PARALLEL SUCCESSIVE OVERRELAXATION METHODS
FOR SYMMETRIC LINEAR COMPLEMENTARITY PROBLEMS
AND LINEAR PROGRAMS

by
0. L. Mangasarian & R. De Leone
Computer Sciences Technical Report #647

June 1986

2. Preliminary Background
In this section we give some background results needed to derive our parallel SOR
algorithm for solving the symmetric linear complementarity problem and linear programs.

We begin first with a special case of the serial SOR Algorithm 2.1 of Ref. 1.

Algorithm 2.1 (Serial SOR algorithm for (1)) Let 2° > 0. For ¢ =0,1,2, ..., let

v

Sl — (zi —wE Mz + g+ Ki(! - z;‘)))+ (3)

where w > 0, and {E'} and {K*} are bounded sequences of matrices in R"*", with each

E* being a positive diagonal satisfying
E' > al (4)
for some o > 0 and such that for some v >0

y(WE) ™! + K — M/2)y > |ly|l;, Vi, Yy € B (5)

Remark 2.2 If we let
L+D+U:=M (6)

where L is the strictly lower triangular part of M, D is the diagonal of M and U is
the strictly upper triangular part of M, then the iteration (3) is an explicit one if we set
K*= L, U or 0. More specifically for Ki=1L or U and E* = D™! (assuming that D is
positive) iteration (3) gives the projected SOR algorithm studied in Ref. 1 and condition
(5) becomes the familiar SOR relaxation factor condition: 0 < w < 2. When K =0 we
have the projected Jacobi method (Ref. 1). However K ' may be any matrix as long as
(5) is satisfied, in which case the iteration (3) can be considered as solving 2 (hopefully
simpler) linear complementarity problem.

An important useful modification of Algorithm 2.1 has been proposed by Subramanian
(Ref. 6) in which instead of taking 2*t1 of (3), any other point in the nonnegative orthant

is taken with a value of f not exceeding f(2*t!). This leads to the following algorithm.

Algorithm 2.3 (Modified serial SOR algorithm for (1)) Let z° > 0. For 1 =0,1,2, ...,
let
s = (2 —wE (M2 + g+ K'(s' - #))) (7)

3

where w > 0 and the sequences of matrices {E*} and {K'} satisfy all the requirements
of Algorithm 2.1. Choose 2! > 0 such that f(2**1) < f(s%).

The important point to note about Algorithm 2.2 is that is allows a whole class of
algorithms to be based on Algorithm 2.1. Typically, 2'+1 of Algorithm 2.2 is obtained
from s* by some sort of line search. .

The convergence of Algorithm 2.1 was established in Theorem 2.1 of Ref. 1, and
the convergence of Algorithm 2.2 in Theorem 4.1 of Chapter 3 of Ref. 6. We combine
these results into the following fundamental convergence ,result under no-assumption on

the matrix M other than symmeftry.

Theorem 2.1 (Convergence of serial SOR algorithms for (1)) Let M be symmetric.
Each accumulation point of the sequence {#'} of Algorithm 2.1 or 2.3 solves the linear
complementarity problem (1).

Note that Theorem 2.1 does not guarantee the existence of an accumulation point for
the sequence {z°}. To do that we need additional assumptions (Ref. 1, Theorem 2.2) such

as the following.

Theorem 2.2 (Strong convergence of serial SOR algorithms for (1)) Let M be symmetric

and positive semidefinite, and let
Mz+gq>0 forsome z€&R" (8)

Then, the sequences {z'} of Algorithms 2.1 and 2.3 are bounded and have accumulation
points. Each accumulation point of {z*} solves (1).
With this background material we are prepared to introduce our parallel SOR algo-

rithm for solving the symmetric linear complementarity problem (1).

3. Parallel SOR for the Symmetric Linear Complementarity Problem
The key idea of our approach here is to consider K i of Algorithm (2.1) as a sub-
stitution operator which replaces the old data 2* by the new data 2*+1, If for example
Ki:= L, where L is the strictly lower triangular part of the whole matrix M, then z;:“
replaces z; during the computation of zé"'l for all £ > j. Now, consider instead the
following procedure. Break M into k blocks of rows as follows:
My,
M;
M =: o2 (9)
My,
where the blocks M, correspond to the variables zy; and {I,I2,...,Ix} is a consecutive

partition of {1,2,...,n}. Now partition Mj, as follows
My, =: [My1; Mjg] (10)

where I; is the complement of I; in {1,2,...,n}. Thus My,1; is a principal square sub-
matrix of M with elements M,,, r € I; and s € I;. We further partition My, as
follows

My, =: Ly;5; + D1 + Unyyg (11)

where Ly;; is the strictly lower triangular part of My, Di;1; its diagonal part and
U1, its strictly upper triangular part. Thus for example if k& = 3 we would have the

following decomposition of M

MIl M1111 MI112 M;lIa
M= MIz = M1211 Mszz MIzla (12)
My, My, My, M

Now let K* of Algorithm 2.1 be defined by a block diagonal matrix as follows

L

. L
K =K:= B (13)

LIk_Ik
where each Ly, 1, is a strictly lower triangular matrix defined in (11).

