TRACKING THE ELUSIVE EUREKA
by

Eric Norman

Computer Sciences Technical Report #636

March 1986



Tracking the Elusive Eureka

Eric Norman

University of Wisconsin

ABSTRACT

The algebraic approach to computation of FP is used to transform recursive
definitions of the Fibonacci and factorial functions into iterative code. The approach
is similar to the one used to solve many differential equations and also similar to
what many call "higher order” or "semantic” unification. An algorithmic pro-
cedure is not obtained; the intent is to demonstrate the usefulness of the algebraic
approach.

Key words and phrases: algebraic programming, functional programming, recur-
sion elimination, semantic unification, program transformation, FP.

1. Introduction.

For many years, researchers in computer science have been interested in techniques for optim-
ization of code. One area of particular interest is elimination of recursion; the idea is to generate
iterative code (code that does not need arbitrary stack space) from recursive definitions. Particularly
noteworthy is the approach described by Burstall and Darlington in [B&D77]; however, they rely on
the user of the recursion removal system to supply certain key steps, which they call ““eurekas’’.

In this paper, 1 present an alternative approach, which breaks a eureka down into smaller eure-
kas and consequently makes them easier to find. The approach is similar to what one does to solve
difference equations and differential equations; one writes down a general solution, substitutes it in
the equation, does some algebra to discover some parameters of the general solution, and then checks
it against the boundary conditions to discover the remaining parameters. With this approach, what is
ordinarily a eureka can fall out naturally in the algebraic manipulations required to determine the
general solution’s parameters.

I will use removal of recursion to demonstrate the potential of an algebraic approach to compu-
tation. We will not end up with an algorithmic method, although we will see enough of a pattern to
indicate the general strategy of an algorithm. What we’re about to do is akin to high school algebra.
The only difference is that we’re working with what we interpret as functions and operations that
combine those functions instead of numbers and their operations. The idea is the same, though; we
have some symbols and some rules (algebraic laws like those below) that we can use 1o shuffle sym-
bols around. There seems to be a similarity between what we’re doing here and what we do when
solving differential equations. Differential equations is one of the branches of mathematics where we
operate on functions instead of numbers; i.e., we have functional operators such as D, which we
apply to other functions and that yield functions as results. We will find that the analogy doesn’t stop
there. Specifically, one of the first tricks we learn in differential equations is to write down a general
solution, substitute that in the differential equation, do some algebra to discover some particulars

Author's address: Eric Norman, Computer Sciences Department, University of Wisconsin, 1210 West Dayton
Street, Madison, W1 53706.



about the general solution, and check that against the boundary conditions to discover the remaining
particulars.

One of the common approaches to recursion elimination is through the use of program
transformations [D&B73, H&L78). The compiler has available a library of schemata for recursive
definitions and their corresponding iterative schemata. If the recursive schema can be matched with
a portion of the program, then that portion can be replaced with the corresponding iterative schema
mutatis mutandis.

There are some disadvantages of this approach. First, where does the knowledge that an itera-
tive schema is computationally equivalent to a recursive schema come from? We can look at them in
many cases and say ‘‘it’s obvious’’; we can always prove that they’re equivalent, but what is it that
causes us to write them down in the first place? In other words, can the process of developing an
iterative schema from a recursive schema be automated so that a compiler can do it on the spot
instead of having to rely on ‘“divine inspiration’” from a library?

Second, there are many cases where the ability to turn recursive definitions into iterative code
depends on the particular properties of the operations involved in the definition and not on just its
“‘shape’’. For example, generation of iterative code for a definition may only be possible if a certain
operation therein is commutative, or if it has an inverse, etc. Specification of such properties of
operations is difficult to do within schemata that are matched against the program by what is essen-
tially syntactic unification. We need semantic unification also. ‘‘Semantic unification’” is a term
that is used in the area of logic programming, see [S&Y84]; the term ‘‘narrowing’” is also used
[G&M84]. For an example of semantic unification, consider the following (almost) Prolog definition
of the factorial function:

Jact(0,1).
fact{N+1,R) if fact{(N,X),R is (N+1)*X.

