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REMARKS ON MULTIGRID
CONVERGENCE THEOREMS

by

Seymour V. Parter

ABSTRACT

Multigrid has become an important iterative method for the solution of discrete elliptic
equations. However, there is much to be done in the theory of convergence proofs. At the
the present time there are two general two-level methods for general convergence proofs:
an algebraic approach and a duality approach. While these theories do not give sharp
estimates they provide good, general, rigorous convergence theorems. In this note we
study the relationship between these theories. While the approach and thought-process
leading to these theories are different, the results are essentially the same. Indeed, the

basic estimated required by these theories are the same.






1. Introduction

Multigrid has become an important iterative method for the solution of discrete elliptic
equations. However, there is much to be done in the theory of convergence proofs. The
early proofs (e.g. [1], [13], [3], [6]) are limited to the W-cycle and yield statements of the
form “If the number of smoothing steps is sufficiently large, then the method is convergent”.
In general, there is no estimate of (nor a recipe to estimate) “sufficiently large” nor has
there been an estimate of the “rate of convergence”. More recently, there have been many
papers (2], (3], [5], [8], [9] [10], [11], [12], [14], which have given convergence proofs for
the V-cycle and “any number of smoothings”. Most of these results take the form “There
is a constant C, depending on the regularity properties of the elliptic problem and the
approximation properties of the finite-element subspaces, such that

1 C
letla < 52

1] , (1)

where k is the number of smoothing steps, €° is the error before the multigrid cycle, !
is the error after that cycle and || |4 denotes the energy norm”. In [4], [16] the authors
have studied very specific multigrid schemes and actually given numerical estimates of the
rates of convergence for both V-cycle schemes and W-cycle schemes.

It is interesting and worthwhile to study the methodology of these convergence proofs.
They all depend on a “two-level” analysis. That is, one obtains certain estimates of the
process involving only two successive grids (or subspaces, Sj-1 C Sj). Assuming that
these estimates hold uniformly on all such pairs of successive grids, one then obtains a
convergence rate for the entire multigrid process. These two-level analyses are of two
kinds. One set is “algebraic” and seems to deal with certain spectral radii (e.g. [9], [10],
[11], [12], [7]). The others use a “duality” argument (e.g. [2], [4], [5], [16], [17]). The
estimates essential to these duality arguments have come from eigenfunction expansions
and the constant C described above or from energy estimates.

Experimental results indicate that these estimates are not sharp - For example, in [7]
the authors study a simple one dimensional example. The appropriate two-level constants
were computed and the resulting estimate compared to experimental results. Similarly,

the experimental results of [15] can be compared to the numerical estimates of [4]. In both
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cases the experiments indicate that the method is much better than the estimates obtained
via these two-level theories. Nevertheless, the two-level theories are very useful and at this
time provide us with an excellent approach to convergence theorems and bounds for the
rates of convergence. In fact, we have no better general, rigorous, approach.

In this note we study the relationship between these theories. As we will show in
section 2, while the approach and the thought-process leading to these estimates may be
different, the results are essentially the same. Indeed, the basic required estimates are also
the same.

I am indebted to Naomi Decker and David Kamowitz for their many useful discussions

on this work.



2. Convergence Theories

We consider a finite dimensional linear vector space Sps with inner product ( , ).
Consider the problem

ApUM) = f(M) (2.1)

where Ajs is a symmetric positive definite operator.

