Parallel, Hierarchical Software/Hardware
Pyramid Architectures

by

Leonard Uhr
Computer Sciences Technical Report #646

June 1986






Parallel, Hierarchical Software/Hardward
Pyramid Architectures

Leonard Uhr

Computer Sciences Department
University of Wisconsin
Madison, Wisconsin 53706

Technical Report #646
June 1986

This paper will be published as the first chapter in the proceedings of the NATO Workshop on

Pyramids held in Maratea, Italy, May 1986 (V. Cantoni and S. Levialdi, Eds., Pyramid Image
Processing Systems, Berlin: Springer-Verlag).






PARALLEL, HIERARCHICAL SOFTWARE/HARDWARE PYRAMID ARCHITECTURES

Leonard Uhr
Department of Computer Sciences
University of Wisconsin
Madison, Wisconsin 53706, USA

Introduction

This paper examines pyramid-structured software/hardware systems, both programs and
multi-computers. It explores how efficient parallel computers can be designed. It poses the
extremely difficult problem of perception, and briefly surveys the major alternative ap-
proaches. It examines the basic structures with which pyramids can be built, and describes
pyramid multi-computers. It sketches out how pyramid hardware can be used to execute pro-
grams, with special emphasis on the "recognition cone" structures being developed to model
living visual systems. It briefly suggests how pyramids can be augmented and embedded into
larger software/hardware structures. In addition, it gives a short history of massively parallel
hierarchical pyramid structures. )

Serial and Parallel Computers, General-Purpose and Specialized

The classical serial 1-CPU Von Neumann computer is capable of scanning over any possi-
ble program graph (simply because any graph can be decomposed into a set of 1-node
graphs). But it is guaranteed to take the longest possible time.

The only way the single-CPU Von Neumann computer that has for the past 40 years been
such a tremendous success can be substantially further improved in power and in speed is to
combine large numbers of individual computers into parallel networks. This is because the
VLSI technologies that are about to pack increasing millions of transistors onto each tiny sili-
con chip are fast approaching the speed of light.

A great variety of different types of multi-computers are being investigated, designed, and
built. But it is not at all clear whether it will be possible to design and build multi-computer
networks that will execute any and all programs with high efficiency and sufficient speed. It
may well be necessary to settle for reasonable trade-offs between power, generality,
efficiency, speed, and cost-effectiveness.



True Data-Flow Hardware That Is Isomorphic to the Program’s Structure

Possibly the ideal is to map the program into an isomorphic data-flow hardware. This
would be equivalent to building the appropriate finite state automaton that was equivalent to
that program. Brains appear to be systems of this sort, since they are networks of neurons
through which data flow. However, it is not at all clear that such a system could be generally
usable over a wide range of different programs.

There are a number of other interesting possibilities. They are just beginning to be investi-
gated, and much work will be needed to develop any of them. |

Systems that Flow Data Through a Smaller Sub-Graph

Rather than build hardware whose structure is isomorphic to the entire program graph, a
much smaller hardware graph can be constructed. Now that graph can be used to scan over
the larger program graph. This is exactly what is today done with the single-CPU computer.
Since it is a 1-node graph any program graph can be decomposed into it, for successive pro-
cessing. (Note that this gives the slowest possible execution, since the single processor can
do only one thing at a time, serially.)

In order to increase speed, the number of nodes in the hardware graph must be increased
substantially. It is not known whether this is possible in the general case, although there is

one striking commercial success - the linear pipeline of processors that give today’s "super-
computers" their great power at the vector processing so common in scientific computing.

Systems that Use a General Topology that Can Execute ALL Programs Efficiently

The program can be represented as a graph, and the multi-computer can be represented as
a graph. The problem becomes one of finding a multi-computer graph into which all program
graphs can be mapped with reasonable efficiency. Since it is not known what different graph
topologies are needed for different programs of interest, it is impossible to judge whether
such a system can be realized. It may well be that there are a small number of basic struc-
tures that programmers could use to compose large programs.

Systems that Use Switches to Reconfigure Among Appropriate Topologies

Switches might be incorporated into the hardware network, so that it could be reconfigured
to handle each different program input to it. A generally reconfigurable system is in theory
possible. But the cost in switches would probably be too great. (These costs increase as the
network grows larger, and will quickly dominate the cost of the entire system.)

> B




Networks that Contain Suitably Specialized Regions

Several different structures can be combined together, to build the larger network.
Reconfiguring switches can be used to link the individual structures together in a variety of
different ways, as directed by the program.

Some General Issues

Different programs will, inevitably, be of different sizes and with different amounts of
parallelness. Therefore the only way to use a general-purpose multi-combuter efficiently is to
multi-program, so that different programs will use otherwise idle resources. This further
complicates the problem.

However, it may well be that percent utilization is unimportant. Transistors and chips get
cheaper and cheaper. Increasingly important will be speed and power.

This paper concentrates on program-structured specialized systems, along with attempts to
make them more general. The perception program motivates and suggests the hardware.

The Perception Problem Posed, and its Extreme Difficulty

The perceptual recognition and description of complex real-world objects is an extremely
difficult problem. Probably half of the many billions of neurons in brains of higher mammals
are involved with perception. The speed at which perception takes place is incredibly fast.

The Massively Parallel and Shallowly Serial Perceptual System

The human visual system has about 10,000,000 cones and 100,000,000 rods in each eye.
The cone system is sensitive to color and shape. The rod system is sensitive to change,
whether of intensities in the spatial domain or of position in the temporal domain. Cones are
concentrated in the central fovea, where shapes are perceived. Rods extend out to the peri-
phery, and thus serve as an early warning system.

The living perceptual system is capable of recognizing and describing complex scenes of
complex objects in from 30 to 800 milliseconds. But the basic cycle time of a neuron - that
is, the amount of time it takes to bridge the synapses over which neurons fire other neurons -
is roughly 1 or 2 milliseconds. This means that the serial depth of the perceptual system is
only a few hundred steps at most, and possibly only a few dozen. The visual system appears
to be organized in layers of neurons that converge and diverge information, as they transform
that information, moving inward from retina to primary and then to a number of secondary

-3 -



visual areas, and then other parts of the cortex (see Uhr, 1980, 1986¢ for more extended ex-
aminations of these issues).

The System Must Recognize and Describe Scenes of Complex Moving Objects

To recognize, describe, and track real-world objects as they move about and interact with
one another in real time, the perceptual system must be able to process each input '(e.g., each
frame in a succession of TV images) in only 30 milliseconds or so. This means that the serial
depth when processing moving images is especially shallow.

The System Must Handle Enormous Amounts of Information in Complex Scenes

Real-world scenes typically contain a number of different objects. Psychological experi-
ments indicate that we human beings are able to recognize objects and their distinguishing
and salient characteristics when there are dozens in the single scenc. This is a largely non-
conscious process that takes place in a few hundred milliseconds.