If the query is fact(3,What) then 3 will have to be unified with N+ 1, which normally could not be
done. This requires solution of the equation N+1 = 3 which in turn requires knowledge about what
€4 <37 and ““1”’ mean. It is possible to effect this with syntactic unification by knowing that
3"’ can be rewritten as ““2+1°’, which allows us to unify X with 2; it is also possible to rely on
methods other than unification that have knowledge about numbers and their properties. Although
the latter approach may not necessarily be a disadvantage, the approach taken here attempis to obviate
1t.

In the next section, we will introduce the notation, which is FP. In section 3, we will try vari-
ous strategies to solve the Fibonacci function. In section 4, we do the factorial function. Section 5
will derive a tail-recursive form of the exponential notation that was been used in sections 3 and 4.

2. Notation

The notation used in this paper differs slightly from that described in [Bac78] in two respects.
First, instead of naming the selector functions with integers, they will be named p1, p2, etc. You
can read ““p’’ as ““part’”’, or “‘pick’’ if you wish. It really stands for projection, which is what it
really is (well not quite, we’re still using the same name for functions with different domains).

Second, we use exponential notation to indicate repeated composition of functions. This will be
done in such a matter that it can be considered merely an abbreviation for something much longer
that we would rather not write. In other words, exponential notation will be used as a shorthand
within, but not a change to, FP.

The main algebraic rules of FP that we will be using are these:

(A°B):C = A«(B~() associative
Acid = A = ideA identity
[A,B]eC = [A°C,B=(] right distributive

(A- B; C)eD = (AoD ~ BoD; CeD)



plefA,B] = A how projections work
p2¢[A4,B] = B.

Note that I am being cavalier about questions of strictness; this is part of the informality. You can
assume that we’re talking about an FP system that evaluates from the outside in, or lazily, if that
helps.

3. The Fibonacci function.

Here’s the first recursively defined function that we’ll try to solve, the Fibonacci function. We
will characterize it thus:

FO :6
F] :i
Fpig = +olFpe1, Byl

Note that this is really an infinite number of equations (a tabulation of the results of the Fibonacci
function); it characterizes an infinite number of functions. Each F, computes the value of the
Fibonacci function for the argument x. Actually, each of these functions is a constant function; it
returns the same result for all arguments in its domain. Later, we will construct another function
that agrees with each of these functions at the appropriate domain-codomain pair; this will be the
function that we want. This function will be equivalent to the following, which is a recursive defini-
tion of the Fibonacci function in legal FP:

f = (eq0-0; egl~ 1; +o[fosublosubl,fosubl])

The reason we’re doing it with the F,’s is to get the combining form conditional out of the way. If
we tried to work with it, the algebra would get very messy.

What we want to do is write each F, in iterative form. As mentioned in the introduction, one
of the first tricks we learn in differential equations is to write down a more or less general solution;
that is, we write an expression that looks like what we think the solution ought to be, except that it
has undetermined parts (i.e. variables). Then we substitute this expression in the differential equa-
tion, do some algebra, and discover details about the undetermined parts.

The convention we will use is that capital letters represent as yet undetermined function-valued
expressions; in other words, they are the variables we will use during ‘‘unification’”. Lower case
letters and special symbols represent constants (i.e., specific functions). Note that the F,’s above are
such variables. We want to get to the point where we can write each F, as some expression involv-
ing constants that is also in iterative form.

3.1. Fibonacci, first attempt.

Now, what does a function look like if it’s in iterative form? One way we iterate is to build an
initial state from the argument with some function S, then we apply a transformation G (another
function) x times, where x is the argument, and finally we extract the result out of the resulting state
with yet another function A. Here’s how this could be written in FP:

F, = AeG*eS. (1)

G* is an abbreviation of x-fold composition of G; e.g., G? means GeGoG. (1) abbreviates
the series of equations

FO = Aof§
F] = Ao(GeS
Fy = A°GoGoS

and so forth. What we are going to do is substitute this expression for F, in the definitions above
and then do some algebra to see what we can discover about 4, G, and S. In the beginning, we will



go very slowly and justify each step. This is so that you can get a feeling for the algebra involved;
later we will pick up the pace. First we substitute into the recurrence relation:

AOG”+2°S . +°[A°G”+1°S,A°G”°S].

