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ABSTRACT

We review (-spline theory for curves and show how some of the concepts can be
extended to surfaces. Our approach is based on the Bézier form for piecewise polynomi-
als which yields simple geometric characterizations of smoothness constraints and shape
parameters. For curves most of the standard “spline calculus” has been developed. We
discuss in particular the construction of B-splines, the conversion from B-spline to Bézier
representation and interpolation algorithms. A comparable theory for spline surfaces for
general meshes does at present not exist. We merely describe how to join triangular and
rectangular patches and discuss the corresponding B-spline constraints in terms of the
Bézier representation.
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Geometric Continuity 1

1. Introduction

In these lecture notes we describe the construction and properties of parametric rep-
resentations of smooth spline curves and surfaces. This is not a straightforward general-
ization of the well understood theory of spline functions. The reason is, that smoothness
of a [spline] curve or surface does not imply smoothness of a particular parametrization.
In other words, a curve or surface can be smoother than its parametrization. This obser-
vation led to the discovery of §-splines which are the main subject of these lecture notes.
These splines yield new approximation and design techniques by exploiting the admissible
lack of smoothness in parametric representations. In their general form, B-splines have
been introduced by Barsky [Ba82] and subsequently a considerable theory has been devel-
oped (cf. [BBB85, De85, DM85]). As an illustration of the general results, we describe
in this first section the definition of #-splines and the difference between parametric and
“geometric” smoothness in the simplest setting, for quadratic spline curves.

Denote the Bézier coefficients (cf. Al of the Appendix) of a quadratic spline curve by
a;y € IR?, i.e. the i-th curve segment is parametrized by

t — pi(t) := Z aiB,(t), t € [0,1], (1)

v=0

where Bo(t) := (1 — )%, Bi(t) := 2(1 — t)t and By(t) := t2. Moreover, assume that the
parametrization of each segment is regular [Do76], i.e., that the tangent vector pi(t) is
nonzero for all t € [0, 1].

Parametric C!-continuity: The parametrization (1) is continuously differentiable
if p;—1(1) = pi(0) and p}_,(1) = pi(0) for all :. In terms of the Bézier coefficients, these
conditions become

ai-1,2 = Q{0 (P‘)

Qi-1,2 ~ Q51,1 = Q4,1 — G4 0.

¥

Geometric C!-continuity: The curve, parametrized by (1), is continuously dif-
ferentiable if the direction of the tangent vector changes continuously. This means that
the tangent vectors of adjacent curve segments are parallel, or, in terms of the Bézier
coefficients, that

a;-1,2 = @4,0 1
(GY)
aj_ 12— Qi1 = ﬂi(ai,l - ai,o) for some §; > 0.

Conditions (G') are less restrictive than conditions (P!) which correspond to the
special case B; = 1. The additional freedom in selecting the shape parameters g, is
useful for design and approximation purposes. For example, while standard quadratic
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2 Klaus Héllig

spline interpolation requires the solution of a linear system, using S-splines the problem
becomes trivial.

Algorithm 1. For given data d; construct an interpolating quadratic S-spline curve
as follows:

step 1: set aj—1,2 = a0 := dy;
step 2: choose tangent vectors v; [e.g. as average of the vectors dit1—d; and d; - d;_ 1);

step 3: define a;; as the intersection of the lines a;0 + Rv; and a; 2 + Ru, ;.

A quadratic F-spline curve is unlquely determlned by the control points ¢; := a;,
and the shape parameters §; (cf. Figure 1), i :

1 Bs
;19 = Qi = ———C;_ —— . 2
1,2 1,0 1 +ﬁict 1+ 1 +,Bict ( )

( Figure 1)

By (2), the curve can be equivalently parametrized by

t s(t) i= ) eiMi(t).

1

The functions M; are generalizations of quadratic B-splines and are explicitly defined by

o5 Ba(t - 1), ift —1€(0,1];

Mi(t) = ﬁs'ﬁ—Bo(t—z'ml)JrBl(tﬂ‘—1)+I;;i+—132(t~—i-—1), ?ft——z:E[l,z];
H_ﬂﬂBg(t—zw—2) ift —1€(2,3];
0, otherwise.
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Geometric Continuity 3

Figure 2 shows the effect of varying 3; for §; approaching 0 or oo, the curve approaches
the “control polygon” which connects the control points ¢;.

( Figure 2 )

In the following sections, we describe the generalization of the above ideas to spline
curves and surfaces of arbitrary degree and smoothness. To keep the lecture notes self-
contained, we review in an appendix some properties of the Bézier form which will be
frequently used.

