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ABSTRACT

This paper presents an application of parallel computing techniques to the solution
of an important class of planning problems known as generalized networks. Three paral-
lel primal simplex variants for solving generalized network problems are presented. Data
structures used in a sequential generalized network code are briefly discussed and their
extension to a parallel implementation of one of the primal simplex variants is given.
Computational testing of the sequential and parallel codes, both written in Fortran, was
done on the CRYSTAL multicomputer at the University of Wisconsin, and the compu-
tational results are presented. Maximum efficiency occurred for multiperiod generalized
network problems where a speedup approximately linear in the number of processors was

achieved.



Generalized network problems form a special class of linear programming (LP) prob-
lems. A wide variety of important planning problems can be modeled as generalized

networks. Glover et al. [19] discuss a number of these applications.

The method most widely used in practice for solving LP problems is the primal simplex
algorithm, see Charnes and Cooper [7] and Dantzig [8]. This algorithm proceeds from one
extreme point of the feasible region to another until optimality is achieved. Karmarkar [21]
proposed a method for the solution of LP problems which does not utilize extreme points,
and he notes that his algorithm lends itself to parallel computation but gives no details.
(However, the results of the recent computational study [17] cast doubt on Karmarkar’s
claim that his algorithm will supercede the simplex algorithm.) The simplex algorithm for
general LP problems does not readily yield to parallelization, although certain steps of this
algorithm can benefit from vector processing. (Such steps include pricing-the calculation
of reduced costs—and the so-called BTRAN and FTRAN operations when the product
form of the inverse basis matrix is used. These operations involve the calculation of dual
variables and the updated entering column, respectively.) However, since much of the
work incurred by the simplex algorithm involves the application of Gaussian elimination to
factor the basis matrix, which is typically large and sparse, parallelization of this algorithm
depends heavily on developments in this area. (Vector processing has been applied to such
operations for dense matrices [11].) Factorization for the basis matrices of generalized
networks is not a problem because of their special structure as discussed in Section 2.1.
The partitioning methods we describe for generalized networks can be extended to LP

problems with staircase structure [15], [16].

Theoretical work in parallel optimization algorithms for problems with network struc-
ture, including the minimum spanning tree problem, the shortest path problem, and the
traveling salesman problem, is presented by Quinn and Deo [29]. A parallel algorithm for
a class of nonlinear multicommodity network flow problems known as traffic equilibrium
problems is described by Feijoo and Meyer [14]. This algorithm uses a decomposition
approach and includes computational experience on the CRYSTAL multicomputer [9] at
the University of Wisconsin. Parallel computing applied to a multiple-cost-row linear
programming method is proposed by Phillips and Rosen [27] in connection with solving

linear complementarity problems. Their study was done using the CRAY XMP/48. Re-
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cent mathematical programming studies which utilized vector processing include those of
Plummer, Lasdon, and Ahmed [28] and Zenios and Mulvey [31].
The generalized network problem (GN) has the form

minimize cz (1.1)
subject to Az =1b (1.2)
0<z<u ‘ (1.3)

where A is an m X n matrix; ¢, z and u are n-vectors; and b is an m-vector. The matrix
A must satisfy the condition that each column contains at most two nonzero values. The
upper bounds u are also known as capacities. By scaling and/or complementing a variable
relative to its capacity, GN can be transformed so that each column has at least one
entry which is +1. We assume that such a transformation has been applied to GN. A
representation of GN as a directed network is then obtained as follows. With each row of
A we associate a node of the directed network. Each column of A is associated with an arc
directed away from the node corresponding to the +1 column entry (arcs corresponding to
columns containing two +1 column entries can be directed either way). (Columns with a
single nonzero entry are associated with arcs incident on only one node, and such arcs are
called self-loops.) Thus, a column with nonzero components of 4+1 and —f in row ¢ and
4, respectively, corresponds to the generalized arc (¢,j) of Figure 1. The value 6, which

is shown in the triangle, is called the multiplier of the arc.

O—A-0

Figure 1. A generalized arc.

