Processes Migrate in Charlotte

by
Yeshayahu Artsy

Hung-Yang Chang
Raphael Finkel

Computer Sciences Technical Report #655
August 1986

*
Processes Migrate in Charlotte

Yeshayahu Artsy
Hung-Yang Chang
Raphael Finkel

University of Wisconsin — Madison
Computer Sciences Department

August 1986

Abstract

Process migration in a distributed operating system is a facility to dynamically relocate processes
among component computers. In recent years, several studies have been conducted concerning the need
for process migration and the algorithms to perform it efficiently. Only a few successful implementations
of process migration have been reported.

A process-migration facility has been implemented in Charlotte, a message-based distributed operat-
ing system. Process migration policy is decided by a user-level utility called the Starter, while the mechan-
ism is handled by the kernel. A distributed squad of Starters can enforce regional and global process
migration policy. Several migration efforts can proceed in the system concurrently. Migration can be
aborted due to a change in the load; the migrating process can be rescued in many cases of machine failure.
Migration is transparent to the migrating process and to other processes communicating with it. Once a
process is migrated out of a machine, no trail of stubs or dangling links is left to interfere with future com-
munication.

This paper gives an overview of Charlotte, discusses the design of the process migration facility,
details its implementation, and gives some preliminary cost results. Process migration was implemented in
mid-1985 and has been used experimentally since then.

*This work was supported in part by NSF grant MCS-8105904 and by DARPA contracts N00014-82-C-2087 and N0OO14-85-
K-0788.

Processes Migrate

CONTENTS

1. Introductionccoceeemrcennes ettt et s teste s aer e asens st et snasanesnents creenesnenanenan frerseareenen et sae et e s s
2. Charlotte environmento.vcevvenererrersrerecssnennes et s e et er st e e e eesterenenreeereenans
2.1. System Componentsc...... ettt e sbs st ens rreererreeennenees crre e es
2.2. Interprocess COMMUIMICALONeccvermrermssseessonsisserssrsassessmmssessssesseessssessresssssssarsssssnsasasensens
2.3. Kernel Design and Implementationc..coeveceevererserssennnnen ceersresearatssnsesessnesneerananasnresererass
3. Process Migration: Design decisions
4. Implementation Details

4.3. Migration Protocol OVerviewc.ccceeevenen. e
Phase 1: Negotiationcccccvveervnreresrereernencsncans ceerrerreeereens

4.3.1. Phase 2: Transfercocecvrnveenneens revr e saeaes e reanaerees reereee et st saenes

4.3.2. Phase 3: Clean-upcccocereervereenee reeesserareenennnnrne ceeteecene et eeaes ererseeeree e ese s beaesranaene

4.3.3. Final commentscccoveeereernvrnene ettt bt e etan crreesennnenes rereesienerereenes

5. Cost of Migrationccerevcerverensuen sereneseneresenenetseresrensenaes cereeeereser s creeersernserenes
6. Conclusion ceereneenaas creestesereenererten s aeesreaen rearereresaseesneseanrans trtebrerreenae s enas rreseesnssresraesreseees
7. Acknowledgementsceeereereeneenen rersee st sasenenneeneseene ctvreerenrnes reestest s renenanaees evererseeerrrenene
8. REfEreNCeS ..ovvvreerreervarrrrrrerereraeesennseesesvessnsenans crrrsessnnres et reeeesarereranene reeeersaseenaesnresaastesaeans

OO NN P W=

S e T e I e e el e
N NN R R WY = O

Processes Migrate 1

1. Introduction

In a distributed operating system, distribution of processes to processors has two different but related
motivations: to improve parallelism of applications and to share load among processors. An application
programmed for parallel processing wishes to distribute its cooperating processes in order to maximize
their parallelism and minimize communication delay. Load sharing among processors tries to distribute the
processes in order to reduce the ‘‘wait-when-idle’” situation, in which processes wait in one processor
while another processor is idle. There are other motivations as well, such as to bring a process to the pro-

cessor that has a special device or to move an urgent process to a lightly loaded processor.

Distribution of processes can be achieved through initial placement, which is relatively cheap due to
the simple state transfer involved [1]. However, process placement cannot fully cope with the dynamic
nature of distributed systems, as loads and service needs may fluctuate in unforeseen ways. Process
migration means to transfer a process, at any time in its life cycle, to another processor. Process migration

lends itself to dynamic resource allocation in distributed systems.

