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We address the problem of finding an occurrence of one of several given
patterns in a given text string.

The Aho-Corasick algorithm solves this problem by constructing a modified
finite automaton and using this to scan the text string left to right. This yields an
algorithm that runs in time linear in the text length. The Boyer-Moore algorithm
scans the text right to left, looking for an occurrence of one pattern. It has
a sublinear average running time, and can be modified to be linear-time in the
worst case.

We extend the Boyer-Moore algorithm to handle multiple patterns. Two
new algorithms are developed and analyzed. Both operate by remembering previ-
ous matches. Given a text string of length N and patterns with maximum length
D, the first algorithm remembers no more than 1+ log, D previous matches, and
consults O(N log D) text characters. Algorithms for performing the necessary
preprocessing are also developed.

The second algorithm is designed for a different time-space tradeoff. For
any given k, it consults O(kN log D) text characters, and remembers no more
than t/k nonperiodic matches at any time, where ¢ is the number of patterns. The
dominating feature of a sublinear average-case running time is retained by both

algorithms.
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1. Introduction

1.1. Problem description

The problem of pattern matching can be formulated in general terms as follows: given a text string,
and a regular expression denoting a set of patterns, find an occurrence of one of the patterns in the
text.

Instances of this problem, with varying degrees of restriction, arise quite frequently in prac-

tice. For example:

(i) Text editors invariably offer some form of searching and substitution commands, which
involve matching a given set of patterns against lines of text.

(ii) Bibliographic search programs match keywords against titles of articles to retrieve relevant
items from a database.

(iii) Utility programs such as grep, awk and sed of UNIX* provide pattern-matching facilities.
Need for such functions also arises in command interpreters (such as the UNIX shell), e.g.
for filename expansion.

(iv) Researchers in genetics use pattern-matching to detect occurrences of certain patterns in
DNA chains in attempts to decode the “software” of the human body.

The problem of pattern matching has received considerable attention in the literature, most notably
by Aho [1980] and by Aho, Hopcroft, and Ullman [1974]. The special case where the pattern is
restricted to a single string (i.e., regular expression with concatenations only) was studied by Knuth,
Morris and Pratt [1977] and by Boyer and Moore [1978].

In this thesis, we concern ourselves with the following restricted version of the pattern
matching problem: given a text string, and a regular expression which is a union of concatenations
(or equivalently, a set of pattern strings), determine whether any of the patterns occurs in the text.
The problem as stated merely requires determination of the existence of an occurrence, but the
algorithms obtained can be modified to determine all the positions of occurrence of all the patterns

in the text.

* Trademark of AT&T Bell Laboratories



1.2. Review of related work

The obvious naive algorithm for detecting an occurrence of a pattern in a text is to start matching
the pattern against the text from the left towards the right, and shifting the pattern right by one
position when a mismatch is detected. This algorithm behaves badly in the worst case: it could
take as much as O(MN) time, where M is the length of the pattern and N that of the text. (For
example, consider matching the pattern a™~1b against the text string a™, with n > m.)

Numerous refinements of this approach have appeared in the literature, and we will discuss
them briefly. We will always use M to denote the pattern length (or the sum of the pattern lengths
in the case of multiple patterns), and N to denote the length of the text.

1.2.1. Thompson’s algorithm

One of the earliest works on pattern matching was by Thompson [1968]. The essential idea of this
paper was to construct a finite state machine corresponding to the given regular expression, and
then run the machine on the text, declaring a match whenever the machine entered an accepting
state. This approach could yield a machine with as many as 2™ states, where m is the length of
the expression. This is true even when the regular expression denotes just a single pattern (see
Reeker [1971]). Consequently, the storage requirement for this algorithm is significant.

1.2.2. Harrison’s algorithm

Harrison [1971] suggested another approach to the problem when only one pattern is specified. In
his approach, a hash function is computed on the pattern, and compared with the hash values
obtained on segments of the text. Whenever the two values match, the text segment and the
pattern are compared, character by character, to confirm the match. This technique is reasonable

on the average, but performs badly in the worst case.

1.2.3. The Karp-Rabin algorithm

A class of randomized algorithms for the pattern-matching problem was invented by Karp and
Rabin [1981]. Their algorithms represent long strings by much shorter fingerprints, and manipulate
fingerprints instead of the much longer strings to achieve efficiency. The idea is to examine, at each
step, a segment of text of length M, compute its fingerprint, and compare the result with the
fingerprint of the pattern. If the two fingerprints match, the algorithm confirms the match by
comparing the pattern character by character against the text. If the two fingerprints do not
match, the pattern is “shifted right” one character on the text. The fingerprint functions are
designed such that the updating required after a right shift can be done very efficiently.




1.2.3. Divide and conquer

Karp, Miller and Rosenberg [1972] address the problem of matching more general structures
such as multi-dimensional arrays and trees. They formulate and solve the problem of finding
repeated substructures using a technique that can be thought of as an application of the divide-
and-conquer strategy. Their idea, as applied to a string, is to define an equivalence relation Ej
on positions of the string, such that ¢ Ej j for positions ¢ and j whenever the k-symbol substrings
beginning at positions ¢ and j are the same, and to observe that, for i < 7, we will have ¢ Eqf j if
and only if § Ex 7 and § + k Ej 5 + k. This gives a way of computing Ejx from Ey .

This idea can be applied to our problem as follows. Let a single pattern , of length M, and
a text string y of length N over an alphabet ¥ be given, and assume (to begin with) that M is a
power of 2. We start by constructing the string z#y, where # is a new symbol not in X. We then
set up Ep to be the relation containing pairs (¢,), for 1 < { < m+ n, and proceed to compute
iteratively the relations E,; , for 1 < j < log(M + N), using the idea described above. It is easy
to see that z occurs in y at position § whenever 1 Eps ¢. It is not difficult to extend this method
to handle the case where M is not a power of 2.

1.2.4. The Knuth-Morris-Pratt algorithm

An algorithm for recognizing occurrences of single strings in text was constructed by Knuth, Morris
and Pratt [1977]. Their algoi'ithm exploits the occurrence of repeated segments in the pattern. The
key idea it uses is to shift by as much as determined by the longest proper prefix of the pattern
which is also a suffix of the current partial match, instead of a mere shift by 1 as done by the naive
algorithm. The length of this shift is called a period of the partial match. (For example, in the first
stage of the attempt to match the pattern abcaba against text beginning with abcabe, a mismatch is
detected at the right end of the pattern. At this point, the naive algorithm would shift the pattern
by one position, while the Knuth-Morris-Pratt algorithm shifts the pattern three places.)

These periods can be computed in a preprocessing phase in time O(M), and the matching
phase can then be executed in O(N) time. An interesting property of this algorithm is that the
text string is inspected sequentially from left to right with no backup.

The preprocessing phase constructs a table of shifts corresponding to positions in the pattern,
and this obviously requires O(M) space. By partial computation of this shift table, Galil and
Seiferas[1980] have achieved significant space savings. While the Knuth-Morris-Pratt algorithm
computes the period f(g) for each position ¢ of the pattern, Galil and Seiferas suggest computing
and storing only the distinct values of the «truncated” function f(g)/k for a fixed k. Whenever
a mismatch occurs at a position for which the value of shift is unavailable, their algorithm shifts
the pattern by a constant amount. They demonstrate that there are only O(log m/logk) distinct

values of this truncated function, thereby obtaining an exponential saving in space.



1.2.5. The Aho-Corasick algorithm

A generalized version of the Knuth-Morris-Pratt algorithm was developed independently by Aho
and Corasick [1975]. This algorithm determines whether any of several patterns occurs in a given
text. A preprocessing phase is used to construct, from the set of patterns, a finite state machine
with only two transitions out of every state: a ‘success’ transition and a ‘failure’ transition. Then
the text is used as input to this machine. When the input symbol corresponds to the success
transition of the current state of the machine, the machine makes a success transition; otherwise,
it makes a failure transition.

The number of states in the machine is O(M), so the space requirement is O(M). The
algorithm also inspects the text sequentially from left to right without backing up, and the match
phase takes O(N) time.

1.2.6. Shyamasundar’s algorithm

An interesting way to use boolean matrices for matching multiple patterns has been shown by
Shyamasundar [1976]. Given a set of patterns wy,...,ws, over an alphabet I, a boolean matrix M
of size |B| - (Jw1] + - .. + |wy]) is constructed as follows. M is partitioned as M = M ... M;, and
the bit M;(z, 7) is set whenever the j-th symbol of w; is z. Three other bit vectors U,V', and Q are
used as follows: U = Uy ...Us, with |U;| = |w;|, with each U; having a 1-bit in the first position
and zero everywhere else. The vector V' is similarly constructed, except that V; has its last bit 1,
and zeros everywhere else.
Q is initially zero. The iterative step is to inspect the §-th character  of the text, and set

Q « (rightshift(Q) AU)V M(z, *).

If Q AV is now nonzero, then the current position in the text marks the right end of the occurrence
of one of the patterns.

The method inspects the text sequentially left to right. It is useful when bit vector operations
can be directly performed, and can easily be extended to the case where some patterns are prefixes
of others. It is obvious that the method is a simulation of the nondeterministic finite-state machine
constructed from the patterns, using bit vectors, and therefore cannot be used with large patterns

without excessive storage costs.

1.2.7. The Boyer-Moore algorithm

Boyer and Moore [1978] invented an algorithm which is significantly better than the Knuth-Morris-
Pratt algorithm on the average. Their algorithm matches the pattern beginning at the right end
of the pattern instead of the left end. This idea has the merit that, when the mismatching text
character does not occur in the pattern, we may shift the pattern as much as to carry its left end past
the mismatching text character. This makes the algorithm sublinear on the average, because most
often, with a large alphabet size, the algorithm repeatedly discovers that the one text character it
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consulted does not occur in the pattern, and shifts right M characters; thus, approximately N/M
characters are consulted on the average.

This algorithm makes use of a preprocessing phase to construct a table of next occurrences
of partial matches in the pattern, so as to maximize the shift at a mismatch. This algorithm is very
fast when all we need to know is whether the pattern occurs at all in the string; but it behaves as
badly as the naive algorithm (i.e., needs O(MN) time) when we need to find all occurrences of the
pattern in the text, and there are a large number of overlapping occurrences to be found. This poor
worst-case behaviour is because the algorithm needs to re-examine all the text characters matching
the pattern every time it detects a match. A subsequent modification by Galil [1979] yields an
algorithm which has a worst case time linear in the length of text.

