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ABSTRACT

A task force is a distributed program which consists of a set of communicating tasks. This paper
presents an algorithm for allocating the tasks in a task force to a set of execution sites in a locally distri-
buted computer system. The main objective of this dynamic task allocation algorithm is to balance the
load of the system, and the algorithm takes the current load status of the system into account when mak-
ing its allocation decisions. In addition to balancing the system’s load, the algorithm also tries to
minimize the communications costs between the tasks to the extent possible within the constraints
imposed by load balancing. The paper begins by quantitatively defining the load unbalance factor, and
the problem of load-balanced task allocation is then defined. A heuristic algorithm for finding solutions
to the problem is presented, and allocations generated by the heuristic algorithm are compared to those
obtained via exhaustive search. The results of this comparison indicate that the heuristic algorithm finds
the optimal allocation in most cases. The execution time and the complexity of the heuristic task alloca-
tion algorithm are also addressed.

1. INTRODUCTION

1.1. The Problem

Distributed computing systems have been an active research area in computer science for the last
decade, and task allocation and load balancing have been a major issue associated with such systems.
When a task or set of tasks are to be executed in a distributed system, they must be properly allocated to
sites in the system. The problem of selecting appropriate sites is known as the task allocation problem,
and it is often treated as being a static problem. That is, the problem is often defined according to the
static characteristics of the tasks, such as their memory requirements, expected execution times, and
communication patterns, and the static characteristics of the system, such as the number of processors
available, the amount of memory associated with each processor, the processing speed of the processors,
and the speed of the communications network. A number of solution methods have been developed for
this type of task allocation problem, including integer programming methods [Gyly76, Pric79, Pric84],
graph theoretic methods [Ston77a, Ston77b, Ston78, Rao79, Bokh79], branch-and-bound search
methods [Ma82], and various heuristic methods [Gyly76, Chu80, Pric84]. The common feature of all
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these solution methods is that they operate using static information.

As Livny and Melman showed, the probability that at least one processor is idle while tasks are
waiting at other sites in a distributed system (a "wait while idle” state) can be remarkably high over a
wide range of network sizes and processor utilizations [Livn82]. Load balancing aims to reduce this pro-
bability by properly distributing and/or redistributing the load on the system’s resources. As a result,
the queuing times of the tasks will be reduced, and better system performance can be obtained. A
mechanism for achieving a load-balanced system is task migration, which is the process of transferring
partially executed tasks from one site to an idle or less heavily loaded site to continue execution there.
However, the boundary between task allocation and task migration schemes can be somewhat fuzzy — in
one class of task migration schemes, known as sender-initiated task migration schemes, tasks are
migrated only upon arrival in the system, and only by the site at which they arrive. Recent results
reported by Eager, Lazowska, and Zahorjan [Eage85] comparing such strategies with other strategies
indicate that if the system load is light to moderate (which is when load balancing is usually the most
effective), or if the cost of transferring executing tasks is significantly greater than the cost of transfer-
ring newly arrived tasks, then sender-initiated strategies are recommended. To distinguish this type of
task allocation scheme from those based purely on static information, we refer to this type of dynamic,

load-based approach to task allocation as lead-balanced task allocation.

1.2. Load-Balanced Task Allocation

In this paper we propose a heuristic algorithm for solving a load-balanced task allocation problem.
The particular problem that we consider here is unique as compared to most previous load balancing
work, as we address the problem of selecting execution sites for an entire distributed program consisting
of a number of tasks which are to be executed concurrently and which communicate with one another.
Such distributed programs are known as task forces [Jone79], and we consider the problem of dynami-

cally allocating the tasks in a task force to sites in a locally distributed computer system.

Our work on the dynamic task allocation problem originated from the problem of processing
queries in a locally distributed database system in a load-balanced fashion. In distributed relational data-
base systems, queries are often decomposed into sequences of data moves and subqueries, where each
subquery is a set of database operations that are to be performed together at a single site. If the distri-
buted database includes replicated data, it is likely to be possible to execute each subquery at one of
several sites that contains the data which it references, and in this case it is necessary to somehow select
a site at which to execute each subquery. Furthermore, research in the query processing area [Smit75,
Yao79], including our own work on processing distributed joins in locally distributed database systems
[Lu85a], indicates that pipelined execution of the subqueries of a query can improve performance signi-
ficantly. When subqueries are executed in a pipelined fashion, they execute concurrently with inter-
mediate results being transferred from subquery to subquery as they become available. The problem of

allocating subqueries to sites in a locally distributed database system in a load-balanced fashion is a



variant of the load-balanced task allocation problem.

The load-balanced task allocation problem addressed in this paper differs from previous work on
task allocation in several ways. First, and most importantly, load-balanced task allocation is a dynamic
problem. It takes a task force and the current load status of the system as inputs, and its main objective
is to achieve a load-balanced system (as defined later) dynamically through proper task allocation. To
our knowledge, previous task allocation work has not addressed this problem. Second, given load
balancing as the primary objective, the communications cost for executing the tasks is minimized as the
secondary objective. Achieving load balancing and minimizing the inter-task communications are con-
flicting goals in general [Chu80], and most previous task allocation work has been more concerned with
minimizing communications costs. However, several researchers have reported that in locally distri-
buted database systems, local processing costs are usually a more important factor than communications
costs [Page83, Lu85a], and also that load balancing can have a bigger impact on system performance
than communications costs do in such systems [Care85a]. Thus, our algorithm seeks to choose the allo-
cation with the lowest communications cost from the set of allocations that provide an equivalent degree
of load balancing. Third, each task in the task force is assumed to have a feasible assignment ser that
specifies the sites to which the task may be allocated. This constraint arises in our application (distri-
buted query processing) due to the fact that each piece of data is stored only at a subset of the sites in the
system. Finally, since load-balanced task allocation is dynamic in nature and is to be accomplished
quickly at runtime, we require solution methods that are capable of solving the problem in a reasonably

short time.