We can use the distributive law to factor the S’s out of the construction to give

= +o[AeG" !, 40G oS
and then rewrite the n + 1-fold composition of G to yield

= 40[AcGoG",4G" oS
and we can now use the distributive law again on G" and also factor G"*? to give

AcGLG"eS = +o[AcG,A)G"oS.

Now we cancel the common expressions off the right. Note that we are working backwards here; if
the equation below represents a solution, then the equation above certainly does also since composi-
tion of equals are equal. There is no guarantee that this will lead to a solution; we may be cancel-
ling out something that is essential to the solution. For example, we may end up with each F, equal

to 0, which does satisfy the recurrence relation, but it doesn’t satisfy the iniiial values. Nevertheless,
it seems like a reasonable thing to try. We now have

AeG? = +0[A°G,A]. )

We have certainly simplified matters. By eliminating the G"+S, we have left what is in some vague
sense the essence of the iterative loop. We could call (2) the characteristic equation of the recurrence
relation. Since we want to find out about G, it might help if it only appeared on one side of the
equation. Unfortunately, we can’t use the same distributive law to do any more factoring — or can
we? A is as yet undetermined. What if we assumed that it is of the form

A = BsG? 3

B is a new variable that we are introducing so that A has the desired form. In other words, we are
speculating about the details of A. Now, an obvious thing to try would be to substitute this for all
occurrences of A, but if we do that, we’ll just get equation (2) back again, albeit with 4 renamed to
B (try if). What we do instead is substitute for only the rightmost 4; it’s the one causing the prob-
lem; thus

A°G? = +0[A4°G,BoG].
Now we can use the distributive law again to get
AeGoG = +[A,BlrG
and cancelling another G gives
AoG = +»[A,B] (4)

which has G isolated on one side as desired. Since we now just have a composition on each side,
we might guess that the functions being composed can be identified; i.e., we can do syntactic unifica-
tion now. This gives the partial solution

A=+
G = [4,B]
= [+,B].

Now we can work on B. We can substitute our solutions for 4 and G in (3) to yield
4+ = Bo[+,B]

and then make the two sides equal by picking the + out of the right side with the guess
B = pl



which gives us
G = [+,pl].

G is the function that represents ‘‘once around the loop’’. What this says is that each time around
the loop, we add two variables (the +) and copy the first to the second (the pl in the second posi-
tion). Since we all know that this is a way to compute the Fibonacci function with iterative code, we
have reason to believe we’re getting somewhere.

In [B&D77], Burstall and Darlington start with the definitions
f@Oy=20
F)=1
fn+2)= fx+1) + f(x)
and end with the key results
f(x+2) = u+v where <u,v> = g(x)
g(0) = <1,0>
gx+1) = <u+v,u>where <u,v>= g(x)
where they define g with the "eureka” step

gx) = <fx+1),f(x)>.

Compare our G with their <u+v,u >; they're both saying exactly the same thing about how to
compute the next iteration. What happened to the ‘‘eureka’”? If it appears above, it seems to be dif-
ficult to find. We certainly don’t have any step above that exacily corresponds to their “‘eureka’.
They needed to guess that a pairing of o values will be appropriate and needed to guess the assign-
ment of positions in that pairing; the pairing that we arrived at was there from the beginning as what
we needed to do to form an argument for +. (In all fairness, they remark that this is what motivates
them to guess their g as they did, also). We, however, were able to derive the assignments (projec-
tions) of components of this pairing and in the next section we will derive them in an even
"stronger” sense. We also did not do anything what looks like unfolding and folding, with the possi-
ble exception of (3), which might be an unfolding in some sense. It seems to me that the use of
exponential notation essentially unfolds everything at the beginning. Note also that we did not do the
““inductive step’’ of substituting n+ 1 for n as they do. We will do this below, though.