There are many complexities involved in the mechanism of process migration. A process must be
detached from its current environment, transferred with all its relevant context information, and reinstalled
in the new environment. This facility requires remapping location-dependent values in the process context,
redirection of communication channels, and handling incoming messages while the process is moving.
Moreover, such a facility must not affect the behavior of the migrating process or other processes at all. It
is interesting to notice, therefore, that only a few implementations of process migration have been reported
[2,3,4,5]. Charlotte [6] offers a uniform, location-transparent message-based communication facility. In
this environment, process migration mainly requires readdressing the process’s communication links.
However, Charlotte also offers a powerful and flexible IPC, so process migration has to cope with many

complexities that may arise due to various communication scenarios during the transfer of a process.

A different class of problems arises in the realm of migration policy. A process migration policy has
to dictate when to migrate which process to where, based on some notion of profitability. Many policies
have been proposed and studied using analytic and simulation tools {7,8,9, 10,11, 12]. Process migration
in Charlotte was designed as a real-system tool to evaluate such algorithms. In this paper we discuss

mainly our solution to the mechanism issues and how our facility supports migration policy dictated by

) Processes Migrate

higher-level facilities.
The motivation for incorporating a process migration facility in Charlotte is threefold:

o to provide a testbed for the study of load sharing policies and migration algorithms in a distributed

operating system.
® to enhance Charlotte’s function as a testbed for research in distributed algorithms [13].

° to demonstrate the feasibility of an efficient implementation in the context of a powerful but complex

IPC mechanism.

Our main design goal was to embed the process migration facility into Charlotte without changing its major

features and structure and without affecting the behavior of processes and users.

As a result, the Charlotte process migration facility has several important aspects. First, it clearly
separates the decision-making (policy) facility from the migration mechanism. The former is relegated to a
user-level utility process, while the latter is embedded in the kernel. This separation allows using and test-
ing different policies without modifying the kernel. Secondly, migration is transparent to both the migrat-
ing process and the processes connected to it. While a process is migrating, other processes can continue
to communicate with it (although the communication will suffer a small delay) or even destroy or move
their connections with it. The migrating process sees the same execution environment before and after
migration. Thirdly, migration can be aborted in the middle; the migrating process can even be rescued
under certain circumstances when either the source or the destination machine crashes (for instance, if the

destination machine crashes before the source machine has committed itself to the migration).

This paper is organized as follows. The next section overviews Charlotte, its major components and
IPC mechanism. In Section 3 we discuss design issues of our process migration facility, and in Section 4
we detail its implementation. Section 5 presents an evaluation of execution-time and code costs. Some

conclusions are drawn and future directions are discussed in Section 6.

2. Charlotte environment

Charlotte is a distributed operating system for the loosely-coupled Crystal multicomputer [14]. The
current configuration of Crystal consists of 20 VAX-11/750 machines connected by an 80 Mbps Pronet

token ring. Charlotte was designed (1) to explore operating system design that provides an inexpensive but

Processes Migrate 3

rich environment, and (2) to serve as a testbed for research in distributed algorithms. We summarize here
the major components of Charlotte, its IPC mechanism and its implementation. More detailed discussion

has appeared elsewhere [6, 15, 16].

2.1. System Components

Charlotte consists of a kernel that runs on top of a communication package called the nugget [17]
and a battery of user-level utility processes. An identical copy of the kernel executes on each machine.
The kernel supports processes and communication links, implements the interprocess communication (IPC)
and process migration mechanisms, and provides a round-robin short-term scheduling. Charlotte does not
support paging.

The nugget provides reliable transfer of variable-length messages (limited to 2K bytes). The inter-
face to the nugget is via procedure calls. The nugget interrupts its client upon message arrival and

transmission completion by invoking a handler. Charlotte allows only the kernel to access the nugget.

Utility processes are distributed throughout the network. They cooperate to allocate resources, pro-
vide higher-level services such as file and connection services, and enforce control policies such as
medium to long-term scheduling, process placement and migration. For reasons of efficiency and reliabil-
ity, a service can be provided by a squad of processes that implement one utility; members of a squad all
run copies of the same code but divide responsibilities and load among themselves. Processes (including
utilities) communicate with each other by exchanging messages. The location of a given utility, or any
member of its squad, is transparent to all its clients. Processes communicate with the kernel by kernel

calls, some which are restricted to special utilities.

Process migration is performed through the cooperation of the KermnJob and Starter utilities. The
KernJob is the only utility that runs on each machine. It provides a path between its kernel and processes
that need control over that kernel’s process. The Starter manages memory allocation, process creation,
periodic (medium to long-term) scheduling, and process migration. Members of the Starter squad receive
periodic load information from the KernJobs of each of the machines they control. Other utilities such as
the File Server, Switchboard, and Command Interpreter perform services with no direct relationship to pro-

cess migration.