The variable f associated with the arc of Figure 1 can be interpreted as the amount
of flow leaving node ¢. These f units of flow are transformed across the arc to 6f units
of flow entering node j. Since self-loops with large costs can be adjoined to the problem if

necessary, it is assumed that A in (1.2) has rank m.
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Sequential implementations of the primal simplex algorithm for GN have been de-
scribed by Elam, Glover, Hultz, Klingman, and Stutz [12], [18], [19], [20], by Brown and
McBride [5], and by Engquist and Chang [13]. These implementations utilize network data
structures to achieve efficiency. Extensive computational results in [13] demonstrate that
GRNET, a generalized network code, runs about 60 times faster than the general purpose
LP code MINOS [26].

In this paper we develop parallel variants of the primal simplex algorithm for GN. One
of these variants was implemented on CRYSTAL, and a computational study comparing

this implementation with GRNET is presented.

2. A Sequential Primal Simplex Algorithm for GN
This section provides background on network data structures and their use in imple-
menting the primal simplex algorithm for GN. The data structures we describe were used

in GRNET. We limit ourselves to an overview here because the details are available in 5],

[12], and [13].

2.1 Basis Structure

It is known [2], [22] that a basis for GN can be represented graphically as a collection
of quasi-trees (also called one-trees) where a quasi-tree is a tree to which a single arc has
been adjoined. Thus a quasi-tree contains a single closed path, and this closed path is
called a loop. It is possible for this loop to be incident to just a single node. The latter
case, as mentioned previously, is known as a self-loop.

Next we discuss the node functions used to represent and maintain basis quasi-trees.
Suppose that a quasi-tree @ is given. We select one of the arcs of the loop of @ and
designate it as the special arc of Q. When the special arc is removed from Q, a tree T
results. One of the end nodes of the special arc is designated as the root of T. Then node
functions which were originally used for basis trees of pure networks in [3] can be used.

These node functions are defined as follows. If 7 and j are nodes incident to an arc
of T' such that 7 is closer to the root than j, then ¢ is called the predecessor of j and
node j is called an immediate successor of node ¢. The subtree of T that contains a node
z and all of its successors will be denoted as T'(z). For nodes other than the root node,

p(z) denotes the predecessor of z. If ¢ is the root node, then p(z) is the node at the
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opposite end of the special arc. The preorder successor of node z is denoted as s(z).
Once a preorder is given, the thread is defined as the function which traces the tree nodes
in preorder. The value of the thread for the last node in the preorder is defined to be the
root. The function whose value at node z is the number of nodes in T(x) is denoted by
#(z). The last nodeof T(z) in the preorder defining s is denoted by f(z). For nodes on
the loop the predecessors are flagged by means of a negative index in order to facilitate
detection of loop nodes during the simplex ratio test. An example showing these node
functions is given in Figure 2. Since arc direction does not affect node function values,

arcs are shown as undirected in the figure.

Figure 2. Example quasi-tree (special arc dotted).



To eliminate a certain search in updating. GRNET also keeps the reverse thread
function r, which is simply the inverse of s. For, GRNET, GN problem data is stored
using arc length arrays for the head node, cost, capacity, and multiplier. This arc data is
organized with all arcs emanating from a node (the forward star) in contiguous positions.
A node length pointer array gives direct access to each forward star. Another node length
array lk is required to link the basis representation to the arc data. For a node ¢ in a

quasi-tree, lk(3) is the arc number of the arc between node ¢ and its predecessor.
2.2 Primal Simplex Steps

1. Initialization
The initial basis consists of self-loops with very large (Big-M) costs for each
problem node. This is called an artificial start. Initial dual variables (node

potentials) are set.

2. Pricing
The reduced cost of an arc is calculated using the cost and multiplier of the arc
and the node potentials of the end nodes of the arc. The entering arc is chosen
either as a nonbasic arc with zero flow and negative reduced cost or as a nonbasic
arc with flow at capacity and positive reduced cost. If an entering arc cannot be
found, GN is solved. In GRNET, a candidate list strategy [25] is used in which
pivot eligible arcs are placed on a list. Entering arcs are selected from the list if
possible. GRNET uses a candidate list with a maximum length of 30 and up to

15 pivots are made from each list before it is updated.

3. Determine leaving arc and update flows
Predecessor paths are traced back from the end nodes of the entering arc to the
loop(s) of the quasi-tree(s) involved in order to accomplish this step. The leaving
arc is found by carrying out the ratio test as this trace is made. Another trace

of these paths is needed to update flows.