The proof of linearity of the Boyer-Moore algorithm is nontrivial. The first such proof was
given by Knuth (Knuth, Morris, and Pratt [1977]), but was quite terse and hard to understand.
Knuth proved that the number of comparisons made by the Boyer-Moore algorithm in the worst
case is at most TN. Later, Guibas and Odlyzko [1980] presented a lucid argument to show that
the algorithm makes at most 4N comparisons in the worst case. By contrast, the proof of linearity
of the Knuth-Morris-Pratt algorithm is much easier.

It is noteworthy that the Boyer-Moore algorithm, unlike the Knuth-Morris-Pratt algorithm,
requires random access to the text array. This is because of the right-to-left matching strategy.

1.2.8. Commentz-Walter’s algorithm

Of particular interest to us is the paper by Commentz-Walter [1979], which is an attempt to extend
the Boyer-Moore algorithm to multiple patterns. This paper exhibits an algorithm which achieves
this extension, but behaves badly in the worst case. Her idea is to construct a trie, similar to the
one constructed by the Aho-Corasick algorithm, but based on reversed patterns, and then use it
in a way similar to the finite state machine. The major shortfall here is that the algorithm could
make a short shift followed by a long match along a path in the trie which was not intended by
the shift, such as, for instance, when matching the patterns ac and ba™ against the text a”. Thus
the worst-case time complexity of this algorithm is O(N D), where D is the length of the longest

pattern.

1.2.9. Other related work

The Boyer-Moore algorithm is sublinear on the average, i.e., in the average case it examines fewer
characters than the length of the text. But this is not true in the worst case. In fact, Rivest [1977]
shows the strong result that for every pattern p and every algorithm A, that correctly determines
whether p occurs in an arbitrary string s, there exists a string s which causes A, to examine at
least |s| — |p| + 1 characters of s.

Another approach to the pattern-matching problem was taken by Bailey and Dromey [1980].
They suggest dividing up the pattern into b subkeys by selecting every b-th character of the pattern,
starting with the first through the b-th characters. An Aho-Corasick machine is now constructed
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to simultaneously search for all the b subkeys by consulting every bth character of the text, starting
at the b-th character. Whenever a subkey match is found, a match algorithm is used to match
the entire pattern. They demonstrate that this algorithm behaves better on the average than the
Boyer-Moore algorithm, although not in the worst case.

An interesting application of string pattern matching to the detection of patterns in multi-
dimensional arrays is discussed by Baker [1978]. In the two-dimensional case, given the rectangular
pattern and text arrays, the method first assigns labels to the rows of the pattern such that two rows
have distinct labels if and only if they are different. It then constructs an Aho-Corasick pattern-
matching machine, with the set of distinct rows of the pattern as the set of one-dimensional patterns
for the machine. It also constructs a Knuth-Morris-Pratt machine from the string of labels assigned
to the rows of the pattern, and associates an instance of this machine with each column of the text
array.

The algorithm then proceeds to run the Aho-Corasick machine on the text matrix row by
row, from the top left, producing an output matrix M (of the same dimensions as the text matrix)
. such that M;; is set to | when the Aho-Corasick machine detects a match of the pattern row
labeled ! ending at position [, j] of the text matrix. When such a match is detected, the Knuth-
Morris-Pratt machine for column j makes a transition on symbol I. A match of the whole pattern
is declared whenever one of the Knuth-Morris-Pratt machines detects a match.

Another related work is by Hoffmann and O’Donnell [1982]. They address the problem of
searching for a pattern in a text, with both pattern and text being labeled trees. They general-
ize some of the techniques of the Knuth-Morris-Pratt and the Boyer-Moore algorithms to obtain
efficient algorithms for their problem.

The subject of parallel algorithms for the string matching problem has been studied by Galil
[1984] and by Vishkin [1985]. They develop algorithms that utilize many processors with shared
memory, and determine all occurrences of the pattern in the text. In particular, Vishkin’s work
shows how to use any number p of processors (up to N/log N) so as to solve the problem in O(N/p)

time.

1.3. Overview of our work

In the subsequent chapters, we will describe two algorithms to determine whether one of several
given patterns occurs in a given text string. Each of these algorithms involves a preprocessing
phase, in which some of the structure of the patterns is examined, followed by a matching phase,
in which the text string is scanned. Our algorithms are based on the Boyer-Moore algorithm,
extended in a manner similar to that of Commentz-Walter. The first of our algorithms runs in time
O(N log D), as compared with the O(N D) time bound for Commentz-Walter’s algorithm. Our
first algorithm uses at most 1+ log, D additional memory cells.

Our second algorithm is an attempt to improve the space bound. It attempts to remember

only those matches that could potentially cause nonlinear behaviour. Given a user-specified pa-
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rameter k, this algorithm uses at most t/k memory cells to remember nonperiodic matches, and
runs in time O(kN log D).
We will also show how to solve completely the problem of preprocessing for the first of the
algorithms, and describe an approach to solving the preprocessing problem for the second.
Chapter 2 introduces some preliminary notions and describes the general setting for the two
algorithms. Chapter 3 describes the simpler of the two algorithms, and proves time and space

bounds for the algorithm. Chapter 4 describes the second algorithm, and chapter 5 describes the
preprocessing algorithms.



2. Preliminaries

The algorithm described by Commentz-Walter [1979] generalizes the Boyer-Moore algorithm
to handle multiple patterns. Her algorithm retains the sublinear average-case behaviour of the
Boyer-Moore algorithm, but has a nonlinear worst-case bound. Our algorithms extend Commentz-
Walter’s ideas. In this chapter, we will discuss Commentz-Walter’s algorithm and the motivation
for our work. We will then introduce some preliminary notions needed, and describe the framework

for our algorithms.

2.1. Commentz-Walter’s algorithm

In this section, we will examine Commentz-Walter’s algorithm from a viewpoint that is suitable for
deriving the framework for our algorithms in section 2.2.
Given a set of patterns P = {py,...,ps} over an alphabet ¥, Commentz-Walter’s algorithm
begins by constructing a trie T such that:
(a) the root r is labeled ¢ (the null string), and each node v € T is labeled with a symbol o € &;
(b) each node v of depth d represents a unique d-character suffix word(v) of the set of patterns,
and conversely, each d-character suffix has a unique node of depth d representing it;
(c) for each node v # r with label &, word(v) = o - word(parent(v)).
For instance, given the patterns cdabcd, eabcdaec, and deccec, the algorithm constructs the trie

shown in Figure 2.1.

5 1
c—d—a——b-—c—d—e
4 7 9 I

8 3 3
d—e—c—c—

Figure 2.1
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The idea is to extend the Boyer-Moore algorithm in a manner similar to the way in which
the Aho-Corasick algorithm generalizes the Knuth-Morris-Pratt algorithm. So the trie is to be
used as a state-transition graph while moving left along the text. In a manner analogous to the
Aho-Corasick algorithm, a preprocessing phase is first executed, after which the trie is matched
against the text. To motivate the preprocessing needed, we will describe the matching phase first.

The matching phase begins by setting the root r as the current node, and aligning the trie
against the text such that r is aligned with the character text[wymin + 1] (where Wy, is the length
of the shortest pattern), and the leaves are to the left of the root. At each step, the current node v
of the trie is examined for a child labeled with the next text symbol o. If v has such a child w, the
algorithm proceeds by making the child w the current node, and moving left one character on the
text; a successful match is declared when a node that represents a complete pattern is reached.

When the current node v does not have a child labeled with the text character o, the trie is
shifted right, the root becomes the current node, and the process is restarted. We will discuss the
computation of the amount of this shift presently, in section 2.1.2. But first, we will introduce and

describe the notion of a match.

2.1.1. The concept of a match

We will use the term match to denote the string of labels of trie nodes that are successfully matched
by the algorithm during a right-to-left movement between shifts.

For instance, in Figure 2.2, the match named m; is the string abcd. Notice that, by definition,
the match does not include its terminating character (the letter e in this example).

Text c e a b ¢c d ¢ e ¢
Match my ®
Match mg ®

Figure 2.2

Some observations relating to matches can now be made.

(1) The total number of comparisons of text characters that the algorithm makes is comprised
of two parts. One is the sum S of the lengths of the matches made. The second is the total number
T of characters examined at the terminations of these matches; this quantity is not included in S,
because the match does not include the terminating character. Now, on a text of length N, it must
be that T < N. This is because every match begins (has right end) at a different text position,
and we can charge each terminating character to the right end of the match; we will then have at

most N such charged characters.
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In analyzing our algorithms in chapters 3 and 4, we will derive bounds on the quantity S,
the sum of the lengths of the matches. The following observation is now relevant.

(2) The length of a match m that ends at a certain trie node v is the same as the depth of
v in the trie. We will denote the depth of a node v by d(v). Also note that d(v) = |word(v)|.

As a notational convenience, we will often use the name of a string to also denote its length

when no confusion arises.

2.1.2. Computing shifts

We are now ready to discuss the computation of the amount of shift. We will use the following

notation in our discussion.

Notation. For nodes vy, vz € T such that v; is a descendant of vg, string (v1, v2) denotes the string
of labels along the path from v; to vg, including both vy and vz. Thus word(v) = string(v,r) for
alveT.

Notation. We say that a string z € Z% occurs at node w if either, for some descendant w’ of w,
string(w', w) = z, or, for some leaf descendant w” of w, string(w'', w) is a suffix of z. For instance,
in Figure 2.1, the string de occurs at nodes 3 and 4, and the string abed occurs at nodes 5, 6, 7,
and 8.

The shift after a match is determined based on the following observations.

(1) A straightforward generalization of the Aho-Corasick idea indicates that the most shift that
can be made from a current node v would be one less than the depth of a shallowest node
w that is not a child of the root, such that word(v) occurs at w. Let us denote this quantity
by s1(v); i.e.,

s1(v) = min (d(w) : word(v) occurs at w and d(w) > 1) — 1
W™ 1 o0, if there is no such w.

This observation is the match heuristic in the terminology of Guibas and Odlyzko [1980].
(2) It is possible, however, to obtain a greater shift under some circumstances: if the text
character o that caused the mismatch occurs in the trie at the minimal depth d,, then we
can shift the trie as far as d, — d(v) — 1, because any shorter shift would certainly fail to
match o. Formally,
4. = {min{d(w) : w is labeled o}
i oo, if there is no such w.

