still
has to be counted. (Possible overhead for ‘masking out” the idle nodes is ignored for this

discussion.)

Time for one mask operation
Instruction | No. of inst. | Time / inst. (us)
add 1 19.2
clr 1 19.2
movl 2 24.0
mul 1 140.8
Subtotal 5 227.2
Subtotal x 9 45 2044.8
cmp 1 24.0
jleq 1 24.0
movl 4 24.0
Total 51 2188.8

Fig. 6 Time for Micro-Edge Operation in a Pyramid

Hence the execution time for 'Micro-Edge’ extraction is 2,188.8 us X 8 = 17.5 ms.
For simplicity, variable word lengths are not used in this discussion. If 1-bit word were
used for bholding the mask values, some instructions would not be 16 times as slow as

VAX's; words short than 16 bits will be processed commensurately faster.

Estimations for ‘Short Curve’ Extraction

Pseudo code for this "pyramid operation’ is given below (handling of coordinates is

not included).

for each of the eight short curves, do
{movl #O0, suml
movl #0, sum2

14

mov mem (DIREC), regl
movl #DIREC1, reg2
for a subwindow of 6 nodes, do
{cmp regl, reg2
jneq L1
mov mem (SCORE), reg2
add suml, reg2
movl reg2, suml
L1:
}
movl #DIREC2, reg2
for a subwindow of 6 nodes, do
{cmp regl, reg2
jneq L2
mov mem (SCORE), reg2
add sum?2, reg2
movl reg2, sum?2
12:
}
movl suml, regl
movl sum2, reg2
mul regl, reg2 ; take sum1*sum?2 as the
movl reg2, mem (CURVE) ; weight of short curve.

; get edge direction.
; direction to compare.
; upper left

; get edge weight

; lower right

Fig. 7 illustrates the execution time for one short curve detection.

Time for one short curve detection
Instruction | No. of inst. | Time / inst. (us)
add 2 19.2
cmp 2 24.0
jneq 2 24.0
mov 2 373
movl 2 24.0
Subtotal 10 257.0
Subtotal x 6 60 1542.0
mov 1 37.3
movl 7 24.0
mul 140.8
Total 69 1888.1

¥ 'movl’ is used for local memory access, ‘mov’ for 3x3 window "pyramid

operations’. Because 4 children have distance 1 to their parent, and 5 children
4X24+5%x48 _ 37.3 us

9
Fig. 7 Time for Short Curve Detection in a Pyramid

have distance 2, the timing is prorated as

15

The coordinate handling code will take about 1,368 us. Consequently one short curve
detection takes roughly 3,256 us. Hence the execution time for ‘Short Curve’ detection is

3,256 us X 8 = 26.0 ms.

Estimations for Other Steps

In this paper, we will not describe a whole detailed analysis on all the steps.
According to our analysis, compounding ‘long curves’ takes 19.4 ms, compounding ‘cells’
with 3x3 window takes 13.5 ms, with 4x4 window, 24 ms. the median filtering step takes

9.7 ms. Fig. 8 lists estimates on all procedures.

task of procedure level type time (ms)
median filtering 5 P 9.7
micro-edge 5 A 17.5
thresholding S A 0.1
short curve 4 P 26.0
cleaning 4 A 4.3
long curve 3 P 19.4
cell (3x3) 2 P 13.5
cell (4x4) 2 P 24.0
total 114.5

Fig. 8 Execution Time Estimation for a Pyramid

Finally Table 1 shows a comparison on the execution time for the neuron recognition
program. The VAX execution times up to image size 512x512 are all actual time measures.
Table entries with image size bigger than 512x512 are extrapolated from the time measure
for a 512x512 image. Not surprisingly, bigger images take more time on a serial computer.

Consequently, the pyramid’s relative speed-up increases as the image size increases.

16

VAX 11/750 Pyramid VAX / Pyramid
image size | execution time | estimated time Ratio
(sec.) (sec.)

64x64 40.1 0.1145 350
128x128 154.1 0.1145 1,346
256x256 582.5 0.1145 5,087
512x512 2,283.4 0.1145 19,942
1024x1024 9,133 * 0.1145 79,764
2048x2048 36,534 * 0.1145 319,070
4096x4096 146,140 * 0.1145 1,276,300

* extrapolated from the time measure for 512x512 image.

Table 1 Comparative Timings for the VAX and Pyramid

SUMMARY AND DISCUSSION

This paper has examined how fast a relatively simple program (yet one that is
complete, modular, and that can be made much more general, by improving and adding to
its transforms) that recognizes neurons in photomicrographs will execute on a
conventional serial computer, and on a pyramid. The pyramid will execute the neuron
recognition program roughly 350 to 1,276,300 times as fast as a VAX 11/750, moving
from a 64x64 to a 4,096x4,096 image. The VAX estimates that were checked against
actual VAX timings are close enough to conclude that the total set of estimates is
reasonably accurate. In any case the margin of error is extremely small and minor
compared to the very large differences in time needed by the VAX in contrast to the

pyramid.

It is possible that different kinds of programs might be coded for the VAX that
executed faster, with as high a level of performance. But the results of this neuron
recognition program are at least as good as those of any program of which we are aware,

and its speeds appear to be typical for programs of this sort.

The pyramid time estimates may well be too slow, for the following reasons: (a)
VAX assembly language instructions are used, whereas an actual pyramid would have its

own, for it more efficient, set of instructions (e.g., a single 200 nanosecond fetch-add as in

17

the DAP). (b) Special image processing instructions (e.g., for 3x3 mask operations) would
further reduce timings. (c) The pyramid when coded to process n-bit numbers need take

only n steps, whereas we have always assumed it takes 16 steps.