4. Basis exchange
The entering arc becomes basic, the leaving arc becomes nonbasic, and the node

functions used to represent the basis quasi-trees are updated as needed.

5. Additional updates ‘

Node potentials and possibly loop factors change for the new basis. (This update
can be integrated with the basis exchange step.) Go to Step 2.

GRNET uses an array for saving loop factors and the updated entering column rep-
resentation. Also, GRNET includes a step which corresponds to a basis reinversion every
300 pivots. That is, by tracing basis quasi-trees appropriately, GRNET recalculates node
potentials and flow directly from GN problem data.

3. Parallel Primal Simplex Variants for GIN

In this section, three parallel primal simplex variants for GN are considered. These
approaches vary in the way in which they handle pricing and interprocessor communication.
All three variants have tasks that are large-grained and are intended for a multiprocessor
architecture involving relatively few processors.

The three variants all utilize a subset of the processors called SP. The members of
SP (simplez processors) perform the sequential simplex algorithm on certain subproblems.
These subproblems, which we call local problems, are created by partitioning the nodes
of GN among the members of SP. The local arcs of a local problem are those arcs that
connect the nodes of the local problem. The remaining arcs, which may be thought of as
going between processors, are called cross arcs. A local problem is a generalized network
problem in its own right with the problem data. it inherits from GN. Because of the artificial
start, all local problems are feasible.

The first primal simplex variant is termed the Pure SP Method because all of its
processors are in SP. As the local problems reach optimality, they are modified by the
exchange of nodes in basis quasi-trees to form new local problems. It is necessary for each
processor to maintain a list which keeps the initial allocation of nodes to members of SP.
This initial location of a node is called its home. Further, the pricing of cross arcs is the
responsibility of the processor that currently owns the tail node of the arc. (Cross arcs

are nonbasic and this processor will also maintain their status—at zero or capacity.) When
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trying to get information about node v, the head node of a cross arc, a processor first sends
the request to v's home. If v's home does not currently own v, it forwards the request
to v's current location. To mitigate the fact that the location of a quasi-tree in transit is
not known to the home yet, each processor caches forwarding addresses for recently sent

nodes.

When a processor in SP solves a local problem to optimality, it requests node potentials
for the head nodes of its cross arcs and prices these cross arcs. When a cross arc is chosen
to enter the basis, the processor requests that the quasi-tree at the opposite end of the
cross arc be transferred to augment its local problem. A quasi-tree involved in a cross arc
pricing operation is prevented from entering into further pivots until it is known whether
this quasi-tree is to be transferred. In this way, correct node potentials are used in pricing
and optimality for GN occurs when all local problems are optimal and no pivot eligible

cross arcs can be found.

For the second primal simplex variant, in addition to SP, a disjoint set of pricing
processors PP is used. One member of PP is chosen as the master processor (mp). Tt
is the function of mp to direct the pricing activities of the other members of PP and to
maintain the list of cross arcs. This variant is known as the PP/SP Method. The master
processor prices cross arcs or instructs other members of PP to do so, and it keeps the most
promising cross arcs on a candidate list. Since the members of PP use possibly obsolete
node potentials for pricing, the arcs on the candidate list are not guaranteed to be pivot
eligible. When the members of SP have all reached optimality for their local problems,
quasi-trees incident to arcs from the candidate list are transferred from one member of SP
to another. The number and size of the quasi-trees moved is monitored and controlled by
mp for load balancing purposes. After the transfer of quasi-trees, the members of SP send
current node potentials to mp and another parallel iteration begins. Optimality for GN is

reached when all local problems are optimal and mp cannot find any candidate arcs.

The third variant, which we term the Hybrid Method , combines features of the two
previous methods. The Hybrid Method retains both sets of processors PP and SP but it
allows a member sp; of SP to interrupt mp and ask for promising cross arcs incident to
nodes of its local problem as soon as it has reached local optimality. Once a cross arc is

chosen, the processor spy at the opposite end of this arc from sp; must be interrupted
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and instructed to transfer the quasi-tree involved to sp;. After this operation, sp; passes
current node potentials to mp. The check for GN optimality is the same as for the PP/SP
Method.