4 Processes Migrate

2.2. Interprocess Communication

Processes communicate by exchanging messages over links. A link is a logical, full-duplex connec-
tion between two processes, each of which has a capability to one end of the link. Both processes con-
nected by a link have the same rights over it: to send and receive messages, to cancel a request to send or
receive a message, to move the link to another process, or to destroy the link. Both processes can do any of

these operations concurrently.

Processes never refer to each other directly, but only through the links that connect them. The pro-
cess identifier and machine location of the other end of a link are invisible to the process, although the ker-

nel maintains full, up-to-date information about the links held by processes it controls: their logical

address® and states.

The Charlotte IPC mechanism is a descendent of Arachne [18], which itself employs a distributed
IPC mechanism based on Demos [19]. Charlotte extends this IPC in several ways. Process-level commun-
ication is:
° non-blocking: A process can continue executing after posting a send and/or receive request on any

or all of its links. The process can later interrogate the result of these requests.

° unbuffered: The kemnel transmits a message from the sender’s address space to the receiver’s space
without intermediate buffering. For efficiency reasons, the kemel maintains a small cache of mes-
sages received from remote senders before the matching local receive has been posted. Processes

are oblivious to the existence of this cache and to the way cache misses are handled.

® of unlimited size: A process can send or receive a message of any size, from zero to its entire
address space. Both the receiver and the sender are notified when a message overflows the receiver’s

buffer.

In addition, the Demos link concept was modified so that

! A logical address in Charlotte is the 3-tuple: machine number (1 to n, where n is the number of
machines in the system), process identifier, and link number.

-

Processes Migrate 5

. links are duplex, in the sense that both processes can perform all link operations concurrently, as

explained above, and

. all interprocess links are identical: no special-case links (such as reply or request links) are sup-

ported.
Here is a summary of the Charlotte IPC primitives.

MakeLink (var endl, end2 : link)
Create a link and return references to its ends. (The creator then can transfer one end to a client
or a server or transfer both ends to two processes.)

DestroyLink (myend : link)
Destroy the link at one end. The process at the other end is notified of this event. That process
can still obtain the result of previously posted communication requests, but cannot post new ones.
The other end is disposed only when that process explicitly calls DestroyLink.

Send (L : link; buffer : address; length : integer; enclosure : link)
Post a send operation on a given link end, optionally enclosing another link end.

Receive (L : link; buffer : address; length : integer)
Post a receive operation on a given link end. L can be a specific link or AnyLink.

Cancel (L. : link; d : direction)
Attempt to cancel a previously-started Send or Receive operation. L can be AnyLink.

Wait (L : link; d : direction; var e : description)
Wait for an operation to complete. L can be a specific link or AnyLink. The direction can be
Sent, Received, or either. The description returns the success or failure of the awaited operation,
its link, direction, number of bytes transferred, and the enclosed link (if any).?

GetResult (L : link; d : direction; var e : description)

Ask for the same information returned by Wair, but do not block if the operation has not com-

2 SendWait and ReceiveWait primitives, which combine Send and Receive with Wait, are also support-
ed. .

6 Processes Migrate

pleted. GetResult is a polling mechanism,
2.3. Kernel Design and Implementation

The kernel is structured into three modules, each of which executes a Modula process [20]. (We
refer to these processes as fasks, to distinguish them from Charlotte user-level processes.) The envelope
task performs kemel calls or dispatches them to other kernel tasks; when all kernel tasks are idle, the
envelope chooses a user process to run until its CPU quantum expires, it gets blocked, or an interrupt
occurs. The fsa task implements the IPC facility, including a protocol for flow control and error recovery.
The communication tasks manage packet delivery from and to the nugget layer and the fsa task. Kermel
tasks communicate with each other by means of queues of work requests, implemented by the atomic queu-

ing instructions of the VAX.

The flexibility and power of our IPC have a price: complexity. The number of possible scenarios per
each link is enormous, taking into account all (possibly concurrent) process operations and kernel actions.
Some of these scenarios are very complicated. (Consider for example the case where both ends of a link
send messages to each other; before they both receive each other’s message, one process tries to cancel its
message and to move the link to another process, while the other process tries to destroy the link.) Design-

ing a protocol that can handle all the cases efficiently was a difficult task indeed.

The fsa task drives the protocol, using a finite state decision table. Each link end has a state, which
includes the state of its send and receive ‘ports’. Given the current state and an input request, which is
either a kemnel call or an inter-kernel message, the next state and action are decided. The action may
include a message to a remote kernel. To reduce the huge number of states, and to overcome the sparse-
ness of the table, the fsa is decomposed into four conceptually independent automatons, each handling a
different function: Send, Receive, Destroy, and Move. The details of the protocol and its complexity are

elaborated elsewhere [15]

3. Process Migration: Design decisions

The design of process migration in Charlotte is based on the following principles.