This observation is referred to as the occurrence heuristic.
(3) Under any circumstance, we cannot shift the trie right by more than Wpin, the length of the

shortest pattern, because any segment of text of length wp,i, could contain an occurrence

of the shortest pattern.
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Based on the above observations, we may define the amount of shift when a text character o
mismatches at the current node v:

8(v,0) = min (max (ds, 81(v)) , Wmin) -

In the example of Figure 2.2, match m, fails at node 1, since node 1 does not have a child
labeled e. The algorithm then shifts right three positions, since 81(1) = 3. Match m; then fails at
the child of node 2.

Thus the preprocessing phase for Commentz-Walter’s algorithm computes the values of s1(v)
for each node v of the trie, and the values of d, for each character o € Z. This can be done in time
O(M + |Z|), using the ideas of the preprocessing algorithm for the Aho-Corasick method.

For completeness, we will now describe the matching phase of Commentz-Walter’s algorithm
in formal terms.

Algorithm 2.1.
Inputs. The trie T with root r, the shift function s, and the text string tezt of length N.

Output. A decision whether tezt contains an occurrence of any of the patterns of the trie T.
Method.
begin
T < Wmin + 1 { The position of the trie root }
v « r { The current trie node }

t+—1
repeat
Let o = text[r — i
if v has a o-child w
then
Ve w
fe—1—-1
if v denotes a complete pattern
then declare success and halt
else
ver
T« 7+ 8(v,0)
i1
until7 > N

end.

We can argue (informally) that in the average case, the size of the text alphabet is large
compared with the number of distinct characters occurring in the trie. Therefore, most of the
matches will consist of a single character that does not occur in the trie, so that the corresponding
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shifts will be by an amount equal t0 Wyin. Thus, on the average, the algorithm consults N/wpin
text characters.

The worst case, however, is not as good. Consider matching the trie constructed from the
two patterns P; = ba™ and P, = ac against the text a”. Each time the algorithm reaches the node
labeled b, a mismatch occurs, followed by a shift of one character. The result is that in this case,

the algorithm consults O(mn) text characters.

2.2. The framework of our algorithms

The reason why Commentz-Walter’s algorithm suffers from nonlinear worst-case bounds is that
the algorithm “forgets” that certain text characters were already consulted, and reconsults those
characters. Our goal is to incorporate a form of memory into the algorithm, such that, while
retaining the sublinear average case behaviour, we will attempt to obtain a linear worst-case bound
without requiring too much extra memory. When a mismatch occurs, we remember the node of the
trie at which this occurs until the match is “paid for.” This allows us to skip over regions of text
that correspond to remembered matches. It also allows us to abort matches when, based on what
the algorithm remembers, it decides that the path of the current match in the trie cannot possibly

lead to a successful conclusion. These ideas are now illustrated.

Text c e a b c d a e c
Match my ®
Match mg ettt etete e

Figure 2.3

Consider matching the trie of Figure 2.1 against the text string ceabcdaec. Figure 2.3 shows
the matches that occur in this case. During the time that the match m; is constructed, the node
number 1, at which the match m; ended, is remembered; therefore, the algorithm “knows” (by
preprocessing) where the string word (1) = abed occurs. This enables the algorithm to skip the over
the text region shown by the dotted line. Under these circumstances, we treat m; as “subsurming”
my, i.e., the text characters consulted by m; will be treated as all those between the left and right
ends of m, (even though m; skipped over some of that region). Thus m, is “paid for” by mz, and
therefore need not be remembered after ms.

As another example, if the algorithm is used to match the same trie against the text string
ceabcdcec (the same text as in Figure 2.2), and the node number 1 is remembered when m; is
constructed, the result is as shown in Figure 2.4. The difference between the cases illustrated in
Figures 2.2 and 2.4 is that the match m; is aborted as soon as the node number 2 is reached. This
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Text ¢c e a b ¢ d ¢ € c
Match my °
Match mg °

Figure 2.4

is possible because, by precomputation, the algorithm “knows” that there is no occurrence of the
string word(1) = abed at the child of node 2.

In general, it is not sufficient to remember one previous match. Our algorithms will remember
a sequence of nodes, representing the matches that ended at these nodes. The following observation

is worth documenting.

Lemma 2.1. Any two matches remembered simultaneously must span disjoint text regions.

Proof. If two matches m; and mg, occurring in that order, remembered by their terminating nodes
vy and vg, are such that mj overlaps my, then since m; was remembered when m; was constructed,
it must be that my skipped over the text region of m;. But in that case, m; would not have been

remembered after mg.

O

One consequence of this observation is that in order to make sense out of remembering the
terminating nodes of several previous matches, we also need to remember the distances between
them. This motivates the definition of a configuration, containing the matches remembered by the

algorithm, as follows.

Definition. A configuration of the algorithm is a sequence of pairs,

C = ((111, d1),- ooy (Ul-—l,dl—l)a (01,0))

where each v; is the terminating node of remembered match m;, and d; is the number of text
characters between matches m; and m;1 that are not matched by either m; or m;4 1.

For instance, in Figure 2.4, if the algorithm decided to remember both m; and m; after m2
was constructed, the configuration would be ((1,1), (9,0)). Here the value of d; is 1 because the
terminating character e of the match mg is not included in the match mg, by our convention. Note,
in passing, that because of the existence of this terminating character, the value of d; is always at
least 1.

A second consequence of the idea of skipping over previous matches is that we have two

kinds of matches:
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Definition. A match m is said to be open if either
(a) no subsequent match overlaps m, or
(b) the first subsequent match that overlaps m does not skip over the text region of m.

A match that is not open is closed.

Tf match m; is skipped over by match mg, then we will say that mg closes m;. For example,
in Figure 2.3, my closes m;y.

An immediate consequence of this definition is the following observation.

Lemma 2.2. If an open match m has a subsequent overlapping match m’, then m was forgotten
before the construction of m’ was begun.

Proof. If m had been remembered, then m’ would either close m, or else have been aborted before
reaching the text region of m.

O

At this point, we have introduced the idea of remembering previous matches by the nodes
at which they terminated. The questions that remain to be answered are:
(1) Which matches must be remembered, and for how long? and
(2) How much to shift when some matches are remembered?

We will discuss these questions in the opposite order in the following two subsections.

2.2.1. The shift function

The construction of the shift function is a straightforward extension of the observations we made
in section 2.1.2 for obtaining the shift in Commentz- Walter’s algorithm. Observations (2) and (3)
made there are still valid. To obtain the proper generalization of the quantity we refered to as
sy in observation (1), we will need to construct a string representing the sequence of remembered
matches, along with don’t-cares in intermediate positions. To this end, we will first introduce some

notation.

Notation. The characteristic string of a configuration C = ((v1,d1),.. ., (v,0)), denoted char(C),

is the string
char(C) = word(vy) - #% + - #4-1 - word(vy),

where the symbol # denotes a don’t-care.
Thus, in Figure 2.1, for the configuration C = ((2,3), (6,0)), we have char(C) = cec##+#d.

We can now extend the notion of occurrence to strings with don’t-cares; for example, in
Figure 2.1, the string a#cd occurs at nodes 5, 6, 7, and 8.
Next, we define the shift s;(C) from a configuration C, in a manner analogous to the

definition in section 2.1.2:
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Definition. The goal of a configuration C is the set of nodes at which char(C) occurs:
goal(C) = {w : char(C) occurs at w and d(w) > 1}
and the shift 8,(C) is defined to be

51(C) = min{d(w) : char(C) occurs at w, and d(w) > 1}
177 oo, if there is no such w.

Finally, accounting for the occurrence heuristic, we define the shift from a configuration C with a
terminating text character o to be

8(C, o) = min (max(s1(C),ds), Wmin) -

2.2.2. The memory function

Formally, given a configuration C and a particular match m; in C, we define the memory function

to be
. 1 if m; is to be remembered in C
c,) = { i 18
u(Cyi) 0 otherwise.
It is clear that we can obtain a whole range of algorithms, depending upon our choice of
. The approach we will take is to specify two different kinds of memory functions, one in each of

chapters 3 and 4, and study the properties of the resulting algorithms.

2.2.3. Algorithm description

For completeness, we will now describe formally the match phase of our algorithms. We will say,
in what follows, that two strings z and y agree if either zis a suffix of y or y is a suffix of z.

Algorithm 2.2.

Inputs.
Current configuration CS = ((v1,d1),. .., (v1,0)), initially empty.
Current trie node v, initally set to r, the root.
Current position 7 of trie root, initially set to wmin + 1.
Current goal depth D, initially set to wmn. The quantity D counts the number of text
characters between the current text position and the right end of the rightmost remembered
match (not including either endpoint of that interval).
Function. Execute one move of the algorithm.
Method.
begin
Let o = tezt|[r — d(v) — 1], the current text character
if v does not have a g-child



end.
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then { match failed }

else

Let CS = ((v1,d1),-..,(v,0))

Construct CS' = ((v1,d1),-- ., (v, D), (v,0)) -
Shift (CS");

CS « CS';

Let w be the o-child of v
if w has descendant w' such that
w' € goal(CS) and d(w') — d(w) = D
or w has a leaf descendant w’ with d(w’) —d(w) < D -1
then
MoveLeft (w,w')
else{ the match is to be aborted }
Construct CS' = ((v1,d1),- .., (w, D), (v,0))
Shife (CS");
CS — C8S8';

procedure MoveLeft (w,w')

begin

if D>1

then
D« D-1;
U — w;

if w represents a complete pattern
then halt ( match found at w )

else { need to skip over some earlier matches }

Let CS = ((v1,d1), ..., (vi-1,d1-1), (v1,0));

Let = be the deepest descendant of w’ such that

d(z) — d(w') < d(v;) and string(z, w’) agrees with word(v;);
if an ancestor of z represents a complete pattern

then halt (match found);

v — T

D «—d;_;;

CS « ((v1,d1),- .-, (v1-1,0));

end {MoveLeft }

procedure Shift (C)
{ Shift based on current configuration C'}

begin
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Let C = ((v1,d1),. .., (v1,0));
{ Construct new configuration C'}
j « 0; { Current number of pairs in C'}
for k+— 1to l do
begin
if u(C,k) =1
then
append (v, di) to C’
jeJi+1
else
for the last match (v’,d’) of C’,
d' — d' + di + d(vg)
end { For loop }
Let C' = ((v},d}),..., (v}, d}));

et}
ifd; >0
then
D « d};+s(C,0);
d; < 0;
else
D « s(C,0);

7 « 7+ 8(C,0);{ Update trie root position }
C « C'; { Update configuration }
end Shift;
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3. A simple algorithm

In chapter 2, we described the framework for our algorithms. There, we pointed out that
different choices of the memory function lead to algorithms that behave differently. In this chapter
we will provide one possible definition of the memory function. We will then analyze the algorithm
resulting from this specification. On a text string of length N, this algorithm performs O(N log D)
comparisons involving text characters, The algorithm remembers at most 1 + log, D matches at
any given time, where D is the length of the longest pattern, i.e., the height of the trie.