5

Algorithm 2.1 can now be performed for each row block I;, j = 1,...,k, simultane-
ously, that is in parallel. Note that this is not a block Jacobi iteration. More specifically

we have the following algorithm.

Algorithm 3.1 (Parallel SOR for (1)) Let {I;,I3,...,Ix} be a consecutive partition
of {1,2,..n}, let the diagonal D of M have positive elements and let 29 > 0. For
1=0,1,2,..., let

2t = (z’}j ~wDp} (My2' + qr,+ Loy (27 - z;;j)))+ .

j=1,uk

(14)

where

(15)

2
0 << gip, i —-
SIS 1+ o | M| [Dee

Remark 3.2 Iteration (14) can be performed in parallel on k processors. The new value

2'*t1 must then be shared between the k processors.

Remark 3.3 1If all My ;. are zero then 0 < w < 2 for all j, which is the standard
SOR relaxation factor range. This corresponds to k uncoupled linear complementarity
problems. If all M I;I; are small relative to Dy, , which corresponds to a loosely coupled
linear complementarity problem, the upper bound on w given by (15) is close to 2.

We state now a parallel SOR version of Algorithm 2.3.
Algorithm 3.4 (Modified parallel SOR for (1)) Let the assumptions of Algorithm 3.1
hold. For 7 =0,1,2,..., let

i_(i__D-—lMi L i i
Sp; = *fr; — W I,-I,-(Lz +qi;+ I,-I,-(SIJ- z.l,-))

i=1,..,k

+ (16)

where w satisfies (15). Chose 2i*1 > 0 such that f(2+!) < f(s%).
We can establish the convergence of Algorithms 3.1 and 3.4 by appealing to Theorem

2.4. We have then the following convergence result.

Theorem 3.5 (Convergence of parallel SOR algorithms for (1)) Let M be symmetric.
Each accumulation point of the sequence {z'} of Algorithms 3.1 and 3.4 solves the linear

complementarity problem (1).

Proof By Theorem 2.4 we only need to establish that condition (5) is satisfied by the
choice (13) for K*, E*:= D! and w satisfying assumption (15). We have

y((WE)™ + K' — M/2)y

1
=§y(2w_1D +2K - M)y

k
1 o -
=5 > ur, (2w Dy, +2K1, — M1,)y

r==1

]‘ 9, = ¢
=52 YL (2w™'Dy,1, + 2Ky1,1, — My, 1,)y1, — ZMI,I. vI,
r=1 8F#r '

k
1 _ .
=3 >y, |(w ' Dy, + 2Ly, ~ (L1, + Dr1, + Ur,1,))vr, — Z My, 1, y1,

r=1 i sF#r
R
=3 Z yr, | (2w™' = 1)Dr,1, y1, —- ZMI,I, i,
r=1 8#r

(Because L = UT)

k
1
=3 >, [(200”1 —-1)Dy1, - MI,T,] [y{]
r=x] yIr

(2&)—1 - 1)D1111 '—MIJ}

=%[y] H > |yl

| —-Mkak (2(4)"1 —1)Dp 1,

where last inequalilty holds for some 4 > 0 because of the positive definiteness of the
symmetric n X n matrix (preceding the inequality) which is induced by its row diagonal
dominance (Ref. 5). The row diagonal dominance is precisely a consequence of assumption
(15). 1

Having established that the parallel SOR Algorithms 3.1 and 3.4 can be considered as
special cases of the general serial Algorithms 2.1 and 2.3 respectively, the following strong

convergence result is a direct consequence of Theorem 2.5.

Theorem 3.6 (Strong convergence of parallel SOR algorithms for (1)) Let M be sym-

metric and positive semidefinite and let assumption (8) hold. Then the sequences {z'} of

7

Algorithms 3.1 and 3.4 are bounded and have accumulation points. Each accumulation

point of {z*} solves (1).

Remark 3.7 Minor changes in the proof of Theorem 3.5 allows us to have a different
wj for each j = 1,...,k in (14). In particular all we need is that for 7 = 1,...,k, w; must

satisfy
2
0 < w; < min (17)
el; 1+ sg} lME:;VDt’.e

This results in larger stepsizes for Algorithms 3.1 and 3.4.

We now turn our attention to the parallel solution of linear programs.

4. Parallel Solution of Linear Programs

The key idea here is to find the least 2-norm solution of a linear program by converting
the problem to a positive semidefinite linear complementarity problem (Refs. 2-3) and to
use the parallel SOR procedures proposed in the previous section. We will present a
parallel implementation here of the linearly convergent iterative scheme proposed in Ref.
7.