2. Cubic g-spline curves

Cubic B-splines are most frequently used in applications and the discussion of this
special case exhibits most of the essential features of the general theory. The “v-spline”, a
particular 3-spline was introduced by Nielson [N75]. This spline is the piecewise polynomial
analogue to the “spline in tension” and arises naturally as solution of a minimization
problem. Barsky [Ba81] developed the B-spline calculus for cubic $-splines and started a
systematic study of their properties. In this section, we follow the approach of Farin [F82,)
and B6hm [B685] who described cubic 3-splines in terms of their Bézier representation and
gave natural geometric interpretations of the smoothness constraints and shape parameters.

We begin by deriving the conditions for geometric CZ?-continuity of two cubic arcs
in IR®, parametrized by ¢ — p(t) and t — g¢(t) with t € [0,1], which join at a point
d = p(1) = ¢(0) and have nonzero tangent vectors for all ¢t € [0, 1].
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4 Klaus Héllig

( Figure 3)

By definition, a curve is twice continuously differentiable if there exists a twice con-
tinuously differentiable parametrization. Applying this to the union R of the two cubic
arcs, we consider parametrizations of the form

L pt+1), if-1<te<o;
t ~>{fl(@(t)), ifo<t<i1, (3)

where  is a smooth strictly increasing function mapping [0, T] onto |0, 1]. It is easy to see
that any other parametrization of the curve R is equivalent to (3) via a smooth change of
variables 7 — ¢(7). Therefore, the conditions for geometric C?-continuity are (cf. [BD 85|
for more details)

p'(1) =4¢'(0)8

P'(1) = ¢"(0)8% + ¢'(0)y
where 8 := ¢’(0) and v := ©"(0). The numbers 8 > 0 and ~ can be arbitrarily chosen
and, in analogy with the example in the section 1, can be interpreted as shape parameters.

(G?)

Conditions (G?) can be equivalently described in terms of the Bézier coefficients po, p1,
P2, p3 = d = qo, q1, g2, g3 for p and ¢ (cf. Al of the appendix). The first condition states
that the points ps,d, q; are collinear. Using this and the fact that v is a free parameter,
the second condition becomes

[8%(q1 — a2)] + [p1 — p2]+[6(q1 — p2)] =0
for some constant § [which equals 1—+/(1+3)|. In other words, the three vectors in square
brackets form a triangle which implies in particular that the points pi,p2,d,q1,92 are

coplanar. This geometric interpretation yields an elegant description of the (G ?) condition.
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Geometric Continuity 5

Geometric C2-continuity [F822, B685]. Denote by d; = 84,05 @41, Qi)2, @i 3 = dipq
the Bézier coefficients of the i-th segment of a piecewise cubic curve and assume that
aip+1 — @i, 7 0. Then, the curve is twice continuously differentiable at d; if and only if
the condition

(anbA(clve2))vd

is satisfied [“A” and “V” stand for “and” and “or” respectively] where

a: the points a,_, 3, d;, @, are collinear;

b: the polygon connecting a;_1,1, @i-1,2, @i,1, a: 2, @;-1,1 bounds a [planar] quadrilateral;
cl: the lines through a;_1,1,a:-1,2 and a; ), q,; intersect at a [control] point ¢; and the

ratios f;, A; , defined in Figure 4 satisfy
B = X1/ Aic12; (4)

. ., o 2 . . .
c2: ay—1,2 —QAj—-1,1 = ﬂi (at,Z - az,l),
d: the points a;_1,1, a;_1,2, di, ai,1, a;,2 are collinear.

( Figure 4 )

The “generic” (G?) condition is @ A b A c1. In this case, equation (4) yields a simple
algorithm for computing the Bézier coefficients from the control points.

Algorithm 2 [B685).
step 1: choose the control points ¢;;
step 2: choose the shape parameters A, ,;
step 3: set A; := 1+ A;; + A; 2 and compute

a;q = ((1 + /\i,z)ci + /\i,lci+1)//\i
aig = ((Ai2e + (14 Aj1)eirn)/Ai
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6 Klaus Hollig
step 4: set B2 := Ai,1/Ai1,2 and compute

di=ai_13=a;0:= (ai-1,2 + Bia;1)/(1 + Bi).

The algorithm provides a simple method for evaluating cubic S-splines since, once the
Bézier coefficients are known, de Casteljau’s algorithm (cf. [Da86]) can be applied. For
Ai,1 = Aq2 =1, all ¢, the algorithm reduces to the algorithm for converting from B-spline
to Bézier representation for standard cubic splines. The effect of the shape parameters is
similar to the example considered in the introduction. For Ai,» approaching 0, the curve

approaches the control polygon; the same effect is obtained if, e.g., Ai1 = oo and A; 2 — 0.
Figure 5 shows an example.