1.3. Paper Outline

The remainder of this paper presents our algorithm and its evaluation. Section 2 defines the load-
balanced task allocation problem more precisely, and Section 3 describes the details of a heuristic algo-
rithm that solves this problem. In Section 4, we present an evaluation of the optimality of the allocations
generated by our heuristic task allocation algorithm, and we also discuss the complexity of the algorithm
and its actual execution time. Two enhancements to the algorithm are also described in Section 4. Sec-
tion 5 briefly discusses some simulation results that indicate the effectiveness of load-balanced task allo-

cation. Finally, Section 6 presents our conclusions and outlines our plans for future work.

2. THE LOAD-BALANCED TASK ALLOCATION PROBLEM

The proper representation and accurate estimation of load information is a key problem in load
balancing algorithms. The basic requirement for such representation and estimation is that it must be
simple, effective, and efficient. The representation of load information should be simple enough so that
the inter-computer exchange of load information introduces as little additional overhead to the system as
possible. To be effective and efficient, the load estimate must be fairly accurate and able to be evaluated

.

in a short time period in order to reflect the current status of the system.



In a number of research efforts, the load of a processing site has been defined as its degree of
“busyness”. According to this view, the load of a site s;, L(s;), is represented by the number of tasks

being currently served at that site, N(s;) [Ni81, Livn83]. That is,

LD(s;) = N(s;)

Under this definition, site 5; is idle when LD(s;) = 0. When LD(s;) > 1, there are tasks waiting to be

executed at site 5;. (This assumes that a processing site consists of a single server.)

In order to quantitatively describe the degree of "balancedness” of a system, Livny defined the
load unbalance factor of a system, UBF, as the maximum value of the load differences between the 7

sites in a system [Livn83]. That is,

UBF= max [LD(sj)—LD(sk)|
1=j,k=n

This definition is fine for use in allocating single tasks to sites as long as the tasks are not constrained as
to the sites where they can execute (i.e., as long as their feasible assignment sets contain every site).
However, if the tasks do have execution site constraints, this definition is no longer very useful. For
example, if the possible execution sites for every task in a newly arrived task force happen to exclude the
pair of sites with the current maximum and minimum loads in the system, then the UBF as defined
above will remain constant regardless of how tasks are assigned to sites. Using the concept of load vari-
ance, the unbalance factor can instead be defined as the variance of the load distribution in the system as

follows:

S, (LD(s;)~ LD)? S (N(s;) = N)?

UBF = 4=1 J=1

n n

where N(s;) is the number of tasks at site s; and N is the average number of tasks per site after all

query units are allocated.

Using this definition of the load unbalance factor, the load-balanced task allocation problem for a

locally distributed system with n sites, { $1,--, 5, }, can now be expressed as follows:

Given:
(1) A number of tasks {1, ..., 1}, to be executed concurrently as a task force.

(2) A feasible assignment set S, = {Sil’ s Sik} for each task 1, (I=i=<m).

(3)  An initial load vector specifying the intial load at each site JE I=j=n, as given by LD (sj).



Find: An allocation of tasks to processing sites such that:

(1) The unbalance factor under this allocation is minimized.

(2) The total communications cost, measured as the sum of the total data transfers between communi-
cating tasks that are allocated to different sites, is also minimized to the extent possible without
increasing the unbalanced factor of the allocation.

In the following discussion, we assume that the m tasks are executed in a pipelined fashion
(because of our application [Care85b, Lu85b]). In this case, communication only occurs between a pair
of adjacent tasks in the pipeline, and the total communications cost can be roughly approximated by the
number of nonlocal task pairs (i.e., pairs of adjacent subtasks 1, and ¢ ; that are allocated to different
sites). However, we will see later that these assumptions will not affect the generality of our algorithm,
and that only a few minor modifications are required in order to apply the algorithm to task forces with
more general communication patterns. Our only major assumption regarding the tasks in the task force
is that they are all to be initiated simultaneously and executed concurrently. In other words, the alloca-

tion of a task to a site is assumed to introduce its load at that site immediately.

Since the objective of load balancing is quantitatively well defined, the load-balanced task alloca-
tion problem can be formalized [Lu85b]. However, there are several difficulties involved in trying to
apply non-heuristic solution methods to solve the problem. Aside from the computational complexity
when the number of sites becomes large, the main difficulty in trying to use an integer programming
approach is that the two objective functions, minimizing the load unbalance factor and the communica-
tions cost, are in conflict. They therefore cannot be simply treated as a composite function. Another
solution method, the branch-and-bound search method, is also unusable here because the main evalua-
tion function, the unbalance factor UBF, cannot be computed during the expansion of a search tree —
assigning a task to a site may either increase or decrease the UBF » 0 the unbalance factor of an alloca-
tion is computable only after all tasks have been assigned to sites. That is, all possible allocations would
end up being generated, as in exhaustive search methods. Perhaps the most important consideration is
that load-balanced task allocation is to be performed at runtime, so it should introduce as little overhead
as possible. Heuristic methods requiring less computational effort and providing near-optimality are

therefore preferable.