The System Must Recognize Highly Structured Objects Over Unknown Variations

Each object is complex, with a large number of individual details, some of which are of
importance and must be noticed. Each instance of each object can vary in 2 wide variety of
ways. The linear transformations (translation, magnification, rotation) are only the simplest.
Far more important, and more difficult to handle, are the unknown non-linear transformations
effected by atmospheric distortions, muscles that twist, emotions, and aging. Consider the
many ways that a face can change as it smiles, frowns, or looks tired or discouraged.

The Major Alternative Software Approaches

A large number of programs have been written to recognize objects (variously called im-
age processing, pattern recognition, and computer vision). Most of these fall into one or

another of the following general types.
A) Programs that Combine Results of Independent Procedures (Feature Detectors )

In the simplest case, the image is processed with a number of procedures (often called
feature-detectors), and their results combined into a decision as to what might be there.

A highly parallel 9-dimensional array structure is often used to realize such systems.

Y.



When executed on hardware arrays, these systems typically use a variety of simple, usually
local, features. (Non-local features can take extremely long and inefficient sequences of
operations.)

These systems are usually considered to be bottom-up, first applying feature detectors,
then combining their results, and finally choosing among alternative possibilities. But they
can also apply feature-detectors in a top-down manner, or be given a top-down component.

They can be extremely fast. But they are relatively weak, and suited only for the recogni-
tion of small, simple objects that vary little. |

B) Programs that Assess Syntactic-Like Structures Over Primitives

A number of programs have been developed that attempt to use 2-dimensional extensions
of grammars, giving tree-like structures. However, there are major unsolved problems when
trying to generalize grammars that have been developed for linear strings to handle 2-
dimensional objects. In a linear string only one substring can be linked (concatenated) to the
previous substring. That is, each substring touches only two other substrings, one on either
side. In sharp contrast, in a 2-dimensional space a thing (feature or object) might join to a po-
tentially infinite number of other things.

Such syntactic recognition systems usually expect and can handle only images made up of
perfectly connected simple primitive curves. This means that they work only on carefully
pre-processed or toy data (e.g., line drawings of simple objects).

C) Programs that Match Stored Models with Appropriate Regions in the Image

Probably the most commonly proposed type of system for "high-level" computer vision is
one that attempts to match models of each possible object in a top-down manner. Typically,
this kind of system serially matches models (commonly called "frames," or "schemata") to
sub-regions of the image. The model is, essentially, a graph - and, for real-world objects, this
will be an extremely complex graph. The image must be processed, usually in a bottom-up
manner, until it is converted into a similar graph. This usually means that its edges, angles,
contours, and regions must all be identified and correctly linked to one another.

This is extremely difficult (if not impossible - consider the prefectly recognizable images
that can be constructed by randomly erasing most of the regions and edges). In any case, the
system is, essentially, faced with a graph-matching problem. (Note that in the general case
this is an NP-complete problem, since the graph that models the object must be matched with
a sub-graph of the graph into which the image has been transformed.)

This kind of system is typically given only a few models, and matches them separately,
one by one. It is usually considered to be top-down. Such systems can handle only a few ob-

-5 -



jects, and are inevitably slow.
D) Programs that Hierarchically Examine Successively Larger Structures

Highly parallel, logarithmically serial "pyramid/cone" structures appear to offer real hope
of overcoming the problems of other types of vision systems.

They can make use of local operations that are executed in parallel everywhére. This
means that they can be quite general-purpose and robust, looking for and being able to
respond to, unanticipated objects. They can combine bottom-up and top-down processing,
moving upward, downward, and laterally through the pyramid. Therefore they can be look-
ing for the most expected objects, while at the same time monitoring the environment for the
unexpected. And they can keep gathering information and testing tentative hypotheses until
enough information has been accumulated and assessed to come to a decision.

They can combine and apply many models, that are all embedded in the pyramid, in a rela-
tively efficient way. If each model is turned into a tree-like graph, with the proper number of
levels, these graphs can be embedded into a pyramid so that each hardware level executes
about the same number of instructions. That is, the model can be decomposed into a hierar-
chy of procedures that are embedded into hardware to load-balance across levels. Now all the
different models of different objects can be squashed together. Wherever they have nodes
(that is, processes) in cominon these can all be combined, so that the process need be execut-
ed only once. This will often be the case, especially at the lower levels, where the same gra-
dient, edge, texture, and region detectors will be common to and appropriate for recognizing
many different objects. They therefore appear to be capable of handling many objects, poten-
tially with speeds great enough to handle the real-time perception of moving objects.

Developing Programs and Architectures for Fast, Efficient Execution

A large variety of different network topologies have been developed for multi-computers.
An enormously larger variety is possible, since the network’s underlying topology can be any
possible graph.

The program graph must flow smoothly through the computer structure. That is, the flow
of processes that makes up the program must be decomposable into the graph or graphs that
make up the multi-computer that will execute those processes.

This means that for perception, the program must examine large 2-D images, on the order
of 512 by 512, 1,024 by 1,024, or even larger. For scenes of moving objects, each image
must be processed in only 20 to 50 milliseconds, or even less.

In the general case the perceptual system can’t anticipate what might be there, or where. It

-6 -




must look everywhere, and therefore must have a massively parallel bottom-up component to
its processing.

The following begins to describe the several major types of multi-computer architectures
that have been developed. It emphasizes structures that are most appropriate for perception,
presenting them in a natural progression that leads up to an examination of pyramids. The
section below on augmenting pyramids will briefly explore Then we will examine additional
architectures with which pyramids can fruitfully be combined.

The Conventional 1-CPU Serial Computer (SISD)

The classic single-CPU serial computer is, essentially, a 1-node graph.
Any program graph can be flowed through it, but serially. Except for very small and sim-
ple problems, or toy demonstrations, this is much too slow for perception.

I-Dimensional Strings: Pipes (MISD), Rings, Arrays (Synchronized SIMD)

Several individual computers can be linked together to form a string. That is, each com-
puter links to two other computers (except for the first and the last, which each link to only
one). Systems of this sort have been built with as many as 1,024 processors.

Possibly; the simplest way to use such a system is as a linear pipeline through which infor-
mation is streamed. Each computer in the pipe repeatedly executes the same process, but on
different sets of information - much as each worker in an assemblyline repeatedly executes
his assigned task. Two major types of specialized pipelines have been designed, built, and
successfully commercialized.

The first type is the number cruncher "super-computers” like the Crays and Cybers (see
Riganati and Schneck, 1984). They are given pipelines of 10 or so very powerful 64-bit float-
ing point processors to operate on vectors of numbers.