Processes Migrate 7

Policy-Mechanism separation

In order to be able to test and evaluate different policies, migration policy is outside the kernel in
user-level utility processes. Since the Starter already controls process creation and memory allocation, it
was the natural candidate to manage process placement and migration. The Starter was modularized so
that the migration policy module can be easily replaced by various researchers. The Starter is structured to
let each Starter process decide regional policy in the cluster of machines it controls and coordinate with its

peers to achieve global policy.

The kernel performs the mechanism of process migration. It accepts policy decisions from the Star-
ter through a simple kerel call interface. The kernel transfers the address space of a migrating process and
its associated kernel data structures, marshalling and remapping them as necessary. If a requested migra-
tion cannot be completed, for instance due to process termination or machine failure, the kernel notifies the

Starter appropriately. The kernel does not automatically initiate or refuse a migration by itself.

The kemnel also provides statistical data about its internal resources, CPU and communication loads,
process and link activities. The statistics collected are as broad as possible, to support all possible parame-

ters in the Starter’s migration algorithm,
Mechanism-Mechanism independence

The mechanisms of both statistics collection and process migration are designed not to interfere with
other kemnel mechanisms, in particular the IPC mechanism. Some interaction between the mechanisms
does exist. For instance, a process might be unable to migrate in some circumstances because of its com-
munication state. Also, process migration can take advantage of existing facilities of the IPC mechanism.
However, the migration protocol does not intermingle with the IPC protocol. Thus, each mechanism is

simpler and can be modified independently.
Transparency

Since location transparency is one of the principles of Charlotte, it was natural to extend this princi-
ple to process migration as well. Neither the user nor any process, including the migrating process, is
aware of the fact of migration (except for a short delay in response). In particular, processes connected to

the migrating process are not affected at all. They can send messages across the links, or even move or

8 Processes Migrate

destroy them, while the process and its links are relocated; in fact, their kemels see the links connected to

the migrating process as simply being moved, as they are when moved by a Send call.

In addition, we want the migrating process to be minimally affected. Hence it is ‘frozen’, that is, its
activity is stopped, only for the shortest time possible.
Reliability issues

Process migration in Charlotte is reliable and can survive any single machine crash (and in many
cases multiple machine crashes). Since the kernel uses the nugget’s reliable message delivery, migration is
reliable ‘by default’ when no crash occurs. When the source machine or the destination machine crashes,
the surviving machine will abort the migration. However, migration is not totally fault tolerant, in the
sense that the migrating process cannot continue to run in all cases. If one of the two machines involved in
migration crashes while the process’s state is temporarily inconsistent, then it is simpler to destroy the pro-
cess rather than to restore its state. When a machine that has the remote end of a link held by the migrating

process crashes, migration completes without any recovery effort.
Concurrent, multiple migration efforts

Since each Charlotte machine is autonomous, migration should concern only the two machines
directly involved. Thus, any two machines can be engaged in a migration effort, independently of other

machines or even other migration efforts between the same machines.

There are two problems to overcome in dealing with multiple migrations. First, when several
processes are transferred to a single machine, the machine needs to have sufficient resources for all these
processes. Therefore, during the migration negotiation phase (see below), a machine reserves the memory
and kernel data structures needed for the migrating process before agreeing to accept it. Second, when two
processes connected by a link migrate concurrently, each kernel might have a wrong conception as to
where the other end of the link resides. However, this case is equivalent to the case when two processes
concurrently move a link they share, and we can employ a similar protocol to the one used in that case
{15]. Another issue of concern in multiple migrations is to avoid flooding a lightly loaded machine or
draining a heavily loaded machine. This issue belongs to the migration policy, and is left entirely to the

Starter.

Processes Migrate 9

No stub left behind

A process is transferred entirely along with all its kernel data structures. We do not want to leave
any process or link skeleton in the source machine to handle future communication directed to the process.
Since every kernel maintains absolute information about the links of its controlled processes (as opposed to
hints), all kernels maintaining the remote link ends of a migrating process are told the new addresses before
the migration can complete. Likewise, all incomplete transactions initiated by or directed to the migrating

process are transferred to the destination machine for completion.

