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Error Bounds for Strongly Convex Programs
and (Super)Linearly Convergent Iterative Schemes
for the Least 2-Norm Solution of Linear Programs

0. L. Mangasarian & R. De Leone

1. Introduction

We consider the problem
(1.1) min f(z) subject to z € S:= {z|z >0, g(z) < 0}

where f:R™ — R and ¢g: R® — R™ are differentiable and convex functions on R", S is

nonempty and in addition f is strongly convex on R", that is

(1.2) (V1 (w) = VI (@) (v - 2) > k|ly - =l

for all £,y in R™ and some k > 0, where ||-||2 denotes the 2-norm. It follows immediately
that (1.1) has a unique solution Z in S. Our purpose here is that given any z in B to
obtain a bound on the distance ||z — Z||2, in terms of the violations of the Karush-Kuhn-
Tucker conditions for (1.1) by = and any nonnegative v in R™ (Theorem 2.2), or by z and
an “optimal” u chosen by solving a single linear program (Remark 2.6). The error bound
(2.7) of Theorem 2.2, which is also a Lipschitz continuity result of order  (see (2.13)),
involves 3 parameters «, 3,7 which may not be readily computable. In Theorem 2.5 we
replace these parameters by corresponding upper bounds a(zo), 8(%,4), v(Z,%) which are
readily computable from any primal feasible z, and any primal-dual feasible point (%, 1)
which satisfies the primal Slater constraint qualification. Related Lipschitz continuity
results are given by Daniel in [3] for positive definite quadratic programs. Stronger local
Lipschitz continuity results for more general programs are given by Robinson in [17,18].
In Section 3 of the paper we turn our attention to what motivated the paper originally,
namely computing the least 2-norm solution of a linear program. Determination of the least

2-norm solution of a linear program has been the keystone of the successive overrelaxation

(SOR) methods for solving very large sparse linear programs not solvable by standard
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pivotal packages [9,10]. The first result of Section 3 is that the 2-norm lIZ]|z of any
solution % of a linear program bounds the Euclidean distance [|Z — Z||2 between Z and
the least 2-norm solution of the linear program. This inequality, || — Z||2 < [|2]|2, which
is obviously valid for any two points # and Z in the nonnegative orthant R%} if £ > Z, s
not valid if we merely have ||&||z > ||Z||2 as can be seen from the simple example in R?
of & = (é), T = <(1)> where ||Z]|2 = ||Z]]2 < ||£ = Z||2. Theorem 3.2 gives an improved
bound on ||# — || by solving a linear program. The final and computationally important
results of this paper, contained in Theorems 3.7 and 3.8, are linearly and superlinearly
convergent schemes for determining the least 2-norm solution of a linear program. We
give the essence of these results. In solving very large sparse linear programs one solves by
an SOR technique [8,9,10] a quadratic perturbation (3.3) of the linear program (3.1) for
“sufficiently small” value € of the perturbation parameter ¢, that is € € (0,&| for some & >
0. Until now there was no simple way of determining when & < &. Theorems 3.7 and 3.8
do this as follows. Given a value €, of the perturbation parameter, we approximately solve
the quadratic perturbation problem (3.3) for z(e,) by an SOR or any other procedure to
a residual accuracy r(e;) defined by (3.14). Then we decrease €, 10 €,4.1 = pes, p € (0,1)

and solve (3.3) to a residual accuracy r(e;11) such that
(1.3) r(eiv1) <wr(e,) for some v < u'/? for linear convergence

and

(1.4) r(g;) < 551/217”7 for some ¢ >0, n € (0,1), p>1 for superlinear convergence

1

Theorem 3.7 shows that the sequence of approximate solutions {z(e;)} thus generated

converges to the unique least 2-norm solution of the linear program (3.1) at a linear rate

under (1.3), while Theorem 3.8 establishes p-rate superlinear convergence under (1.4).
We briefly describe now our notation and some basic concepts used. For a vector

z in the n-dimensional real space R™, |z| and z, will denote the vectors in R"™ with

components |z|; = |z;| and (z4), = max {z;,0}, i = 1,...,n respectively. For a norm
lz||s on R™, the dual norm ||z||g# on R™ will be defined by |z||g+:= ”IIHla»X Ty, where
yllp=1

zy denotes the scalar product. The generalized Cauchy-Schwarz inequality |zy| < [[z]|g -

llyllg*, for z,y in R™, follows immediately from this definition of the dual norm. For
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n