1 q s 3 Q ®
I \ /' RN /|
PN /; T /|

\ /7
| Z |
CXO
| 7 N
/ \ | 4 A\ |
I/ N\ | I~ N
4 ¥ N 2 & b

Aijl = Aj2 =1 Aiig =X 2=1/3

( Figure 5 )

In view of Algorithm 2, the Bézier coefficients depend linearly on the control points,
142
aiy = Lm,,,]cj (5)

j=i-1

Therefore, the i-th curve segment can be parametrized by
t Z CJ‘M},,J*(t), t & [0, 1], (6)
J

where

3
—
M‘L,j = E mi,U,JB

v=0
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Geometric Continuity 7

are the cubic polynomials which make up the B-spline which corresponds to the control
point ¢;. The matrix elements m;,;, ¥ = 0,...,3, are the Bézier coefficients of M, ;.
Comparing (5) with Algorithm 2, one obtains the explicit formulas

Mi-1,0i = Mi—23,i = Mi~1,1:Pi—1/(1 + Bi-1)
Mi—1,1,i = Aic1,1/Ai1
Mi-1,2,4 = (14 Xiy1)/ Aoy
Mi-1,3,0 = Mio0,i = Mi—1,2,i/ (1 + Bs) + my1:6:/(1 + Bi) (7)
mini = (14 A2) /A
mi2i = Ai2/Ai
Mi3i = Mit1,0,i = M2/ (14 Biy1)
for the nonzero coefficients. The above expressions simplify for special choices of the shape
parameters; e.g. for uniformly chosen shape parameters, Aiy=A,and §; =B for alli. In
particular, if A\; = A2 = § = 1, one obtains the Bézier coefficients of the standard cubic
B-spline with equally spaced knots,
mi_1,. i=[1244]/6
m; i=[4421]/6.

Finally, we describe the “converse” of Algorithm 2, the construction of the control
points [and thus all Bézier coefficients] from given data d; and shape parameters. This
amounts to solving the linear system obtained from (5) by considering only the equations
for d; = a;_13 = a;0. The resulting system can be solved separately for each of the
three components ¢;(1), ¢;(2),¢;(3) of the control points. The corresponding matrix I is
tridiagonal with entries

Liioy =m0, = ___%‘LLE__

’ v Aic1(1 + 8)
Lis=m;p; = Lr A (31 )b,

' T A+ B) 0 A1+ )
P UAT

P T 0+ )

where the first and last row of L have to be modified according to the particular boundary
conditions. Note that the entries in each row sum to one. This is consistent with the fact
that the B-splines form a partition of unity,

Y Mi(t)=1, telo,1]

Algorithm 3. For given data d; = (d;(1),d:(2),d:(3)), ¢ = 1,...,n, and shape
parameters A; , compute the control points ¢; of an interpolating S-spline curve by solving

L c(u) = d(p),n =1,2,3.
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8 Klaus Héllig
(a) For a closed curve, i.e for periodic boundary conditions,
L:,J‘ - Li,j mod n-

(b) If slopes at both endpoints are specified, i.e., if a; ; and @n_1,2 are prescribed, then
d, and d, are replaced by a;,; and a,_,,2 respectively and

* =m . 1+ AI,Z

1,1 =M1,11 = —“*——Al

o A

1,2 =My1,2 = ‘—"“/\1

* . ’\n~1,2

nn—-1" Mn-12,n-1 = BV

n-1

1+ An_11

* —— —"
Ln,n =Mpot,2,n =

Lf,j = L;; for (z,5) #(1,1),(1,2),(r,n — 1), (n,n).

Note that, if A;, < A;/2, the matrix L* is diagonally dominant and thus invertible.

3. B-spline curves of arbitrary degree

This section may be skipped by the reader primarily interested in applications; but
this reader is referred to [B686] where an interesting discussion of the quartic case is given.
The section describes briefly the “general case” which is a special case of the results by
Dyn and Micchelli [DM85].

The conditions for geometric continuity generalize easily. If t - p(t) and ¢t ~ ¢(t) with
t € [0,1] are regular polynomial parametrizations of degree k such that the corresponding
arcs join at a point d = p(1) = ¢(0), then the conditions for C¢ geometric continuity are
(BD85] ‘

() 20) e = ()" ate(®) v=1,. (¢
dt p t=1 = dt q\p |t=0 = Lyeaydy

where ¢ is some strictly increasing function mapping [0, T] onto [0,1]. Conditions (G?)
involve the shape parameters §; := ©/(0) > 0 and 8, := ©(*)(0) [the superscript (*)
denotes the v-th derivative] which can be chosen arbitrarily.

