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Abstract

An experimental study of the applicability of a multigrid algorithm to the
solution of the neutron transport problem in a slab is described. Only the
simplest choices are made for the components of the algorithm. Experi-
mental results indicate that the coarse grid operator obtained from finite
differences works better and is cheaper than the Galerkin choice.






1 Introduction

In this report the application of a multigrid algorithm to solving the neutron transport in
a slab problem is discussed. The goal of this experimental study, simply put, is to observe
whether such an algorithm is applicable to the neutron transport problem and to compare
the multigrid algorithm to a classical algorithm, in this case damped Jacobi.

For the multigrid implementation only the simplest, and perhaps most naive, choises
are made for the various components. This demonstrates that a ‘quick and dirty’ im-
plementation is feasible. From a computational standpoint two coarse grid operators are
compared, the usual Galerkin choice and the operator obtained from finite differences.
Surprisingly, the finite difference operator works better and is cheaper than the Galerkin
choice.

The report is organized as follows: Section 2 describes the particular problem that
was solved. In Section 3 the discrete problem is described along with the Jacobi iterative
scheme. The multigrid scheme is detailed in Section 4 and the experimental results are
discussed in Section 5. Finally, Section 6 contains some concluding remarks. The derivation
in Section 2 can be found in the book by Wing [Wing62a] while the books by Chandrasekhar
[Chan60a] and by Lewis and Miller [Lewi84a] provide additional insight into the problem.

2 The Problem

Let the slab width a be chosen, then the goal in the general case is to determine the

neutron density, ¥(u; z), satisfying

w9l t oa) = 2v0(x) [ pu)du+ 5 (1)

with boundary conditions

Y(k,0) = ai(w), p>0
Y(p,a) = g2 (1) n<0.

Here o(z) is the cross section of the material. Define

2,
H, = Hoe + o(z)I



and
1 1

L= Ea(x) /—1 -dp.

Then (1) is equivalent to
Hyp=~Ip+ S

or

¥ =H;'"yLy + 5. (2)
Applying L to both sides of (2) and multiplying by ~ gives

L = yLH; 'y Lap + 4 LS;.

Finally, define

1
Ko=rm =2 [
-1
and call
¢ =~Lp.

Then (1) is seen to be equivalent to

¢ =vK¢+~LS;

or
(I —~4K)¢=~LS; = S,. (3)

It is important to note that in the case o(z) =1 that

K(z) =1 | Bill= - yl)gdy

where FE; is the exponential integral

The method of solution described here, however, does not use the relationship between K
and Fj. In particular this allows the treatment of problems where o # 1.

Once ¢(z) is determined, to obtain the density v (z;u) note that

¢(z) = %’70(23) f_ 11 P(z; w)dp + Ss,



SO

Y

po+o(e)y(zin) = ¢(2) + 5.
For later use define
M = (I - 1K) (4)
and problem (3) is written
M¢ = 5,. (5)

It is problem (3) that is solved in the succeeding sections.

3 The Discrete Problem

The first step in computing the numerical solution of (3) is to discretize
Q1 =0, a]

into N — 1 evenly spaced pieces each of width

1
h=—.
N-1

The discrete points are thus the points z; = th with 0 < 7 < N. A solution to (3) is desired
at each of the unknowns ¢(z;), which are denoted ¢;.

The discrete analogue of (5) is written
M,¢ =5, (6)

where M), is the discrete analogue of the operator M.

For both the Jacobi scheme and the multigrid algorithm it is necessary to approximate
K¢. Recall that

1rm
K-ZELIH“ - dp. (7)

The integral in (7) is approximated by the six point Gauss-Legendre rule
1 6
[ fdam Y wif ().
_ et

3



In addition, the equation
- _
H'V=4¢
is equivalent to solving

u%v +V =¢ (8)

for each of the u; used in the Gauss-Legendre rule. Again, the boundary conditions are

<
F
=

ll

gi(w), forp>0

V(u,a) = gaop) for p < 0.