1 <p, g<oo,and -11;+ 21]- = 1, the p-norm (Z ]:lti|7')1/]7 and the g-norm are dual norms
1=1

on R™ [6]. If || - || is a norm on R™, we shall, with a slight abuse of notation, let || - IE

also denote the corresponding norm on R™ for m # n. R% will denote the nonnegative
orthant or the set of points in R™ with nonnegative components, while R™*™ will denote
the set of all m x n real matrices. For 4 € R™*", AT will denote the transpose, A; will
in general denote the ith row, while ||A||s will denote the matrix norm [1,13] subordinate
to the vector norm || - ||p, that is ||A|g:= ||£r]1i%§1 |Az||g. The consistency condition
|lAz||s < |Allgllz]|ls follows immediately from this definition of a matrix norm. We shall

also use ||- || to denote an arbitrary vector norm and its subordinate matrix norm. For an

£ in R™ we shall make use of some of the following norm-equivalence inequalities [19]

(1.5) 2lloo < llzll2 < llzlh < Vnllzlls < nflzfle

A vector of ones in R™ for any integer n will be denoted by e. For a differentiable function
g:R* — R™, 7g(z) will denote that m x n Jacobian matrix at z. Similarly for a dif-
ferentiable function L(z,u): (z,u) € R**™ — R, V- L(z,u) will denote the n-dimensional
gradient vector with respect to z, while 7, L(z,u) will denote the m-dimensional gradient

vector with respect to u.



2. Error Bounds for Strongly Convex Programs
We first need a preliminary lemma which is essentially Lemma 2.1 of [11] for the case

when [ is strongly convex. Consider the dual of our nonlinear program (1.1) 7]
max L(z,u) -z L(z,u)
(2.1) o
subject to  (z,u) € T:= {(z,u)lu > 0, V. L(z,u) > 0}

where L(z,u) is the standard Lagrangian

L{z,u):= f(z) + ug(z).
The Karush-Kuhn-Tucker (KKT) optimality conditions for (1.1) are (7]

v=VL(z,u) = Vf(z) +ug(z) >0, >0, zv=0,
(2.2)
y=—Vu L{z,u) = —¢(z) >0, u >0, uy =0

If we make the definitions

N N I ey

then the Karush-Kuhn-Tucker conditions take on the equivalent complementarity formu-

lation [2]
(2.4) 2>0, w=F(z) >0, zw =0

Our preliminary lemma establishes the strong monotonicity of the “twisted” derivative

F(2) under the strong convexity of f and convexity of g.

2.1 Lemma Let f and ¢ be differentiable on R™, let g be convex on R"™ and let

{ be strongly convex on R™ with positive constant k, then F(z) as defined in (2.3) is

x
continuous and strongly monotone with respect to z on R™ x R, that is for all z:= ( >
u

8

and z: = <_> in R™ x R

(2.5) (z — 2)(F(2) - F(2)) > k |}z — 2]

Proof Just replace the last inequality of the proof of Lemma 2.1 of {11] by the inequality
of (1.2) above. §



We can now state and prove two error bound results.

2.2 Theorem (Error bound in terms of KKT residuals) Let f: R™ — R, g: R™ — R™ be
differentiable on R™, let f be strongly convex on R™ with positive constant k and let g
be convex on R™. Let either g be linear and S # ¢, or let g satisfy the Slater constraint

qualification, that is
(2.6) g(£) <0,2>0

for some z € R™. Then for any (z,u) € R® x R the distance ||z — Z|[2 to the unique

solution Z of (1.1) is bounded by

T — Il k=12 z L{z,u) —ug(z all{— 7. Lz, u 1
) | 2 < [z V2 L{z,u) — ug(z) + af| (= Vs L(z,u)) |

+ B (9(=)) oo + A (2 floo) 2
where
(2.5) o: = min(|zleo + || 7 f(2) 1 /K)
(2.9) f:= (u{g)igw¢\U1ll
(2.10) N = (ufil)igw lv][1

where W C RZH'" is the nonempty closed convex polyhedral set of optimal multipliers

(u,v) of the convex program (1.1) associated with the constraints g(z) <0, z > 0.