Denote by ¢ ~+ p;{t) : [0,1] — IR® a regular parametrization of the ¢-th segment of the
piecewise polynomial curve of degree k and assume that p;_;(1) = p;(0). Moreover, denote

by Pi(e) the matrix of derivatives up to order ¢ of p;, i.e. the v-th row of P(9 contains the
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Geometric Continuity 9

3-vector pf."). Then conditions (G’e) for adjacent curve segments can be written in matrix

form, .
[4 [4
P91) = AP0, (8)

where the ¢ x £ matrix Af-e) is computed via the chain rule and depends on the shape
parameters §; ,. For example,

, Bin 0 0
AE ) = ﬂi,Z 2'2,1 0 . (9)
Biz 3Bi2Bin B},

Generalizing earlier work by Goodman [Go84|, Dyn and Micchelli [DM85] showed that
many of the standard results on splines extend to the piecewise polynomial curves defined

by (8) if one assumes that the matrices Af.e) are totally positive [K68| (e.g. for (9) total

positivity is equivalent to §;, > 0 and 3ﬁ,-2,2 > f:,18i3). One of the main results is the
existence of a positive B-spline basis which forms a partition of unity.

Theorem [DM85]. Let £ = k—1 and assume that the matrices A¢ are totally positive.
If (8) holds, then the polynomials p; can be uniquely written as

i+k
pilt) = D ¢ M (t) (10)

J=t

where c; are the control points of the curve and M; ; are polynomials which depend on
the shape parameters 3. The polynomials M; ; are positive and form a partition of unity

Y M) =1, (11)

i.e. the points on the curve are convex combinations of k + 1 consecutive control points.

The Bézier coefficients Miuj, v =0,...,k, of M; ; and their dependence on the shape
parameters can be determined via symbolic manipulation. Choosing only one vector ¢; in
(10) nonzero, one sees that the polynomials M; ; satisfy conditions (8), i.e.

M;_,,;(1) = M; ;(0), i=j—k,...,5+1,

(4
MO0 = (A9) M),  v=18 =ik it

ot v

if one defines M; ;(t) = 0 for i < j — k or ¢ > j. For fixed j, these equations can be
rewritten as an (k? + 2k) x (k + 1)? homogenous linear system for the Bézier coefficients
Mivgst=J—k,...7,v=0,...,k. The matrix of this system has full rank but depends
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10 Klaus Héllig

on (. Hence there exists a nontrivial solution which can be normalized using equation
(11).

With the coefficients m; , ; determined, one has an analogue of Algorithm 2: The
Bézier coefficients a; ,, v = 0,:--,k, of the i-th segment of the S-spline curve can be
computed from the control points ¢; via

i+k
aia” = Z C]'mg',y,j- (12)
J=t

This “algorithm” allows one to evaluate a general -spline curve almost as easily as in
the cubic case: for given control points and shape parameters one computes the Bézier
coefficients via (12); then evaluates the Bézier form using de Casteljau’s algorithm.

4. Tensor Products

As is the case for [almost| all univariate approximation procedures, the methods de-
scribed in the preceeding sections can be extended to surfaces via tensor products. For
the sake of [notational] simplicity we discuss this for the cubic case.

Relying on the results in section 2, we begin with equation (6), the B-spline represen-
tation for cubic B-spline curves. For tensor product cubic 3-spline surfaces, we have the
corresponding representation,

(21,22) = pi(2) 1= 3 ¢ Miy 5, (21) Moy a(22), € (0,17, (13)
J (%)

for the bi-cubic polynomial p; which parametrizes the ¢-th surface patch; J(7) denotes the
set of indices {(J1,J2) 191 —1<J1 <11+2, 13— 1< 52 <13+ 2}. The “7” indicates that
M may be defined by a different set of shape parameters than M, i.e. to each coordinate
direction corresponds a different set of shape parameters. The Bézier coefficients a; ,, .,

0 < vy,ve < 3, are computed by substituting the Bézier representation for M and M into
(13). This yields the analogue of (5),

ai,l/ = ch mi:"’lyjl mi)”ﬁ)j’l' (14)
J (1)

Proceeding backwards [with respect to section 2|, we obtain

SIGGRAPH ’'86 From Curves to Surfaces ‘, Dallas, TX
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Algorithm 4.
step 1: choose the control points ¢; and the shape parameters A;, , and Xig,u;
step 2: compute the Bézier coefficients m and m from (7);
step 3: compute a;, from (14) in two steps

bJ"..’ = E : TR N
1 —1<71 <61 +2
aiaV = : : b]".’mi)VZ;j2‘

12— 1<92 <ix+2

We have described [very| briefly how to construct C2-continuous cubic §-spline sur-
faces with respect to rectangular grids or unions of such grids. For a detailed discussion
of the properties of such representations we refer to [BBBS85].

5. Geometric continuity of piecewise polynomial surfaces

Tensor product methods are limited to surfaces which can be covered by rectangular
patches with four patches meeting at each vertex. For example, surfaces homeomorphic to
a sphere cannot be modelled by tensor products. In this section, we describe general piece-
wise polynomial surfaces with entirely local structure which do not require any topological
restrictions.