Section 3.1 describes the memory function, and the subsequent two sections analyze the time

and space complexities of the resulting algorithm.

3.1. Memory function

The memory function that we will now describe is based on the following idea. If, for a match m,
it is possible for a subsequent match m’ to occur with right end not very far away from that of m,
such that m’ is comparable in length to m, then there could be a significant overlap between m
and m', contributing to a nonlinearity. This condition is formalized in the following definition.

Definition. For a match m ending at a node v, a node w of the trie is eritical if there is an ancestor
z of w such that
(i) 2<d(z) < im-1
(ii) string(w,z) agrees with m = word(v)
and (iii) d(w) > 3m.

m

]

t

]

]
w T

! < %m !
!4 > %m !

Figure 3.1
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Figure 3.1 depicts the relationship between m and w. If m has a critical node w, then the
path word(w) is the one that could be taken by a subsequent match m’. Condition (i) of the above
definition stipulates, in essence, that m’ should occur strictly further right of m, but not too far
away from m. Condition (ii) says that m and m' agree on the region of text that they overlap on.
Condition (iii) requires that the two matches be comparable in length.

If a match m ending at a node v does have a critical node w, then m is to be remembered
until it is “paid for.” We will think of the region of text to the right of m, of length m/4, as the
region over which this happens. We now give this region a name.

Definition. For an open match m, with right end at text position r, we denote by R(m) the range
of text positions r+ 1 through r - %m, inclusive. We will informally refer to this text region as the
right neighbourhood of m.

For a match m, with right end at r, the algorithm decides to remember m only if
(a) the match m has a critical node, and
(b) the current trie position 7 satisfies r — r < fm — 1.
Otherwise, the algorithm forgets m.
In sections 3.2 and 3.3 we will establish time and space bounds for the algorithm using this
memory function.

3.2. Time bound

The goal of this section is to show that the above algorithm consults O(N log D) text characters in
the worst case. We will achieve this goal in steps. As pointed out in section 2.2, we need only account
for open matches. First we will show, in lemma 3.1, that open matches of comparable lengths must
occur at a certain minimum distance apart. We will then construct a charging argument to derive
the time bound.

Lemma 3.1. For an open match m, every open match m’ that begins in R(m) is such that

m < %m.

Proof. Suppose, to the contrary, that for some open match m with right end r, there is an open
match m’ with right end r’ such that ' —r < -}m and m’' > %m, as shown in Figure 3.2.

Tt is easy to see that the node v’ at which m' ends satisfies the conditions for a node that is
critical with respect to m. However, the existence of such a node implies that m must have been

remembered at the time m’ was constructed, contradicting lemma 2.1.

O

We now need to establish a bound on the sum of the lengths of open matches that overlap

with a given match m. To do this, we partition the matches that begin in R(m) as follows.
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m I +—R(m) —

Text

Figure 3.2

Definition. For a given open match m, denote

Sk(m) = {m' : m' begins in R(m), and 5—;_—1- <m'< ;g}
for k> 0.

For any given open match m, the sets Si(m) partition the matches beginning in R(m)
according to length. By lemma 3.1, So(m) = 0. Lemmas 3.2 and 3.3 bound the cardinalities of
Sk(m) for k > 1.

Lemma 3.2. For an open match m, and k > 1+ log D, it must be that |Sx(m)| = 0.
Proof. If m' € Si(m), then m' < m/2* < D/2F by definition of Sk, so that
D
k <log poor <logD

since m' > 1. Therefore, if Sx(m) is nonempty, then k < log D.

Lemma 3.3. For an open match m, and 1 Svk <log D,
|Sk(m)| < ok+1,

Proof. Suppose to the contrary that for some open match m, and some k > 1, the cardinality

|Sk(m)] > 2%¥+!+1. Let matches my,...,maes14y € Sy(m), with right ends ry,...,r2x4141.

Then, for each i,1 < i < 251, it must be that r;yy — r; > 3my; otherwise, m; ;1 begins in R(m;)

and mi41 > -;—m.- (by definition of Sx(m)), so that lemma 3.1 is contradicted with respect to m;.
Since m; > m/2%t1 by definition of Sx(m), we therefore have
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1 1 m
Tig1 — 75 > Zm; > 22k+1
so that
Tgk+1+1 —r1 = Z T;‘+1 - Ty
1<i<ak+?
k41, 1 M

> 2 7551
1

> -m
4

which is impossible, because all the matches in Si(m) begin in R(m).

n

Using these results, we can construct a charging argument to establish the time bound for
the algorithm, as follows.

Theorem 3.4. The number T'(N) of text characters consulted by the algorithm in a text string
of length N is bounded by

T(N) < (4N + D)(2log D + 1).

Proof. Charge the lengths of matches as follows. Set the current match to be the first match that
occurred, and repeat the following steps:
(i) Charge to the current match m all the matches that begin in R(m), and delete all the
matches so charged;

(i) Make current the first match remaining after m.

Now the total charge ¢(m) accumulated by an open match m is

c(m) = Z m' < Z Z m'

m/ begins in R(m) k21  m/'eSk(m)
< Z 2"'*'1-;% by definition of Sk(m)
1<k<log D
< 2mlog D. (1)
At the end of the deletions in this charging phase, call the remaining matches mj, ..., mj. For any

two consecutive matches m} and m}, ,, we must have

1
! 1 !
r,-|1-r,->zm,-
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This follows because m;_ ; cannot begin in R(m!), because of the charging phase. Therefore, adding

these equations over all 1,

1

! ! !

N>2rm—-r>- E mg
1<igi-1

or Z m; < 4N

1<i<i-1

ie, Y m{<4N+D. (2
1<i<l

Thus

> omo= Y (o))

m a match 1<l

< > (mi+2milogD) by (1)
1<i<i

<(2log D+ 1) Z m;
1<i<t

< (2logD+1)(4N+D) by (2).

3.3. Space bound

The algorithm remembers no more than 1+ log, D matches at any time. This follows from the
facts that any two matches remembered simultaneously must

(a) span disjoint text regions (by lemma 2.1), and

(b) differ by a factor of 4, by definition of the memory function.

Theorem 3.5. The algorithm remembers no more than 1 + log, D matches at any given time.

Proof. Suppose, at some time, the algorithm remembers matches my,...,m;. Then it must be that
the region of text currently being inspected lies within the range R(m;) for every i, 1 <i < I, by
definition of the memory function. Therefore, we must have m;;; < i-m,-, 1<i¢<!l-1. Thus

<
m = 41-—1

or
my
1 <1+4logy —
<1+ logy ™
Since any match m must be in the range 1 < m < D, we have

[ <1+]log,D.
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A question that arises naturally at this point is how to preprocess the trie so as to precompute
the decisions of which matches to remember. In Chapter 5 we will discuss how to preprocess the

trie efficiently.
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4. A second time-space tradeoff

The algorithm of chapter 3 has time and space bounds dependent on the logarithm of the
trie height. In general, this is undesirable, because we would like to have an algorithm that uses
a bounded amount of resources independent of the trie size. In this chapter, we will describe an
algorithm that makes some progress toward this goal. Specifically, the algorithm described here
yields a time-space tradeoff as follows. Given any k > 2, the algorithm consults O(kN log D) text
characters, and remembers at most t/(k — 1) nonperiodic matches at any time.

The restriction of the bound to nonperiodic matches turns out to be necessary because of
the conjectured existence of classes of tries that can cause algorithms to require arbitrarily large

amounts of time.

Definition. A string u is a period of string w if w is a prefix of u” for some k. The shortest period
of a string w is denoted p(w).

Definition. A string w is said to be periodic if p(w) < -}w, and nonperiodic otherwise. A match
m ending at a node v is said to be periodic if word(v) is periodic, and nonperiodic otherwise.

Conjecture 4.1. For each t and ¢, there are tries with ¢ leaves and text strings of length N that
produce periodic matches such that any memory function (as defined in chapter 2) that remembers
no more than ¢ — 2 matches would necessitate consulting £2(N/¢) text characters.

In the light of this conjecture, we will restrict ourselves to counting nonperiodic matches.
Our algorithm will be required to remember periodic matches almost unconditionally until they are
“paid for,” but nonperiodic matches will be remembered only if the structure of the trie necessitates

it. Evidence supporting this conjecture will be provided in chapter 6.

4.1. Algorithm description

The essential idea of this algorithm is the following. Given a sequence of remembered matches,
and a newly constructed match, the algorithm examines the trie to determine whether it is worth
remembering the new match. The criterion for remembering a match, however, is more complex
than the one used in chapter 3. Given a match m and a configuration containing it, the algorithm
looks for critical paths in the trie that have a certain structure. Intuitively, a path is critical with
respect to a match m if

(1) it is possible for a previous match m' to have occurred along this path, and
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(2) the distance between the right ends of m and m’ is small, but the lengths of m and

m' are comparable, so that there is significant overlap, contributing to a nonlinearity.

The algorithm decides to remember a match if there are approximately k such critical paths, where
k is a user-specified parameter that serves as a measure of allowable nonlinearity.

We will now make precise these notions.

Definition. Strings « and v are said to agree if either u is a suffix of v or v is a suffix of u.

Notation. For nodes v and w of the trie, we write v pref w if word(v) is a proper prefix of word(w).

We are now ready to define the idea of a critical path.