4. Implementation Details

The process migration facility was fit into the production Charlotte kemel as three independent
modules: one to collect the necessary statistics, another to interface with utilities, the third to perform the
process transfer. The first module executes as a separate task that awakes periodically to perform sam-
pling; the others are invoked by the fsa and the communication tasks (and thus are synchronized with IPC-

related events). We describe each of them in turn,

4.1. Statistics Gathering
Statistics are collected in three different modes:

(@) event sampling, in which events such as message completion or process termination are instrumented

to record their statistics.

(b) interval sampling, in which a sample is taken of the current CPU load (expressed in the number of
ready-to-run processes), and the network load (expressed in the number of messages awaiting

transmission) at fixed time intervals.

(c) periodic statistics, in which the average of several interval samples is calculated at a larger time

interval.
The kernel collects and delivers the following statistics:

. machine load, consisting of the number of processes and links (whether currently active or not), the

average CPU load, and the average network load.

10 Processes Migrate

e process resource usage, consisting mainly of the average and total CPU and network utilization of
each process, its state, and its total communication (expressed in number of packets) to local and

remote processes.

® link statistics, for the most active links per process, giving totals of the number of packets sent and

received over each link.

To simplify the transfer of statistics, the kemel collects them in a memory area provided by the
KernJob. In this way, the kernel needs only to signal the KernJob at the end of a period, but no data need
to be transferred. The KernJob then transfers the statistics to the Starter as a message. The intermediation

of the KernJob is necessary, since the Starter squad is distributed throughout the network.

Members of the Starter squad exchange information about the load of the machines they control. For
example, we have implemented Barak’s gossiping algorithm [21], which avoids broadcast and quickly cal-
culates the estimated global load. Each Starter process records the loads of the machines it controls as well
as recently-received load information from other Starters. Each Starter process derives a new estimate of
the current system load. It then sends to one of its peers (selected randomly) its new estimate, its load
information and the most recent information received from others. Barak has shown that in the case where
information is exchanged between kemels that control a single machine a piece, each kernel can know the
load of every machine in the system, and can derive an estimate that is very near to the ‘real’ average load,

both in a very short time.

4.2, Kernel-Utilities Interface
Four new kernel calls were added.

HandShake (what : action_type, buffer : address)

called by the KernJob to request the kernel to start or stop collecting statistics.

MigrateOut (who : process, where_to : machine)
called by a Starter process, either directly, if it resides in the source machine, or otherwise

indirectly through the KemJob of that machine.

Migrateln (which : (process, machine), Accept : boolean, memory_blocks : list of (address, size))

called by a Starter process either directly or via the KernJob, as before. Its purpose is to let the

Processes Migrate 11

Starter that controls the destination machine approve or disapprove a migration request that has
been announced to the Starter by the kernel of the destination machine, or to preapprove a migra-
tion attempt after negotiating it directly with the Starter that controls the source machine. The
tuple (process, machine) refers to the source machine. If the Starter agrees to accept a process,
the Starter furnishes a list of memory blocks, one for each of the process’s segments (whose size

is known from the migration request);” the process’s image will be copied into these blocks.

CancelMigration (which : (process, machine))
tries to retroactively terminate a MigrateOut or a Migrateln request. It fails if the kernel has

already committed the migration (even if it has not yet been completed).*

The return code of each of these kernel calls specifies only whether the requested operation can be
started. When it gets around to it, the kernel notifies the appropriate Starter, via the KernJob, that statistics
have been collected, a migration offer has been received, or that a migration has been completed or
aborted. The notification mechanism appears as a special communication link interface to the KemJob.
The kernel puts an appropriate message in an imaginary link owned by the KernJob: when the latter does a

Receive from AnyLink, this message is received before any other pending message.

4.3. Migration Protocol Overview

After a process is selected by a Starter to migrate out, migration is performed by the kernel in three

phases:

(a) negotiation phase, in which the kernel of the source machine makes a migration offer to the kernel of

the destination machine, and from then to the Starter that controls this machine.

(b) transfer phase, in which relevant kernel data structures are assembled and transferred together with

the address space of the process.

* In the VAX implementation, each process has two segments.

4 CancelMigration has not been implemented, and Migrateln is used only to approve or disapprove a
previously received migration offer. However, the protocol supports both features; they will be put in the
kernel soon.

> The kemel scheduling algorithm has also been modified to run the KernJob and Starter preferential-
ly over other processes.

12 Processes Migrate

(c) cleanup phase, in which the process’s state is completely removed from the source machine, and the

new image is installed and activated in the destination machine.

Phase 1: Negotiation

The migration offer prepared by the kernel specifies the size of the process’s segments, its link table
and its current active links. It includes also some information about the process’s CPU and network utiliza-

tion (totals and averages) and the process’s age.