Proof Since S # ¢ and [ is strongly convex, the program (1.1) has a unique solution
. Since either g is linear or the Slater constraint qualification (2.6) is satisfied there exist
optimal Lagrange multipliers (@, ) € R_T+” such that (Z,,v) satisfy the KKT conditions
(2.2) [7] and hence the set W of optimal Lagrange multipliers (w,v) is nonempty, closed

and convex and in fact polyhedral here. Now for any = € S we have
[ 1@ el 2 9I@a-2) > (T7(e) -1 @) a2 = ko2 2 ko
where the second inequality follows from the minimum principal [7]. Hence

1Z]lo0 = lIzlloo < llz = Zlleo < IV f(2)1/k
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and since z is an arbitrary point in S it follows that

(2.11) 2o < min (lzloo + | v F()l1/£) = @

where the minimum exists because of the continuity of the minimand on R™ and the
compactness of its level sets. Now let z: = (z,u) € R"xR™, (4,9) € W and let z: = (Z,4).

Then by Lemma 2.1 we have that

bllz = all; < (= = 2)(F(2) - F(2)
= zF(z) — 2F(z) — zF () (Since zF(z) = 0)

Wy

< 2F(2) + 2(—F(2)) , + V. L(z,a)(~2)+
(Since ug(Z) < 0 and €< &y)
=2V, L(z,u) — ug(z) + (~ V. L(z,u)), +alg(z)), +o(-2)+
<275 L(z,u) = ug(z) + |2 - (= V= L(z,u)) 1
| + @l - (g(2) oo + 118l - [1(=2) 4 lloo
Since (@,%) is an arbitrary point in W it follows that in the last expression above, ||%|;

and ||7]|; can be replaced by their respective minima over W, while ||Z||co can be replaced

by its upper bound o given by (2.11). Using the definitions (2.9) and (2.10) we have then

IR a‘:Hz <z, Liz,u) — ug(z) + o (- Ve L(z,u))

+ B (9(2)) , lloo + (=) + [loo

b

from which (2.7) follows immediately. B

2.3 Remark Note that the error bound of (2.7) is zero, if and only if z satisfies the
Karush-Kuhn-Tucker conditions (2.2) for some v € RT'. In fact if we define a perturbation
vector p = (pi1, p2, P3, pa) € R?T"T™HT" and define z(p) € R™ to be a solution of the

perturbed Karush-Kuhn-Tucker conditions
TV L(z,u) —ug(z) = py

(2.12)



for some u in R7, then z(0) = Z, the unique solution of (1.1). It follows then from (2.7)

that

(2.13) le(p) — z(O)]l2 < Ao [}
where
(2.14) A = (max {1,a,8,7}/k)"/?

The relation (2.13) shows that z(p) is Lipschitzian of order 3, with a Lipschitz constant
A,at p=0.
If the point (z,u) of Theorem 2.1 is both primal and dual feasible, the bound (2.7)

of Theorem 2.1 simplifies considerably as indicated in the following.

2.4 Corollary (Error bound for primal-dual feasible points) If in addition to the as-
sumptions of Theorem 2.2, = is primal feasible and (z,u) is dual feasible, that is z € S

and (z,u) € T, then

(2.15) o - 2le < ((= 7 Lz,w) —ug(:c))/k)l/z

This corollary partially extends a result of |12, Equation 2.15] for error bounds for
positive semidefinite quadratic programs to strongly monotone convex programs. Pang
has given related error bounds for nonlinear complementarity problems [15] and linearly
constrained variational inequalities [16].

We note that the error bound of (2.7) contains 3 parameters «,f, and v which
may not be easy to compute. These parameters can be replaced by bounds which are
more easily computable. In particular, if we let z% be any primal feasible point, and let z
satisfy, in addition to the Slater constraint qualification (2.6), the dual feasibility condition

(£,4) € T for some @, then we have:

(2.16) a < a(z):= |2 + | v [ (=)l /k
(2'17) /3) < ﬁ(ﬁ,ﬁ): = (-'i Vz L(ivﬁ) - ﬁg(:?:))/miin - gi(ﬁ)
(2.18) v < (&,8):= (8 Ve L(Z,4) — 4g(2)) /min Z;



where the inequality of (2.16) follows immediately from the definition (2.8) of o and the
inequalities (2.17) and (2.18) from Theorem 2.2 of [11]. We therefore have the following.