Consider a sequence of finite-dimensional spaces
{8;,7=0,1,...,M} (2.2a)

with
dim S;_1 <dim S;, j=1,2,...,M. (2.2b)

Consider linear operators I§—1’ I} ~1 which enable us to communicate between these

spaces where

I;:_l : S; — Sj—1 (projection) , (2.3q)
15—1 :S;—1 — S; (interpolation) . (2.3b)

In this note we require that
ot =(r_)*. (2.3¢)

For each space S; we define

A

Ay =D A ,I%, j=01,...,.M~1 (2.4)

with Aas := Aps. Finally, we have “smoothing” operators G;(u, f), Ej(u,f). These are

affine operators of the form
Gi(v,f) =Gv+ K;f, Ej(v,f)= Ejv+ F;f (2.5)
where G;, E;, K;, and F; are linear operators which satisfy the “consistency conditions”
v =Gj(v,f) <=>,/ijv:f, v=FE;(v,f) @Ajvzf, (2.6a)

and

IGilla <1, ||Ejlla<l (2.6b)
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where || || 4 denotes the “A norm” arising from the “A inner product”,
(u,v)4 = (Aju,v), u,veS;.

With each Gj, E,' we also define the A-adjoint operators @;f, E’; which satisfy

That is

(2.7a)

(2.75)

We are now able to define the multigrid iterative schemes, M G(j,u, f), for the solution

of (2.1). These schemes are defined recursively as follows. Let 4 and m be positive integers.

Assume u’ is known.
If y = 0 then
MaG(0,u°, f9) =U°,

where U© is the solution of

AgU® = f° .
If 1 < j < M perform the following five steps:
(i) Do m times:
w — G, 7).
i) Setr; = fi — A;ud, fIl=L["1r;, w1=0.
j j i T
iii) Do p times:
(iif) Do p
Wl — MG(5 — Lu/~h 7.

(iv) Do w — +I;_1u5“1 :

(v) Do m times

w — E;(u?, f7) .
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Notes: When pu = 1 we call these multigrid schemes - V-cycle schemes. When p > 2 we
call these multigrid schemes - W-cycle schemes.

The cases G’j = I and I_{j = 0, E_.,- = I and F‘j = 0 fail to satisfy consistency condition
(2.6a). Nevertheless, we may consider them as (extreme) special cases of “smoothing”
operators. When G; = I and K; = O the multigrid scheme MG(j,u, f) becomes the
coarse-to-fine cycle M/;(u, f) [see [12], [14]]. When E; = I and F; = 0 the multigrid

scheme becomes the fine-to-coarse cycle M\;(u, f).

Remark 1: When the spaces {S;} are “nested”, i.e., S;1 C S;j and one chooses I}L_l as
the natural injection map (the identity restricted to S;_1) we are dealing with a “finite ele-
ment” multigrid scheme. As long as one chooses the coarse grid operators fij by the recipe
(2.4) we will say we have a “Galerkin” multigrid scheme. Such schemes are essentially
finite element schemes. All general proofs for finite-element schemes apply to Galerkin
schemes. The current convergence theory for V-cycles and even much of the convergence
theory for W-cycles is for such Galerkin schemes. However, in practice one may choose

another recipe for the coarse grid operator ,/i_.;, J <M.

Let
R; := Range IJ]:_I , (2.9a)
N; := Nullspace IJJ:—'IAJ- . (2.9b)
Let
T; := A-orthogonal projection onto Nj , (2.10a)
$; = A-orthogonal projection onto R; . (2.100)

We now collect some basic results of [9], [12], [7].

Theorem 2.1: Consider the V-cycle multigrid algorithms. Let €; be the error before the
start of the jtB multigrid (M G(5, %, f7)), and let &; be the error after one iteration.

Suppose there are fixed numbers oy, &g, 0 < o, 0 <1 which satisfy
”EJkUH?A < ZXkHTJU’”gl + ”$Ju”§1 j=12,....,.M, (2.11&)

T GEull? + onll$; Ghull < awllullh  7=1,2,-.., M. (2-11b)
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Then

I1511% < endulle; % - (2.12)

In the special cases noted above, we have
Gi=I =a=1, (2.12q)

E;=1 =a=1. (2.120)