If the Starter has preapproved this migration (that is, called MigrateIn in advance) and the kernel has
the necessary resources for the new process, then the kernel replies with a migration accepted message.

Otherwise, the kernel delivers the details of the offer to the destination Starter, via the KernJob. Accep-

tance or refusal is returned to the source kernel.$

Upon acceptance, the kernel also reserves the necessary resources and forks an internal task to
accept the process’s image across the network. If migration is refused, both kernels clean up their

migration-related state, and the Starter processes of both ends of the migration are notified.

The migration-accepted message also serves as a commit point for both kernels. Once sent, the desti-
nation kernel cannot cancel the migration. Once starting the second phase, the source kernel cannot cancel
it either. Until then, it can send a migration regret message to the other kernel, for instance due to an
abrupt termination of the the migrant process, or a sudden decrease in its load. In such a case, each kernel

cleans up state information relevant to the migration and notifies the Starter of the migration abortion.

Machine failure before the commit point has minimal affect on migration. If one of the two
machines crashes, the other cleans up its state. The migrating process either is not transferred (if the desti-
nation machine crashes), or dies (if the other machine crashes). If another machine crashes, only the

process’s links that point to that machine need to be destroyed.

6 In the current version, only one migration effort at a time per machine is supported. Hence, if the
polled machine is already involved in a migration rendezvous (even in evaluating a former migration offer
from another machine), the kernel refuses the offer right away.

Processes Migrate 13

4.3.1. Phase 2: Transfer

At this phase the migrating process is ‘frozen’, in the sense that its activity is suspended.” This phase

consists of three steps, executing partly in parallel.

(@) Image transfer. The kernel of the source machine transfers the image of the process in as many phy-
sical packets as needed as fast as the other machine can receive them. These packets are copied by

the network controller on the other machine directly to the space reserved earlier by the kernel.

() Link Update. This step imitates the link moving for any of the migrating process’s links. The kernel
of each of these link ends is told the new logical address of the link. Each of these kemels ack-
nowledges this message. Should any of the machines fail at this point, the source kernel simulates an
acknowledgement followed by a link destruction request for all the links pointing to that machine.

Once all acknowledgements are collected, the source kernel can safely transfer all the process’s data

structures, since no more messages will be received across its links.8

Until this point, all messages received for the migrating process at the source machine are buffered
by the kernel. The headers are transferred with the process at the next step. The data are not
transferred; the other kernel simulates a kernel-buffer cache miss when the migrating process is
ready to receive them. From this point, the destination kernel might receive messages for the migrat-
ing process, even before the process’s image and state are fully received. Hence, it buffers them

until the next phase.

During this step the link states of the process are temporarily inconsistent. Some of the kernels
already know the new addresses, some don’t; some of them might have sent messages to the source
machine, others to the destination machine. More important, the two kernels involved in the migra-

tion have partial information of the link states of the migrating process. Hence, should either the

7 The process is frozen during the former phase should it create or receive new links. Such a link
modification request is buffered until migration completes. Destroying links or giving them away does not
require that the process be frozen immediately.

8 We considered an alternative in which the destination kernel tells all other kemels the new ad-
dresses, in order to reduce the source kernel’s work. However, this method would delay the source kernel
in ransferring the process until it can be sure that no more messages will be received across its links.

14 Processes Migrate

destination machine or the source node crash, the other machine must kill the migrating process. We
prefer this option over negotiating retransfer of possibly lost messages and link address updates,

because it is simpler and, in any case, the situation is very unlikely to occur.

(¢) State transfer. All kernel data structures relevant to the process, in particular its process descriptor,
link descriptors, descriptors of pending or completed events, and received messages, are packaged in
as many physical packets as needed and transferred. The source kernel marshals only the necessary
data items; in particular, it dereferences pointers that use kernel virtual or physical addresses. The

other kernel reinstalls those pointers appropriately upon receipt.

4.3.2. Phase 3: Clean-up

This phase is short and simple. When all packets have been sent, the source kernel deletes all data
structures relevant to the migrating process and notifies its Starter. When all packets have been received,
copied and/or marshaled back, the destination kernel adds the new process to the appropriate (ready or
waiting) list. All buffered messages are reactivated, starting with those received by the source kernel. The

Starter is told that migration has completed.

4.3.3. Final comments

We have touched on situations when a machine crashes during the various phases of migration, and
shown an intuitive solution for each case. Recovery from a crash (with respect to the migration) always

puts the machine back to a consistent state, although sometimes the process must be terminated.

Our protocol correctly handles complex situations, such as when a process migrates concurrently
with other processes linked to it. The problem in such a case is whom to tell the new link addresses, or

rather how to guarantee that all the destination kernels know the correct link addresses when each migra-

tion is finished.