So far, we have solved the recurrence equation and discovered the body of the iterative loop.
Again, just as in differential equations, we now need to worry about the boundary conditions. In this
case, they’re called initial values, or where we terminate the recursion. Use of the initial values for
F, at 0 and 1 should hopefully let us determine what S has to be. We begin by assuming that the
iterative form (1) also works for 0 and 1. For O, this gives us

Fo= +G%S,
Since zero compositions of G are the identity function, this becomes
= 4eids§
and since the identity function is an identity for composition we have
0= +o8.

The + indicates that S is a pair of numbers so we can expand it by inventing names for its com-
ponents with

S = [S1,52]
which makes

0= +°[S1,52]. )



We’ll just remember this for awhile and go on to the value of F, at 1. Assuming that the iterative
form works at 1 gives

Fy = +oGlo§
in which we can finish substituting what we know already to get
1= +o[+,p1c[S1,52)
and then use the distributive law (the other way this time) to yield
= 4o[+0[S1,52],plc[S1,52]]
in which we can simplify the application of p1 to get
= +o[+¢[S1,52],511.

Now we notice that the left component of the outermost construction can be rewritten using (5) to
make

+9[0,51]

il

from which we conclude

St =1
since 0 is the identity for addition. Going back to (5), we now have
0= +o[1,52]

which gives

52 =—1.
Now we have all variables specified and the result is

F, = +o[+,p1]%e[l,—1].

If we try this out on a few values for x, we find that is does indeed compute the Fibonacci func-
tion. However, something doesn’t seem quite right. What’s that -1 doing in there? We shouldn’t
need any -1’s to compute the Fibonacci function.

What happened was that we were either too general or too quick. When we initially wrote an
expression for an iterative form for F,, we were just about as general as possible. This generality
lead us to solve for 4 prematurely a while back in (4). We ended up with 4, which is the function
we use to extract the answer from the final state, being the same as the main function of the loop.
This means that we do it (4) one too many times and to adjust for this we have to start the initial state
(S) one ““farther back’’. John Williams encountered essentially the same problem in [Wil82] when
he needed the notion of ‘‘overrun tolerance’’. In this case, it doesn’t hurt, but if we were to try the
same thing for the factorial function (see Section 4), we would find ourselves needing to divide by
ZEro.

Anyway, 1 did it this way on purpose. I think it’s useful to see what happens when we go in
the wrong (but almost right) direction. Furthermore, the main purpose of the above was to introduce
examples of the algebra and the thought process involved. We’re going to do it again, go a lot faster,
but use a slightly different 1actic.

3.2. Fibonacci, second attempt.

What we’re going to do is not generalize quite so much. Instead of using any arbitrary func-
tion to extract the final result, we’ll insist that it be a projection. I’m not that happy with this since it
certainly seems possible that there are recursive equations where some final processing needs to be
done beyond mere selection of the answer from the state; for instance, we may do a parallel iteration
through two sequences and then need to combine the two final results for the answer. Since I'm
being quite informal, I won’t worry about it now.



We’ll start again with an iterative form except change A4 to P to emphasize that it’s a projec-
tion. The iterative form is

F, = PoG*eS (6)

which we substitute into the definition and then do exactly as above down through (4) which looks
like

PoG"t2%S = +o[PoG" T oS PoGMoS]
PeG? = +o[PoG,P] )
P = B°G ®)
PoG? = +¢|PeG,B°G]
PoGoG = +o[P,BlG
PoG = +°[P,B]. )

Since we have G isolated, we would like to get rid of a P. Instead of trying to figure out a way to
cancel the one on the left, we get rid of the one on the right by turning [P,B] into the identity (for
the domain of two component constructions); i.e., we make it [p1,p2] by setting

P=pl
B = p2
pleG = +°[pl,p2]
= +oid
= +

which would make G a construction that looks like
G = {+,G2].
Substituting back in (8), we have
pl = p2[+,G2]
= G2
G = [+,pl]

which is the same G we arrived at before (this is not supposed to be a surprise). Our insistence that
P be a projection turns out to have been overly strict. All we did was handle (9) differently and
derived P as an appropriate projection.

Now we’ll handle the boundary conditions. We’ll find that having P be a projection simplifies
matters here. For O we have

Fo = plo[+,p11%5
0 = plo|S1,52]

0= 51
and so much for S1. Then for 1 we get
Fy = ple[+,p11'[0,52]
1= plo[+,p11°[0,52]
1= +0[0,52].