Definition. A piecewise polynomial surface is the union of polynomial patches,

S:=U{p,~(:c)::cED,-}, i1=1,...,n,

where D; is either the unit square or an equilateral triangle with side-length 1 and, cor-
respondingly, the components of p; : D; — IR® are polynomials of either coordinate or
total degree k;. The Bézier coefficients of p; are denoted by a;, (cf. the Appendix). Two
patches are either disjoint or share a common boundary arc [or vertex]. With 8, denoting
the partial derivative with respect to the v-th variable and “x” denoting the cross product,
we assume that

0:1pi(z) x dqpi(z) # 0, z € Dy,

and that the natural orientation of D; induces a consistent orientation on S.

Note that the normalization of the reference domains D; represents no loss of generality
since it can always be achieved by a linear change of variables.
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12 Klaus Hollig

( Figure 6 )

Note that as for curves, the parametric representation of S is not unique. For any
family of 1-1, orientation preserving mappings p;, the functions z — p;(p;(z)) yield an
equivalent parametrization of S. Following Barsky and DeRose [BD85, De85|, we derive the
conditions for geometric continuity of adjacent patches. By definition a surface is of class
C* if for each neighborhood on the surface there exists a parametrization of class C'¢. To
apply this definition to piecewise polynomial surfaces, consider two adjacent patches which
join at a common boundary arc and are parametrized by p: D — IR and ¢ : E — R3.
Without loss of generality we may assume that I := DN E = {(0,¢) :0 < ¢ < 1} and that

p(0,t) = ¢(0,1), t€[0,1]. (15)
Let,
(wyp,ug) — p(u) := (Wl(ul,uz),soz(ul,uz))
be a continuous 1-1 mapping of DU E' onto D U E with p(u) = u for u € D. Then

| p(w), ifue D
e r(u) = { q(p(v)), ifuekE’

is an equivalent parametrization of the two patches under consideration. Therefore, the
union of the two patches is of class C*? if there exists a mapping ¢ with the above properties
such that ¢ is of class C¢ on E’ and r is ¢ times differentiable on I. The latter condition
means that

8¥ (p(u) — q(w(u)))= 0, for u = (0,¢t), t €[0,1], and v =1,... 4 (GSY)

Note that (15) and the assumption ©(0,t) = (0,¢t) imply that all partial derivatives of

order < ¢ which involve differentiation with respect to u; are continous for v = (0,¢) if
(GS*) holds.
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Remark. Smoothness could also be defined in terms of parametrization invariant
geometric characteristics such as tangent planes, curvature, etc. However, for C!- and
C?*-continuity this would be equivalent to our approach (cf. [H86]) and for higher order
smoothness the “geometric” approach becomes rather complicated.

( Figure 7))

Writing out the conditions (GS*?) in detail and using the abbreviations fou:=0%Y0%f,
we obtain

P10 = (11,040%,0 + %,1‘0?,0 (Gsh)

2 2
pz’o :q2,0 ((pi’o) + 2Q1,1‘Pi,0‘P%,O + QO,2 ((pfyo) + (GSZ)
‘h,o‘Pé,o + QO,1<P§,0

where all of the above terms are evaluated at u = (0,t). Note that, in the above con-
ditions, the shape parameters ¥ 0(0,t) are univariate functions. However, the fact that
the components of p and ¢ are polynomials of a given degree imposes restrictions on the
possible choices of . It is reasonable to make the following

Consistency Assumption. For a given choice of the shape functions ©}. 0, €ither
one of the parametrizations p [or q] can be freely chosen, i.e. for any p there exists q [or
vice versa] so that the (GS) conditions hold.

Under this assumption, it will be shown that conditions (GS¥%) can be rewritten as a
system of homogeneous linear constraints on the Bézier coefficients,

At(,? (ai’ a'j) =0, (16)
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14 Klaus Héllig

for adjacent patches p; and p; with Bézier coefficients a,, and a;, respectively. The

matrices Az(.’e-) depend, as for 3-spline curves, on a set of scalar shape parameters [rather
than functions|. Thus, B-spline surfaces can be described as a set of polynomial patches p;
defined in terms of their Bézier coefficients a; together with constraint relations (16) for
each interior edge. Unfortunately, at present, B-splines are not available to represent such
surfaces. It seems very complicated to determine control points, i.e. to characterize the
degrees of freedom for the general §-spline surfaces. However, Bézier coefficients which
satisfy the constraint relations (16) as well as certain design objectives can be determined
by local iterative methods.