The second type has been specialized for image processing. These include PICAP (Kruse,
1976) and the Cytocomputers (Sternberg, 1978; Lougheed and McCubbrey, 1985), and also a
number of commercial pipelined scanning arrays like the deAnza and Vicom. Each has 1 to
1,024 8-bit processors, specialized to do 8-bit fixed-point arithmetic on grey-scale and color
images. Additional hardware allows for very fast scanning through the 2-dimensional array
that contains an image - whether the raw image, or a transformed representation.

When a P-node pipe is kept full and busy, the system can get up to P-fold speed-ups,
minus the time needed to fill and to empty the pipe.

The last node of a pipeline of this sort can be linked back to the first, forming a ring. The
system can now cycle and pipe the last processor’s results back around into the first, and this

cycling can continue potentially without limit.

-7 -



Alternately, the 1-dimensional line can be used to process a 2-dimensional array of data,
by piping each row (or column) of the 2-dimensional array through the appropriate different
processor in the line. For example, the PIXIE-5000’s 1 by 1,024 array of 1-bit processors can
process a 1,024 by 1,024 array in 1,024 instructions (taking 80 microseconds in toto).

2-Dimensional Arrays (Most are SIMD, But They Needn'’t Be)

The multi-computers that have actually been built with the largest number of processors
(by far) are the 2-dimensional SIMD arrays. These are especially appropriate for perception,
where the basic input is the very large 2-dimensional image.

The 2-dimensional array can directly process 2-dimensional data. It can also process
larger arrays, and N-dimensional arrays.

It is important to mention a much smaller 2-dimensional array of each far more powerful
64-bit floating point processors - the number cruncher ILLIAC-IV (Barnes et al., 1968). This
was the largest and most powerful computer built during the early 1970s.

A number of 2-dimensional arrays with a much larger number of processors have been
built more recently. These include the 96 by 96 CLIP4 (Duff, 1976), the 64 by 64 DAP (Red-
daway, 1978), and the 128 by 128 MPP (Batcher, 1980). Each computer links directly to its 4
or 8 nearest neighbors. All execute the instruction broadcast by a single controller, and there-
- fore run in SIMD mode. All use relatively simple (but general-purpose) 1-bit processors,
with 4 to 8 processors on each chip.

This kind of array can be given more and more computers, potentially without limit. For
example, a 1,024 by 1,024 TV image can be input to a 1,024 by 1,024 array of computers, so
that each contains one cell of the image. Now each processor can compute functions of local
regions of information surrounding the spot stored in its memory. Successive functions will
therefore compute successively more abstract results about this local region. Several proces-
sors can be used, if desired, to process each region. For example, each of 8 different oriented
edges could be looked for at the same time, if 8 processors were assigned to each spot.

An array of processors smaller than the image array can iterate serially through the larger
array. For example, a 1,024 by 1,024 array of computers can process a 4,096 by 4,096 image
array by storing a 4 by 4 subarray in each computer, and serially iterating through the 16
spots. Alternately, each of the 16 1,024 subarrays can be processed in turn.

Arrays have very good local connectivity. When they are given a single controller this is
nicely combined with very good global coordination, so that a massively large number of lo-
cal operations can all be executed at the same time. For example, the program can in one step
look for a local feature like a gradient, edge, color, or texture everywhere, in many thousands
or millions of places. When several controllers are used, one for each subarray or reassign-
able under program control, the array can execute several different processes, as appropriate,

-8 -




in different regions of the scene.

Arrays can become quite slow when they must make global assessments, or pass informa-
tion over great distances. This is so because the only way that an array can compute a func-
tion of information stored at several different locations is to shift all the pieces of information
to a single processor. To do this a serial sequence of shifts must be effected. In the worst
case this can mean, in an N by N array with direct links from each processor to its 4 square
neighbors (to North, South, East and West), up to 2N shifts for each piece of information.

Pyramid of Arrays (SIMD-MIMD)

A pyramid can most simply be described as a stack of successively smaller arrays that are
linked together by a tree. For example, a 16 by 16 array might have each 2 by 2 subarray
linked to the corresponding cell of an 8 by 8 array of parents. These similarly link to a 4 by 4
array, and this linking scheme continues toa 2 by 2 and a 1 by 1 (apex) array.

Pyramids can be designed in a large number of different ways (see Uhr, 1984, 1986c¢). For
example, pyramids with square bases can converge 2 by 2, 3 by 3, or N by N, or N by M then
M by N. They can have rectangular or hexagonal bases, and converge appropriately. They
can converge different amounts at different levels. They can have overlap, with each node
linked to several parents, or no overlap, with each node linking to only one parent. Since in-
formation can be passed laterally through the array links at each layer, overlap can be simu-
lated quite easily by a non-overlapped pyramid. Similarly, an overlapped pyramid does not
need links to siblings, which can be reached by moving down to children, and then back up.

Each array in the pyramid can execute all array operations efficiently. In addition, passing
information up and down between arrays needs greatly reduced logarithmic distances, rather
than the linear distances needed within an array. For example, whereas a 1,024 by 1,024 ar-
ray needs up to 2,046 shifts to send information, when augmented with a pyramid (which
adds less than 1/3d more computers) it needs at most 20. This is a crucial difference in terms
of the extremely small amount of time available for real-time perception of real-world ob-
jects.

The major purpose of a pyramid is not to communicate, but to compute. Rather than sim-
ply pass information, or average and compress information, moving up the pyramid, the pro-
cessors can be programmed to process and transform that information in any way desired.

Using Pyramid Software/Hardware Systems

Pyramid-like structures can be built and used in several different ways.
Possibly the simplest is the quad-tree, which is a tree superimposed over an array of infor-

-9 -



mation. (Note that this is not a pyramid, since it has neither lateral links to siblings or overlap
that allows for communication via children.) Wherever a parent node’s children all contain
the same value that value can be passed up to the parent and the children eliminated. The
resulting quad-tree will (to the extent that images do not have many high frequency varia-
tions) be much reduced in size, yet it can be used to reconstruct the image exactly.

Possibly the simplest way to use a true pyramid is to successively reduce the image by
averaging. This can serve for data compression. It also makes possible a quick global assess-
ment at a higher level, so that the program can then zoom down and look in more detail at
particular regions that it judges may be of interest. Or the program can apply feature-
detectors of the appropriate frequency to each of the different levels. ,

Rather than average the raw image, the program can apply a feature detector, e.g., for gra-
dients, edges, or textures, and then successively average their output.

A number of relatively efficient pyramid algorithms have been developed for such opera-
tions as region growing, blob counting, median filtering, and contour and region linking (Ci-
bulski and Dyer, 1984; Miller, 1984; Stout, 1983, 1985; Tanimoto, 1983). These make use of
the array links when appropriate, and of the up and down tree links to span larger distances.
It is important to emphasize that the converging tree structure moving toward the pyramid’s
apex, which on the one hand gives the pyramid its good logarithmic information-passing dis-
tances, can cause severe bottlenecks when too much information must be passed. For exam-
ple, pyramids, because of their tree structure, are poor for sorting and permuting information.