3. A HEURISTIC APPROACH

In this section, we present a heuristic algorithm that finds a solution to the load-balanced task allo-
cation problem defined in the last section. The input of the algorithm includes a feasible assignment set
for each task and an initial load vector that specifies the number of existing processes (i.e., tasks) at each
site at the time the tasks are to be allocated. The originating site and result site of the task force, which
are the site from which the task force originates and to which the results of its computation are to be
returned, are also specified as input. These sites are included as input so that the communications costs
for initiating tasks at remote sites and for returning results to the result site (assuming that there is a

user awaiting results at that site) will be considered by the allocation algorithm. For this purpose, two



dummy tasks, ¢, and ¢, ,, are created. These tasks are assumed not to introduce any real load at their
sites, but their communications costs will play a role in influencing the allocation decision if they are

allocated remotely.

3.1, Task Allocation Heuristics

Before we present the algorithm itself, we first describe a set of heuristics that are used in the
algorithm. Three main heuristics are employed by the algorithm — a heuristic to control the order in
which tasks are considered for allocation, a heuristic to avoid considering sites with particularly heavy

loads, and a heuristic to help ensure that a good allocation site is selected for each task.

3.1.1. Heuristic 1: Order of Allocation

In order to guarantee fast execution, our algorithm operates by allocating tasks to sites one by one
without backtracking or reconsidering previous task allocation decisions. As a result, the order in which
the tasks in a task force are considered for allocation is a critical factor affecting the optimality of the
resulting allocations. The heuristic that we use to control the allocation order in our algorithm is that
tasks with less flexibility about where they can run should be considered ahead of any tasks with greater
flexibility. The notion of the degree of freedom of a task is used for this purpose, and two freedom-

related metrics are used by the algorithm.

The first degree of freedom metric is the static freedom of a task, which is defined as the number
of sites where it can be allocated (i.e., as the cardinality of its feasible assignment set). If the static free-
dom of a task is one, it has no freedom at all — it must be allocated to the only site in its feasible assign-
ment set. A task with a higher static freedom value will be relatively more flexible than one with a lower
value because there are more site choices available. The second freedom metric has a more dynamic
flavor. The dynamic freedom of a task is defined as the sum of the current load of the sites in its feasible
assignment set (where the current load of a site is the sum of its initial load plus the number of tasks in
the task force which have been assigned to the site thus far). In cases where two tasks have the same
static freedom value, the task whose feasible assignment sites are more heavily loaded (i.e., the task with

the larger dynamic freedom measure) will usually have fewer execution site options.

Using these freedom measures, tasks are allocated by our heuristic algorithm one by one in order
of their degree of freedom. That is, tasks with fewer site choices are allocated earlier, and the degree of
static freedom is the primary consideration. Tasks are considered in increasing order of static freedom.
In the event of a tie, the task with the largest dynamic freedom measure is chosen, as its candidate sites
are more heavily loaded. Note that these freedom measures are opposite in how they must be inter-
preted, as a larger static freedom value implies more site choices, whereas a larger dynamic freedom

value implies fewer choices.



3.1.2. Heuristic 2: Elimination of Full Sites

A heuristic used to reduce the task allocation search space and hence the amount of computation

required for allocation is that a site with a current load which is larger than the expected post-allocation

average load is considered to be full. Sites that become full will not be assigned further tasks (except if

such a site is the only site in the feasible assignment set for a given task). Thus, whenever a site is full,

whether due to its initial load or to the assignment of a new task to the site, it is deleted from the feasible

assignment set of all tasks. Since this changes both the static and dynamic degrees of freedom for the

affected tasks, their degrees of freedom must be updated throughout the allocation process.

3.1.3. Heuristic 3: Site Selection Criteria

After determining the task to be considered next, up to four metrics will be used to guide the selec-

tion of a site from among the sites in its feasible assignment set). These four metrics are:

ey

)

3

C))

The current load of a candidate site: This is the total number of tasks currently assigned to the
site, including both the tasks in the initial load of the site plus any tasks that have already been

assigned to it during the allocation process for the task force.

The potential load of a candidate site: This is the number of unassigned tasks that have the site in

their feasible assignment set.

The benefit of a possible assignment: This is the communications cost that can be avoided by this
assignment. In our case, since communications occur only between adjacent tasks in the pipeline,
the benefit of assigning task # to site s; is the number of adjacent tasks (4_, or ¢ ) that have
already been allocated to the site (either 0, 1, or 2). If task t,_q (or 1, ) is already allocated to
site 55, and ¢ is then allocated to the same site 55, the communications cost between ,_; (or L)
and #; will become zero. If neither 7, _, or ;1 has been allocated to site s;, then the assignment

of task ¢ to site s; will not lead to a savings in the communications cost.

The potential benefit of a possible assignment: This measures the communications costs that might
be eliminated by this assignment. In our case, this is the number of unassigned tasks which have
the site in their feasible assignment set and which would form a consecutive sequence of tasks
including the task being allocated if they were also assigned to the site. For example, consider the
allocation of task ¢ to site 55 If 5 is in the feasible assignment set of .y (or 4, 1), and this task
has not been allocated to any site yet, there is a future possibility that the communications cost
between # and 4_, (or ¢, ,) could become zero. This would happen if t; is first assigned to s,
and then 1,_; (or ¢, ,) is later assigned to the same site. Compared with assigning # to a site s,
that is not in the feasible assignment set of 1, _; or 1, ;, then, assigning 4; to s; has the potential of

being beneficial.