Algorithm 5. To construct a smooth §-spline surface S which is close to a given

piecewise polynomial surface S. [which is not necessarily smooth; but approximates the
desired shape of S|, solve the quadratic program

minimize ||a — a.||* subject to A¥a =0 (17)

where a and a. represent the Bézier coefficients of all patches of S and S, respectively
and A(®) represents all constraint relations. A standard technique for solving (17) is to
apply SOR to solve the dual problem which very effectively makes use of the sparsity of
the matrix A(9) (cf. [Gr86] where the implementation of a special version of this algorithm
for C'! cubic interpolation is described).

6. Triangular patches

We apply the general discussion of the previous section to triangular patches, i.e.
we assume that the p; in Definition 1 are polynomials of total degree < k. Consider
first condition (GS!) for continuous differentiability of the surface. Since p and g are
polynomials of total degree < k, the functions f := p1,0(0,-), g := ¢1.0(0,-) and h :=
40,1(0, ) are univariate polynomials of degree < k — 1. With « := cp},o and 3 = 90%,0, the
(GS!) condition derived in the previous section is

f =ga+ hp. (18)

The consistency assumption implies that the right hand side of (18) is a polynomial of
degree < k — 1 for any choice of the polynomials g and h. By choosing g(t) := (0,0,t%),
h(t) := (0,0,0), it follows that o must be constant; similarly one concludes that 8 must
be constant. Therefore, condition (GS?!) admits only 2 scalar shape parameters. Since
p(u) = (auy, Bu; + us) is invertible and orientation preserving, o must be positive. With
this observation we reformulate the (GS!) condition in terms of the Bézier coefficients (cf.
A3 of the appendix). To this end we label the Bézier coefficients adjacent to the common
arc by p,,q,, v =0,...,k—1,and d,, v = 0,...,k as indicated in Figure 8. Using the
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differentiation formula for the Bézier representation, the Bézier coefficients of the terms in
(18) are, up to a normalizing factor,

f . du+1+du_2pu, I/=0,...,lc--1
qg . 2qu—~d,,+1—'du, I/=0,...,IC—~1 (19)
h . du+1’-dy, U:'O,---,k"“]..

Comparing Bézier coefficients in (18), we obtain the following equivalent formulation of
the (GS!') condition.

Geometric Cl-continuity. The union of the patches is continuously differen-
tiable at the common boundary [corresponding to the common Bézier coefficients d,,
v=0,...,k]if

l1+oa-— l+a+
puz"’“"’i‘“‘“"q dyy1 + “”‘z—‘ﬁdu — Qqy, v=0,...,k-1, (20)

for some shape parameters @ > 0 and 8. Geometrically, condition (20) means that the
points p,, du41, dy, ¢, are coplanar and that the points p, have the same barycentric
coordinates with respect to the triangles spanned by d, .1, d,, ¢, for all v. The condition
for strict parametric continuity is the special case corresponding to & = 1 and § = 0.

( Figure 8 )

It may seem disappointing that there exist only 2 scalar shape parameters [rather
than shape functions|. However, consider again the general (GS?') condition which may
be rephrased as

det || p1,0(0,t) 41,0(0,t) 90,1(0,¢) || =0, t€0,1].
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16 Klaus Hollig

This determinant is a polynomial of degree < 3(k—1) and therefore the condition is equiva-
lent to 3k — 2 [nonlinear| constraints [all coefficients of the polynomial have to vanish|. This
is consistent with (20) which represents 3k constraints with 2 free parameters. The above
discussion seems to contradict Farin’s construction [F82] of constraint relations involving
a linear shape function [2 parameters| and 1 additional scalar free parameter. However, he
assumes that the boundary arc is of lower degree, thus imposing 3 additional constraints.
Therefore, his conditions are more restrictive, but arise naturally when blending triangular
and rectangular patches (cf. the next section).

By (20), to each interior boundary arc there correspond 2 shape parameters. However,
at each vertex certain compatibility conditions must hold to ensure consistency of the
constraints at a vertex. To derive these conditions, assume that n4 patches meet at an
interior vertex d (cf. Figure 9) and denote the shape parameters corresponding to the
edges by ay, Bi. Further, denote the Bézier coefficients adjacent to the vertex by vy,...,v,
and set w, := v, — d.

ai, i

Vi-1

( Figure 9 )

With this notation, condition (20) implies that
1_22:_@ d+ L‘*_:._‘Eé_:‘_?_i ”

Vil = U4

where the index ¢ has to be interpreted modulo n. Writing this condition in terms of the
vectors w; yields
wi—l+ﬂ£wi+aiwi+1:01 7'-:15"'777' (Vn)

with 8! := (=1 — a; + 8;)/2. The consistency assumption implies the following condition.
1
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Geometric Continuity 17

Vertex consistency. The shape parameters which correspond to boundary arcs
meeting at a vertex have to be chosen so that the system (V™) has a solution for any choice
of two consecutive vectors w;, w;11. In accordance with the consistency assumption, this
guarantees that the tangent plane [which is spanned by the vectors w;| can be freely chosen
at the vertex.