The Pure SP Method treats all processors equally and, in this sense, it is more parallel
than the other two proposed methods. However, this method may be somewhat myopic
in its search for good cross arcs. The PP/SP method has a step in which all processors
exchange information, and for a distributed-memory system this may result in excessive
communication. However, the use of mp should produce better cross arcs to enter the
basis since it selects candidate arcs by searching all possible cross arcs. It is hoped that
the Hybrid Method will capitalize on the good features of the other two methods.

An important aspect of all three methods that We have discussed is the procedure used
to determine the initial partition of nodes among the members of SP. A good partition is
one which results in local problems for which a large number of low cost local arcs exist.

Details of the partitioning procedures that we used will be given in the following sections.

4. The CRYSTAL Multicomputer

CRYSTAL [9] is a set of VAX 11/750 computers (currently there are 20) with 2
megabytes of memory each, connected by a 80 megabit/sec Proteon ProNet token ring
and accessed via VAX 11/780 “host” machines. This multicomputer can be used simulta-
neously by multiple research projects by partitioning the available processors according to
the requirements of each project. Partitioning is done via software, and, once a user has
acquired a “partition” or subset of processors, the user then has exclusive access to the
node machines of that partition. CRYSTAL software is largely written in a local extension
to Modula, but also includes communications routines (the simple-application package)
callable from Fortran, Pascal, and C. Development, debugging, and execution of projects
takes place remotely through any of several VAX 11/780 hosts runing Berkeley Unix 4.2.
Acquiring a partition of node machines, resetting each node of the partition, and then load-
ing an application onto each node may be performed interactively from any host machine.
CRYSTAL has been used for research in a variety of areas, including distributed operating
systems, programming languages for distributed systems, tools for debugging distributed
systems, multiprocessor database machines, protocols for high performance local network

communications, numerical methods, and recursive search. The latter work is of par-
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ticular interest in terms of providing preliminary combinatorial optimization experience
with CRYSTAL as well as communications tools useful for studying branch-and-bound

algorithms for global optimization.

5. Implementation

In this section a Fortran code for the PP/SP parallel simplex algorithm is described.
Of the three algorithms presented in Section 4, we started with PP/SP because it is the
casiest to implement. This implementation was done on CRYSTAL and the resulting code
is known as GRNET-K.

GRNET-K utilizes K processors where K is a value in the range from 3 to 20. It
is limited to a single member in PP, and for simplicity, it departs slightly from PP/SP in

that it uses two stages. In Stage 1, the K processors are distributed as follows:

PP ={ processor K }

SP ={ processor 1,...,processor (K —1) }

where processor K is designated as the master processor (mp). Stage 1 termination criteria
are based upon candidate list size and are discussed in Section 5.3 below. In the transition
from Stage 1 to Stage 2, all processors i, 1 < 1 < K, send their basis quasi-trees to
processor 1. In Stage 2, processors ¢, 1 <1 < K, are idle while processor 1 executes the
sequential simplex algorithm. This approach is motivated by the time-consuming nature
of a message-passing validation of optimality.

The host program for GRNET-K is shown in Figure 3. Each client processor receives
a copy of the GN problem data. The processors in SP flag this problem data to identify

their own local problems while mp prices cross arcs.




PROGRAX Host
Read problem data
Stert client prograns
Send date to client processors
Receive solution from client procesasors
Write asolution
END

Figure 3. Host program for GRNET-K.

5.1 Initial Partitioning Procedures

GRNET-K has two options available for setting up the initial partition of GN nodes
among the processors of SP. For both options, once this partition is set up, the resulting
local problems use an artificial starting basis. That is, each node of a local problem has
a self-loop attached which carries a big-M cost. The second option requires access to a
node’s reverse star (the set of arcs entering the node). GRNET-K provides this access

using arrays which are described in Section 5.2.1. The two options are:
(i) Set up a user-supplied partition.
(ii) Use the following procedure.

For each unlabeled node i,

1. Find an arc e in the union of the reverse and forward stars of ¢, ignoring self-

loops, such that e has least cost.

2. If the end node of e opposite to ¢ is labeled, then label : with the same processor

number.
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3. If the end node of e opposite to ¢ is unlabeled, then label both this node and 1
with the same processor number. (The processor number used is based on load

balancing considerations.)