2.5 Theorem (Explicit error bound in terms of KKT residuals) Let the assumptions
of Theorem 2.2 hold including (2.6), let z° € S and let (£,4) € T for some 4 € RI*.
Then for any (z,u) € R” x R the distance ||z — Z|[2 to the unique solution Z of (1.1) is

bounded by

|z = 2]l < k7/?[2 V2 Liz,u) = ug(2) + (=) (= V2 Lz, u))

(2.19) s
+B(2,3)]|(9()) , lloo + (&, 8) | (~2)+loo]

where a(z?), B(%,4) and ~(%,1) are defined by (2.16)-(2.18).

2.6 Remark We note that for a fixed z, 2%, # and 4, the choice of u in the bound
(2.19) can be optimized by solving the following linear program in order to obtain the best
bound on ||z — Z|2:
min U )z — g(z)) + a(z)es
Lomin L u(Talelz = o(z)) + ae”
(2.20) -V f(z) —uvg(z) <s
u,s >0
Under the assumptions of Theorem 2.5, the objective function of the feasible linear program

(2.20) is bounded below and hence is solvable. Any solution (u,s) of (2.20) will provide

an optimal u which will give the best bound in (2.19) for the given fixed z, z°, %2 and 4.



3. Application to Least 2-Norm Solution for Linear Programs

In this section we use the error bound for strongly convex programs to derive two
simple bounds (Theorems 3.1 and 3.2) for the least 2-norm solution of a linear program in
terms of any other solution of the linear program. More importantly we give in Theorems
3.7 and 3.8 linearly and superlinearly convergent iterative procedures for determining the
least 2-norm solution of a linear program. The proposed schemes should be very helpful
in precisely determining the manner in which the perturbation parameter ¢ and its corre-
sponding error residual r(g) (3.14) should be decreased in the highly effective successive
overrelaxation methods for solving very large sparse programs [8,9,10].

We consider the linear program
(3.1) mg:}n ¢z subject to Az > b, >0
where ¢ € R", b€ R™ and A € R™*"™, and its dual
(3.2) max bu subject to ATy <e,u>0

It is known [9,10] that Z is the unique least 2-norm solution to (3.1) if and only if Z is the

unique solution to the quadratic program
€
(3.3) min ¢z + gmz subject to Az >b, >0
for all € € (0,&] for some &€ > 0. The dual to the quadratic program (3.3) is [7]

(3.4) max — gmz 4 bu subject to v=-cez—~ ATu+¢, (u,v) >0
,u,v

Now if (%,4) is an arbitrary optimal point for the dual linear programs (3.1)-(3.2),
then for any € € (0,£], the point (Z,4,0:= eZ — AT4 4 ¢) is feasible for the dual quadratic
program (3.3)-(3.4) and hence by Corollary 2.4
(ci + ezt — bzl)l/2

€

(3.5) 12— z]l2 < = 12l

where Z is the least 2-norm solution of the linear program (3.1). Hence we have established

the following.



3.1 Theorem (Bound for the distance between an LP solution and the least 2-norm LP

solution) For the linear program (3.1)
(3.6) 12— z[l2 < [[£]]2

where # is any optimal solution to (3.1) and Z is the unique optimal solution to (3.1) with
least 2-norm.

We can improve on the bound (3.6) if instead of using @ which is a solution of the
linear program (3.2) we use u(Z,¢), which minimizes the bound of (2.15) for the given
linear program solution #, and such that (iﬁ,u(ffz,s)) is feasible for the dual quadratic

program (3.3). Hence we take u(Z,¢) as a solution of the linear program
(3.7) max bu subject to ATu <c+ez, u>0
u

This linear program is solvable because it is feasible (its feasible region contains that of
(3.2)) and its objective function is bounded above by (¢ +e£)Z. Hence bu(z,e) > bl = ¢

and the bound (3.5) is improved as follows
. . bu(Z,€) —cx\1/2 R
(3.8) I - alla < (22— PBD TN g,
Since the bound of (3.8) is valid for all € € (0,€] and bu(Z,¢€) is a bounded nonincreasing

function of € we can take its limit as € | 0. We summarize this result in the following.