Definition. A path P = (v,w) from leaf v to node w in the trie is critical with respect to match
m; in configuration C = ((v1,d),...,(v,0)) if all of the following conditions are satisfied (see
Figure 4.1):

(C1) word(w) is nonperiodic;

(C2) d(w) > m;

(C3) For some node w' along the path of m; such that 1 < d(w') —d(w) < J5™;, we have

w pref w';
and (C4) for each j, 1< j <i—1,if there is a node u; at depth d(w)+ (m; — d(w'))+di1+

S (mi+d;_) along P (where w' is as defined in (C3)), then string(v, u;)
JH1<ISi-1

agrees with m;.
Given such a critical path (v, w), we will say that the quantity d(w') — d(w) is the displacement
of the critical path, where w’ is as in the above definition. The fraction values 1/2 and 1/16 are

chosen for reasons which will be clear subsequently.

Figure 4.1 shows an example of a path (v, w) that is critical with respect to match m; in a

configuration containing the matches m; and ms.

3
3

-~

€ —omo-t4

v Ui

Figure 4.1

It is possible for a leaf v to have several ancestors wy, ..., wp, such that (v, w1),..., (v, wp)
are all critical with respect to m; in configuration C. However, we will show in lemma 4.7 that

these paths cannot have distinct displacement values.
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Definition. A k-mesk with respect to a match m; in a configuration C is a set of k — 1 critical

paths with respect to m; in C, such that all the critical paths have distinct displacement values.

The reason for insisting on distinct displacement values for the critical paths in a k-mesh
is the following. If a match m has k — 1 critical paths, each represents the path that might have
been taken by an earlier match which m might overlap. Each of these earlier matches begins at
a different text position, because the algorithm shifts by at least one position after every match.
This observation is reflected in the requirement of distinct displacement values.

We will find it convenient to refer to regions of text surrounding a given match as the

“neighbourhoods” of the match:

Definition. For match m with right end at text position r, the range of text positions r+1 through
r + sm is denoted R(m) (the “right neighbourhood” of m) and the range r +1 — 31m through
r - m is denoted L(m) (the “left neighbourhood” of m).

The regions R(m) and L(m) are defined so that their lengths satisfy the relation L(m) +
m+ R(m) = 2m.

The memory function is now specified as follows: for match m with right end at text position
r, remember m in configuration C throughout R(m) (i.e., whenever the current trie position satisfies
T+1—r< Em)if

either (a) m is periodic,

or (b) m has a k-mesh in C.

These definitions imply that, once the algorithm decides to remember a match m, the only
way that m is forgotten is when the trie position goes past the region R(m). Moreover, if a match
ma3 has a k-mesh in a configuration C containing matches m;, mz, and ms (occurring in that order),
then mg still has a k-mesh in the configuration obtained by deleting mz from C.

4.2. Time bound

In this section, we will establish that the algorithm using the memory function defined above
consults O(N log D) text characters. The main result that the proof hinges on is lemma 4.2, which
shows that when several open matches of about the same length overlap, their right ends must be
separated by a minimum amount. Once we have proved this result, we can construct a charging
argument to establish the time bound.

In order to prove lemma 4.2, we will need two technical lemmas. The first is the following
“gcd lemma,” proved in Knuth, Morris and Pratt [1977]. Intuitively, the gcd lemma says that no
string can have two short periods p and ¢ without having an even shorter period that divides into

both p and gq.
Gecd lemma. If p and ¢ are periods of a string z, and p+ ¢ < z, then gcd(p, ¢) is also a period of

z.

O
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We will now apply this result to a very specific circumstance that arises in our proof. We
will need, later, to use a fact that if we have two strings m; and m; aligned with right ends very
close together, where m; has a very short period and m; has a long period, then it must be that
many of the suffixes of m; have long periods. This fact is now formalized and proved.

Lemma 4.1. Let m; be a string with p(m;) < -1—25-m1, and let m; be a proper prefix of string ma,
where my < %%ml and p(mz) > %mz. Then if u is any suffix of m, such that u > T"gmg, then

p(u) > Lu. In particular, p(m;) > 3my.

Proof. Let v be the prefix of u that is a suffix of m;. Figure 4.2 depicts the relationship between

these strings.

my
L . ]
: i
' '
msz
!: u >!
Figure 4.2
Then
S - —
v2u- o 6m1
7 1
> me —
16 160
7 1
S oy — —
R MR TN
3
> - .
Z 8m1

So there are at least £ - 12 = 4% occurrences of the basic period of my in v, so p(v) < Bv.

We also have the following bound for v in terms of u:

1
> g — —
vZ2u 16m1
> 1m
Zu 16 2

1 16
S Y= ————
T
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Now if p(u) > v, then p(u) > &u, and we are done. Otherwise (i.e., p(u) < v), there is some
period of v of length p(u). Now p(v) does not divide p(u), for otherwise m; would share the same
period with m;, making m, periodic. Therefore, when the gcd rule is applied to v, it must be that

p(v) +p(v) > v

for otherwise we would have a period of length ged(p(u), p(v)) < p(v) for both u and v, making m,
periodic. Thus,
p(u) > v —p(v)

S U—
>v 450

29
= —v

45

29 6
> e 8 e
=THE &
>1u
S

O

We are now ready to prove our most important lemma, that we cannot have too many open
matches that are about the same length too close together. The method of proof is to argue that if
we did have many such matches close together, then at least one of them must have had a k-mesh
in the configuration in which it was forgotten. However, in order to exhibit such a k-mesh, we will
need to obtain nonperiodic strings in order to meet condition (C1). This is where the result of
lemma 4.1 will be applied.

Lemma 4.2. Let my,...,mz;x be nonperiodic open matches with right ends ry,...,rz; in that
order, such that any two matches differ in length by at most a factor of 2, i.e., for all ¢ and 7,

-;-m; S_ my S 2m,-.

Then rqp — r1 > ‘1‘1?3""1’ where m is shortest among all the matches.

Proof. Suppose to the contrary that rop — ry < %m,. Figure 4.3 depicts the relationship between

the matches.

Since all the matches are open, my, ..., mgx—1 must all have been forgotten, because they
all have subsequent overlapping matches. Therefore, it suffices to show that there is some match
among my,...,Mgk—1 that has a k-mesh in the configuration in which it was forgotten.

Let z1,...,Z2k be the nodes at the left ends of my, ..., max. Consider some match m; that
was forgotten in configuration C;. The matches mj,... ,m;, that occurred earlier than m; and

were remembered in C; were certainly remembered at each of my,...,m;_1. So, by definition
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Figure 4.3

of the shift function, there are leaf descendants vy,...,v;—1 of z,...,z;—1 such that the paths
(v1,21),. .., (vj-1,7;-1) all have “images” of mj,...,m/. So each of these paths satisfy condition
(C4) of the definition of critical path with respect to m; in Cj.

The idea of our proof is to show that either my or mgak_; must have had a k-mesh in the
configuration in which it was forgotten. We will first attempt to construct a k-mesh for my. If we
can choose nodes wy,...,w,_; along the paths of my,...,mg_1 respectively, such that the paths
(v1,w1),.. ., (Vs—1,wk—1) satisfy the rest of the conditions, we would have a set of k — 1 critical
paths for my in Ck. Since the matches my,...,mg_1 have distinct right ends, the corresponding
critical paths all have distinct displacement values, and thus we would have a k-mesh for mg. Now
we may choose, for each i, any ancestor w; of z; that satisfies (C3), and the paths (vs, w;) would
satisfy (C4). It remains to choose the w’s to satisfy (C1) and (C2). Therefore, suppose it is not
possible to make such a choice. Then, in particular, there is some z; such that none of its ancestors
can be so chosen. We will now construct a k-mesh for mag_;.

Since m; itself is nonperiodic and has the appropriate length (by hypothesis), it must be
that my, ends under m; (otherwise we could choose w; = ;). Furthermore, the node y; along m;

that aligns with zy, is such that d(y;) > -i—g—mk, since rp — rj < '1'16'"'" So

1
* 'Z‘mlcx

o=

p(word(y;)) <
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because otherwise we could choose for w; the ancestor of y; at depth %mk. Thus

plword(y;)) < 5 - 7ed(us)

= Té‘é‘d(yj)
< -1234(311')-

We now have word(y;) and word(z;) satisfying the conditions of lemma 4.1, so it follows that
every suffix u of my, with u Z 15 ™k must have p(u) > —u Now each of the matches Mp,y...,Mok—2
shares with m; a suffix u of m;, of length at least mk, because rqp — r; < m; and any two
matches differ by at most a factor of 2.

We can now construct a k-mesh for mgx_1 by deriving, for each 1 in the range k < ¢ < 2k—2,

a critical path for mgg.; from m;. These critical paths will all have distinct displacement values,
since the right ends of the corresponding matches are all distinct.

Case 1. mg_1 goes at least as far left as m;.

Choose w; = ;. This satisfies (C1), because m; is nonperiodic, by hypothesis. It also
satisfies (C2), because m; < myk—; (since myx_1 goes at least as far left as m;) and m; > -;-mzk_l,
by hypothesis.

Case 2. m; goes farther left than mgx_;.

Choose w; = y;, where y; is the ancestor of z; that lines up with the left end z2x1 of

mak—1. This choice satisfies (C2), because rgp—y — i < -1—15m,- so that d(y;) = -}—g-mzk__l > Imok-1.

This choice also satisfies (C1), because of the following: if mj ends at or right of y;, then word ()

contains all of my as a substring, in which case

-

: p(word(s)) > plms) > zms > 7d(),

since my, and m; differ by at most a factor of 2. If m ends left of y;, then the suffix u of m; that
is a prefix of word(y;) is also a prefix of mg;_3, so that

1
> -
U 2 M2k—1 16mk

> - LI (by hypothesis)
2 3™k~ 1™k Yy Byp

7
>
Z 16mk

Thus p(u) > %u. Now since u is a prefix of mg_; and a suffix of my, we must have
u=mzk.1— ("21:-—1 - Tk)
> mog—1 — -l%mzk-—l by hypothesis
15

> -i-6-m2k...
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Therefore,

16
d(v:) < mor_q < —
(¥:) < mag—1 < 5y

so that, since u is a substring of word(y;),

p(word(y:)) > %u

1 15
S et — .
231 d(y‘)

1
> Zd(y,).

Consequently, we can always choose nodes wg, ..., W2k-2 along the paths of mg,...,mag—2
respectively, such that the paths (vis wi), - - -5 (V2R—32, wak_2) constitute a k-mesh for max_1 in the
configuration in which it was forgotten, contradicting our assumption that mgzy begins in R(mzg—1)-

(This contradiction is the only reason we needed mak.)