Hence,

§2 = —o[1,0] = 1.



-8 -

Note that the 1 in the final result is not ‘“the same’’ 1 as Fy; it is F1—Fy. This is not the same as
the ““overrun’’ above where we had to go beyond the boundary. Here we do the subtraction as the
last step az the boundary. However, this still isn’t quite right. We can compute the Fibonnaci func-
tion by having Fy and F) as the two components of the initial state, so let’s make one more quick

try.

3.3. Fibonacci, third time’s the charm.

The trick is to still get rid of things on the right side by making them the identity function, but
to do it earlier. Namely, we can isolate both G and P by proceeding from (7) rather than (9) with

PoG = pl

P = p2
p2:G = pl

G = [G1,pl]

+oid

il

p2:|G1,pl)[Gl,pl]
ple[Gl,pl] = +

G = [+,pl].
For the boundary conditions we get
p2S =0
S = [S1,0]
p2e[+,plleS = 1
pleS = 1
5 = [1,0].

At last we have the solution

F, = p2o[+,p1]7°[1,0].

The solution above is more general that it appears. I could have used arbitrary numbers for Fy and
Fy and the above would still be a solution since we never used any of the properties of these numbers
(e.g., that 0 is the identity of addition). Neither did we use any properties of addition other than it is
a binary function. In short, we have derived iterative code for the generalized Fibonacci function.

4. The factorial function.

Now we’ll try to transform a recursive definition of the factorial function into iterative form.
Although there will be differences from what we did above, there are also many similarities. Here’s
the characterization of factorial:

Fo=1
F41 = Xe[n+1,F,].

We use the same iterative form as (6) above and begin by substituting it into the recurrence relation
as before to get

PoG"t1eS = Xo[n+1,PoG"oS].

Now we immediately seem to be stuck. We have a G"¢S that we would like to take out of the con-
struction but we don’t have an indeterminant function as the other component that we can assume is
of this form. Well, who said it has to be indeterminant? We’re doing semantic unification here.
Semantically, and still like we did above in (2), let’s assume that n+1 can be computed by applica-
tions of G to S followed by A (which we invent) and continue like so:



n+1

1l

AoG"oS (10)
PoGoG"oS = Xo[AcG oS, PoG"oS]
PoG = Xo[A,P].

Again, just as above, we make [A4,P] disappear by turning it into the identity, thus:

A=pl

P = p2
p2eG = X

G = [G],X].

Now we have part of G. For the other part, we put what we know in (10) to get

n+1 = plo[G1,x]"eS. an
Now we substitute n+1 for n which gives
n+2 = ple[G1,x]"* 1o,

What’s happening above and below looks very similar to what we do in an inductive proof (see com-
ments above, also). Anyway, we can get n-+ 2 another way. We can also apply the function addl to
both sides of (11) to get

addlen+1 = addleple[G1,X]"eS
n+2 = addloplo[G1,x]"sS.
Please note that add1 is injective so that when working frontwards (up), we can cancel it from the left

in an equation involving compeosition. Note also that we are using properties of numbers and add ]
now as well as properties of combining forms.

One of the advantages of this algebraic approach seems to be that taking advantage of known
properties (commutativity, associativity, existence of identities, etc.) of the primitive functions is done
the same way that we take advantage of the properties of the combining forms (construction, com-
position, etc). In either case, we merely use algebraic laws to rewrite terms.

Anyway, we can equate the two ways of computing n-+2, which gives

plo[G1,x )" 1S = addleplo[G1,%x]"eS

ple[G1,X] = addlepl
Gl = addlepl
G = [addlopl,x].

Now for the boundary conditions. From the definition of Fy we obtain
Fo= p20GYS
1= p2e§

1
S = [S1,1]

il

and substituting 0 in (11) gives

1 = p1eGY%[S1,1]
plo[S1,1]
S1

il

which finally results in

p2e[addlopl,x1*o[1,1].