3.2 Theorem (Optimal bound for the distance between an LP solution and the least
2-norm LP solution) For the linear program (3.1) the following bound holds where z is
any optimal solution to (3.1), Z is the least 2-norm solution of (3.1) and u(%) is a solution

of the linear program (3.7):

(3.9) & - z]l2 < lim (3% - W)”z < |12

ell
The following example illustrates the bounds (3.6) and (3.9).
3.3 Example min zo st. —z; > -2, T3 > 1, (21, 2) 20

Problem (3.7) for this LP with £ = <1> is

(3.10) max —2uj +us st. —u; <e, uz <1l4+e¢, (ur, uz) >0
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The primal solution set is § = {z € R?|0 < z; < 2, 2 = 1} and the least 2-norm solution

is T = <(1)> . We then have

Izl = 1= [|& - 22 < ||&lls = V2

0

which is the bound (3.6). The solution to (3.10) is u(%, ) = (1 N
£

) and hence bu(Z, €) =
1 + ¢ and the bound (3.9) gives

< 1+e—1>1/2

1=z~ 2], <lim (2 =

el0 €

which is a sharp bound for this problem.

3.4 Remark We note that under certain assumptions, such as the strong second or-
der sufficient optimality condition and linear independence of the gradients of the active
constraints [4, p.44] the function bu(Z, €) is differentiable with respect to € at ¢ = 0
and £ (bu(, €))]
bu(z, 0))

._o = &&. For such a case the bound (3.9) degenerates to (since cZ =

i — z||

.. d .
< 2% - E—;(bu(:c, 5))‘520 =0

and hence 2 = z, which of course is the consequence of the second order sufficient opti-
mality condition which implies that Z is a locally and hence globally unique solution of
the linear program (3.1).

We conclude by giving linearly and superlinearly convergent procedures for obtaining
the least 2-norm solution of the linear program (3.1) based on the error bound (2.7).
These procedures should be very useful in the successive overrelaxation (SOR) procedure
for solving (3.3) |8,9]. The usefulness comes in determining a method for cutting the size
of the parameter e in (3.3) and the accuracy to which (3.3) is solved for each e. This
results in a precise scheme that drives € below the value &, which in general is unknown
and very difficult to compute. We first outline how the proposed procedure is applied. To
solve (3.3) for a fixed &, we apply an SOR procedure (8,9] or any other procedure to its
dual (3.4) with the variable z eliminated through the dual constraint

1
(3.11) z==(ATu+v—¢)
€

11



and thus obtaining the dual problem

1
(3.12) (ur,rzl)i)go O(u,v):= (u%i)go «2—HATu +v— cHi — ebu

which would have to be solved for a sufficiently small € € (0,&]. Since we do not know a
priori how small € need be, we consequently need to solve (3.12) for a decreasing sequence
of € values. If an iterative procedure such as SOR is used to solve (3.12), as in the case of
very large sparse linear programs [8,9], we would have a procedure with an infinite inner
loop. Our present proposed approach now eliminates the need to solve (3.12) exactly and
consists of solving (3.12) only to an explicit finite accuracy after which e is decreased
sufficiently to generate a linear or superlinear rate of convergence of the overall procedure.

To define our procedures we need to define approximate and exact solutions to (3.12)
and (3.3). For that purpose we first give the necessary and sufficient Karush-Kuhn-Tucker

optimality conditions for (3.12):
(a) Tub(u,v) = A(ATu+0v—¢c)—eb>0
(b) uul(u,v) =0
(c) u>0
(d) Vol(u,v) = ATu+v—-c>0
(€) v Tob(u,v) =0

(/) v

v
o

Now we make the following definitions.

3.5 Definition (Exact solutions to (3.12) & (3.3)) For a fixed positive € an exact solution
to the dual quadratic program (3.12) is designated by (17,(6), 17(5)) and hence must satisfy
(3.13). The corresponding Z(e) in R™ defined by (3.11) with (u,v) = (a(e), #(¢)) is an
exact solution to the quadratic program (3.3). The set of all (ﬁ(s), 17(5)) which are exact

solutions to (3.12) for a fixed positive ¢ is designated by W (e).