5.2 Quasi-tree Transfer and Related Updates
When a quasi-tree is transferred from one processor to another by GRNET-K, the
local problems on the two processors involved are redefined. Of course, the set of cross

arcs is also changed. : :

5.2.1 Data Structures

In addition to the arrays used by GRNET for maintaining the basis quasi-trees,
GRNET-K employs an array pn on the master processor and arrays pb and barc on
the members of SP. The current partition of GN nodes in processors is kept by pn where
pn(i) = j in case node ¢ is a node of the local problem on processor j.

The status of nonbasic arcs is determined by whether their flows are at zero or at
capacity. It is necessary that the correct status of nonbasic local arcs be available to the
processor which currently owns them and that the status of cross arcs be available to mp.
The arrays pb and barc are used to help maintain this information. The value pb(i) is
the arc number of the first arc entering node i. The value barc(k) is the arc number of
the arc entering the head node of k, immediately after k. Also, pb(i) = Big — M in case
there is no arc entering node 4, and barc(k) = Big — M in case k is the last arc in the

reverse star of the head node of k. This structure is shown in Figure 4.
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node pb arc barc
1 999 1 5

2 1 2 999

3 2 3 8

4 3 4 6

5 4 5 999

6 7 6 999

7 9

8 999

9 999

Figure 4. Access to reverse star.
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These arrays are flagged to identify local arcs for pricing purposes. For arc k,
barc(k) < 0 indicates that the tail node of k is in the local problem, and if 7 is the
head node of k, pb(i) < 0 indicates that node i is in the local problem. When quasi-trees
are transferred, these flags must be updated.

Capacities for GRNET-K are flagged negative, as they are for GRNET, to indicate
an arc that is nonbasic at capacity. The capacity array for a member of SP must have
the correct flags for its local problem arcs, while the capacity array for mp must have the

correct flags for cross arcs. The pn array allows mp to identify cross arcs.

5.2.2 Quasi-tree Information Exchange

GRNET-K uses the simple-application package of CRYSTAL for communication be-
tween processors. The simple-application package provides auxiliary Fortran subroutines
which allow certain arrays (buffers) to be sent and received as messages. In order for a
quasi-tree owned by processor z to be transferred to processor y, processor  must for-
mulate and send an appropriate message. Along with node 7, both k(%) and p(¢) are sent
in the message. We take advantage of the fact that the thread is an ordering on the nodes
of a quasi-tree, and these nodes are put into the buffer in this order so that processor y
can recreate the functions s as it unloads the message.

In order to avoid excessive communication times, node functions that are easily re-
calculated were not sent as messages. (This is known as “overlapped work”.) These node
functions are r, ¢, f, flow, and poten (the node potentials). The reverse thread r is easily
set as the nodes are received in thread order. As node i is received, () is set to 1 and
f(3) is set to 0. To complete the recalculation of ¢ and f, the quasi-tree is traversed in

reverse thread order and for each node ¢, the following steps are executed:

1. If t(i) = 1, then set f(z) =1.
2. 1f £(p(i)) = 0, then set f(p(6)) = F().

3. Set #(p(s)) = Hp(s)) + t(i).

The recalculation of flow and poten are done in the same fashion as in a generalized

network basis reinversion.
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5.3 Stage 1 Logic

Once the initial partition of GN nodes for the processors of SP is set up, these pro-
cessors solve their local problems in parallel while mp generates a candidate list of cross
arcs. When the processors of SP have all reached optimality for their local problems,
all processors exchange information. Then another parallel step 'is taken, followed by an-
other information exchange, and so on, until Stage 1 is completed. The client program
for GRNET-K is given in Figure 5. (Parallel tasks are shown using a notation (parbegin,
parend) introduced by Dijkstra [10].)