O

This result will now be applied to more specific situations. Our method of accounting for
matches is the following. For a given open match m, consider the subsequent matches that have
right ends close to that of m and overlap a significant amount with m. We can divide these matches
into three classes:

(1) matches that go strictly further left than m, and have left ends far from that of m;

(2) matches that go strictly further left than m, but have left ends close to that of m; and

(3) matches that do not go further left than m, but overlap m significantly.
We will first show (in lemma 4.3) that for a given match m, there cannot be very many matches of
the class 2. Next we will define precisely what we mean by a “significant overlap” of class 3, and
show (in lemma 4.5) that the matches of class 3 must sum up to a constant times m. These two
results will then allow us to argue, in the charging phase (theorem 4.6), that we can charge matches
of the above two categories to m, and delete all such matches, thus simplifying our problem.

TLemma 4.3. For an open match m, at most 2k — 1 open matches begin in R(m) and end in L(m).

Proof. Only the last of the matches that begin in R(m) and end in L(m) can be periodic, because
any earlier periodic match would be remembered through R(m). Now if there are at least 2k
matches beginning in R(m) and ending in L(m), then the match m, together with the first 2k — 1
matches that begin in R(m) and end in L(m), satisfy the conditions of lemma 4.2, and m is the

shortest among these matches. This would contradict the conclusion of lemma 4.2.

O
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Definition. For match m with right end at r, we say that an open match m’ that ends under m,
with right end at r' in R(m), is m-heavy if ' —r < 3m'. If v’ is in R(m), but ' —r > 3m’, then

we say that m' is m-light.

Informally, our intent is to classify the matches that have right ends close to m as heavy if
they have a significant overlap with m, and light otherwise. Our immediate objective is to bound
the sum of the lengths of the m-heavy matches, for every match m. To do this, we proceed as
follows. First, for an open match mn, we partition the m-heavy matches as follows, according to the

length of the region of overlap with m.

Definition. For an open match m, and for each ¢ > 0, denote

Si(m) = {_m, : m' is m-heavy and nonperiodic, and ___22:1 <m'—(r'—1) < _217_1; } .

Next we show (in lemma 4.4) that the number of elements in each class in this partition is
bounded by a constant, and establish a bound on the maximum length and number of elements of
such a class. Lemma 4.5 will then establish the bound on the sum of lengths.

Lemma 4.4. For an open match m, with right end r,
1 1 m
! . ! . 1 e—— ——
max {m' : m' € S;(m)} < min { (5;- + 16) m, 2‘.__1}

and
|Si(m)| < min {2°+%k — 1,64k — 1} .

Proof. We will first establish the bound on the lengths. I match m' with right end at r’ is in
S;(m), then

—l-lé-m > r' —r by definition of m-heaviness

>m' - g— by definition of S;(m)

11
< =4+ — .
™ "(2‘+16>m

Also, observe that if m’ € S;(m) is a match that has right end v’ as far right as possible, then

r' — r < m/2*, for otherwise, since r' —r < im' (by m-heaviness),

so that

m' >2(r' —r)

or

m'—(r'—-r)Zr'—r>-;£:.-
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which is impossible, since m’ € S;(m). Now, by definition of S;(m),

m
! ’
m' —(r —-r)<-2—;
b m
or m -'2-":-1-

Next, we will show the bound on the cardinality of S;(m). Suppose there are lk matches
ma, ..., Mk in Si(m), with right ends at ry,...,7k respectively. Then by lemma 4.2, we have for
all 7,

1 m
r2jk — T(2-2)k+1 > Jg 341

so that
s I 1 m
k=112 9" 162t
Therefore, | > 2°+% implies that

>
r _ —
ik 1 16

which cannot be, since all the matches begin in R(m). Also, ! > 64 implies that

m
rig —T1 > 20

which we have already observed to be impossible.

O

We can now establish a bound on the sum of the lengths of the m-heavy matches, for any
given match m: we need only separate the perioidic and the nonperiodic m-heavy matches, and

apply lemma 4.4 to obtain a bound on the nonperiodic matches.

Lemma 4.5. For an open match m,

143 5
I< oty
E m_(4k 16>m

m' is m-heavy

Proof. We will account for the periodic and the nonperiodic m-heavy matches separately. Let
my,...,m, be the sequence of periodic m-heavy matches, with right ends at text positions ry,...,7p
respectively. Then, for each ¢, m; is remembered unconditionally through its right neighbourhood,
by definition of the memory function. Also, any two of these matches must overlap at least at the

rightmost character of m, since all these matches are m-heavy. Therefore,

1 .
r,-+1—r,->i-6m; for1<si<p-1



and adding all these equations,

1
r,,—r1>-1-€ Z m;.

1<i<p—1

Since r, — ry < 5m (by definition of m-heaviness),

1 1
Té-m > I-G- Z m;
1<i<p~1

ie.,

1<i<p

But m, < 1Im, since m, ends under m, so that
17
m -+ Tém > Z mg
1<i<p

and thus

Z m' < §Em.

| =16
m' is m-heavy
and periodic

Now using lemma 4.4 and the definition of S;(m),

Z m' < Z |S:i(m)| - max {m" : m" € S;(m)}

m' is m-heavy 20
and nonperiodic

IA

0<i<s

143 19
< |22y -2
_(41: 8>m

We are now ready to prove our time bound. The proof technique is a charging argument
in four phases. For a given open match m, we divide the matches with right ends close to that of

m into three classes, as described earlier, and account for each of these classes in the first three

phases. The last phase sums up the resulting bounds.

> m(%;-i—-llé) (2‘+2k—1)+z-2-;":——1-(64k—1)

>4

Theorem 4.6. The algorithm consults O(kN log D) text characters.

Proof. As discussed in chapter 2, we need only account for open matches. The proof is a charging

argument in phases.

34

O
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Phase 1. Iterate the following step: Charge to the first remaining match m all the matches
that begin in R(m) and either end in L(m) or are m-heavy; delete all the matches so charged.
By lemmas 4.3 and 4.5, each match m picks up a cost c(m) of

S(Eﬁk—%>m+@k—n%n

4 6

150, 37
< =k-=)m.
—(4'c 16)’"

At the end of this phase, one of the following holds for any two matches m; and mj occurring in
that order:

(1) mg does not start in R(m;);

(2) mg is my-light; or

(3) mg goes left of L(my).
Each of the subsequent phases will now deal with, and get rid of, one of the above conditions.

Phase 2. Charge each match m, as well as ¢(m), to the first subsequent match m' such that
m’ begins in R(m) and goes strictly left of L(m) (if there is such an m’ ), and delete m.

To account for the total cost picked up by a match, let S(m) denote the set of matches
charged directly to m by phase 2. Define, for match m,

. _fo if S(m)=0
height(m) = { 1+ max {height(m') : m' € S(m)} otherwise.

Let len;(m) be the sum of the lengths of the matches charged to a match m of height ¢ by
phase 2. We will show by induction on height that

teng(m) <m 3 (;}})

1<5<s

Suppose m has height 1, and let my,...,my, occurring in that order, be the set of matches
charged to m directly by phase 2. Then m starts in R(m;) for all i, and therefore m; is m;-light
for 1 < 7 (because of phase 1). Therefore, if rq,...,r; are the right ends of my, ..., my, respectively,
then

1 .
Tip1— T8 2 SMi+1 for each 1,

and adding all these equations,

or

Z m; < my +2(r; — r1).
1<5<!
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Now r; — r1 < 55my, because all the m; begin in R(m,), since m itself does. Therefore,

Z my S my + 2 (.il—ém]')
1<5<1

9
= §m1

18

.<_ ﬁm)

because m; < 18m since m goes strictly left of L(my).
For the inductive step, if m has height ¢, then all the matches my,...,m; have height at

most ¢ - 1, by definition of height. Therefore the cost charged to m is

len; (m) = E (mj + leni—1 (my))

1<5<i
< E m; +m; E 18 ’ (by inductive hypothesis)
- - J J / 31

1<5<i 1<pLi-1

< Zm,- 1+ Z (%—?)p

1<5<! 1<p<i—1

Therefore, the greatest possible sum of lengths of matches that a match m can pick up

directly through phase 2 is

p
len;(m) <m Z (%—?) < -i—g—m

1<i<o0

and the total cost charged to m through phases 1 and 2 is

18\ /159, 37
< p—. DNy /R
—(1+13)(4k 16)’"

4929 1147
<[ ZZp-—m.
—<52'c 208)'"

At the end of phase 2, for any two matches my and mg occurring in that order, at least one of the

following is true:
(1) my does not begin in R(m,), or
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(2) m; is m;-light.

Phase 3. Iterate the following step: Charge to the first remaining match m all the matches
that are m-light; delete all the matches so charged.

We now derive a bound on the cost picked up by a given match through phase 3. As with the
m-heavy matches, we will divide the m-light matches into classes based on their lengths. Define,
for each 1,

Liy(m) = {m’ : m' is m-light and _En%i_ <m' < -g:—} .
First observe that Lo = § (because no m-light match can have length m/2 or greater), and that
L; =0 for all { > logm — 1 (by definition of L;). Since the longest that any match m can beis D
characters, it follows that L;(m) = @ whenever ¢ > log D — 1.

Now, for some 1 < i < log D, let Ly(m) = {mi,...,m,}, occurring in that order. Then,
for any two matches m’ and m” in L;(m) occurring in that order, m" does not begin in R(m');
otherwise, since m’ and m" differ by at most a factor of 2 (since they are both in L;(m)), m" would
be m'-heavy and would have been taken care of by phase 2. Therefore, if ry,...,r, are the right

ends of my,...,my, we must have

1 .
—m;, for1<j<p-1

41— Ty > 16

so that, summing over all j,

1 1
—Mm2Tr,— T > T Z my.
16 16131,9__1

(The first inequality above holds because all the m; begin in R(m).) Now, noting that, since m,

is m-light, m, < &m, we have

Z m' < %m.

m/€L;(m)

Since this bound holds for all the sets L;(m), we have

T

m' is m-light

| ©

mlog D.

Thus the total cost charged to a match m through phases 1, 2 and 3 is

4920 1147 9
4929, 1147 2log D ) m.
5(52"’ 208><1+8°g )m
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Phase 4. For the remaining matches my, ..., m; with right ends r1,...,7I,

Ti41— 75 > 1—6-m,-

1
go that #j—ry > 6 Z m;
1<5<i-1

or Z m; < my+ 16 (r; — r1)
1<5<1

< 17N.