Using Pyramid Multi-Computers to Execute "Recognition Cone" Processes

The approach that I and my associates have been taking to using pyramids (Uhr, 1971,
1973, 1975; Uhr and Douglass, 1979; Schmitt, 1981; Li and Uhr, 1985a, 1985b, 1986) at-
tempts to model what living perceptual systems appear to do as they successively process and
converge information, leading toward recognition. The overall pyramid structure is an ex-
traction from and simplification of the much larger system, which also has parallel arrays,
diverges information, and fans out into the semantic memory and associative areas.

The massively parallel and shallowly serial pyramid structure offers many possibilities for
parallelizing and speeding up perceptual processes, and for decomposing the extremely com-
plex procedures needed to perceive real-world objects into a hierarchical structure of simple
processes. The basic process is that of a probabilistic threshold element similar to a neuron
that fires when enough neurons fire into it.

The model of each object to be recognized is decomposed and converted into a hierarchi-
cal tree of suitably simple processes, and then embedded into the pyramid. Each of these
processes is made as simple and as local as possible. The many nodes that different object-

- 10 -




models have in common (particularly at the lower levels) are combined into one, so that all
objects can be looked for in parallel.

The system can be primed in advance to look for particular objects, or (when processing a
sequence of images of a scene of moving objects) it can use what information it has un-
covered to help direct its search. Thus a top-down component can be combined with the
bottom-up processing that is driven by the image input to the pyramid’s base. '

For example, structures of transforms of the following sort have been embedded into a 512
by 512-based 2x2 converging 9-layered pyramid.

1) Smooth; Eliminate Specks of Noise.

2) Get Gradients.

3) Get Short Edges, Colors, and Simple Textures.

4) Get Longer Edges, Simple Curves, More Complex Textures, Small Regions.
5) Get Angles, More Complex Curves, Larger Regions.

6) Get Simple Enclosures, and Simple Objects.

7) Get More Complex Objects.

8) Get Still More Complex Objects, and Groups of Objects.

9) Get Still More Complex Objects, and Groups of Objects.

Such systems have successfully recognized real-world objects like neurons, trees, win-
dows, doors, roofs and houses.

A complete program may entail several phases of processing that move up, down, and
around the pyramid. The system can be programmed to look downward for objects that are
already stored in a "Lookfor" list, as well as do bottom-up processing of a new image. (No
matter how strong is the top-down component, a general vision system must always be alert
for new, unanticipated but possibly important, objects.) This bottom-up processing will begin
to imply new objects that might be present. This in turn starts up new top-down processes to
gather the additional information needed to recognize those objects. The system can keep cy-
cling in this way until enough objects have been recognized, or no time is left.

When the system must process a continuing stream of images of objects in motion, there
may well be little time for anything but bottom-up processing (remember, to model living
visual systems there is time for only a few dozen, or a few hundred, instructioris). Therefore
it seems best to augment the basic pyramid with additional hardware, to further parallelize

and to simultaneously execute bottom-up and top-down processes.

The Need to Augment the Pyramid

There are several reasons why it seems desirable to augment a pyramid, either by adding
internal hardware or by embedding it in a larger network. SIMD pyramids (this is also true

- 11 -



for arrays) become inefficient when all processors are not working fruitfully. The tree
bottlenecks cannot always be avoided by commensurate reductions of information. Different
types of processors may be indicated for different purposes (e.g., to match masks, combine
weights, choose among alternatives). It might be desirable to combine several pyramids, for
example to handle different sensory modalities. Finally, the perceptual system must be com-
bined with the larger cognitive system. -

There are a number of interesting possible augmentations (see Pfeiffer, 1985; Tanimoto,
1985; Uhr, 1983, 1985a, 1985b, 1986a, 1986b). For example, processors can be made
reconfigurable to, e.g., 1 64-bit (possibly organized to handle in parallel an 8 by 8 window
operation), 4 16-bit, 8 8-bit, or 64 1-bit processors. Several processors can be placed at each
cell. Several pyramids can be linked together. The pyramid can, wherever appropriate, be
given more communication bandwidth, processor power and/or memory size. Processors can
be reassignable under program control to top-down and/or bottom-up flow.

An MIMD network can be linked to the pyramid, at its base, apex, higher layers near the
apex, or both high and low layers (now the MIMD network can serve for communication and
feedback at the same time that it transforms and processes information). There are a large
number of potentially attractive MIMD networks that might be used (see Uhr, 1984, 1986¢).

Several networks of this sort can be built to give the programmer the impression that all
processors share a common memory. The simplest link all computers via a common bus, ring
or crossbar switch. But more than a few dozen computers linked in this way will overload the
bus or ring, or need an excessively expensive crossbar. An NlogN switching network can be
used to link larger numbers of computers - up to a few hundred, or possibly (but with rapidly
increasing costs for the switching network) even a few thousand.

Point-to-point linked networks can be built in a great variety of topologies, since any con-
nected graph can be used. Among the most popular today are N-dimensional hypercubes,
trees, and several bus-based or crossbar-based clusters linked together. Such systems have
the major advantage that they can, potentially, be built to any size. But there can be
difficulties in passing information through a path of intervening processors.

There are a number of other potentially more attractive topologies that have not yet been
used. There are a variety of compounding operations that appear to be better than N-cubes
(which are compounds of N-1-cubes). A tree that is carefully augmented, usually at each leaf
(which in a tree has only one link, to its parent), can be given substantially more computers
within a given diameter (the shortest longest distance between nodes) and degree (the max-
imum number of links to each node). Good constructions of this sort include De Bruijn
graphs and Hypertrees. There are also a variety of small graphs with good properties, includ-
ing the optimally dense Moore graphs, that can be used individually or compounded into
larger structures. There are almost certainly many other good constructions that have not even

been discovered.

- 12 -




A Short History of Massively Parallel Hierarchical Structures (Pyramids)

The following, as requested by the editors of this volume, briefly sketches a bit of the his-
tory of pyramids, including data-structures, structures of software processes (algorithms and
programs), and hardware architectures.

The first attempts to develop pyramid-like systems were in the form of software programs
and algorithms. Much more recently, people have begun to design and build appropriate py-
ramid hardware.

Programs that Simulate Pyramid Structures

Kelly (1971) described a system that reduced (by averaging) an image up to a much small-
er array, and then used this to determine which parts of the image to process in detail. It thus
took a top-down approach to processing.

Klinger (1971, 1974) developed techniques for using quad-tree structures to represent im-
ages. Klinger and Dyer (1976) extended systems of this sort and examined how well they
worked in actual experimental situations.