PROGRAN Client
receive problea dats from host
astage = 1
repeat
begin
perbegin
processor K pricing
processor K-1 pivoting
processor 1 pivoting
parend
exchange information
end
until ( stage = 2 )
exchange information
repeat
processor 1 pivoting
until optimal
send solution and timing to host
END

Figure 5. Client Program for GRNET-K

The candidate list generated by mp has a maximum length equal to the number of
GN problem nodes. For each node, the best pivot eligible cross arc leaving that node, if

any, is placed on the list. Of course, the determination of pivot eligibility is made with
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reference to the possibly obsolete node potentials available to mp. A threshold reduced
cost value is used by mp as a further requirement which must be met by a cross arc in
order for it to be placed on the candidate list. That is, the absolute value of the reduced
cost must be at least as great as the threshold value. It may be necessary to adjust the
threshold value according to the cost range for GN in order to achieve good performance.
However, a fixed threshold value of 1.0 was used for all the testing discussed in Section 6.

Next, we discuss the information exchange and its control. When the members of
SP have reached local optimality, mp takes the next available cross arc, say (i,7), from
its candidate list. It then tells the processor that currently owns node ¢ to transfer the
quasi-tree containing node ¢ to the processor that currently owns node j. When |60/K |
quasi-trees have been transferred in this manner or no arcs remain on the candidate list,
mp notifies the members of SP that the current exchange of quasi-trees is complete. As
a quasi-tree is transferred from processor z to processor y, information is exchanged as
discussed in Section 5.2.2. In particular, information on the new location of quasi-tree
nodes and on newly created cross arcs which are nonbasic at capacity is sent to mp. To
complete an information exchange step, the members of SP send current node potentials
to mp.

In Stage 1, and Stage 2 as well, candidate lists of local arcs are formed by processors
which perform pivots. These candidate lists have a maximum length of 30, and up to 15
of the best arcs are selected from the list. Stage 1 is terminated when the candidate list

formed by mp contains fewer than |60/K | cross arcs.

6. Computational Study

In this section, a computational comparison of the parallel code GRNET-K with the
sequential code GRNET is made. In contrast to previous computational studies involving
network optimization, e.g. [23], [30], the present study takes place on CRYSTAL, which
is an experimental computing environment. For this reason, the goal of the present study
is to determine the long-range implications of parallel technology on solution methods for
generalized network problems, whereas previous computational studies have been mainly
concerned with finding the best refinements of known optimization algorithms on relatively
well understood sequential machines.

The results of the present study carry over to parallel computers that make multiple
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processors available at a reasonable cost. We have assumed that such a computer is
available and that the user’s major concern is reducing the run times of his jobs. Thus, we
have chosen to focus on speedup (the ratio of sequential solution time to parallel solution
time) as our main performance measure. Production parallel systems are still quite rare,
and it is difficult to say precisely how billing will be handled for such systems. CRYSTAL

does not bill users for the use of its resources.

6.1 Problem Generators

For pure networks, the problem generator NETGEN developed by Klingman, et al.
[24] has been widely used. NETGEN has been extended to generate generalized network
problems and this extension is known as NETGENG [19]. In a previous computational
study [13] conducted using GRNET, it was discovered that the number of quasi-trees in an
optimal basis for a NETGENG problem is typically one or two. In view of the desirability
for parallel processing of having a large number of quasi-trees, this behavior raised the
question of whether this range of quasi-tree cardinality was a general phenomenon for
large-scale generalized networks or whether a test problem generator arising from a very
different foundation would yield a different quasi-tree count. The development of the test

problem generators GTGEN and MPGEN established the latter alternative.

6.1.1 GTGEN

GTGEN is a Fortran code capable of randomly generating generalized transportation

problems, and it was previously described in [6]. The underlying transportation network
is generated so as to be feasible and connected. GTGEN also allows some control of the
number of quasi-trees in an optimal basis for the problems it generates. As an arc is created
by GTGEN, a flow on this arc is also created as part of a feasible flow pattern. This flow is
set at u times the arc capacity, where y is a user-specified fractional value. For test results
reported herein, p had a value of 0.25. The supply for an origin node is set to the value
obtained by summing these generated flows over the forward star of the node. Similarly,
the generated flows, after being transformed by the appropriate multiplier, are summed
over the reverse star of a destination node to determine the demand. After the supply
and emanating arcs for an origin node are initially set, this problem data is modified with

probability ¢, where ¢ is another user-specified parameter. This modification includes (1)
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creation of a slack arc for the node and (2) creation of a new supply which is 1/p times
the previous supply. The number of origin nodes multiplied by ¢ thus gives the expected
number of modified origin nodes. Computational results included in [6] show that this
expected value provides a good estimate of the number of quasi-trees in an optimal basis.
This is plausible since, relative to the original feasible flow generated, each modified origin
node has an increased supply that will likely force the associated slack into the basis,
leading to the creation of a corresponding quasi-tree. (This is not guaranteed, however,
since the excess supply could result in flows at capacity on all arcs emanating from this
origin node. The slack arc would then likely be nonbasic at zero flow in the optimal

solution, and a corresponding quasi-tree would not occur.)