Since the above condition has to hold for each vertex of a C Lsurface, it may lead
to global constraints, further restricting the choice of the shape parameters. Below we

describe the admissible choices of the shape parameters for two examples.

ng = 3: For 3 edges joining at a vertex, the system (V3) becomes

By ap 1 wy 0
1 ,35 Qa2 wo = 0
az 1 ﬂ:’; w3 0
Eliminating w3 in the first equation yields
1 !
Blw; + aws — —w; — 2w, = 0.

Q2 g

Vertex consistency requires that this equation hold for any w; and wp which implies that
B1 = 1/az and a; = B%/as. Because of the cyclic structure of the matrix, this yields the
conditions

a; =1/6]_4, t=1,2,3

(21)
ajaqag =1

which are also sufficient. Therefore, for any choice of a; > 0 with ajasaz = 1 there exists
a consistent choice of the parameters g;.

ng = 4: A similar analysis for the case of 4 edges yields the conditions

Vo~ aity=0{_0i,,

(22)
oo 1f o = Bl

For parametric C!-continuity, o; = 1 and B! = B;/2 — 1 = —1, and neither of the
conditions (21) or (22) admit a solution in this case. The reason for this paradox is that we
have normalized the reference domains in the definition of a piecewise polynomial surface.
The above conditions describe the conditions for the required linear reparametrizations to
Join the patches smoothly.

For triangular patches, the conditions for higher order smoothness do not allow addi-
tional shape parameters if the consistency assumption is adopted. For example, if polyno-
mial patches of total degree k are considered, the GS? condition is of the form

P2,0(0,t) = f(t) + [g1,003 0 + 90,103 (0, 1)
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18 Klaus Héllig

where the components of p; o(0,-) and f are polynomials of degree < k& — 2. Since the
components of 1,0(0, -) and go ; (0, -) are of degree < k-1 and, according to the consistency
assumption can be freely chosen, it follows that the shape functxons % o must vanish. Thus
the (GS?) condition reduces to the condition for C2-continuity of the parametrization, the
only degree of freedom being a linear reparametrization of one of the adjacent patches.
The same conclusion holds for higher order smoothness.

7. Rectangular patches

In this section we consider rectangular patches, not necessarily of tensor product type;
i.e. the number of patches meeting at a vertex need not equal 4. As in the previous section
we apply the results of section 5, beginning with C''-continuity. We assume that p and q are
polynomials of coordinate degree < k (cf. A2 of the appendix) and rewrite condition (GS?)
as (18) using the same abbreviations as before. There is a slight difference; differentiation
with respect to u; [i.e. differentiation perpendicular to the common arc| does not reduce
the degree of the polynomials restricted to the segment I. Therefore, the polynomials f,
g and h in (18) are of degree less than or equal to k, k and k — 1 respectively. This allows
additional freedom in selecting 8 which, in accordance with the consistency condition, can
be a linear function. In other words, 3 scalar shape parameters can be chosen, namely
a > 0, B, and (2 which denote the values of the linear function S att = 0 and t =
respectively.

Following Farin [F82;] we reformulate the resulting condition in terms of the Bézier
coefficients. To this end we label the Bézier coefficients adjacent to the common edge as
in the triangular case by p,, d,, and ¢, (cf. Figure 10) and calculate the Bézier coefficients
of the terms appearing in (18). Using the differentiation formula in A2 we obtain

f k(d, — p.), =0,...,k
g k(QU"du)a ““0’ 7k
hot k(dysr — dy), =0,...,k~-1

From the definition of the Bézier form one verifies that the Bézier representation of the
product h(t)(Bo(1 — ¢t) + B;t) is given by

k—-v v
h,ﬁ : ]C(,Bo_r(du+1 — du) -+ 'BIE(dV - d,,_.l)), v = 0,...,/(7.

Combining the above expression and simplifying we obtain the Bézier form of the (GS?)
condition.
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de  qk
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! |
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3
Q
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e
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( Figure 10 )

Geometric C! continuity [F82,]. The union of the two patches is continuously
differentiable if the Bézier coefficients satisfy

v
Pv = ""'—k"‘“ ((1 + o+ ﬂo)du - IHOdu+l - QQU) ( )
23
v
+E((1+a_ﬁl)dl/+ﬂldu-vl“QQU)’ V:Os-”ak’
for some shape parameters a > 0 and 3;, 82. This condition can be interpreted as an
“average” of two conditions of the form (20) with different 8’s.

At the vertex dg, condition (23) becomes

po = (1+ a+ Bo)do — Bod; + aqo.