>
[l



- 10 -

Again, the two 1’s above are only coincidentally the same. One is Fy while the other is the
initial value for a counter. Although we used properties of numbers and add1 above, we never used
any properties of multiplication. The X above was just a symbol and could be interpreted as any two
argument function. Other transformations that have been published [D&B73] require that multipli-
cation be (semi) associative. The reason that this is not required here is that the multiplication is
being done ‘“the other way’’; i.e., we’re doing just like the recursive definition says and computing

Fy X (- - X(FX(F1X Fo)))
instead of

(((FnXFN“l)XFn*—Q)X e )XFO'

5. The finished function.

In both cases above, what we did was solve a series of recursive definitions to get a series of
iterative functions. For each n, we have a function of the form

fn = pegles

which agrees with the recursive definition of f,, at argument n. We’re using lower case for f, p, g,
and s now since we no longer consider them functional expressions whose substructure is to be
determined; they’re just symbols for arbitrary functions. In other words, we now no longer care
about particular recursive functions (like Fibonacci and factorial); we have any function that can be
expressed in the exponential notation above. As mentioned in section 2, the above is really an abbre-
viation for a series of definitions, one for each n. What we want is a single function. We want a
single function F which, if applied to any natural number »n, will compute the same result as f,
would. We can express this in FP by

Fen = f,on = pog'oson, (12)

As mentioned above, the exponentiation in g” is not part of FP. It is merely a notational
extension that was introduced, albeit a very useful one. In any case, I suppose we could stop right
here since everybody already knows how to implement the above with a loop, but we’re interested in
deriving things today so let’s see what we can do to discern what such an F might look like.

We need the combining form conditional to do this. We need to test the argument and “‘pick
out’’ the right F,,. One way we can do this is to put a “‘counter’” for n in the initial state. We still
need the state built by s also; therefore, we’ll start with a new initial state that we build with [id,s]
and assume that we have a function L that will do what we want if applied to this initial state. That
is, we want a function L, which will involve p and g, that if applied to any initial state [n,son], will
compute Fonn. In symbols, this property is stated

Lelid,slen = pogoson, (13)

This is our first condition on L; L must satisfy (13) for arbitrary s, but L itself must be free of s’s;
it can only contain appearances of p and g.

Qur second condition on L is that it be an iterative function. This would happen if it were
tail-recursive. Therefore, the definition of L should look like

L = (A~ B;LC). (14)
Now we can consider how to compute F, . 1. If we substitute n+1 for n in (12), we get
Fon+1 = pog"+1(\50;‘”£—+_i'

Feaddlon

i

peglio(geseaddl)on. (15)

Since L must obey (13) for arbitrary s, the right side of (15) can be rewritten as Le[id,gescaddllen.
Another way of saying this is that if we want to compute a result for n+1, we can take n, add 1 to it,
form the initial state, run that around the loop once (this is what goscaddl does), and then do the
same thing (i.e., L) to the resulting state that we would do with n. We can also compute Fen+1



- 11 -

with Le[id,sJeaddlon. Equating these two methods, we have
Lo[id,gescaddl] = Lelid,slcadd]
so if we expand the L on the right (just once, and note that we are unfolding now), we get
Lelid,goscaddl] = (A~ B; LeC)olid,slradd]l
= (Ao[add],scaddl]~ Beladdl,scaddl]; LoCeladd],svadd1])

by using a distributive law for conditional. In order to simplify this, and remembering that we are
restricting the domain of F to natural numbers, we guess

A = eqOepl
eqQoplefaddl,svaddl] = eqOcaddl
= ﬁfs_e

which simplifies the conditional so that we now have
Lofid,gescaddl] = LeColadd],scaddl].

Now we work on C with

il

C
Lolid,gescadd]]

[C1,C2]
Lo[C1,C2)o[add],seadd1]
Lo[Cle[add],seadd1],C2e[add],s°add1]]

I

i

and we can identify the components of the constructions to get

id = Cleladd],soadd]]
Cl = sublepl

gesvaddl = C2eoladd],scaddl]
C2 = gop2.