Proof: The proof for the case Ej = I, ie.,, M\;(u,f), first appeared in [12]. The case
G; =1, ie, M/J- (u, f) appeared in [7]. The proof for the general case is given in [9]. In
fact, [9] provides exact formulae for the optimal oy and &. These are
ar = p[(I — (G7)*8;(G1)F) TGN T4 (G1)*] (2.13q)
a = p(I — (By)*$;(E7)*) (B T (E))*] (2.130)
where p denotes the spectral radius of an operator. These formulae say

& (Ey) = cn(ES) - (2.14)

Theorem 2.2: Let @j = E']"‘ Then aj = @. Let a3 < 1 be any number satisfying (2.11a)
with k = 1. Let ¢ = a1 /(1 — &), so that

oy = -, (2.15@)

Then (2.11a) holds for k > 1 with ax given by

C
__° 2.15b
o =~ (2.150)

Proof: See [12] and [9].

Theorem 2.3: Consider the fine-to-coarse W-cycle multigrid algorithm, M\ ;(«?, f7) with
1
w>2. Let0<77<—2-and,
IT3GFully < nllull% -
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Consider the polynomial

flzy)=1—-n)z*—z+7. (2.16)

This polynomial has a root z = 1 and another positive root Z, 0 < Z < 1. If, as before, ¢;

is the error before the start of the j*® multigrid and g; the error after that iteration then
1g:11% < zllejll% - (2.17)

In particular, when p =2

E= ——— . (2.18)

Proof: See Theorem 1 of [10].

There is another approach to this problem. This approach, based on a duality ar-
gument, has been used by Bank and C. Douglas [2], Braess [4] and Verfiirth [16]. The
following is our abstraction of their arguments.

With each u € S; we associate real functions g(u), e(u), t(u), t*(u) which satisfy

0 < g(u), e(u), t(u), t*(u) <1 (2.19)

and
I1G5ul% < g()llulla 1B ulll < e(w)llelk (2.20a)
15Gjullh < tw)g()llull > 1TEful} <t (w)ew)]ull’s - (2-200)

Remark: In many cases we may associate a real variable o € [0,1] with u € Sj so that

o=o(u), (2.21a)

and we write
g(u) = go(0), e(u) =eo(o), (2.21b)
t(u) = to(o), t*(u) =1t5(0). (2.21c)

The basic convergence estimates obtained via this duality approach seem to be limited
to the symmetric case where E; = G} or the one sided cases, either G; = I or E; = I.

Let us develop the argument and then collect the results.
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First of all, in steps (i) and (v) let m = 1. This involves no loss of generality as we
are merely identifying E]m with Ej, @;-" with G;. As usual, let €; denote the error before
the j multigrid cycle and &; the error after that cycle. Let ej(-l) denote the error after step
(i). Let {-:](-2) denote the error after step (iv). Then

a](.l) = G,e; = T;G e + $;Gje; . (2.22a)
Since the next steps, (ii), (iii) and (iv) are an effort to solve for $;G;¢;, we have
el = T;Gje; + $;(Gje; — ) (2.22b)
where, we assume that
185(Gyes — 2)lla < 6,18, Geslla (2220)

with the quantity 6;_; a bound on the error for the (j — 1) multigrid MG(j — 1, ., ). In
fact, we write

$;(Gje; — &) = 62,850 (2.23a)

with
185alla < [18;Gieslla - (2.23b)

Let w be an arbitrary element of S; and consider the innerproduct
_ 2
(w,&)a = (w, Bze{”) 4 . (2.24)

Using (2.22b) and (2.23) we have
(w,E)a = (E'J"-‘w,Tj g + 6 185a)a
=(1- 541'_ )(E"—‘w,Tjstj)A
+ 68 (Ejw,T;Gjej + $a)a -

Using the A-orthogonality of T; and $; and (2.23b) together with the basic estimates
(2.20a), (2.20b) we have

(w,7)a < (1= 6 )t (w)e(w)t(e;)g(en)) wlla - leslla
+ 8%y [e(w)g (&) lwlla - lejlla -

8

(2.25)



Hence

[1251l.4
I

Now let us consider the cases of interest.