Uhr (1971, 1972) described hierarchically converging layered "recognition cone” systems
that looked everywhere in a large array for successively more global structures of informa-
tion. The transforming procedures used were motivated by the threshold elerment-like neuron,
and had much the form of IF...THEN... production rules augmented with weights, thresholds,
and 2-dimensional structural relations. An example of such a system was programmed in
SNOBOL and given enough transforms to recognize a few simple objects. Later SNOBOL
programs (Uhr, 1973, 1976) demonstrated how cone/pyramid structures could be used to
describe as well as recognize objects in static scenes, and to begin to handle objects as they
move about in real time.

Hanson and Riseman (1974, 1976, 1978) developed "preprocessing cones" that are used
primarily for lower levels of semantically directed vision systems.

Tanimoto (1976, 1978) developed pyramids as data structures and, potentially, hardware
structures. He was probably the first person to design a hardware pyramid (see Bclow), and a
language for describing and programming pyramid structures (1983a, 1984). He has also
worked extensively on pyramid algorithms (e.g., 1983b).

Bajcsy and Rosenthal (1975, 1980) examined how to focus attention using hierarchical
systems. Sloan (1977), working with Bajcsy, developed a multi-level hierarchical system that
applied radically different types of processes at each level.

Levine and Leemet (1976) and Levine (1978, 1980) developed a pyramid program to
recognize real-world objects using several different pyramids, each containing appropriate
simple features (e.g., color).

- 13 -



Kruse (1976, 1980) used multi-resolution techniques within a pyramid structure to pro-
gram his PICAP pipeline image processor to zoom in to regions of special interest. This ap-
proach was taken in programs to recognize finger prints and to examine circuit boards.

At about the time that Dyer went to Maryland, the group of vision researchers headed by
Rosenfeld began to study pyramids (see, €.g., Rosenfeld and Vanderbrug, 1977; Davis and
Rosenfeld, 1978, Rosenfeld, 1983). A large number of research papers from Maryland have
explored pyramids, chiefly examining multi-resolution (Burt, 1984), qﬁad-trces (Dyer et al.,
1980; Samet, 1980), and linking of regions or feature elements (Burt et al., 1981; Pietikainen
and Rosenfeld, 1981; Cibulski and Dyer, 1984). ‘ |

Dyer (1979) also began to investigate pyramids from a theoretical point of view, and more
recently to develop pyramid algorithms and programs (e.g., Neveu, Dycr and Chin, 1985).
More recently, Stout (1983, 1985) and Miller (1984) have greatly extended this kind of
theoretical analysis. '

Uhr (1978), Uhr and Douglass (1979), Schmitt (1981), and Li and Uhr (1985a, 1985b,
1986) developed programs to recognize real-world images of houses, neurons, and other ob-
jects. These programs begin to extend cone/pyramid systems to use successively more global
structures at higher semantic levels, and to combine bottom-up and top-down processing.

Several recent books (Tanimoto and Klinger, 1980; Rosenfeld, 1984; Uhr, 1987) have col-
lected research on pyramids.

The essence of pyramid perception systems lies in the massively parallel (hence extremely
fast) application of a converging hierarchy of micro-modular (hence relatively local) opera-
tions. Several of the most interesting and the most powerful computer vision systems that are
not ordinarily thought of as using pyramids have many of these properties, for example,
Tenenbaum and Barrow (1976), Marr (1982), Ballard (1985).

The Design and Construction of Pyramid Multi-Computers

To achieve the great speed that massively parallel hierarchical converging structures po-
tentially offer, specialized pyramid hardware architectures are highly desirable, if not neces-
sary.

Hardware designs for pyramids were first developed by Dyer (1981, 1982), Tanimoto
(1981) and Uhr (1981, 1984). Several hardware pyramids are presently being built.

Tanimoto (1983a) is starting to build a large pyramid with each processor linked to 8 si-
blings, 4 children, and 1 parent. He has also simulated this system, and has designed a
Janguage that allows the programmer to work closely with the pyramid structure.

Cantoni et al. (1985) are working with a group of seven Italian Universities and several in-
dustrial firms. They have designed and are fabricating a chip that contains 1 parent and 4
children, and are investigating how to make the system fault tolerant.

- 14 -




Schaefer (1985), using MPP chips (each with 8 processors and a fast shift register), has
completed a pyramid with a 16 by 16 base.

Merigot et al. (1985) have designed and are beginning to build a pyramid with the topolo-
gy of a binary tree. This allows convergence at each level to one half (rather than one quar-
ter) the previous level’s processors.

All these systems use custom VLSI designs with several processors on each chip. All use
1-bit processors of the sort used by the CLIP, DAP and MPP arrays. All use a single controll-
er for each layer (some may use a single controller for all layers). |

Handler and his associates (Handler, 1975; Bode et al., 1985) have been building much
smaller pyramids of much more powerful independent computers. Each computer has its
own controller, so that the system runs in MIMD mode. These systems have been designed to
handle numerical problems. But they should be quite useful for image processing and pattern
recognition. Potentially, an MIMD pyramid can offer greater flexibility in applying different
processes at different regions of the image, and allocating more resources where appropriate.

Closely Related Hardware Architectures of Interest

Shaw’s (1982, 1986) original Non-Von computer, which links 8-bit processors via a tree,
has recently been augmented so that the bottom ply (the leaves of the tree) also link laterally
to siblings. This gives some of the pyramid properties but, because there is neither overlap
nor lateral linkage at higher levels, it is probably closer to a quad-tree, and therefore in danger
of having crucial information lost in or separated by cracks.

An interesting and ambitious new 4-level system has been started at the University of
Massachussetts (Levitan, personal communication). It will have a very large array of 1-bit
processors at its base, 16-bit processors at the next level each linked to an 8 by 8 array of chil-
dren, and 32-bit Lisp processors at the third level, each linked to a number of children. At the
top level, all the Lisp processors will link to a single host.

Several other types of parallel computer appear to be appropriate for executing pyramid
programs with appreciable increases in speed over the serial computer. They will not be as
fast as true pyramid hardware. But for many purposes they may be more cost effective, or
more flexible.

The PIPE pipelined image processor (Kent et al., 1985) can be programmed to remap data
into successively smaller arrays, and therefore to execute converging pyramid procedures (see
Kent and Tanimoto, 1985). Its 8 stages allow the programmer to build and process a pyramid
with a 256 by 256 base. The PIPE can also be programmed to execute up to 256 different in-
structions at different locations in the array. This is accomplished by storing instructions in
one of the array’s two 8-bit memories.

The new Cyto-HSS (Lougheed and McCubbrey, 1985) similarly allows the programmer to

- 15 -



address and remap data and therefore build and process pyramids. It has the added advantage
that this can be done at the rate of 10 million 3-by-3 window operations per second, rather
than the 20 or 30 millisecond TV scan rate for the entire image. As the arrays grow smaller
moving up the pyramid this speedup becomes extremely significant.