6.1.2 MPGEN

Multiperiod networks incorporate replications of a fundamental network, and these
replications represent the fundamental network in a succession of time periods. There
is an extensive literature on multiperiod network problems which has been documented
in the survey papers [1], [4]. Multiperiod network problems are promising for parallel
solution because the links between fundamental networks are often sparse and also because
these links exist only between nodes of adjacent periods. We created MPGEN, a Fortran
multiperiod generalized transportation problem generator, which calls GTGEN to create
the fundamental network. In MPGEN problems, backlogging arcs are included which
connect origins in the fundamental network for period ¢ + 1 to destinations in period :.
Flow on such a backlogging arc represents an amount demanded in period 7 that is not
shipped until period i+ 1. In a K period problem, a user-specified parameter d gives the
probability that an origin node in the fundamental network for period j, 2 < j < K, has a
backlogging arc emanating from it. MPGEN adjusts the supplies, demands, and capacities
of the fundamental networks as backlogging arcs are created to insure that some positive

flows on these arcs occur in any feasible solution.
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6.2 Computational Testing

Testing on GTGEN problems was carried out with the option (ii) heuristic starting
procedure of Section 5.2. The problem specifications of two typical GTGEN problems, A

and B, are given in Table 1.

Problem

A B
No. Origin Nodes 600 600
No. Dest. Nodes 400 500
No. Arcs Per Origin 16~20 16-20
Cost Range 1-100 1-100
Capacity Range 1-1000 1-1000
Multiplier Range .90-.98 .90-.98
q .30 .30

Table 1. Problem specifications for GTGEN.

These problems were solved by both GRNET and GRNET-K with values of K varying
from 3 to 6. The test results are found in Tables 2 and 3 for problems A and B, respectively.
The fact that the specifications of these problems differ only in the number of destination
nodes causes GTGEN to create the same number of arcs for both of them. However, the
network topology of the two problems is quite different. All times are in seconds and are
exclusive of I/O. Tterations for GRNET-K are the sum of the iterations (pivots) made by

all members of SP.
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For GRNET-K, T and T% are defined by:

Ty = > magz {CPUyj, CPUyj,...,CPU;}
je{parallel tasks}

where CPU;; denotes the CPU time for processor ¢ to complete parallel task j, and
T, = Stage 2 CPU tume.
These values are used to define

Parallel CPU time =T, + 15 .

It is noted that Parallel CPU time includes neither the communication time required
for information exchange nor the recalculation time for overlapped work (see the discussion
in Section 5.2.2). Parallel CPU time is regarded as a surrogate for the elapsed time of a

job on a shared memory parallel computer. With this in mind, we define

Sequential CPU time
Parallel CPU time

Speedup =

Elapsed time (ET) for the parallel code is the actual solution time for GRNET-K on
CRYSTAL. Of course, it includes all communication and recalculation time. For GRNET,
CPU time and elapsed time are the same. We define

S : )
ET Ratio = equential elapsed time

Parallel elapsed time

19
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It is interesting to note that for both problems A and B the best speedup occurs for
K = 4. However, when efficiency is defined as Speedup/K, the best efficiency occurs for
these problems when K = 3. The small values of the ET Ratio reflect the relatively large
amount of communication and recalculation time used by GRNET-K. Based on prelimi-
nary testing, we believe that the majority of this time is for communication. This is not
surprising given the PP /SP logic, which causes all processors to send messages simulta-
neously. When implemented, the other simplex variants of Section 3 should yield much
smaller communication times on CRYSTAL. Implementations of analogous algorithms in
a shared-memory environment should also lead to significant reductions in communication
time.