3.6 Definition (Approximate solutions to (3.12) & (3.3)) For a fixed positive € any
point in R_TJ“” is an approximate solution to the dual quadratic program (3.12) and
is designated by (u(e), v(e)). The corresponding z(e) in R™ defined by (3.11) with

12



(u,v) = (u(€), v(e)) is an approximate solution to the quadratic program (3.3). The
residual 7(¢) associated with (u(e), v(g), z(e)) is defined by

(3.14) r(e):= H:z:(s)v(s) + u(s)(A:c(s) - b)‘ + H(b - Am(E))+]\oo + “(“’I(E))+||oo:| 1/2

Note that for an € > 0 and an approximate solution (u(e), v(e)) to (3.12) and a
corresponding approximate solution z(e) to (3.3), r(¢) = 0 if and only if (u(e), v(e)) €
W (e) and z(e) = Z(e). We also have that for ¢ € (0,&] for some & > 0, z(e) = Z, where
z is the least 2-norm solution of the linear program (3.1) [9,10].

We are prepared now to state and prove our linearly and superlinearly convergent
procedures for computing the least 2-norm solution of the linear program (3.1) and we

begin with the former.

3.7 Theorem (Linearly convergent procedure for least 2-norm solution of a linear pro-
gram) Assume that the linear program (3.1) is solvable and that b # 0. Let {€0, €140}

be a decreasing sequence of positive numbers such that
(3.15) €i41 = Me, for some p € (0,1)

and let {u(e,), v(e.), z(e;)} be a corresponding sequence of approximate solutions to
(3.12) and (3.3) satisfying Definition 3.6 and such that their residuals as defined by (3.14)
satisfy

(3.16) r(eir1) <vr(e)
for some v > 0 and such that
(3.17) v < p'/?

Then the sequence {z(e;)} converges to Z, the least 2-norm solution of the linear program

(3.1), at the linear root-rate [14]
(3.18) z(e;) — 7|2 < §(v/ut?) for i >4

for some constant 6 and some integer ¢.

13



Proof By Theorem 2.2 we have

lz(ed) — a(es)lle < ;2 [Jalen)v(en) + ules) (Az(en) = b)]

(3.19)
Blell (b~ Az(en)) , oo + (el (—2(2)) Nloo]
where
(3.20a) Ble):= min |uly = min {eu Aluty = asfe) + o }
(u,v)EW (&) (u,v)20 bu = ci(e,) + eiZ(ei)z(e)/2
(3.20b) ~(e): = min H I = min {ev ATu+v = €;Z(g) + ¢ }
(u, ) EW (e&; (u,v)>0 bu = cz(e;) + e:Z(ei)z(es)/2

By the fundamental theorem for the existence of basic feasible solutions for lin-

ear programs |5, Theorem 3.3], it follows that for each e,, there exist basis matrices

T
Bi(e:), Ba(e:), thatis (n+1) x (n+1) nonsingular submatrices of [Ab (I)} , such that

(3.21a) e = (¢ 0B (SR T e

(3.21D) (e) = (0 @Bdarl<ﬁiﬁf+?
Since there are only a finite number of basis matrices in { {)} , we have that upon

taking B as that basis matrix with largest 1-norm,

:1:( 1)

Ble:) or ~(ei) < [B7 1 (5)+5T( i)Z(e)/2

(3.22)

= 1B 1 - [leaz(e) + ella + [ez(es) + ez (ei)3(e:) /2]
Now
(3.23) i(e;) =z for € € (0,¢]

where Z is the unique least 2-norm solution of the linear program (3.1); and for &; > £ we

have from (2.11) that

IZ2() < nllZ(es)lloo < 7 min {flzfloo +

(3.24) .\ soliz||1_+ lella

< n min {||z]/c 1.Az >b, x>0} =7
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Using (3.23) and (3.24) in (3.22) gives

B(e.) or (ei) < |B7 1 [max {&]lz[ls + [lefl1, eo7 + lell}

(3.25) B
+ max {|cZ| + £2%/2, ||c||ooT + €077/2}] =: 1

Hence combining (3.19) and (3.25) gives

(3.26) la(e) = 2(e)llz < & or(e)
where r(g;) is the residual defined in (3.14) and

(3.27) o: = (max {1,8})"/*

From (3.15) we have that

(3.28) £, = pleg ,1=0,1,...

and from (3.16) we have that

(3.29) r(e)) <vtr(eo) ,1=0,1,..
Combining (3.26), (3.28) and (3.29) gives

(3.30) lz(e.) — z(e)ll2 < 0e5 (0 (v/u'/2)

Observing that v/u!/? < 1 from (3.17), and that Z(e;) = & for €; € (0,£] it follows that
lim z(e;) = . By defining

11— 00

(3.31) b= 0’651/2 r{eo)

and 7 as the smallest integer such that &, < &, we have from (3.30) and the fact that
i(e;) = Z for €, < &, that for ¢ > ¢

lz(e2) = zll2 < llz(es) = 2(e)ll2 + [[2(e:) — 2l

(3.32)
= ||lz(e,) — #(ed)ll2 < (v /u'/?)

which establishes (3.18). 1§
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We finally note that a superlinear root-rate of convergence |14] can be achieved in the
procedure of Theorem 3.7 if we cut the residual r(e;) more sharply than that given by

(3.16)-(3.17). In particular we have the following.