The PIXIE-5000 (Wilson, 1985) can also remap data in the direction of its scan in one in-
struction, and in the other direction using a short sequence of instructions. Since it takes only
80 microseconds to process a 1,024 by 1,024 array, in contrast to the 30 milliseconds or so
needed by a pipelined scanning array like the Cyto and PIPE, it will still be extremely fast. It
will be possible to use CLIP7, which is now being built and will scan a 1-dimensional array
of 8-bit processors over the 2-dimensional image array, in a similar manner (Fountain, 1983,
1985).

An array like CLIP4 (Duff, 1976), DAP (Reddaway, 1978), or the MPP (Batcher, 1980)
can be programmed to handle pyramids by either squeezing the higher layers into one corner,
tiling the higher layers over the array, or scattering the elements of the higher layer over the
array. If the bottom several layers of the pyramid being simulated are larger than the
hardware array, and subarrays are stored in each processor’s memory, the distances informa-
tion must be shifted laterally through the array in order to simulate a pyramid will be reduced,
and processing speeded up significantly (see Reeves, this volume).

An N-dimensional hypercube of the sort being sold by INTEL and NCUBE can be used in
the same way (see Stout, this volume), since an array can conveniently be mapped into it.
Such a system has the additional advantage of the N-cube linkage, which will cut down the
distances that information must be passed. It will also have the MIMD system’s added flexi-
bility. On the other hand, MIMD systems are expensive, and the time taken to send informa-
tion in a message-passing system of this sort is typically thousands of times longer than the
time needed for a simple lateral shift in an array or a pyramid. Additional hardware (as
planned for the NCUBE company’s new systems) should reduce this to a few hundred times
longer - a much shorter but still costly amount of time.

Uhr et al. (1983) developed a detailed design for, but never built, a 2-layer system where
processors could be reconfigured to either an array of 32-bit MIMD computers or an MIMD-
SIMD array of 8-bit computers. Since memory was shared, these could conveniently be used
for pyramid processes. Sandon (1985) designed an array that can be reconfigured to have
successively more powerful processors moving up through what can be used as a pyramid
structure.

Other attractive MIMD systems link all processors via an NlogN reconfiguring network -
e.g., PASM (Siegel, 1981) and the Butterfly (Crowther et al., 1985). These can be used even
more conveniently than the hypercubes, since any computer can pass information to any other
over the switching network that links them together. However, the costs of the switches grow
rapidly as the number of computers in the network grows.

- 16 -




Since these MIMD systems use far more expensive processors and communication chan-
nels than would a massively parallel pyramid they would inevitably be smaller, hence slower.
For example, given the packing densities that will almost certainly be achieved in VLSI tech-
nologies during the next 5 to 10 years - of 10 million or more transistors per chip - 256 or
1,024 1-bit processors can be put on each chip. But at least 8 chips would be needed for a
conventional serial computer (almost all for memory). Therefore whereas it may be feasible
to fabricate a 1,024 by 1,024 array for the base of a pyramid using only 1,024 chips, only a
few hundred or a few thousand conventional computers could be fabricated with a few
thousand chips and linked together into an N-cube, reconfigurable network, or some other to-
pology. This suggests that the fastest and most cost effective architecture will be one that
combines large pyramids of synchronized computers with a suitably structured network of
more powerful and more independent processors.

Summary Comments

This paper examines the development of appropriately process-structured
software/hardware systems for the perceptual recognition of real-world objects in real time.

The perception program can be represented as a data-flow graph, and the problem of
developing an appropriate multi-computer topology treated as one of finding a structure of
computers that can efficiently execute that graph as it scans over it. A 1-node graph (the 1-
CPU computer) can scan over any graph; but it is far too slow. A 1-D pipeline (e.g., PICAP,
Cyto, PIPE) can effectively execute local operations on arrays of iterated information of any
dimension, reducing the time needed by the pipe’s length. A 2-D array (e.g., CLIP, DAP,
MPP) can handle 2, 3, and N-D arrays with speed-ups proportional to the number of proces-
sors - but they can be very slow at moving information together for global operations. A py-
ramid of arrays has all the capabilities of an array for massively parallel local processes, and
also the good global properties of tree-based logarithmic structures.

Pyramids can be used with great potential power and efficiency, by treating them as 2-D
pipelines through which information is flowed and successively transformed. Several dif-
ferent types of complex real-world objects (e.g., neurons, trees, windows, houses) have been
successfully recognized in this way.

A pyramid of arrays becomes inefficient when different processes must be applied in dif-
ferent regions, and when different sub-sets of information must be flowed in different direc-
tions. There are a number of possible augmentations - both internal to the pyramid and in the
form of additional networks of computers into which the pyramid can be embedded - that
offer promise of further substantial increases in power and in generality.

- 17 -



References

{11 R.K. Bajcsy and D.A. Rosenthal, "Visual focussing and defocussing - an essential part of the pattern recogni-
tion process,” Proc. IEEE Conf. on Computer Graphics, Pattern Recognition and Data Structures, 1975.

[2] ----, "Visual and conceptual focus of attention” in Structured Computer Vision: Machine Perception Through
Hierarchical Computation Structures, S. Tanimoto and A. Klinger, Eds. New York: Academic Press, 1980,
133-149.

(3] D.H. Ballard, "Task frames in visuo-motor coordination,” Proc. Third Workshop on Computer Vision, IEEE
Computer Society Press, 1985, 3-10.

[4] G.H. Barnes, R.M. Brown, M. Kato, D.J. Kuck, D.L. Slotnick and R.A. Stokes, "The ILLIAC IV Computer,”
IEEE Trans. Computers, 1968, 17, 746-751.

[5] K.E. Batcher, "Design of a massively parallel processor,” IEEE Trans. Computers, 1980, 29, 836-840.

[6] A. Bode, G. Fritsch, W. Handler, W. Henning, F. Hofmann and J. Volkert, "Multi-grid oriented computer ar-
chitecture,” Proc. Int. Conf. Parallel Proc., 1985, 89-95.

{71 P.J. Burt, "The pyramid as a structure of efficient computation” in Multiresolution Image Processing and
Analysis, A. Rosenfeld, Ed. New York: Springer-Verlag, 1984, 6-35. :

(8] PJ. Burt, T.H. Hong, and A. Rosenfeld, "Segmentation and estimation of image region properties through
cooperative hierarchical computation,” IEEE Trans. System, Man, Cybernetics, 1981, SM C-11, 802-809.

[9] M. Pietikainen and A. Rosenfeld, "Image segmentation by texture using pyramid node linking,"” IEEE Trans.
System, Man, Cybernetics, 1981, SMC-11, 822-825.

[10] V. Cantoni, S. Ferretti, S. Levialdi and F. Maloberti, "A pyramid project using integrated technology” in In-
tegrated Technology for Image Processing, S. Levialdi, Ed. London: Academic Press, 1985, 121-133.