For this study the trapezoid rule is used to solve (8). This results in, for example for

u; > 0, evaluating

z+h h
[V (5,0) = 218la+B) = V(e + b) + 4la) =V (=)
In other words, for u; > 0,
_ 2u;—h
i A V; i T
20, 1 F 1+ J+h[¢ + ¢i-1]

with Vo = ¢1(p;) given. Similarly for p; < O the integration proceeds backwards starting

at z = a. Given
Ve = V(e 1) = ga2(a),

set
2u; +h
2u; —h

Vi= Vigr — s—[¢i + is1]-

Z/J,J'—'h

Finally, to compute K¢, simply sum the V; as in (7) and the Gauss-Legendre rule; set

K¢] Z 15 Vi

Of course during the computation it is not necessary to store the values of V; — just form
[K¢]; as each V; is calculated.



3.1 The Jacobi Iterative Scheme

The basic iterative scheme considered is the damped Jacobi scheme with parameter w.

Formally, given ¢° set

1

v+l . v
¢ ¢ +1+w

[S2 — (I - vK)¢"]. (9)

For w = 0 this is simply the Jacobi scheme.

4 The Multigrid Implementation

As has been known for some time iterative improvement is one approach to obtaining an

improved estimate to

given an estimate ¢'. Formally, computing x satisfying
(I -9K)x =8 — (I - vK)¢' (11)
and setting
$H = ¢ +x

solves (10). Unfortunately the problem with this procedure is that solving (11) is as
difficult as solving the original problem.
One approach to exploiting the iterative improvement idea is to solve (11) in a lower

dimensional space, where less work is required to compute x. Choose

Qo = {ih|z' — 12%*'—]:}
for the lower dimensional space (called 3;). In order to communicate (transfer infor-
mation) between grid functions S;, defined on 1, and grid functions Sz, defined on (a4,
interpolation (IZ*) and restriction (I?*) operators are needed.

For the interpolation operator piecewise linear interpolation is used, and for the re-

striction operator take

1 T
It = E(th) .

Then given ¢*, to compute ¢*+! using the two grid multigrid algorithm

5



1. Apply m applications of the damped Jacobi scheme to ¢*, store the result in 55".

2. Restrict the residual to (1g: Set

Ry, = IP*[Sy — (I — vK) ).

3. Solve
Mapxen = Ran

where M), is defined later.

4. Correct ;b" by setting
¢t = ¢ + Iy xan.

Of coarse the same multigrid procedure can be used recursively (starting with initial
guess 0) to compute the solution in step 3; this is called a true multigrid.
Two choices for My, are considered. In the multigrid literature the usual choice is to
take
My, = My, = IP*MIE.

This choice is referred to as the Galerkin choice. Unfortunately, unlike in the usual case
where Mj, is a matrix, it is impossible to form Mo directly. Rather only My, acting on a
vector can be computed. For the true multigrid cases, where more than two grids are used,
the Galerkin choice will still be denoted ‘]\7!2;‘, with the understanding that the subscript is
related to the size of the coarsest grid.

The second choice for M, is to take the natural finite difference analogue of M), on
the 2h grid ;. This choice of My, is denoted sz,f . From a finite difference point of view

this is the natural choice for Myy,.

5 Experimental Results

Both the multigrid algorithm of Section 4 and the Jacobi algorithm of Section 3.1 were

implemented and tested. The goals of the experiments were to determine

1. How well the simple damped Jacobi scheme worked at solving problem (3);



2. Whether the multigrid algorithm is applicable to the solution of the transport equa-

tion;

3. How does the multigrid algorithm compete with the damped Jacobi algorithm in

terms of rate of convergence and work?
4. What rate of convergence is obtained from the multigrid algorithm?

5. Is there any practical difference between using My, and Ma,?

5.1 General Remarks About the Experiments

The right hand side was computed by choosing the solution ¢, and setting

SZ = (I - 'YK)‘»btrue-
For testing purposes ¢;,.. was chosen to be

1
24+ 1

Dirue (:E,' ) =

Unfortunately from the standpoint of testing the algorithm there are a myriad of choices
of parameters. Among the parameters that can be varied are: the number of points on the
finest grid, N; the number of grid layers, g; the value of «; the slab width a; and the value
of the damped Jacobi parameter w. For the experiments discussed here, N was fixed at
129 and v was set to .999. All the experiments were run on a CRAY 1 at the Los Alamos
National Laboratory.