We have mentioned that the protocol handles messages received during the migration. But what
about link motion or destruction during that time? Until the second and during the third phases, such
requests are delivered to the lower-level communication protocol; during the second phase, such requests
are buffered (that is, delayed until the third phase). Since migration is guaranteed to complete within a cer-

tain (short) time, delaying these requests cannot introduce a risk of deadlock or error.

Processes Migrate 15

As mentioned before, policy is encapsulated within one module of the Starter. This modile inter-
faces with other modules via a single procedure called at every event reported by the kernel that returns a
policy decision. Researchers who want to investigate different process migration policies need only code

this module and link it to the Starter.

5. Cost of Migration

We present here some initial measurements of the migration facility. The result of this measurement
should be viewed from the perspective of Charlotte environment. Charlotte resides on top of the nugget,
which incurs an interprocessor reliable message delivery delay of 11 ms for each 2k byte packet. Charlotte
itself is layered (kernel and utilities), and the kernel itself is multi-tasked with a task switch overhead of 0.4
ms. A Charlotte message incurs an overhead of 23 ms for a pair of send and a receive operations on two
processes on two machines. It takes 10 ms if both sending and receiving processes are on the same

machine.
The following are results of about 100 migrations (for each test) performed in a two-node network:

(1) It takes, on average, 323+11 ms to migrate a “‘simple’” process (a linkless process of about 32 KB

image size) between two nodes. This time includes the negotiation phase.

(2) Each additional 2 KB (that is, one communication packet) of image size adds 12.2 ms to the aver-
age migration time.

(3) Each additional link held by the migrating process adds insignificantly to the elapsed time and to
the kernel overhead if the remote link end resides in the source node, and 9.9 ms otherwise.

(4) The kernel spends, on average, 12512 ms migrating a process out, and 48+5 ms migrating one in.

(5) Without the migration facility, the kernel code size is 120 KB and kernel data size is 90 KB. This
includes kernel tracing and debugging code and run-time facilities that support debugging. The
migration facility adds another 40 KB to the code and 20 KB to the data. An additional facility for

tracing the migration protocol (as well as to collect some of these results) requires 12 KB.

(6) The kernel time overhead in collecting statistics is about 1% of overall elapsed time.

16 Processes Migrate

6. Conclusion

Charlotte is intended to be used as a testbed for distributed applications. Process migration comple-
ments the initial placement facility of Charlotte. The combination makes Charlotte a flexible execution

environment with full fledged dynamic resource allocation capability.

The migration facility is itself a research vehicle to study load sharing policies for distributed appli-
cations. The design of the migration facility meets the above goal by separating policy from mechanism

and by providing an inter-machine statistics-gathering facility.

The policy and mechanism of process migration are implemented at different levels of the operating
system. The policy is encoded in a user level utility process while the mechanism is embedded in the ker-
nel. This design allows an easy replacement of process migration policies without modifying the kernel.

Also, the kernel implementation of the mechanism ensures high performance of such operations.

The Charlotte kernel maintains a rich set of statistics on process and machine activities. The statis-
tics include per-process and per-machine resource utilizations sampled frequently, an IPC event summary,
and medium-term load averages. The statistics are supplied by each kernel to its policy process via the

standard message interface. The policy process can reside on any remote machine.

Our implementation of the migration mechanism is straightforward in most cases but tricky in the
re-routing of links for the migrating process. This is because re-routing interacts with the IPC protocol,
which contains abundant complex cases due to the asynchronous, cancellable, and connection-based nature
of the IPC. Our implementation circumvents the problem by adding the migration protocol in a way that
requires no modification of the original IPC protocol. Both concerned kernels of a migrating process tem-
porarily buffer both control and data messages received for the links of the migrating process. The source
kernel then simulates the link-moving paradigm to tell the holding kernels of remote link ends the new link
address. And then, those buffered control and data messages are fed through the IPC mechanism in the

destination kernel to restore communication.

Projects are underway investigating the use of the process migration and process placement facilities

of Charlotte, to enchance the performance of distributed applications.

Processes Migrate 17

7. Acknowledgements

Process migration in Charlotte was inspired by our discussions with Amnon Barak from the Hebrew

University of Jerusalem. We owe our gratitude to Cui-Qing Yang for modifying the Charlotte utilities to
support process migration. Miron Livny has also contributed some valuable suggestions. We would like to
thank other members of the Charlotte group for helpful comments, especially Marvin Solomon and
Michael L. Scott.

8. References

1.

10.

11.

12,

13.

14.

15.

16.