All that's left is B, which we can discover by substituting 0 for n in (12); i.e.,
L°[6,S°6] = p0g00506
and since
eq00p10[0,5°0] = true = A°[0,5°0]
we can expand L and simplify the conditional to get
B°[6,s°6] = posoa
B = pop2.
Ergo, our finished F is
F = Lofid,s]
where

L

i

(eqOopl ~ pop2; Lelsublepl, gop2]).

1f, for instance, we put what we found out about the factorial function in this, we will fianlly have the
following definition

fact = Lo[id,[1,1]]
L = (eqgOepl~ p2ep2; Lofsublopl, [addlopl,XJep2]).

]

Q.E.F.



-12 -

Note that the state that we iterate around the loop is isomorphic to one containing three com-
ponents; it starts as [n,[1,11]. There are two ““counters’’ therein; one counting up and the other
counting down. One is used to terminate the loop, the other to keep track of what to multiply by. In
this respect, the fact that we did the multiplication the other way is not quite as efficient as other
transformations. Although, if the initial state (s5) contains id and if it’s always accessed with
sublopx, then we can use it as the counter and not have to construct one.

6. Arm waving proofs.

Since we made lots of guesses above, it behooves us to prove that the iterative solutions that
result really do satisfy the recursive specifications. In a somewhat jocular sense, 1 can claim that
they’ve already been proved; just turn the paper upside down! For instance, o prove the validity of
the iterative form of the Fibonacci function, we would substitute the iterative form for the F,’s in the
recursive definition, do some algebraic massaging, and verify that the equations are indeed satisfied
by the iterative form. Analogously, we verify a proposed solution to a differential equation by plug-
ging it back in and doing the differentiation and algebra.

The point is that if this is done, the algebraic manipulations will be essentially what you get if
you read upwards. Verifying the finished function seems to require an inductive proof, but the same
observation still holds. The key step in the inductive part is essentially the relationship above
between Fen and Fen+1. T will confess that I knew what the answer was and did the inductive
proof in order to find that relationship. Before that 1 made lots of poor guesses; there seems to be
plenty of room for them in this case. However, as was mentioned above, we probably would not
want a compiler to effect the derivation of the finished function. Once we have instantiated the vari-
ables in the exponential form (1) or (6), we know how to generate code.

There does seem to be an observation to made here. If we have a recursive schema and a com-
putationally equivalent iterative schema and we are trying to find out how the latter can be derived
from the former, we can get hints by looking at the proof of equivalence and inverting it. In loose
words, deriving a program is sort of the inverse of proving it.

7. Relation to other work.

The above relationship between deriving and proving is very much like the strategy used by
Manna and Waldinger to synthesize programs [M&WS80]. They attach output expressions to asser-
tions about the input and goal of the output and then construct a proof that the assertions imply the
goals. During construction of this proof, the output expressions become instantiated to code that can
be used to transform the inputs into the outputs.

The work of Bellegarde [Bel84], Givler and Kieburtz [G&KS84], Goguen and Meseguer
[G&MB84], and many others is also relevant. What we need to do during semantic unification is
solve equations. If we have a confluent and terminating set of rewrite rules for the operations
involved, equations can be solved by reducing each side to normal form and then doing syntactic
unification. Unfortunately, the use of conditional makes a set of rewriting rules with these proper-
ties difficult to obtain. The phrase used by Givler and Kieburtz is “‘its projected running time spans
the lifetimes of stars’’. The use of exponentiation to eliminate it creates non-FP, so the rewrite rules
for FP less conditional aren’t usable. T do not know whether rewrite rules can be expanded to effec-
tively handle exponentiation.

The work of Cohen [Coh83] also seems similar to what we’re doing here. What we compute
with § and manipulate with G is essentially what he calls a abulation. A major difference, though,
is that the use of exponentiation here is quite limited. That is, we begin by making the assumption
that a recursive function of n can be computed by iterating a loop » times. We are making a signifi-
cant simplifying assumption about what Cohen calls descent conditions; namely, we are limiting them
to the function subl. If we wished to handle arbitrary descent functions, we might, for instance,
characterize the Fibonacci function thus:

Fo0 =0

Fol = 1



- 13-

Foi = +o[Fosub1%, Fosub1lon.
This has not been investigated any farther.