Since load balancing is the main objective, the evaluation order for these four metrics during the

allocation process is: minimum current load, maximum benefit, minimum potential load and maximum
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potential benefit. First, an attempt is made to allocate task %; to the site with the minimum current load
among its feasible assignment sites. In the event of a tie, the benefit of assigning %; to each site with the
minimum load is calculated, and the site with the maximum benefit is selected. In case of another tie,
then the site with the minimum potential load is chosen. Finally, the maximum potential benefit site is
considered if there is more than one site with the same minimum potential load. It is important to notice
that not all four metrics are calculated for every task. For most tasks, only one or two metrics will need
to be evaluated. Furthermore, the size of the candidate site set gets smaller and smaller as each metric

is considered in turn. This is advantageous for minimizing the cost of the site selection process.

3.2. The Basic Load-Balanced Task Allocation Algorithm

Given the heuristics just described, the basic load-balanced task allocation algorithm can now be

described as follows:

(1) Allocate the dummy task 1 to the task force’s site of origin, and allocate the other dummy task
Ly +1 1O the result site for the task force.

(2) Compute the static and dynamic freedom metrics for each task L, 1=si=m,

(3)  Select the next task to be allocated as the one with the least assignment flexibility using the degree
of freedom metrics.

(4) Select an allocation site 5 for this task (1) by choosing the site from its feasible assignment set
with the least current load, considering the benefit, potential load, and potential benefit metrics in
turn as necessary (to break any ties).

(5) Increment the load of site 55, and recompute the freedom metrics of any unallocated tasks that

have s, in their feasible assignment set. (If 5;’s load has exceeded the expected average, simply
delete s; from their feasible assignment sets.)

(6) If any unassigned tasks remain, go to step 3 and repeat the process.

Figure 3.1 shows an example input for the load-balanced task allocation algorithm. The example
task to be allocated consists of 5 tasks, and there are 8 sites in the system. The algorithm is applied as
follows:

i The total initial load is 12, so the expected average load after allocation is
[(12+5)/ 8] = 3. Site 5, is therefore full initially, so it is deleted from the feasible assign-
ment sets of ¢, and 7,.

ii The static degrees of freedom for the tasks are {1, 3, 3, 4, 1, 5, 1}. The dummy tasks ¢,
and 14 are allocated to 55 first.

iii. 1, is allocated to s, the only site in its feasible assignment set.

iv.  Both t; and t, have the same static degree of freedom value of 3. The feasible assignment
set of 7, is {s,, 55, 55}, with the relevant part of the current load vector being {1, 2, 1},
and 1,’s is {s,, 5,4, 55}, with the relevant part of the current load vector being {1, 2, 2}.
Thus, 1, has less dynamic freedom, so 1, is allocated next.

v. 1, is allocated to site 5,, as s, is the site with the minimum load (of 1) in its feasible assign-
ment set. (This increases s, ’s load by 1.)



An Example Input:

number of tasks 5
number of sites in the database 8
originating site 53
result site 53
initial load vector {4,1,1,2,2,0,1,1}
feasible assignment set
! {51, 52, 55, 57}
1y {50, 54, 55}
& {53, 55, 57, 58}
Iy {51, 56}
ts {53, 54, S5, S, 57}

Figure 3.1: An example for load-balanced task allocation.

vi.  t, is now allocated to site 5, for the same reason as in v.

vil.  Since #3 is next in increasing order of static freedom, it is considered next. Iis feasible
assignment set and the relevant part of the current load vector are {s3, 55, 5, 55} and {1,
2, 2, 1}, respectively. The minimum load sites for 13 are {s3, sg}. As for benefits,
benefit(ty,5,) = benefit(5,54) = 0. Finally, potential load(s,) = 2, but potential load(sg)
= 1. 15 is thus allocated to site s5.

viii. Finally, t5 is considered: Its feasible assignment set is {s;, s,, S5, S¢, S44, and its
corresponding load vector is {1, 2, 2, 1, 2}. Both 5, and 5 have the same current load of
1, but benefit(is, 53) = 0 and benefit(s, sg) = 1 (since 1, was already allocated to 5g in
(iif)). Thus, 15 is allocated to site 5g-

ix.  The final assignment is:
task (tg) ;. 1y 13ty ts (1)
execution site  (s3) s, s, sg S Sg  (s3)
After assignment, the load vector is {4, 2, 1, 2, 2,2,2,2}. The UBF for this assignment is
0.61, and its total communications cost is 5. Comparing this result with the optimal allocation, which
can be obtained by the exhaustive search method described in the next section, it turns out that this is

actually an optimal allocation under the problem definition.

4. PERFORMANCE AND ENHANCEMENTS OF THE BASIC ALGORITHM

The algorithm described in the last section is a greedy algorithm in the sense that tasks are
assigned one by one, without looking ahead or backtracking. However, the potential load and potential
benefit metrics are used to improve its optimality. Also, the task allocation order and the order in which

the four metrics aie considered was carefully designed. In order to evaluate the quality of the allocations
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generated by our heuristic algorithm, we conducted a study in which we compared its allocation deci-
sions to those of an exhaustive search method which always finds the optimal allocation. In this section,
we describe the results of this study, and we also present two enhancements that can be used to improve

the optimality of the algorithm at little additional cost.

4.1. Optimality of the Algorithm

In our study, task allocations obtained using the heuristic algorithm were compared with their
corresponding optimal allocations. A task force generator was used to generate inputs like that in the
example of Figure 3.1. Both an exhaustive search program that always finds the optimal allocation and
our heuristic algorithm were then applied to these task forces. The optimality of the heuristic algorithm
can be characterized by the percentage of its allocations that have the same UBF values and total com-

munications costs as the optimal allocations over a number of tests.