Since each match now carries a charge,

Y om< Y (mi+e(m))

m a match 1<s5<i
- 9 4929 1147
< . — ————— — —————— .
L (m,+(1+810gD)( ) k 208)m,>
1<55d

= O(kN log D).

4.3. Space bound

In this section, we will establish a bound on the number of nonperiodic matches that the algorithm
remembers. Notice that a bound very similar to that of theorem 3.5 holds for this algorithm as well:
by an argument very similar to that of theorem 3.5, we can show that at most 1+-logye D matches
(periodic or otherwise) are remembered at any time. To prove the bound on the nonperiodic
matches remembered, we will need to examine the way in which the k-meshes of the remembered

matches interact. This is done in lemmas 4.7 and 4.8. But first, we need some notation for the set
of leaves of a k-mesh:
Definition. For a nonperiodic match m remembered in configuration C, denote

Ac(m) = {v : (v,w) is part of a k-mesh for m in C}.

Now we can show that there are no shared leaves either within a k-mesh or between k-meshes.
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Figure 4.4

Lemma 4.7. For a nonperiodic match m remembered in configuration C,

Iz\c(m)l 2 k—-1.

Proof. If not, then there are critical paths (v,w;) and (v,wz) in the k-mesh that share the same
leaf v, and with distinct displacement values (see Figure 4.4).

Assume without loss of generality that d(w;) > d(w;). Then word(w;) and word(ws) agree
at two distinct positions that are no more than 5m < 1d(w;), by conditions (C3) and (C2) of
the definition of critical path. So the shorter of word(w;) and word(ws) is periodic, contradicting
condition (C1).

O

Lemma 4.8. If m and m' are both nonperiodic matches remembered in configuration C, then

Aa(m) N Ac (m’) = (.

Proof. Suppose to the contrary that v € Ag(m) N Ag(m'). Assume wlog that m and m’ occur in
that order. So (v,w) is a critical path for m, and (v, w') is a critical path for m'.
Now by condition (C4) of the definition of critical path of m’, m occurs along this path at

depth at most '1'16”" so that, in particular, word(w) occurs along this path at depth at most

1 9 1 1 1
— —_— - — = ~m < —word(w).
16m+ <16m 2m) gm < gwor (w)

So word(w) is periodic, contradicting condition (C1) for m.

The bound on the number of nonperiodic matches is now immediate:



40

Theorem 4.9. The algorithm remembers at most ¢/(k — 1) nonperiodic matches.

Proof. If nonperiodic matches m;,...,m; are remembered in configuration C, then by lemmas 4.5
and 4.6,
t> Y |Ae(ms) 2 1(k—1)
1<i<l
or ,
f<¥-1
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5. Preprocessing algorithms

We now have two algorithms for matching a pattern trie against a text string, assuming that
the required preprocessing can be done in a reasonable amount of time. In this chapter, we will
show how to perform preprocessing for the simple algorithm (of chapter 3) efficiently. The problem
of preprocessing for the algorithm of chapter 4 is much more complex, and we will describe some
ideas that might be used in obtaining a good solution.

Throughout this chapter, we will use M to denote the sum of the lengths of the patterns,
and D to denote the length of the longest pattern.

5.1. Preprocessing for the simple algorithm

Preprocessing for the simple algorithm involves precomputing the memory function, the shift func-
tion, and the decisions of when to abort matches. We will examine each of these problems in turn
in the following subsections.

5.1.1. Computing the memory function

Since the memory function is defined for individual nodes without regard to the conﬁguratidn in
which the node (or match) is remembered, we can precompute the memory function on a node-by-
node basis. In other words, we could perform a depth-first traversal of the trie, keeping track of
the required information as we go, and label each node according to whether or not it has a critical
node.

We will need to use the following notion of cover.

Definition. We will say that a node w covers node v if word(v) is a proper prefix of word(w) and
d(w) < 2d(v).

The intent of this definition is that if a node v has a critical node w, then v has an ancestor
v' such that w covers v'. Thus, in order to compute the memory function, we will need, for each trie
node v, a list of all nodes that cover v. This computation can be performed by a straightforward
extension of the algorithm due to Aho and Corasick [1975].

In their work, Aho and Corasick show an algorithm to compute a failure function, defined
as follows. For a node v, the failure function f(v) is the deepest node w such that word(w) is a
proper prefix of word (v). Once the function f is constructed, the lists of covers that we need can

be computed as follows.



42

Algorithm 5.1.
Input. The trie of patterns, and the failure function [

Output. For each node v, a list Cover(v) of nodes that cover v.
Method.
Begin

for each node w do Cover(w) « 0;

for each node w in the trie do

begin
z «— f(w);
while d(z) > 3d(w) do
begin
Cover(z) « Cover(z) U {w};
s fla):
end
end

end.

Since the number of entries in the Cover lists could be as many as about M? in the worst
case, this algorithm runs in O(M?) time.

We are now ready to discuss the computation of the memory function p. Our algorithm
for computing p performs a depth-first search of the trie of patterns. It maintains a list of “depth
intervals,” each of which is a pair (d;,ds) such that each descendant w of the current node v
(in the depth-first search) in the range of depths d; through dj, (inclusive) has a critical node.
This list is maintained sorted in lexicographic order. When a node is visited in the process of
the search, its memory function is assigned. The depth-interval list is then augmented as follows.
When a node w covers the current node v, any descendant v’ of v that satisfies the depth bounds
d(v') > 4(d(w) — d(v)) and d(w) > 14(v') would have w as a critical node, by definition. Therefore,
the pair (4(d(w) — d(v)), 2d(w)) is inserted into the depth interval list for each such node w. The

children of the current node are then visited recursively.

Algorithm 5.2.

Input. The trie of patterns, with root r.
Output. The memory function p.
Data structures used. The list Dlist of depth-intervals.
Method.
Begin
Dlist — @;
for each node v do p(v) < 0;
Search (r, Dlist);
end.
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procedure Search (v, Dlist)
begin
Let (d;,dy) be the first interval on Dlist;
if dy < d(v) < dn
then p(v)+ 1;
if d(v)=dsn
then delete (di,dn) from Dlist;
for each w that covers v do
Add to Dlist the pair (4(d(w) — d(v)),2d(w));
for each child z of v do
Search (w, Dlist);
Undo the changes to Dlist;
end;

The first of the two loops takes O(M?log D) time, since each insertion into a sorted list
takes O(log D) time. Therefore, the above algorithm runs in O(M?log D) time.

5.1.2. Computing the shift function

The proof of time bound of the simple algorithm, as described in chapter 3, does not rely very
heavily on the amount of shift. In fact, it suffices to ensure that we do not consult the text in a
match that is currently remembered. This means, in particular, that we can get by with shifting by
an amount equal to the least depth at which word (v;) occurs, where v; is the rightmost remembered
match (or by Wmin, the length of the shortest pattern).

To compute this shift, we will first need some information on the structure of the trie.

Definition. The relation prefon trie nodes is defined as follows. For nodes z and y of the trie, we

will write z pref y if word(z) is a prefix of word(y).

Definition. For nodes z and y of the trie, we write z < y if
(i) z pref y, and
(i) for all nodes z, if z pref y, then z pref .

The following observations shed some light on the nature of the < relation.

Definition. The failure function of a node v (as defined by Aho and Corasick [1975]), denoted
f(v), is the deepest node w such that word(w) is a prefix of word(v).

It is evident from the definitions that for nodes z and y in the trie, ¢ < y if and only if
f(y) = 2. Moreover, the relation < is a tree, because

(1) it is acyclic;
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(2) if ¢ < zand y = 2, then f(2) = z and f(2) = v, implying that z = y because f is
well-defined; and
(3) the root r of the trie has label ¢, and so (trivially) r pref  for every node z. Thus r qualifies
as the unique root of the < relation.
The < tree can be obtained directly from the Aho-Corasick failure function f, since z = y if and
only if f(y) = =.
Now we will define, for each node v, a quantity we denote lpref(v), from which it will be
easy to compute the required shift.

Definition. For node v, the function lpref(v) is the depth of a shallowest leaf w such that v pref w,
and lpref(v) = oo if there is no such leaf w.

This function can be computed by a straightforward depth-first gearch of the =< tree, as
follows.

Algorithm 5.3.

Input. The < tree, and the trie with root r.
Output. The function lpref.

Method.
begin
for each node v such that r 2 v do
Ipref (v) « search(v)
end.

function search (v)
{ Returns the depth of the shallowest leaf w such that v pref w}
begin
p 00
for each node w such that v X w do
begin
if w is a leaf in the trie
then
p «— min(p, d(w));
8 « search(w); { Ignore returned value }
else
p « min(p, search(w))
end
lpref (v) « p;
return (p)
end
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This depth-first search takes O(M) time. Having constructed the function Ipref, it is easy

to compute the shift from a node v, as follows.

Algorithm 5.4.

Input. The trie with root r, the relation <, and the function lpref.
Output. The shift function s(v), defined to be the least depth at which word(v) occurs, or Wmin,

whichever is smaller.

Method.
begin
for each child v of r do
search(v, o)
end.

procedure search(v,n)
{n = min (Ipref(z) — d(z) : = is an ancestor of v)}
begin
8(v) « min (Wmin, {d(w) — d(v) : v < w},n)
for each child w of v do
search(w, min(n, lpref (v) — d(v)))
end

This algorithm is a depth-first traversal of the trie, in which every node is consulted once on
entry to procedure search and at most once in the minimum calculation of the first line of procedure
search. Therefore, the algorithm takes O(M) time.

5.1.3. Computing abort decisions

When a set of nodes is currently remembered by the algorithm, and a node is reached from which
there is no possibility of continuing to a successful match, the match must be aborted. These
decisions of when to abort a match can either be precomputed, or else computed as and when
they are needed. One possibility would be to preprocess the trie to compute a function action
such that, given the current node w and the rightmost remembered node v of the trie, action (v, w)
specifies some minimal-depth descendant of w at which word(v) occurs. We can compute action
in a manner similar to computing the shift function. We can then make use of action when making
abort decisions.