[11] J.M. Cibulski and CR. Dyer, "An analysis of node linking in overlapped pyramids,” /EEE. Trans. Syst.,
Man, Cybernetics, 1984, 14, 424-436.

[12] W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Milliken and T. Blackadar, "Performance measurements
on a 128-node Butterfly parallel processor," Proc. Int. Conf. Parallel Proc., 1985, 531-540.

[13] L.S. Davis and A. Rosenfeld, "Hierarchical relaxation” in Computer Vision Systems, A.R. Hanson and EM.
Riseman, Eds. New York: Academic Press, 1978, 101-109.

[14] MJ.B. Duff, "CLIP4: a large scale integrated circuit array parallel processor," Proc. 4th Int. Joint Conf. on
Pattern Recognition, 1976, 4, 728-733.

[15] CR. Dyer, "Augmented cellular automata for image analysis," Unpubl. Ph.D. Diss., Dept. of Computer Sci-
ence, Univ. of Maryland, 1979.

{16} ----- , "A quadtree machine for parallel image processing," Information Engin. Dept. Tech. Rept. KSL 51,
Univ. of Illinois at Chicago Circle, 1981.

[17] -~ , "Pyramid algorithms and machines” in Multicomputers and Image Processing, K. Preston and L. Uhr,
Eds. New York: Academic Press, 1982, 409-420.

[18] CR. Dyer, A. Rosenfeld and H. Samet, "Region representation: boundary codes from quadtrees,” Comm.
ACM, 1980, 23, 171-179.

[19] TJ. Fountain, "The development of the CLIP7 image processing system,” Pattern Recognition Letters,
1983, 1, 331-339.

[20] -----, "Plans for the CLIP7 chip” in Integrated Technology for Image Processing, S. Levialdi, Ed. London:
Academic Press, 1985, 199-214.

[21] W. Handler, "A Unified Associative and Von-Neumann Processor - EGPP and EGPP Array,” Lectures
Notes in Computer Sci., vol. 24 - Parallel Processing, 97-99, Springer-Verlag, 1975.

[22] M.D. Kelly, "Edge detection in pictures by computers using planning” in Machine Intelligence 6, R.
Meltzer and D. Michie, Eds. New York: Elsevier, 1971, 379-409.

[23] E.W. Kent, M. Shneier and R. Lumia, "PIPE - Pipelined image processing engine," J. Parallel and Distri-
buted Computing, 1985, 2, 50-78.

[24] E.W. Kent and S.L. Tanimoto, "Hierarchical cellular logic and the PIPE processor: structural and functional
correspondence,” Proc. Workshop on Computer Architecture for Pattern Analysis and Image Database
Management, TEEE Computer Society Press, 1985, 311-319.

[25] B. Kruse. "The PICAP picture processing laboratory," Proc. dth Int. Joint Conf. on Pattern Recognition,
1976, 4, 875-881.

[26] ----- , "System architecture for image analysis" in Structured Computer Vision: Machine Perception
Through Hierarchical Computation Structures, S. Tanimoto and A. Klinger, Eds. New York: Academic
Press, 1980, 169-212.

[27] M.D. Levine, "A knowledge-based computer vision system" in Computer Vision Systems, A. Hanson and E.

- 18 -




Riseman, Eds. New York: Academic Press, 1978, 335-352.

[28] --—-, "Region analysis with a pyramid data structure” in Structured Computer Vision, S. L.. Tanimoto and A.
Klinger, Eds. New York: Academic, 1980, pp. 57-100.

[29] M.D. Levine and J. Leemet, "A method for nonpurposive picture segmentation,” Proc. 4th Int. Joint Conf.
on Pattern Recognition, 1976, 4, 494-498.

{30] ZN. Li and L. Uhr, "Comparative Timings for a Neuron Recognition Program on Serial and Pyramid Com-
puters,” Proc. Workshop on Computer Architecture for Pattern Analysis and Image Data Base Manage-
ment, IEEE Computer Society Press, 1985, 99-106. (a)

[31] --—, "Pyramidal Algorithms for Analysis of House Images,” Proc. Intersoc. Conference on Artificial Intel-
ligence Applications, 198S. (b) ‘

[32] ----- , "A pyramidal approach for the recognition of neurons using key features," Pattern Recognition, 1986,
19, 55-62.

[33] RM. Lougheed and D.L. McCubbrey, "Multi-processor architectures for machine vision and image
analysis," Proc. Int. Conf. Parallel Proc., 1985, 493-497.

[34] D. Marr, Vision, San Francisco: Freeman, 1982.

[35] A. Merigot, B. Zavidovique, and F. Devos, "SPHINX, a pyramidal approach to parallel image processing,”
Proc. Workshop on Computer Architecture for Pattern Analysis and Image Database Management, IEEE
Computer Society Press, 1985, 107-111.

[36] R. Miller, Pyramid Computer Algorithms, Unpubl. Ph.D. Diss., Dept. of Math., SUNY Binghamton, 1984.

[37] C.F. Neveu, C.R. Dyer and R.T. Chin, "Object recognition using Hough pyramids,” Proc. IEEE Conf. Com-
puter Vision and Pattern Recognition, 1985, 328-333.

[38] JJ. Pfeiffer, Jr., "Integrating low level and high level computer vision," Proc. Workshop on Computer Ar-
chitecture for Pattern Analysis and Image Database Management, IEEE Computer Society Press, 1985,
119-125,

[39] S.F. Reddaway, "DAP - a flexible number cruncher,” Proc. 1978 LASL Workshop on Vector and Parallel
Processors, Los Alamos, 1978, 233-234.

[40] J.P. Riganati and P.B. Schneck, "Supercomputing,” Computer, 1984, 17, 97-113.

[41] A. Rosenfeld, "Pyramids: multiresolution image analysis,” Proc. Third Scandinavian Conference on Image
Analysis, July, 1983, 23-28.

[42] A. Rosenfeld, Ed., Multiresolution Image Processing and Analysis, New York: Springer-Verlag, 1984.

[43] A. Rosenfeld and G.J. Vanderbrug, "Coarse-fine template matching," IEEE Trans. Systems, Man, and Cy-
bernetics, 1977, 7, 104-107.

[44] H. Samet, "A tutorial on quadtree research” in Multiresolution Image Processing and Analysis, A. Rosen-
feld, Ed. New York: Springer-Verlag, 1984, 212-223.

[45] P.A. Sandon, "A pyramid implementation using a reconfigurable array of processors,” Proc. Workshop on
Computer Architecture for Pattern Analysis and Image Data Base Management, IEEE Computer Society
Press, 1985, 112-118.

[46] D.H. Schaefer, "A pyramid of MPP processing elements - experiences and plans,” Proc. 18th Int. Conf. on
System Sciences, Honolulu, 1985.