ACKNOWLEDGEMENT

This research was partially supported by NSF Grant DCR-8302397 to Leonard Uhr.

The authors would like to thank Peter Sandon for his valuable comments on this paper.

APPENDIX

/* Assembly code for sample program 1. */

LLO: .data
.text
.align 1
.globl _main
_main: .word L12
jor L14
L15: calls $0,_getru0
movl $1,-4(fp)
L19: cmpl -4(fp).$31
jgeq L18
movl $1,-8(fp)
122: cmpl -8(fp).$31
jgeq 121
clrl -4152(fp)
clrl -12(fp)
L25: cmpl -12(fp).$3

igeq 124
clrl -16(fp)

L28: cmpl -16(fp).$3 ;L<3?
jgeq L27
add13 -16(fp),-8(fp).rt0 ;L +17J
decl r0 ;L+T-1

subld $2064.fp.r1
add13 -12(fp),-4(fp).r2 ;I+K

decl 12 ;I+K-1

ashl $6,r2,12

addl2 r2.r1

ashl $1,r0,10

addl2 rOrl1 ; *image [[+K-1][J+L-1]

movl -16(fp).r0
subl3 $4148,fp,r2
mull3 $12,-12(fp).r3

addl2 r3,r2
ashl $2,10,r0
addl2 r0.r2 : *mask [K][L]

cvtwl (r1),r0
mull2 (12).r0

addl2 -4152(fp).r0 ; get "temp’
movl r0,-4152(fp) ; store "temp’
L26:incl -16(fp)
jor L28
L27:
L23:incl -12(fp)
jor L25

124: movl -8(fp).r0
subl3 $4112.fp,rl
ashl $6,-4(fp).r2
addl2 r2.r1
ashl $1,r0,r0
addl2 rOri
cvtlw -4152(fp).(r1)

L20: incl -8(fp)

jor L22

L21:

L17:incl -4(fp)
jor L19

L18: calls $0,_getru
ret

.set 112,0x0

L14: movab -4152(sp).sp
jbr L15
.data

Fig. A1 Assembly Code for Sample Program 1

/* Sample program? for edge extraction. */
#include "definition.h"

/* get index to array ‘memory’. */
Nodelndex (level, row, col, field)

int level;
int row,col;
int field;

{ int index;

index = InitLvl [level] + (row * SizeLv1 [level]
+ col) * MemLvl [level] + field - 1;
return (index);

/* access local memory ‘field’. */

int nget (level, row, col, field)
int level, row, col, field;

{int index;

18

/¥ index error checking code not shown here. */

index = Nodelndex (level, row, col, field);
return (memory [index]);

}
main ()
{int LILK,L;
int mask[3][3];
int temp;
int TowW, col;
int level = 5;
int index1, index?2;
Init O;

getru0 (); /* start time measuring. */
SizeLvl [5] = 32;
for(I=1:1< 31; I++)
for(T=1;7 < 31; J++)
{ temp = 0;
for(K=0;K < 3; K++)
for (L=0;L < 3; L++)
{row=1+K-1;
col=J+L-1;
/* boundary checking. */
if (row < 0) row =0;
if (col < 0) col=0:
if (row >= SizeLvl [levell)
row = SizeLvl [level] - 1;
if (col >= SizeLvl [level])
col = SizeLvl [level] - 1;
/¥ convolution. */
temp = temp + nget (LEVELS5, row, col, FIELD1)
* mask [K][LI;

}
index2 = Nodelndex (LEVELS5, I, J, FIELD2);
memory [index2] = temp; /¥ store result. ¥/

getru (); /* get time measurement. */

Fig. A2 Sample Program 2

Loop Control

Instruction | No. of inst. | Time / inst. (us)
cmpl 1 1.5
incl 1 1.2
jbr 1 1.0
jgeq 1 1.5
Subtotal 4 5.2

Core Instructions

Instruction | No. of inst. | Time / inst. (us)
addl13 2 2.0
cmpl 4 1.5
jgtr 1 1.5
jlss 1 1.5
jneq 2 1.5
movl 1 1.5
subl3 2 2.0
Subtotal 13 21.5

Array Indexing

Instruction | No. of inst. | Time / inst. (us)
addl2 5 1.5
ashl 2 3.0
cviwl 1 1.5
decl 3 1.2
divl2 1 9.0
divl3 1 9.7
movl 3 1.5
mull2 2 8.8
mull3 1 9.5
subl3 3 2.0
Subtotal 22 74.9

Boundary Checking

Instruction | No. of inst. | Time / inst. (us)
addl13 2 2.0
cmpl 4 1.5
jneq 4 1.5
movl 2 1.5
Subtotal 12 19.0

20

21

Procedure Calls
Instruction | No. of inst. | Time / inst. (us)

addl3 1 2.0
call+ret 5 20.9
clrl 2 1.5
compl 12 1.5
jbr 18 1.0
jeql 10 1.5
jgeq 1 1.5
jleq 2 1.5
jlss 2 1.5
jneq 3 1.5
movl 15 1.5
pushl 24 1.5
subl2 5 1.0
tstl 6 1.2
Subtotal 106 243.2
Total 157 363.8

Fig. A3 Estimated Execution Time for Sample Program 3

REFERENCES

1. Z.N. Li and L. Uhr, "A Pyramidal Approach for the Recognition of Neurons Using Key
Peatures", Pattern Recognition 19, pp. 55-62, 1986.

2. L. Ubr and R.J. Douglass, "A Parallel-Serial Recognition Cone System for Perception:
Some Test Results", Pattern Recognition 11, pp. 29-39, 1979.