This raises the question of how much storage is needed for the function action. An obvious
bound is M2 /2, assuming that action(v,w) is defined for all possible nodes v and w. The observa-
tion that action(v,w) is meaningful only when d(w) < 1d(v) yields a better bound of M 2/8 cells
for the storage of action. It seems that even better bounds can be derived, because it is unlikely

that action is defined for every node pair v, w that satisfy d(w) < v,
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5.2. Preprocessing for the second algorithm

Many approaches are possible for preprocessing for the second algorithm. At one extreme, given
the pattern trie, we could precompute all the possible configurations that can arise from the trie,
as well as which matches to remember in each configuration. This approach seems to require an
inordinate amount of space. If at most { matches need to be remembered, then a simple estimate
of the number of configurations that could arise is O(N '), where N is the number of trie nodes. It
is certainly possible that the actual number of configurations is much less. Tighter bounds on this
quantity need to be established.

At the other extreme, we could keep the preprocessing to a minimum, and the decisions of
which matches to remember and how much to shift can be made during the match phase instead
of during preprocessing. This approach would require excessive computation in situations where
there are many short matches followed by short shifts. Of course, a whole range of other solutions
between these two extremes are possible.

We will assume a hybrid approach, one in which some of the computation is done as part of
the preprocessing and some during the match phase. In this section, we will address the problem
of determining, given a configuration C = ((v1,d1),-- .,(v1,0)) and a match m; € C, whether
m; has a critical path. An answer to this question provides part of the solution to the problem
of preprocessing. Other questions remain to be settled, including computing the shift from a
configuration, and precomputing abort decisions.

We begin by defining a potential critical path:

Definition. For a leaf v and a node z, we will say that a path (v,w) from v to an ancestor w of v
is potentially critical with respect to node z if w is a minimal-depth node such that
(1) word(w) is nonperiodic;
(2) d(w) > 3d@);
and (3) for some ancestor w' of z such that 1 < d(w') — d(w) < Ld(z), we have w pref w'.
It is clear from this definition and the definition of critical path (chapter 4) that if (v, w)
is critical with respect to some match m that ends at node z in configuration C, then (v,w) is
potentially critical with respect to z, because the conditions above are almost identical to the
conditions C1 through C3 of the definition of critical path. Let pe(v, z) denote the minimal-depth
node w such that (v, w) is potentially critical with respect to z. The function pc is well-defined, as
can be shown in a manner similar to the proof of lemma 4.7.
We will first exhibit an algorithm to compute the function pe.

Algorithm 5.5.

Input. The trie with root r, and the = relation.
Output. The function pc defined above.
Method.

begin




47

for each leaf v do
begin
Let wy,...,wp, be the ancestors of v, in order of
increasing depth, such that d(w;) > 8 and word(w;)
is nonperiodic for all 1;
low «— 8
for i — 1 to p do
begin
high « 2d(w;)
for each node w' such that w; pref w' and
1< d(w’) - d(w.-) < %—d(w,-) do
begin
for each descendant w” of w’ with low < d(w") < high do
pe(v,w") —w
end
low « high+1
end
end
end.

Suppose m, ending at node z, has a potential critical path (v,w) such that w has the
least depth possible. Then word(w) is nonperiodic, so let w = w; in the ordering of the above
algorithm description. By the minimality of depth of w, d(w;—1) < %d(z). Therefore, on the
i-th iteration through the for loop, the algorithm will have set low = 2d(w;—1) +1 < d(z) and
high = 2d(w;) > d(z), so that the algorithm sets pe(v, z) to w. Moreover, for any given v and =z,
the value of pc(v,z) is set at most once, because the values taken by low and high partition the
trie into disjoint depth ranges. Consequently, the algorithm finds all potentially critical paths for
nodes in the trie.

Now for a leaf v, the statement pc(v,w”’) «— w is executed at most M times, because the
values taken by low and high partition the trie into disjoint ranges of depths, and one such partition
is explored in each iteration of the second for loop. Thus the algorithm takes time O(Mt).

To explore the question of how “good” this algorithm is, consider the set of patterns specified
by p; = a®* %6, 1< <t, for sufficiently large n. All suffixes of p; of length at least ¢ + 1 are
nonperiodic. In the trie constructed from these patterns, for each leaf v;, 1< j < p-—1,andeach
ancestor w; of v;, with max(i + 1,18) < d(w;) < n, there are nodes z;41,.. ., along the paths
of pj+1,-..,pt such that pc(vj, z1) must be set to w;, for § +1 < 1 < t. Thus the number of pairs
(v,w) for which the function pc is defined is Q(Mt). Thus the above algorithm is almost optimal.

Now, given a configuration C = ((my,d1),.-., (m;,0)) and a newly constructed match myq1

that ends at node z, we may obtain critical paths for m;44 by examining, for each leaf v, whether
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(v,pc(v,z)) satisfies condition C4 of the definition of critical path. This can be done by checking,
for 1 < ¢ < [, whether the match m; occurs at the appropriate depth along this path, using the
pref relation. This check takes at most [ queries of the pref relation per leaf, so that the total
time taken is O(tl).
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6. Summary and open questions

We have shown how to extend the Boyer-Moore pattern-matching algorithm to handle mul-
tiple patterns without incurring excessive worst-case time and space costs. We have also derived
some results concerning preprocessing algorithms. It is worth pointing out that, as in the case of
the single-pattern version of the Boyer-Moore algorithm, our algorithms remain sublinear in the
average case when handling a large alphabet size. This is because, when the alphabet size is large,
the occurrence heuristic is used much more often than the match heuristic when shifting the trie,
so that not every text character is examined by the algorithm.

Our investigations raise several questions worth pursuing, and we will now discuss some of
them briefly.

6.1. Pathological examples

Conjecture 4.1 claims that, when we are allowed to construct patterns that yield periodic matches,
it is possible to construct sets of patterns that would cause any memory function that remembers
fewer than £ — 1 matches to behave arbitrarily badly in terms of text characters consulted. We will
now provide evidence to substantiate this conjecture. Given a number ¢ > 2 and ¢ > 0, we can
construct a set of ¢ patterns py,...,p: over the alphabet X = {ai,...,as,z} as follows. Let

P11 z(a1 .o at)"

and for 2 <1 <t,let

i—1

pi=(a1... a:;)*"z(az ... a1)*"z...z(aj41. - a_.,-)zej“ O S (- T a;_l)ei—l".

Every pattern in this set has a different rightmost character, so that the root of the trie has ¢
children and every other internal node has one child. The idea is to match this trie against the
pattern a;(ay . ..a:)™.

For instance, suppose ¢t = 4. The patterns in this case would be

p1 = z(a10za304)"
p2 = (a1020304)*" 2(2222)*" (a2030401)"
p3 = (a1a2a3a4)2"z(a2a3a4a1)2"‘z(zz2z)‘2”(a3a4a1a2)52”

and p4 = (alaga3a4)2"z(a2a3a4a1)2‘“z(a3a4a1az)zeg"z(zzzz)ea"(a4a1a2a3)‘a".
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Consider the computation when this trie is matched against the periodic text as(aiazasas)™ by
an algorithm that remembers no more than ¢ — 9 = 2 matches at any time. We can make two
observations:

(1) Every match is a substring of the text, and is therefore of the form

k .
a;...as(a16za3a4)%as ... ai;

(2) There are no aborted matches, because any aborted match must end at a node with at least
two children, and in the above trie the root is the only node meeting this condition.
When a match m is forgotten, the path of m in the trie will be reused before the algorithm makes
a shift of more than em. This suggests that the constant of linearity is about 1/e.

It seems reasonable to conjecture that any such set of patterns would have a “logarithmic”
structure, i.e., the matches produced would have to diminish in length by a multiplicative factor
so as to facilitate “reuse” of a forgotten match before making significant progress along the text.

This suggests two possible conclusions. One is that the algorithm of chapter 3 is fairly close
to optimal, since it does not remember any more than O(log D) matches, and since the longest
that a match can be is the height of the trie. The second conclusion is that a closer study of such
pathological examples might yield better criteria than those developed in chapter 4 for remembering
matches, so that, for example, we might be able to obtain a better time-space tradeoff without
having to remember periodic matches unconditionally through their right neighbourhoods.

6.2. Tries with bounded disparity

Throughout our analyses, our emphasis has been on attempting to prevent too much overlap
between matches. We assumed that any two trie nodes v and w, such that some prefix of word(v)
is a suffix of word(w), could contribute overlapping matches. This is probably too strong an
assumption. It is usually not very hard to construct examples with almost arbitrary overlaps when
the disparity in depths between the shallowest and deepest leaves is very large. However, the
question of what happens when this disparity is bounded (e.g., tries in which the shallowest leaf is
at least half as deep as the deepest) remains to be investigated. It seems likely that more efficient
algorithms can be constructed under the latter constraint.

6.3. A lower bound on the time-space product

Another question worth examining is how close our time-space tradeoff comes to the optimal.
To explore this issue, we would first need to define precisely the notion of a “right-to-left” style
algorithm as against the left-to-right Aho-Corasick algorithm, because the space needed by the
latter is merely that for a single node of the trie. A lower bound on the number of matches
remembered by an algorithm in this class, that runs in linear time, would then have to be proved.
An important aspect of such a definition would be to ensure that the Aho-Corasick machine could

not be somehow encoded into the construction.
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A related question is whether we can construct an algorithm that, given a pattern trie
as input, yields the fewest number of matches that need to be remembered by a “right-to-left”

technique without sacrificing the linear time bound.

6.4. Preprocessing issues

The simple algorithm of chapter 3 makes localized decisions of whether to remember a match
without regard to what other matches are currently remembered. This makes it easy to preprocess
the trie to precompute these decisions. The resulting memory function needs no more than O(M)
storage.

The algorithm for the general case, however, makes its decisions based on the current match
as well as the currently remembered matches. In this situation, we must first decide whether to
precompute all the decisions the algorithm has to make during the matching phase. At issue here is
whether there exist alternative strategies that might compute some of the decisions during the match
phase and still yield good results. Assuming that the memory function is entirely precomputed, a
simple estimate of storage needed for the memory function is O(M '), when remembering at most
I matches. But this bound is obtained assuming that all nodes can occur at all positions in a
configuration, which is certainly not the case. It would be interesting to derive a better bound than
this, by utilizing more of the structure of the trie.

6.5. Other extensions

One of reasons for remembering many nonperiodic matches is to circumvent difficulties due to
matches along long paths followed by short shifts due to the existence of a short pattern. It would
be interesting to make a fairly realistic assumption that the patterns do not differ greatly in length,
and derive better space bounds.

Another nice extension would be along the lines of Baker [1978] to obtain algorithms for
matching multidimensional patterns.
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