On the other hand, the advantage of the approach here is that we were able to derive iterative
functions with mere “‘source to source’’ transformations; we did not need to leave the realm of FP
and appeal to DAG’s or descent trees.

8. Retrospection and Conclusions.

1t seems to me that one of the most interesting observations to be made about what was done
above is that both the Fibonacci and factorial functions were handled in very similar ways. The only
essential difference seems to be the “‘induction’’ that we did to solve (11). This is a consequence of
not having sufficient algebraic laws to deal with exponents. We always worked from “‘first princi-
ples’’ above. It is possible to derive new algebraic laws that allow us to move exponents in and out
of constructions. Such laws have not been investigated enough to be included herein, but here are
some examples:

[AoB"oC ,DoE"oF] = [Avpl,Dep2lo[Bepl,Ecp2]'e[C,F]
ple[Aepl,B]"e[C,D] = A"=C.
If we write n+ 1 as addl”fi, the second law above allows a rapid solution of (11).

An obvious question to be asked about the two different iterative methods of computing the fac-
torial function is whether the result that we derived can be algebraically transformed into the other.
The author is embarassed by the fact that he cannot supply an affirmative answer.

In any case, the only iteration that we handle is what could be called primeval iteration. Not
only do we know an upper bound for a loop before we execute it; we know exactly how many times
we’re going to execute it. There is no mechanism by which a computation within the loop itself can
determine how many times it will be executed.

Finally, FP is a tool that seems to be particularly well suited to expressing the relationships that
are important in program transformation, and perhaps more. It can be used to deal with the algebra
of computation on varying scales. To get an idea how large the range of scales can be, compare
composition, construction, and conditional with join, include, and or in [Mar85], where they are
applied from a system-wide level down to the most detailed level.

9. Acknowledgements.

I am indebted to Tom Reps for many stimulating conversations, for pointing out some different
views of what I am doing here, and for holding a carrot in front of me so that T would stay up long
hours to get this written.

10. References.

[D&B73] Darlington, J. & Burstall, R. ““A System which Automatically Improves Programs’”.
Proceedings of 1973 International Conference on Artificial Intelligence.

[B&D77] Burstall, R. & Darlington, J. ‘“A Transformation System for Developing Recursive
Programs’’. JACM 24,1, Jan 77.

[Bac7§] Backus, J. “‘Can Programming be Liberated from the von Neumann Style? A Func-
tional Style and Its Algebra of Programs”’. CACM 21,8. Aug 78.

[H&1.78] Huet, G. & Lang, B. ‘‘Proving and Applying Program Transformations Expressed
with Second-Order Patterns’”. Acta Informatica 11. 1978.

[M&WS80] Manna, Z. & Waldinger, R. ‘A Deductive Approach to Program Synthesis’.
TOPLAS 2,1. Jan 80.

[Wil82] Williams, J. ‘‘On the Development of the Algebra of Functional Programs’.
TOPLAS 4,4. Oct 82.

[Coh83] Cohen, N. “‘Eliminating Redundant Recursive Calis’’. TOPLAS 5,3. Jul 83.



[Bel84]

[G&KS84]

[G&M84]

[S&Y84]

[Mar85]

- 14 -

Bellegarde, F. ‘‘Rewriting Systems of FP Expressions that Reduce the Number of
Sequences they Yield’’. Proceedings of the 1984 Conference on LISP and Functional
Programming. Aug 84.

Givler, J. & Kieburtz, R. “‘Schema Recognition for Program Transformations”’.
Proceedings of the 1984 Conference on LISP and Functional Programming. Aug 84.

Goguen, J. & Meseguer, J. ‘“‘Equality, Types, Modules, and Generics for Logic Pro-
gramming’’. Second International Logic Programming Conference. Jul 84.

Subrahamanyam, P. & You, J-H. ‘‘Conceptual Basis and Evaluation Strategies for
Integrating Functional and Logic Programming”’. Proceedings of the 1984 Interna-
tional Symposium on Logic Programming. Feb 84.

Martin, J. System Design from Provably Correct Constructs. Prentice-Hall. 1985.