[47]) L. Schmitt, "The use of a network representation of visual knowledge in a hierarchically structured vision
system,” Unpubl. Ph.D. Diss., Dept. of Computer Sciences, University of Wisconsin, 1981.

[48] D.W. Shaw, "The NON-VON Supercomputer,” Comp. Sci. Dept. Tech. Rept., Columbia Univ., August,
1982.

[49] ----- , "Organization and operation of a massively parallel machine” in Computers and Technology, G. Ra-
bat, Ed. Amsterdam: North-Holland, 1986.

[50] H.J. Siegel, "PASM: a reconfigurable multimicrocomputer system for image processing” in Languages and
Architectures for Image Processing, M. J. B. Duff and S. Levialdi, Eds. London: Academic Press, 1981.

[51] K. Sloan, "A system for world model driven recognition of natural scenes,” Unpubl. Ph.D. Diss., Dept. of
Computer Science, Univ. of Pennsylvania, 1977.

[52] SR. Sternberg, "Cytocomputer real-time pattern recognition.” Paper presented at Eighth Pattern Recogni-
tion Symp., National Bureau of Standards, 1978.

[53] Q.F. Stout, "Sorting, merging, selecting, and filtering on tree and pyramid machines,” Proc. Int. Conf. on
Parallel Processing, 1983, 214-221.

[54] -----, "An algorithmic comparison of arrays and pyramids,” in Evaluation of Multicomputers for Image Pro-
cessing, L. Uhr, K. Preston, S. Levialdi, M.J.B. Duff, Eds. London: Academic Press, 1985.

[55] S.L. Tanimoto, "Pictorial feature distortion in a pyramid,” Comp. Graphics Image Proc., 1976, 5, 333-352.

[56] ----- , "Regular Hierarchical Image and Processing Structures in Machine Vision,” in Computer Vision Sys-
tems, A. R. Hanson and E. M. Riseman, Eds. New York: Academic Press, 1978, 165-174.

[57] ----, "Towards hierarchical cellular logic: design considerations for pyramid machines," Computer Science

- 19 -



Dept. Tech. Rept. 81-02-01, Univ. of Washington, 1981.

(58] ----- , " A pyramidal approach to parallel processing,” Proc. 10th Annual Int. Symposium on Computer Archi-
tecture, Stockholm, 1983, 372-378. (a)

[59] ----- , "Algorithms for median filtering of images on a pyramid machine," in Computing Structures for Im-
age Processing, M.J.B. Duff, Ed. London: Academic Press, 1983, 123-141. (b)

[60] --—-, "A hierarchical cellular logic for pyramid computers,” J. Parallel and Distributed Computing, 1984, 1,
105-132.
[61] ----, "An approach to the iconic/symbolic interface," in Integrated Technology for Image Processing, S.

Levialdi, Ed. London: Academic Press, 1985, 31-38.

[62] S.L. Tanimoto and A. Klinger, Eds., Structured Computer Vision: Machine Perception Through Hierarchi-
cal Computation Structures, New York: Academic Press, 1980.

[63] IM. Tenenbaum and H.G. Barrow, "IGS: a paradigm for integrating image segmentation and interpreta-
tion," Proc. 4th Int. Joint Conf. on Pattern Recognition, 1976, 4, 504-513.

[64] L. Uhr, "Layered "recognition cone" networks that preprocess, classify, and describe." Preprints of Conf. on
Two Dimensional Digital Signal Processing, University of Missouri, 1971.

[65] ---—, "Layered "recognition cone" networks that preprocess, classify, and describe.” IEEE Trans. on Com-
puters, 1972, 21, 758-768.

[66] ----- , "Describing, using "recognition cones." " Proc. Ist Int. Conf. on Pattern Recognition, Washington,

[67] ----- , ""Recognition Cones" that perceive and describe scenes that move and change over time." Proc. 4th
Int. Joint Conf. on Pattern Recognition, San Diego, 4, 1976.

[68] —---, ""Recognition cones"” and some test results; the imminent arrival of well-structured parallel-serial
computers; positions, and positions on positions," in Computer Vision Systems, A. Hanson and E. Riseman,
Eds. New York: Academic Press, 1978, pp. 363-372.

[69] ----- , "Chapter 1: Parallel-serial variable resolution perceptual systems," in Structured Computer Vision, S.
Tanimoto and A. Klinger, Eds. New York: Academic Press, 1980.

[70] ----- , "Converging pyramids of arrays,” Proc. Workshop on Computer Architecture for Pattern Analysis and
Image Data Base Management, IEEE Computer Society Press, 1981, 31-34.

[71] ----- , "Pyramid Multi-Computer Structures, and Augmented Pyramids,” in Computing Structures for Image
Processing, MJ.B. Duff, Ed. London: Academic Press, 1983, pp. 95-112.

[72] ----- , Algorithm-Structured Computer Arrays and Networks: Architectures and Processes for Images, Per-
cepts, Models, Information. New York: Academic Press, 1984.

[73] - , "Augmenting pyramids and arrays by embossing them into optimal graphs to build multicomputer net-
works," in Parallel Integrated Technology for Image Processing, S. Levialdi, Ed. London: Academic
Press, 1985, 19-31. (a)

[74] ----- , "Pyramid Multi-Computers, and Extensions and Augmentations,” in Algorithmically Specialized
Parallel Computers, L. Snyder, L.H. Jamieson, D.B. Gannon, H.J. Siegel, Eds. New York: Academic
Press, 1985, 177-186. (b)

[75] ----- . "Multiple image and multi-modal augmented pyramid networks," in Intermediate Level Image Pro-
cessing, M.J.B. Duff, Ed. London: Academic Press, 1986, 127-145. (a)

[76] ----- , "Constructing multi-level multi-computer networks," in Evaluating Multi-Computers for Image Pro-
cessing, L. Uhr, K. Preston, S. Levialdi and M.J.B. Duff, Eds. New York: Academic Press, 1986. (b)

(77] ----- , Multi-Computer Architectures for Artificial Intelligence, New York: Wiley, 1986. (c)

[78] ----- , Massively Parallel Hierarchical Pyramid Multi-Computers for Perception, New York: Academic
Press, 1987. (in press)

[79] L. Uhr and R. Douglass, "A parallel-serial recognition cone system for perception,” Pattern Recognition,
1979, 11, 29-40.

[80] L. Uhr, J. Lackey and M. Thompson, M., "A 2-layered SIMD/MIMD Parallel Pyramxdal " Array/Net","
Proc. Workshop on Computer Architecture for Pattern Analysis and Image Data Base Management, IEEE
Computer Society Press, 1981, 209-216.

[81] S.S. Wilson, "The PIXIE-5000 - a systolic array processor," Proc. Workshop on Computer Architecture for
Pattern Analysis and Image Database Management, IEEE Computer Society Press, 1985, 477-483.

- 20 -