We consider the linear program
m;m cx subjectto Az>b, >0 ‘ (18)
where ¢ € R*, b€ R™ and A € R™** and its dual
max bu subject to ATu<¢, u>0 (19)

It is known (Refs. 2-3) that Z is the unique least 2-norm solution to (18) if and only if z

is the unique solution to the quadratic program
min ¢z + ;:1:2: subject to Az>b, >0 (20)
z
for all € € (0,] for some & > 0. The dual to the quadratic program (20) is

max — -;—zz +bu subject to v =ex — ATu+e¢, (v,v) >0 (21)

z,u,v
To solve (20) for a fixed positive € we shall use the parallel SOR procedures of Section 3
applied to its dual (21) with the variable z eliminated through the dual constraint
= (ATu+v—c)/e (22)

and thus obtaining the dual problem

min f(u,v):= (min 1 ”ATu-Jrv—c“;——sbu (23)
u,v

(u,0)20)>0 2

which is precisely of the form (2) with a positive semidefinite matrix and hence is equivalent
to the symmetric linear complementarity problem (1) on R™th with M:= v20(u,v)

and ¢:= v0(0,0). We shall now describe a linearly convergent sequential paralle]l SOR

9

procedure for solving (23) based on Ref. 7 and the results of Section 3. We first need a

definition.

Definition 4.1 (Approximate solutions to (23) and (20)) For a fixed positive € any point
in R,*"_“'h is an approximate solution to the dual quadratic program (23) and is designated
by (u(€), v(€)). The corresponding z(e) in R" defined by (22) with (u,v) = (u(e), v(€))
is an approximate solution to the quadratic program (20). The residual r(e) associated
with (u(€), v(€), z(€)) is defined by

r(e):= [a(e)o(e) + u(e) (Az(e) — B)| + || (b — Az(e)) , ||,
+[1(= 2(2)) , Jloo]

Note that for an € > 0 and an approximate solution (u(e), v(¢)) to (23) and a

(24)

corresponding approximate solution z(e) to (20), r(¢) = 0 if and only if (u(e), v(e)) is
an exact solution of (23) and z(e) is the unique exact solution of (20).
We are prepared now to state and prove a linearly convergent parallel SOR procedure

for computing the least 2-norm solution of the linear program (18).

Theorem 4.2 (Linearly convergent parallel SOR for linear programs) Assume that the
linear program (18) is solvable and that b # 0. Let {eo, €1,...} be a decreasing sequence

of positive numbers such that
€i11 = pe; for some p € (0,1) (25)

and let {u(e;), v(e:), z(e:)} be a corresponding sequence of approximate solutions to (23)
and (20) satisfying Definition 4.1 and obtained by either of the parallel SOR Algorithms
3.1 or 3.4 applied to (23) and such that their residuals as defined by (24) satisfy

r(eiv1) < vr(es) (26)

for some v > 0 such that
v < pt/? (27)

Then the sequence {z(e;)} converges to Z, the least 2-norm solution of the linear program

(18) at the linear root rate
2(e:) — 2|, < 6(v/u*/?)' for i (28)

10

for some constant § and some integer .

Proof See Theorem 3.7 of Ref. 7. 1

5. Conclusion

We have presented a framework for the parallel solution of symmetric linear comple-
mentarity problems and linear programs. The proposed SOR algorithm is best suited for a
tightly-coupled shared-memory multiprocessor such as the one to be acquired by the Com-
puter Sciences Department at Madison. However we plan to test the proposed algorithm
on the existing loosely-coupled 20-processor token-ring-connected Crystal machine (Ref.
8) of the Computer Sciences Department in order to develop efﬁc‘ient computational im-
plementations of our algorithm. Because we have been able to solve sparse linear programs
of size 20,000 variables and 5,000 constraints by the serial version of our SOR procedure
in 78 minutes on a VAX 11/780 (Ref. 2), we are hopeful of solving substantially larger

problems by our parallel approach.

11

References

1. MANGASARIAN, O. L., Solution of Symmetric Linear Complementarity Problems
by Iterative Methods, Journal of Optimization Theory and Applications, Vol. 22, pp.
465-485, 1977.

2. MANGASARIAN, O. L., Normal Solutions of Linear Programs, Mathematical Pro-
gramming Study, Vol. 22, pp. 206-216, 1984.

3. MANGASARIAN, O. L., Sparsity-Preserving SOR Algorithms for Separable Quadratic
and Linear Programming, Computers and Operations Research, Vol. 11, pp. 105-112,
1984,

4. MANGASARIAN, O. L. and DE LEONE, R., A Parallel Successive Overrelazation
(SOR) Algorithm for Linear Programming, 12th International Symposium on Math-
ematical Programming, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts, August 5-9, 1985.

5. ORTEGA, J. W., Numerical Analysis A Second Course, Academic Press, New York,
New York, 1972.

6. SUBRAMANIAN, P. K., Iterative Methods of Solution for Complementarity Problems,
University of Wisconsin-Madison, Ph.D. Thesis, 1985.

7. MANGASARIAN, O. L. and DE LEONE, R., Error Bounds for Strongly Convez
Programs and (Super)Linearly Convergent Iierative Schemes for the Least 2-Norm
Solution of Linear Programs, University of Wisconsin-Madison, Computer Sciences
Department Report No. 631, 1986.

8. DEWITT, D., FINKEL, R. and SOLOMON, M., The CRYSTAL Multicomputer: De-
sign and Implementation Ezperience, University of Wisconsin-Madison, Computer
Sciences Department Report No. 553, 1984. (To appear in IEEE Transactions on
Software Engineering.)

12