=

<sup {(1 -6 ,)[t" (w)e(w)t(w)g(w)]® + 8-, [e(w)g(w)]7} (2.26)

illa = ww

m

Theorem 2.4: Let § = 6(G;,p) and § = §(E;, 1) be two constants which are independent
of j [i.e., depend on w and the families of {G;}, {E;}| and satisfy

0<6,6<1 (2.27)
and, for every u € S;
(1 - 6*)[t(w)g(w)]* + 8#[g(u)]¥ < 6 (2.280)
(L — 5#)[t* (w)e(w)]? + 8[e(u)]* <5 (2.280)
Then
1&;]l.4 < min (6,8)le5]la - (2.29)

Proof: For definiteness, assume that § = min (6,8). As in the discussion above, let §; be
a bound for the convergence factor of MG(J,-,-). Since § = 0 we may make the inductive
assumption

§i1<6. (2.30)
Since t*(w) < 1, e(w) < 1 the estimate (2.26) yields

1€l

lleslla

Wi

< 3111Lp {(1- 5;.‘_1)[t(u)g(u)]% + 53{‘—1[9(“)} ¥

<sup {(1 - [t(w)ow)]? +o()F} <5

m

Remark: Since
(1= 69t (w)g(w)]} + 6lg(w)F < (1 - 8*)[tw)g(w)] ¥ + 6"
we obtain an upper bound for § by finding a root z of the equation
(1 - o) max [t(w)g(w)]? +o* =z
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which satisfies 0 < £ < 1. Observe that in the case of the W-cycle (u > 2) this result

requires

TG54 = sup [t(w)o(w)] < 7

while the result of [10] given in Theorem 2.3 for the special case where E; = I (which

implies t*(u) = e(u) = 1) only requires

1756515 = sup [(w)o(w)] < 5 -

While Theorem 2.4 is of interest for the one-sided W-cycles the duality argument

yields stronger results in the (truly) symmetric case.

Theorem 2.5: Consider the case where

E; =G5 . (2.31)

Let 6 = S(G’j, ) be independent of § and satisfy

A

0<é<1 (2.32a)
and, for every u € S
(1 - 6)[t(w)g(w)] + 8*[g(w)] < 6. (2.320)
Then
Igj1la < Blle;lla - (2.33)

Proof: Once more, we may assume 6;_1 < 6. Then (2.26) and Schwartz’s inequality

yields

§; < sup [(1 — 6#)[t* (w)e(w)] + 8e(w)]F[(1 — 6*)[¢(w)g(w)] + rg(u))® .

w,w
However t* = ¢ and e = g. Hence (2.32b) gives (2.33). |
Remark: Since 0 < t(u),g(u) < 1 we see that, for every z € [0, 1]

(1 — 2)t(u)g(u) + zg(u) < (1 - 2)[t(w)g(w)]* + zg(w)]* .
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Hence,

g(éj’l") < 5(éjvﬂ)) .

(2.34)

Thus, Theorem 2.4 shows that the one-sided multigrid scheme with p =2 is convergent if

I1T;G5l% =n <

N

While Theorem 2.5 shows that the symmetric multigrid scheme with u = 2 is convergent

if
1T;G5l|% =n <

[N R ]

Note that, in general, the duality arguments for the W-cycle give weaker results than the

estimate of [10].
Consider the case p = 1, i.e. the V-cycle. Then

o twe(w)
0= SUP T o) + t{u)g(w)

Theorem 2.6: Let
D:={ueS;:g(u)=1}.

Suppose there is a up € S; N D and
t‘(uo) 7é 0.

Then

>y
Il
-y

Proof:
t(uo0)g(uo) = tuo) _
1= g(uo) + t(uo)g(uo) ~ #(vo)

Let us now compare the convergence proofs for the V-cycle.