The parameters that controlled the task generator were the number of tasks to be allocated at the
same time (i.e., the number of tasks comprising the task force), the number of sites in the system, the
maximum initial load and the average size of the feasible assignment set of a task. The maximum initial
load parameter controls the initial unbalance of the system, with the initial load of each site assumed to
be uniformly distributed between zero and this maximum value. The average size of the feasible assign-
ment set determines the number of sites a task can be allocated to. (In a database environment, this is
used to model the extent of data replication, as a subquery can only be allocated to a site where the data

it references is stored).

In order to find the optimal allocation for an input, an exhaustive search tree was constructed
according to the feasible assignment sets of the tasks. Figure 4.1 shows the search tree for the example
input of Figure 3.1. Each level of the tree corresponds to the possible allocations of one of the tasks,
with each node at a level representing one site in the feasible assignment set of the task. (The dummy
tasks 7, and ¢ are not shown in the tree since each always has just one possible allocation site.) This
tree is evaluated after all possible assignment sites have been considered by computing the unbalance
factor and the communications cost along each branch of the tree. The branch that gives the minimum

unbalance factor and communications cost represents the optimal allocation.

Three groups of test were conducted in the study in order to investigate the optimality of the

heuristic algorithm:

(1) The first group of tests studied the general behavior of the algorithm. The number of tasks (m)
was varied from 3 to 6. The number of sites in the system (n) was varied from 4 to 12. The max-
imum load was randomly chosen in the range from 4 to 12, and the average size of the feasible

assignment sets was chosen to be the half of the number of sites.

(2) In the second group of tests, the maximum initial load was varied to investigate the performance of
the heuristic algorithm when the initial unbalance factor was changed. The number of tasks (m)

was fixed at 5, and the number of sites (n) was fixed at 8. The average size of the feasible
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Figure 4.1: A search tree for finding the optimal allocation.

assignment sets was fixed at 4 for this group of tests.

(3) In the third group of tests, the size of the feasible assignment sets was varied. The number of
tasks (m) and sites (n) were fixed at 5 and 8, respectively. The average size of the feasible assign-
ment sets was set to 8 (meaning that a task can be allocated to any site in the system), then to 4
(meaning that the number of sites that a task can be allocated to is half of the total number of sites
in the system), and finally to 2 (in which case there are only two choices about where to allocate a

task).

The test results are summarized in Tables 4.1 to 4.3. In these tables, the percentage of optimal
allocations obtained by using the heuristic algorithm is given for each test. Also, the percentage of allo-
cations that are optimal under each of the objective function alone is given. (These allocations either
have the same unbalance factor as the optimal allocations but a larger communications cost, or have the
same or lower communications cost but a larger unbalance factor). The percentages shown in Table 4.1
were computed by averaging the results obtained using five different (even) values of n between 4 and
12 (inclusive). The tables indicate that, in most cases, the heuristic algorithm generated the optimal

allocations. The percentage of optimal allocations is at least 75%, and typically higher, for the runs in
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Optimality of the Heuristic Algorithm (Test 1)
total Percentage of the Optimal Allocations (%)
m n
runs || optimal allocations | optimal on UBF | optimal on CC
3 96.8 99.2 97.6
4 90.8 98.2 92.4
s | 412 ) 500 83.6 98.0 85.6
6 75.8 94.8 80.6

Table 4.1: Optimality in general (Test 1).

Optimality of the Heuristic Algorithm (Test 2, m =5, n=§)
max. init. || total Percentage of the Optimal Allocations (%)
load runs || optimal allocations | optimal on UBF | optimal on CC
2 79 98 81
8 100 85 98 87
16 93 100 93

Table 4.2: Optimality versus the initial load (Test 2).

Optimality of the Heuristic Algorithm (Test 3, m =5 n=8§)
avg. num. total Percentage of the Optimal Allocations (%)
feasible sites || runs || optimal allocations optimal on UBF | optimal on CC
2 97 98 99
4 100 85 98 87
8 26 100 26

Table 4.3: Optimality versus the number of feasible sites (Test 3).

Test 1. About 95% of the allocations obtained in Test 1 are optimal if only the unbalance factor is con-
sidered, which is encouraging since load balancing is our primary objective. As for the communications

costs, more than 80% of the allocations have the same (or lower) cost values as the optimal allocations.

As the number of sites and tasks is increased, however, the number of optimal allocations found
by the heuristic algorithm decreases. The explanation for this is that larger numbers of sites and tasks
increase the number of possible allocations, so the probability of selecting an optimal allocation using a
greedy algorithm decreases. It is then more likely that a nearly optimal allocation will be chosen instead
of the true optimum. This is especially clear in the case where each task is capable of being executed at
any of the sites in the system, where the heuristically obtained allocations frequently result in higher
communications costs. When a task can be allocated to any site, the exhaustive search method can take
advantage of this flexibility to decrease the communications cost, but this is much less true for the
heuristic algorithm. On the contrary, having more choices was seen to reduce the chances of the

heuristic algorithm generating an optimal allocation.
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4.2. Enhancing the Basic Algorithm
Two enhancements have been designed to further minimize the communications cost, and hence to
improve the overall optimality of the resulting allocation of tasks to sites. Both enhancements start from

the allocation obtained using the basic algorithm. Local adjustments are then made to the allocation to

decrease its communications cost while keeping the unbalance factor constant.