17.

D. Eager and E. D. Lazowska, ‘‘Dynamic Load Sharing in Homogeneous Distributed Systems,”’
Technical Report 84-10-01, University of Washington (October 1984).

A. B. Barak and A. Litman, ‘‘MOS: A Multicomputer Distributed Operating System,”” Software —
Practice and Experience 15(9) pp. 901-913 (September 1985).

M. M. Theimer, K. A. Lantz, and D. R. Cheriton, ‘‘Preemptable Remote Execution Facilities for the
V-System,”” Proc. of the Tenth Symposium on Operating Systems Principles, pp. 2-12 (December
1985).

M. L. Powell and B. P. Miller, ‘‘Process migration in DEMOS/MP,”’ Proceedings of the Ninth ACM
Symposium on Operating Systems Principles, pp. 110-118 (10-13 October 1983). In ACM Operat-
ing Systems Review 17:5

E. R. Zayas, ‘‘Implementation and Evaluation of a Process Migration Facility,”” Thesis proposal,
CMU, Computer Science Dept. (March 1984).

R. Finkel, M. Solomon, D. DeWitt, and L. Landweber, ‘“The Charlotte Distributed Operating Sys-
tem: Part IV of the first report on the crystal project,”” Computer Sciences Technical Report #502,
University of Wisconsin—Madison (October 1983).

M. Livny and M. Melman, ‘‘Load balancing in homogeneous broadcast distributed systems,” Com-
puter Network Performance Symposium, pp. 47-55 (April 1982).

M. Livny, “The Study of Load Balancing Algorithms for Decentralized Distributed Processing Sys-
tems,”” Ph.D. thesis, Weizmann Institute of Science, Israel (August 1983).

R. M. Bryant and R. A. Finkel, ‘A Stable Distributed Scheduling Algorithm,”’ Proc. Second Inter-
national Conference on Distributed Computing Systems, pp. 314-323 (April 1981).

J. Stankovic, *‘Stability and Distributed Scheduling Algorithms,” IEEE Trans. on Software
Engineering SE-11(10) pp. 1141-1152 (October 1985).

P. Krueger and R. Finkel, ‘‘An Adaptive Load Balancing Algorithm for a Multicomputer,”” Com-
puter Sciences Technical Report #539, University of Wisconsin—Madison (April 1984).

H-Y. Chang and M. Livny, *‘Priority in Distributed Systems,”’ Proc. IEEE 1985 Real-Time Sympo-
sium, pp. 123-132 (December 1985).

R. A. Finkel, A. P. Anantharaman, S. Dasgupta, T. S. Goradia, P. Kaikini, C-P Ng, M. Subbarao, G.
A. Venkatesh, S. Verma, and K. A. Vora, “‘Experience with Crystal, Charlotte, and Lynx,”” Com-
puter Sciences Technical Report #630, University of Wisconsin—Madison (February 1986).

D. DeWitt, R. Finkel, and M. Solomon, ‘“The Crystal multicomputer: Design and implementation
experience,”” Technical Report 553, University of Wisconsin—-Madison Computer Sciences (Sep-
tember 1984). To appear, IEEE Transactions on Software Engineering

Y. Antsy, H-Y Chang, and R. Finkel, “‘Charlotte: design and implementation of a distributed ker-
nel,”” Computer Sciences Technical Report #554, University of Wisconsin—Madison (August 1984).

Y. Artsy, H-Y Chang, and R. Finkel, ‘‘Interprocess communication in Charlotte,”” IEEE Software,
(July 1986). Accepted subject to revision

R. Cook, R. Finkel, D. DeWitt, L. Landweber, and T. Virgilio, ‘“The Crystal nugget: Part I of the
first report on the Crystal project,”” Technical Report 499, Computer Sciences Department, Univer-
sity of Wisconsin (April 1983).

18

18.

19.

20.

21.

Processes Migrate

M. H. Solomon and R. A. Finkel, ‘“The Roscoe distributed operating system,”’ Proc. 7th Symposium
on Operating Systems Principles, pp. 108-114 (December 1979).

F. Baskett, J. H. Howard, and J. T. Montague, ‘‘Task communication in Demos,’’ Proceedings of the
Sixth ACM Symposium on Operating Systems Principles, pp. 23-31 (November 1977).

N. Wirth, ““Modula: A language for modular multiprogramming,’’ Software — Practice and Experi-
ence T(1) pp. 3-35 (1977).

A. B. Barak and A. Shiloh, “‘A Distributed Load Balancing Policy for a Multicomputer,”’ Software
— Practice and Experience 15(8) pp. 725-737 (August 1985).