As before, this leads to a compatibility condition at a vertex. Using the notation of Figure
9 [but with d, v, now denoting the Bézier coefficients of tensor product polynomial patches;
cf. A2], one obtains the conditions

wi-1+ ﬂiwi+aiwi+l =0, i=0,...,n,

which are identical with the conditions (V") except that 3! is replaced by §;. Therefore,
the conclusions of the preceeding section apply. Note that in the second case (ny = 4),
parametric continuity corresponds to a consistent set of parameters since a; = 1 and

Bi =B =0.

Farin [F82;] also derived the conditions for matching a triangular and rectangular
patch. Let p denote the parametrization of the triangular and ¢q the parametrization of
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20 Klaus Héllig

the rectangular patch. If ¢ is of degree < k, it follows from (18) and the consistency
assumption that p must be of degree k + 1. The constraints for the Bézier coefficients are
derived as before and we merely state the result and refer to [F82,] for details.

Geometric C!-continuity. With the notation as described in Figure 11, the union
of the two patches is continuously differentiable if

k—-v
Py = __k_.((l + a+ Bo)dy — Bodu+1 ~ g,)

+Z((1+a_ﬁ1)dv+ﬁldu~l“‘O!Qy), v=0,...,k,

where o > 0 and (;, f2 can be chosen arbitrarily.

QK

Cik d & -
+1 k : ?
!

t--9

o — —

|
|
9
|
|
cfo do < & &
qo

( Figure 11)

Finally, we discuss briefly the conditions for C2-continuity. We write condition (GS?)
in the form
p20 = F + [g7 + hé]

where F' denotes the terms involving second derivatives of ¢ and g := ¢; 0, h := go,1 are
defined as before. For polynomials of coordinate degree, po 2, g are of degree < k, h is of
degree < k - 1 and, with the shape parameters ¢} o, ©3 ; chosen according to the (GS')
condition, F is of degree < k. Therefore, by the consistency condition, v must be constant
while 6 can be chosen as a linear function. This yields 3 free parameters in addition to
the parameters «, B,. As before, since § is a linear function, the (GS?) condition can be
expressed in terms of the Bézier coefficients. However, offhand, the resulting conditions
are complicated and new ideas are needed to understand the nature of these constraints.
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For a mathematician, used to a theory “for arbitrary k", the results of the last two
sections are not quite satisfactory. The author hopes that the special cases described will
get the reader interested in some of the open [§-spline| problems.

Appendix: Bézier representation of polynomials
We review the definition of the Bézier form and some properties which were used in

these notes (for details cf. [Bo86, F86, Da86|).

Al. Polynomials of one variable: A polynomial p of degree < k can be written

k
=Y a,BEY), telo,1],
v=0

as

where .
BE(t) := ( )(1 — t)k-viy
v
and a, are called the Bézier coefficients of p. The corresponding Bez1er forms of the
derivatives of p are

k-1
p, =k Z(a,,+1 - a,,).Bl,f'l,

v=0
k—2
p'=k(k-1) Z (a,,“ - 2ay41 + a,,)B’,f“z,
v=0

etc., i.e. differentiation corresponds to differencing of the Bézier coefficients. By the
definition of the polynomials BE, p(0) = ao, p'(0) = k(a; — ay), p"(0) = k(k 1)(as —
2a; + ao), ..., and the analogous statement holds for evaluation of the derivatives at 1.

A2. Bivariate polynomials (coordinate degree): A bivariate polynomial p of
degree < kj, k; in the variables z,, 5 respectively can be written as

ki ks
= Z Z a, BE'(z1) Bf:(z2)

v =0v,=0

where a, are the Bézier coefficients. The Bézier representation of the partial derivative of
p with respect to z; is

k’l‘—'l '7

01p(z) = k1 Y > (au,41s — @u,s) BE (21) BE (25)

vy =0 va=0
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29 Klaus Hollig

and an analogous formula is valid for d;p.

A3. Bivariate polynomials (total degree): Let £, denote the barycentric
coordinates with respect to a triangle D with vertices v,, i.e.

= &1(z)vy + E2(z)ve + E3(z)va
1= &i(z) + &a(z) + £3(z).

A polynomial p of total degree < k can be written as

p(z) = Z a, B,

vy,pe .y 20
vy tvg tug =k

where
vy + g+ I/3)!

vilvglvg!

B,(z) := (

§1(2)" &2(2) " £3(z) ™

and a, are the Bézier coefficients of p with respect to the triangle D. The derivative of p
in the direction  := v, — v, is given by

D’lp = § : (thV'ﬁ-l,Va Gy, +1,V2,VS)BV
Vi +U3‘+V3=k—1

and analogous formulas hold for derivatives in the directions v3 — vy and v; — va.
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