Enhancement 1. Enhancement 1 is applied to each task individually. If a task 1; was assigned to site s,
its feasible assignment set is searched to find another site 5, so that, if #; is instead assigned to 5, the
unbalance factor of the system is not affected but the communications cost decreases. Figure 4.2 shows
an example of this enhancement. After applying the basic load-balanced task allocation algorithm, 15 is
allocated to site s5. In this case, 5S¢ s in the feasible assignment set of 13, and the initial load of both s,
and s¢ is 0. Applying Enhancement 1 will reallocate 5 to 54, which will not affect the unbalance factor

but will reduce the communications cost.

Input :
number of tasks 3
number of sites 6
originating site S5
result site 55
initial load vector {2,5,0,4,5, 0}
feasible assignment set
5] {Sl’ 53, 54}
iy {52, 56}
13 {59, 53, 55, Set

allocation sites after applying the basic algorithm:

task (t) 1y 1y 13 (1)
allocated site (55) 53 s5g 55 (55)

allocation sites after applying Enhancement 1:

task (o) 1y 1y 13 (1)
allocated site (s5) 53 sg 5S¢ (Ss)

Figure 4.2: An example of Enhancement 1.
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Tables 4.4 to 4.6 show the results for the three optimality tests with Enhancement 1 applied fol-
lowing the application of the heuristic load-balanced task allocation algorithm. It can be seen that there
is an improvement in terms of the communications cost. In the case with 4 sites in the feasible assign-
ment sets on the average, the number of optimal allocations increased by 2-10%, while in the case

where a task can be allocated to any site in the system, the number of optimal allocations nearly dou-
bled.

Enhancement 2. Enhancement 1 adjusts the allocation site for each task individually from within its
feasible assignment set. Enhancement 2 takes a more global view. The main idea of this enhancement
Is to group as many tasks as possible together at the same site without affecting the UBF. This enhance-
ment looks at each pair of adjacent tasks (%,%.+1), where 1, and 1, , have been allocated to two different
sites 5; and s, and it tries to find a third task zj(j >i+1) which was also allocated to site s; (i.e., to the

same site as ). If sites s; and s, are in the feasible assignment sets of t4, and 1; respectively, then it

Optimality of the Heuristic Algorithm (Test 1)
total Percentage of the Optimal Allocations (%)
m n
runs || optimal allocations optimal on UBF | optimal on CC
3 98.0 99.2 98.8
4 94.0 98.2 95.6
5 | 412 500 89.0 98.0 91.0
6 79.2 95.0 85.4

Table 4.4: Optimality in general (Test 1, Enhancement 1.

Optimality of the Heuristic Algorithm (Test 2, m=5n=8§)
max. init. || total Percentage of the Optimal Allocations (%)
load runs || optimal allocations | optimal on UBF | optimal on CC
2 84 98 86
8 100 88 98 90
16 98 100 98

Table 4.5: Optimality versus the initial load (Test 2, Enhancement 1).

Optimality of the Heuristic Algorithm (Test 3, m=5n=8)
avg. num. total Percentage of the Optimal Allocations (%)
feasible sites || runs || optimal allocations optimal on UBF | optimal on CC
2 98 98 100
4 100 94 98 96
8 43 100 43

Table 4.6: Optimality versus the number of feasible sites (Test 3, Enhancement 1).
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is possible to reverse the choice of sites for %, and 1; without affecting the UBF (since the number of
tasks at s, and 5 will not change). However, this switch eliminates the communications cost between 1,
and ¢, ,. For each task L, 1=1i=< m—2, for which L, is at a different site, Enhancement 2 looks

1

for such a 7;. Figure 4.3 shows an example of this enhancement in action. The allocation for 1q — 15

before applying Enhancement 2 is {55, 5,, 55, 55, 55, ss5}. It is obvious that reversing the allocation
sites for 1, and 7, will not change the UBF value, but this will decrease the overall communications

cost.

Tables 4.7 to 4.9 shows the test results repeated with both enhancements employed. The results
show that the optimality of the algorithm is further improved, and that Enhancement 2 is especially help-
ful in the case where the size of the feasible assignment set is equal to the number of site in the system
(where the optimal allocation is now always found). The optimality of the heuristic approach proposed
here has thus been shown to be quite good. While the test results may vary with different input data, it

is expected that the general trends will remain the same.

Input :
number of tasks 4
number of sites 6
originating site 5s
result site S
initial load vector {4,1,4,5,1, 3}
feasible assignment set
ll {Sly 52’ 53: sé}
Iy {51, 5, 55, 5¢}
) {53, 55}
Iy {59, 53, 55, 54}
allocation sites after applying the basic algorithm:
task (t)) 1y 1y 1y 1y (1)

allocated site (55) s; 55 55 sy (s5)
allocation sites after applying Enhancement 2:
task (t) 1y 1 1y oty (L)

allocated site (s5) 55 s, s 55 (Ss)

Figure 4.3: An example of Enhancement 2.
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Optimality of the Heuristic Algorithm (Test 1)
total Percentage of the Optimal Allocations (%)
m n
runs || optimal allocations | optimal on UBF optimal on CC
3 99.0 99.2 99.8
4 98.0 98.2 97.6
5 | 412 | 500 92.8 98.0 94.8
6 85.2 95.0 90.2

Table 4.7: Optimality in general (Test 1, Enhancements 1 & 2).

Optimality of the Heuristic Algorithm (Test 2, m=5,n=§)
max. init. || total Percentage of the Optimal Allocations (%)
load runs || optimal allocations | optimal on UBF optimal on CC
2 85 98 87
8 100 94 98 96
16 99 100 99

Table 4.8: Optimality versus the initial load (Test 2, Enhancements 1 & 2).