Theorem 2.7: Let o be the optimal constant in (2.11b). That is

”Tjéjuuz .
ullZ — 118;G5ull%

o = sup

11
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Let & be given by (2.35). Then
a<b. (2.39)

Proof: Since
1Gjull% = I18;Gyulld + 1T Gjull%
we see that _
InGmla
llulld + 1T Gyullg — 1Gyull%

o = sup

We only increase the right-hand-side if we maximize ||G;ul|%. Hence, we may replace

1G;ull%, by g(w)|ull%, and obtain

1T Gulld

¢SS Tl + TG

The right-hand-side is monotone increasing in ||T;Gju|%} . Hence we may replace
| TG julld by t(u)g(u)||u]|% and obtain (2.39). 1
Corollary: Consider the general (M G(j,u, f)) multigrid iterative method. Let

b1 = 6(G;,1), by =6(E},1) . (2.40)

As usual €; be the error before the multigrid cycle and &; be the error after that cycle.
Then

;04 < [6:62)% [lejlla - (2.41)

Proof: Apply Theorem 2.1, equation (2.14) and Theorem 2.7.

Remark: The inequality (2.39) is not really so surprising. The defining properties of

t(u), g(u) involve inequalities. If these were equalities, then using the fact
|73 Gyull = 1Gsll% — 115;Gjulls
we would find that (2.38) and (2.35) imply that

b=a.
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We now consider the case where it is possible to associate a real value o ¢ [0,1] with

u so that
oc=o(u), 0<o<1, (2.42a)

tlw) =J(0), g(v)="7(0). (2.420)

Remark: It is easy to see that the convergence proofs of Braess [4] and Yserentant [17]

fall in this category. In the case of [4] we have o = p and
g(u) =~(p) =p*, 0<p<1, (2.43a)

tlu)=J(p)=——, 0<p<1. (2.43b)

g(u) =(p) =p**, 0<p <1, (2.440)

t(u) = J(p) = min {1, (1 — p)}»** . (2.44)
Observe that in both cases y(p) = 1 if and only if p =1 . And, J(1) = 0. In general
g(u) = (o) < 1, but as the dimension of S; increases llg(v)|lco approaches 1. That is

sup  {g(u):uveS;} — 1—. (2.43)

dim S;-—oc0

As we have seen, the set D is an important set in this analysis. While the discussion above
implies D may be empty, we must consider the set D := {o €[0,1], V(o) = 1}.
Let us see how the estimate (2.15b), or estimates related to (2.15b) arise. First of all,

let us recall that in most cases we have

167 ulla _IG5ula

TGl = IG; Mulla’ ~

(2.45)

Indeed, this is a basic premise of the heuristic approach to multigrid - many smoothing

steps become ineffective as, for most of the classical smoothers,

1G5 ula

s . 5 1—-ChP asr — 0.
GFulla
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Suppose that we have determined J(o) and (o) for a smoothing step. Consider k smooth-
ing steps. Let

&= G(G‘;?_lu) (2.46a)
Then (2.45) implies
[l G Gl
HUHZA - “é;c-luni H'UIH% S’Y( ) > (2.461))
and
I1T;GEull < TG ullh < T@)ul - (2.46¢)

Thus, considering the V-cycle based on k smoothing steps, we deal with

__ J@pEr
%= TTREG) - DO (2:47)

This may not be an optimal choice of functions J(&) and 4(8)*. Nevertheless, according

to the theory developed above, it may provide an estimate.

Theorem 2.8: Suppose 6(G;,1) < 1. Hence,

J(6) =0, forall 6eD,. (2.48)
Indeed,
J'(6)
— e . 2.49
w{SE - < (2.49)
Assume that
C = sup {:ﬁl} > 0 (2.50)
p, = 1'(6) '
Then
A C
b > ——— . 2.51
F= 0tk (2.51)

Proof: We apply L’Hospital’s rule to this function at the points 6 € D . Then

2 J'(64)
im 8,(8) = l A |
S 0 = SEy =k ()
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