In order to better exploit the parallel capabilities of GRNET-K, we tested it on the
more structured multiperiod problems generated by MPGEN. Four groups of test problems
(C,D,E, and F) were used and the specifications for the fundamental networks of these

problems are given in Table 4.

Group

Cc D E F
No. Origin Nodes 100 100 200 100
No. Dest. Nodes 400 400 300 400
No. Arcs Per Origin 6-16 6~16 6-16 6-16
Cost Range 1-100 1-100 1-100 1-100
Capacity Range 1-1000 1-1000 1-1000 1-1000
Multiplier Range .90-.98 .90-.98 .90-.98 .90-.98
d .50 .80 .70 1.0
q .40 .40 .40 .40

Table 4. Specifications of fundamental networks for MPGEN
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For these groups, GRNET-K employs special starting procedures—option (i) of Section
5.1. In problem groups C,D, and E, the fundamental network is replicated for K periods
and GRNET-K uses K processors to solve the resulting problems, initially allocating the
fundamental network nodes of each period to separate processors. The test results for

problem groups C,D, and E are found in Tables 5, 6 and 7, respectively.
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For these problem groups, the most interesting result is the linear increase of the
speedup with the number of processors. The efficiency is about 0.7 for all K values for
group E, but is roughly increasing with K for groups C and D. The ET ratios are also
very encouraging for those groups. An unusual result occurs when K = 9,11, and 13 for
group D. Here, the efficiency is actually greater than 1. This is explained by the fact that
GRNET-K takes fewer iterations (pivots) to reach optimality than does GRNET. Fewer
iterations for GRNET-K have two possible explanations— a better starting procedure or a
better rule (pivot rule) for selecting entering arcs. A comparison of pivot rules is difficult;
however, it is plausible that GRNET-K is getting a better start than GRNET for these
problems since it is provided with the node numbers of fundamental networks for each
period. A better comparison with GRNET might be achieved if it also were provided
these node numbers so that it could solve the fundamental networks for each period in
sequence to get a starting basis. Such a procedure might cut GRNET iterations back
to the number of iterations used by GRNET-K. However, using a proportional reduction
in CPU time for GRNET, speedups would still remain impressive. On the other hand,
experimentation with pivot rules for GRNET-K might further improve its performance.

To shed light on the performance of GRNET-K on multiperiod problems in the case in
which the number of periods exceeded the number of processors, a single problem with 12
periods was created using the fundamental network for group F. This single problem, which
we refer to as problem F, was solved once with GRNET and five times with GRNET-K
using different starting procedures and a different number of processors each time. The

test results are shown in Table 8.
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When K processors are used, GRNET-K is given an initial allocation of 12/(K - 1)
consecutive fundamental networks per SP processor. In terms of elapsed time, 7 processors
are best for the solution of this problem. Speedups increase with K, but the efficiency for
K =13 is less than for K = 7. For K = 13, the fact that Stage 2 time is 37% of Parallel
CPU time helps explain the lower efficiency.

7. Conclusions

Three parallel primal simplex variants for solving generalized networks have been
presented which differ in their degree of parallelism, their compatability with distributed
computing, and their accommodation of primal simplex pricing mechanisms. The most
straightforward of these variants has been implemented on the CRYSTAL multicomputer
and tested against a sequential code on large-scale randomly generated test problems. For
generalized transportation problems with a random sparsity pattern, it appears that the
speedup afforded by this variant is limited to about 2, and this occurs when four processors
are used. For multiperiod generalized network problems, however, in which a better initial
approximation to the optimal decomposition is used, the results are much more encouraging
with speedups achieved which are roughly linear in the number of processors used. Further
implementation and testing is of interest. This would include work with all three of our
simplex variants on distributed systems and also on shared memory machines. (Discussion
of compuitational experience with these problem classes on the Sequent Balance 21000
multiprocessor is the subject of a forthcoming technical report. On multiperiod problems,
the speedups that we obtained on the Balance 21000 are comparable to the results on
Crystal that do not count communication time, and on single-period problems nearly linear
speedups have been obtained for problems whose optimal solutions contain large numbers
of quasi-trees.) Extension of our parallel methods to linear programming problems which

exhibit staircase structure is another promising direction for future work.
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