Optimality of the Heuristic Algorithm (Test 3, m=5, n=8§)
avg. num. total Percentage of the Optimal Allocations (%)
feasible sites || runs || optimal allocations optimal on UBF | optimal on CC
2 , 97 98 99
4 100 94 98 96
8 100 100 100

Table 4.9: Optimality versus the number of feasible sites (Test 3, Enhancements 1 & 2).

4.3. Execution Time and Algorithm Complexity

In addition to the optimality of the allocations generated by the heuristic algorithm, the execution
time and complexity of the algorithm are also important concerns. As mentioned earlier, dynamic task
allocation will take place at runtime, so its cost must be as small as possible. A test was conducted to
measure the CPU time of the algorithm and its enhancements. For this test, the number of sites was
fixed at 8, and the average size of the feasible assignment set was varied. The test was run on a VAX
11/780, and CPU times were obtained using functions provided by UNIX. The results are shown in
Table 4.10. 1t can be seen that the execution times are fairly small. With 5 tasks in the task force and §
sites in the system, even if each task can be allocated to any of the sites, the total CPU time is less than
41 milliseconds. In our database application [Care85b, Lu85b], query task forces are typically small like
this, and the time required to initiate a compiled query will easily dominate these (unoptimized) task

allocation times.

Another consideration, particularly for larger task forces and systems, is how execution time

increases when the number of tasks and sites is increased. The complexity of the basic algorithm can be
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Execution Time of the Basic Allocation Algorithm (in msec)
number of average size of the feasible assignment set
tasks 2 4 6 8
3 17.0 21.0 22.2 24.7
4 23.9 26.1 28.4 31.3
5 27.1 33.4 34.6 40.9

Execution Time of Enhancements 1 (in msec)

number of || average size of the feasible assignment set
tasks 2 4 6 8
3 2.1 2.3 2.7 3.0
4 2.2 1.9 3.1 4.6
5 2.0 2.7 3.4 3.7

Execution Time of Enhancements 2 (in msec)

number of || average size of the feasible assignment set
tasks 2 4 6 8
3 1.2 0.3 0.8 0.7
4 0.7 1.1 0.8 0.7
5 1.0 0.6 1.0 0.8

Table 4.10: The execution time of the allocation algorithm.

Complexity of the Basic Algorithm
Step Complexity

2 Oon)

3 O(mlog,m)

4 o)

5 O(m)

TOTAL O(max(n,m log,m)

Table 4.11: Complexity analysis per task.

analyzed as follows: Before selecting allocation sites for the tasks, the degree of freedom of each task is
calculated (in step 2 of the algorithm). The next task to be allocated is then selected from among all
unallocated tasks (in step 3). Site selection then chooses from among all the sites in the feasible assign-
ment set of the task (in step 4), so the number of sites considered is n or less. After a site has been
selected, the system load vector and the degree of freedom of the remaining tasks must be updated (in
step 5), and the list of tasks must be reordered (sorted) according to their new freedom values. This

process is repeated until all m tasks have been allocated. Table 4.11 summarizes the per-task
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complexity of the basic load-balanced task allocation algorithm. Every task is processed in this way, so

the total complexity of the algorithm is O(max(mn,m2 log,m)).

E——8& Optimal G——9© Basic *+——+ w/ Enh.1 A——A W/ Enh.1&2

Seconds Seconds
0.3]
0.8]
0.2 0.6]
0.4]
0.1
0.27
0 ' i ' ' B 0 ' i ' ' '
2 4 6 8 10 12 2 4 6 8 10 12
Number of Sites (n) Number of Sites (n)
Seconds Seconds
3.5] 18]
3.0] 151
2.5] .
12
2.0
07
1.5]
] 6]
1.0
0.5 3]
B e
0 ' j i ' h 0
2 4 6 8 10 12 2 4 6 8 10 12
Number of sites (n) Number of sites (n)

Figure 4.4: The elapsed time of the different algorithms.
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In order to see how the heuristic algorithm’s execution times compare to those of the exhaustive
search algorithm, the elapsed time of both algorithms were measured during the optimality tests
presented in Section 4.1. The results are shown in Figure 4.4. These tests were performed on a VAX
11/750 running UNIX with just one user on the system. The figures show that the elapsed time of the
heuristic algorithm is indeed basically linear in n when m is fixed, but that the exhaustive search
algorithm’s time is not. When the number of queries and sites are small, the heuristic algorithm has
only a small advantage with regard to execution time. However, when the number of tasks and sites
increases, the elapsed time of the exhaustive search increases dramatically. For example, when m=3
and n=4, its elapsed time is 52.1 milliseconds. For m=6 and n = 12, it becomes 16.2 seconds, or over
300 times longer. In contrast, the execution time of the heuristic algorithm is basically linear in mn

here, going from 47.3 milliseconds to 243 milliseconds for these same values of m and n.

Another observation from Figure 4.4 is that the two enhancements do increase the computation
time somewhat. Thus, applying the enhancement procedures should perhaps be optional. In most cases
the basic algorithm performs just fine and it is not necessary to apply the enhancements. In some cases,
such as when the number of sites is large or when tasks have a large degree of assignment flexibility,

either or both of the enhancement procedures can be applied.