3.8 Theorem (Superlinearly convergent procedure for least 2-norm solution of a linear

program) Let the assumptions of Theorem 3.7 hold with (3.16) and (3.17) replaced by

(3.33) r(g;) < gel /s

13

for some ¢ > 0, n € (0,1) and p > 1. Then the sequence {z(e;)} converges to Z, the

least 2-norm solution of the linear program (3.1), at the superlinear root-rate of
(3.34) lz(e)) = 2|2 < otnf  for i>]

for some integer 7 and ¢ defined by (3.27).

Proof From (3.26) and (3.33) we obtain,
(3.35) la(ed) = 2(e)ll2 < oen”
Since Z(g;) = Z for 7 > 1 for some ¢, (3.34) follows from (3.35), and since n? — 0, z(e;) —

z. B

Acknowledgement

We are indebted to our colleague Stephen M. Robinson for pointing out references

(3,17,18].

16



ot

3.

10.

11.

12.

13.

14.

15.

References

S. D. Conte & C. de Boor: “Elementary numerical analysis”, 3rd Edition, McGraw-
Hill, New York 1980.

R. W. Cottle: “Nonlinear programs with positively bounded Jacobians”, SIAM Jour-
nal of Applied Mathematics 14, 1966, 147-158.

J. W. Daniel: “Stability of the solution of definite quadratic programs”, Mathematical
Programming 5, 1973, 41-53.

. A. V. Fiacco: “Introduction to sensitivity and stability analysis in nonlinear program-

ming”, Academic Press, New York 1983.

D. Gale: “Theory of linear economic models”, McGraw-Hill, New York 1960.

. A.S. Householder: “The theory of matrices in numerical analysis”, Blaisdell Publish-

ing, New York 1964.
0. L. Mangasarian: “Nonlinear programming”, McGraw-Hill, New York 1969.

0. L. Mangasarian: “Solution of symmetric linear complementarity problems by iter-
ative methods”, Journal of Optimization Theory and Applications 22, 1977, 465-485.

O. L. Mangasarian: “Sparsity-preserving SOR algorithms for separable quadratic and
linear programs”, Computers and Operations Research 11, 1984, 105-112.

0. L. Mangasarian: “Normal solutions of linear programs”, Mathematical Program-
ming Study 22, 1984, 206-216.

0. L. Mangasarian & L. McLinden: “Simple bounds for solutions of monotone com-
plementarity problems and convex programs”, Mathematical Programming 32, 1985,
32-40.

O. L. Mangasarian & T.-H. Shiau: “Error bounds for monotone linear complemen-
tarity problems”, University of Wisconsin Computer Sciences Report No. 606, July
1985, submitted to Mathematical Programming.

J. M. Ortega: “Numerical analysis a second course”, Academic Press, New York 1972.

J. M. Ortega & W. C. Rheinboldt: “Iterative solution of nonlinear equations in several
variables”, Academic Press, New York 1970.

J.-S. Pang: “Inexact Newton methods for the nonlinear complementarity problem”,
School of Management, University of Texas at Dallas, Richardson, Texas 75083, April
1985.

17



16.

17.

18.

19.

J.-S. Pang: “A posteriori error bounds for the linearly-constrained variational inequal-
ity problem”, School of Management, University of Texas at Dallas, Richardson, Texas
75083, June 1985.

S. M. Robinson: “Strongly regular generalized equations”, Mathematics of Operations
Research 5, 1980, 43-62.

S. M. Robinson: “Generalized equations and their solutions, Part II: Applications of
nonlinear programming”, Mathematical Programming Study 19, 1982, 200-221.

G. W. Stewart: “Introduction to matrix computations”, Academic Press, New York
1973.

18