To determine the rate of convergence the program was allowed to run until
”rk”h = ”SZ - (I - 7K)¢k”11
was less than .0005. Then the final observed rate of convergence is

™
Pfinal = T Fma=1)l.
Ik 1,

Three choices for the slab width, a, were tested; a = 1, 10 and 100. The damped Jacobi

parameter, w, was set to run from .1 to 1.9 in increments of .1. For the M), case w ran



from .1 to .9. So far no heuristic has been found for choosing the optimal w. In general
some form of an adaptive procedure might be used to find the optimal w.

For the multigrid implementation, to solve the coarse grid equation directly, the same
damped Jacobi iteration that appears in Section 3.1 was allowed to run until it conver-
genced. In a better developed implementation the solver for the coarse grid equations can
be optimized. In any case, to compare the rates of convergence of the algorithm the coarse

grid solver should be viewed as a ‘black box.’

5.2 Numerical Results

The figures in Section 7 display the observed rate of convergence for the various experi-
mental runs that were performed. The dotted line corresponds to @ = 1, the dashed line
corresponds to a = 10 and the solid line corresponds to a = 100. Note that for some
graphs the a = 1 and a = 10 results overlap. Two situations where the algorithm diverged
are noted. In one case the convergence rate tended towards one and eventually became
one. This phenomenon happened slowly as the algorithm proceeded. At other times the
algorithm diverged dramatically, with a residual on the order of 10%°. This would happen
quickly, usually after just one iteration. These cases are displayed in the figures by plot-
ting the observed rate as 1.05. The plots labelled ‘Galerkin rate’ correspond to using My,
These runs are very expensive and unfortunately only the runs for w less than one could

be made due to limitations on computer resources.

6 General Conclusions

A number of general conclusions can be made about the experiments. The first is that
for large a, a = 100, the damped Jacobi algorithm was not a viable solution technique.
The algorithm converged too slowly. However, even this naive multigrid implementation
worked well for this particular problem. Even when 7 grids were used (1 point on the
coarsest grid) the algorithm converged (for w = 1.6).

From the standpoint of applying the multigrid algorithm it is very important to note
that using sz: worked at least as well as the usual choice My,. Applying My, on the
coarser grids is necessary at each stage of the algorithm and is expensive. In particular,

computing the coarse grid correction with the damped Jacobi algorithm on grid 3 (33



unknowns), means that
Aty = ML
needs to be applied.

During the computation of the coarse grid correction a limit of 5,000 iterations was
placed on how many damped Jacobi iterations were performed. For some of the runs
this limit was reached. For these cases the ‘best’ estimate obtained so far was used for the
coarse grid correction. This did not seem to affect the rate of convergence of the algorithm.
Understandably as the multigrid algorithm proceeded fewer damped Jacobi iterations were
required to compute the coarse grid correction. The reason being that as the error tends
towards zero, the initial guess, zero, was a better estimate of the eventual solution.

For the easy problem, a = 1, it appeared that 1.0 was the optimal choice of w. Unfor-
tunately for harder problems, a = 100, the choice of the optimal value for w appears to be

related to the number of grids in use.

7 Figures
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Figure 1: Jacobi Rate of Convergence
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2 Grid Rate of Convergence
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Figure 2: Rate using Ms;, 2 grids
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Figure 4: Rate using My, 4 grids
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Figure 5: Rate using Mz, 5 grids
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Figure 6: Rate using Mz, 6 grids
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Figure 7: Rate using My, 7 grids
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3 Grid Galerkin Rate of Convergence
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Figure 9: Rate using Mzh, 3 grids
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Figure 10: Rate using Mzh, 4 grids

19




1.10 .

1.00 J

0.90 |

0.80 J

0.70

0.60 |

0.50 |

0.40 ]

0.30 |

0.20

5 Grid Galerkin Rate of Convergence

...............................................................................

..............................................................................

0.0 0.2 0.4 0.6 0.8 1.0

Damped Jacobi Parameter
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