4.4. Other Task Force Structures

Because the algorithms and ideas presented in this paper resulted from work on load balancing for
distributed database systems [Care85b, Lu85b], our discussions of task forces and our algorithm
descriptions have assumed a linear, pipelined task force structure. The ideas discussed here are applica-
ble to more general task force topologies, however. Both the basic load-balanced task allocation algo-
rithm and the first enhancement to the algorithm can be applied directly to more general task force
structures, and the complexity of both algorithms will be unaffected. The only difference will be that the
communications cost factors are likely to take on a larger range of values (which is not a problem). The
second enhancement does have to be slightly modified, however, as it is dependent on the assumption of
a pipelined sequence of tasks. To generalize this enhancement, rather than considering pairs of adjacent
tasks (#,% ), it will have to consider 4; and each task ¢, in the set that 1; communicates with. For each
such task 7, it will then have to look for other tasks (outside the set) for exchanging sites with. This
will increase the complexity of the second enhancement by a factor dependent on the average number of
neighbors for the tasks in the task force. Finally, future work is needed to evaluate the optimality of the
plans generated via our heuristic algorithm for other task force topologies, as all of our optimality results

were obtained by studying pipelined sequences of tasks.

5. AN EXAMPLE APPLICATION

As mentioned in the first section, the load-balanced task allocation algorithm presented here was
motivated by the load balancing problem for locally distributed database systems. We have designed

and evaluated a load-balanced approach to query processing for locally distributed database systems, and
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Figure 5.1: Example of performance gains using dynamic task allocation.

this work is reported in [Care85b, Lu85b]. In our approach, query compilation is used to produce a
statically-optimized logical query processing plan for a query (i.e., a plan which does not specify which
copy of a relation will be accessed), and then a dynamic optimization phase converts this plan into an
executable physical plan at runtime. The load-balanced task allocation algorithm described in this paper
is used in the dynamic allocation phase in order to select a processing site for each subquery of the

overall query from among those sites that have copies of the relation needed by the subquery.
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A simulation study was conducted to investigate the performance gains that might be expected in a
system employing our load-balanced approach to query processing. In particular, the study addressed
the impact of using our load-balanced query allocation algorithm. The simulation model used in the
study was a closed queuing network model of a locally distributed database system. User queries were
represented as sequences of query units, where each query unit runs at some site, access a single rela-

tion, and passes data to the next query unit in the query (in a pipelined fashion).

When a query is initiated by a terminal in our model, a slight variant of the load-balanced task
allocation algorithm is used to decide the processing site for each of its query units. In the simulation,
load-balanced query allocation was compared with other two allocation algorithms: static allocation
(STATIC) and random allocation (RANDOM). The static allocation algorithm allocates a query unit to
its predecessor’s processing site if possible. If that site is not in the feasible assignment set of the query
unit, i.e., if the referenced relation is unavailable there, a statically predetermined copy of the relation is
selected. The random allocation algorithm operates similarly, except it randomly selects a copy of the
relation instead of using a predetermined copy in the event that a local copy is unavailable. The perfor-
mance metrics employed in the study were the response time of user queries, the waiting time improve-
ment factor of each algorithm X with respect to the static allocation algorithm, denoted WIF(X,STATIC)
and defined as the percentage of the decrease in the queuing time of the query, the throughput, and the
throughput improvement factor of each algorithm X with respect to the static allocation algorithm,
TIF(X,STATIC).

The results of the study indicated that load-balanced task allocation offers better performance than
either the static or random allocation strategies, improving the response time and waiting time for
queries, and even improving the overall throughput of the system in many cases [Care85b, Lu85b].
Waiting time reductions of 50% or more were typical under moderate CPU loads, and throughput
improvements in some cases reached 10-30%. Figure 5.1 shows some example results from one of the
tests that we conducted. The database system in this test consisted of 8 sites. The user queries (i.e., the
task forces) consisted of 3 query units (or tasks) with 4 sites in their feasible assignment set on the aver-
age. Readers interested in the details of our approach to load balancing in a locally distributed database
system, and/or in the details of the associated performance experiments, are encouraged to consult
[Care85b, Lu85b] — the results presented here are intended only to convey some idea of what can be

expected from load-balanced task allocation in terms of performance.

6. CONCLUSIONS

This paper has presented a new algorithm for allocating task forces to sites in a locally distributed
computer system. The algorithm is novel in that it considers the current system load, and it uses load
balancing as the main objective for driving the allocation procedure. The paper began by introducing a
quantitative measure of the ”balanceness” of a system. The load-balanced task allocation problem was

then defined based on this measure and on the communications cost between the tasks to be allocated. A
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heuristic algorithm that carefully selects the allocation order of tasks and the sites to which tasks are
allocated was then presented. A comparison between the allocations generated by the heuristic algorithm
and those obtained using an exhaustive search algorithm indicated that optimal allocation plans were
found in the vast majority of cases. Two enhancements of the basic algorithm were also developed and
shown to further improve the optimality of the algorithm (in particular, to improve its optimality with
respect to communications costs). The execution time of the algorithm was measured in several tests,
and the complexity of the algorithm was considered; both indicated that the algorithm is acceptably effi-
cient. Finally, some experimental results from a study of the use of load-balanced task allocation in a
distributed database application were very briefly summarized, and the results indicated that the

approach indeed offers performance gains over static task allocation schemes.

A number of opportunities exist for future work. The algorithms and ideas presented in this paper
resulted from work on load balancing in locally distributed database systems [Care85b, Lu85b]. As a
result, the discussions of task forces in this paper have been based on a pipelined sequence of tasks, and
the evaluations of the optimality of our heuristic algorithm assumed this communications structure.
While the ideas discussed here can definitely be applied to more general task force topologies, future
work is needed to evaluate the optimality of the plans generated via our heuristic algorithm for other
topologies. It would also be interesting to study the performance of various task force topologies using
our approach to task allocation. Finally, we have not addressed the question of how load information is
to be exchanged among the sites, making the integration of our ideas with an appropriate information

exchange policy a problem for future work as well.
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