PATTERN-BASED AND KNOWLEDGE-DIRECTED
QUERY COMPILATION
FOR RECURSIVE DATA BASES

by

Jiawei Han

Computer Sciences Technical Report #629
January 1986



PATTERN-BASED AND KNOWLEDGE-DIRECTED
QUERY COMPILATION FOR RECURSIVE DATA BASES
by

JIAWEI HAN

A thesis submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN — MADISON
1985




ABSTRACT

PATTERN-BASED AND KNOWLEDGE-DIRECTED

QUERY COMPILATION FOR RECURSIVE DATA BASES

JIAWEI HAN

Under the Supervision of Professor Larry Travis

Expert database systems (EDS’s) comprise an interesting class of computer sys-
tems which represent a confluence of research in artificial intelligence, logic, and
database management systems. They involve knowledge-directed processing of large
volumes of shared information and constitute a new generation of knowledge

management systems.

Our research is on the deductive augmentation of relational database systems,
especially on the efficient realization of recursion. We study the compilation and
processing of recursive rules in relational database systems, investigating two related
approaches: pattern-based recursive rule compilation and knowledge-directed recursive

rule compilation and planning.

Pattern-based recursive rule compilation is a method of compiling and process-
ing recursive rules based on their recursion patterns. We classify recursive rules
according to their processing complexity and develop three kinds of algorithms for
compiling and processing different classes of recursive rules: transitive closure algo-
rithms, SLSR wavefront algorithms, and stack-directed compilation algorithms. These

algorithms, though distinct, are closely related. The more complex algorithms are



generalizations of the simpler ones, and all apply the heuristics of performing selec-
tion first and utilizing previous processing results (wavefronts) in reducing query pro-
cessing costs. The algorithms are formally described and verified, and important

aspects of their behavior are analyzed and experimentally tested.

To further improve search efficiency, a knowledge-directed recursive rule compi-
lation and planning technique is introduced. We analyze the issues raised for the
compilation of recursive rules and propose to deal with them by incorporating func-
tional definitions, domain-specific knowledge, query constants, and a planning tech-
nique. A prototype knowledge-directed relational planner, RELPLAN, which main-
tains a high level user view and query interface, has been designed and imple-

mented, and experiments with the prototype are reported and illustrated.
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CHAPTER 1

INTRODUCTION

1.1. EXPERT DATABASE SYSTEMS

Expert database systems (EDS’s) comprise an interesting class of com-
puter systems which represent a confluence of research in artificial intelli-
gence, logic, and database management systems. They involve knowledge-
directed processing of large volumes of shared information and constitute a new
generation of knowledge management systems destined to play an increasing role

in scientific, governmental and business applications.

As an emerging research field, expert database system research has
attracted wide interest among database, artificial intelligence, and logic program-
ming researchers. EDS’s endow database systems with deductive reasoning and
planning power, and they increase the processing efficiency of data intensive
expert systems by using well-developed database technology. EDS technology is
essentially the merging of two technologies, database system technology and
expert system technology, toward the realization of knowledge management sys-
tems with great processing power and high processing efficiency. The develop-
ment of EDS technology will benefit many related fields, including deductive
database systems, data intensive expert systems, decision support systems,

engineering database systems, office automation systems, etc.

Among the numerous computer science research issues raised by EDS’s,
our study is specifically focused on the issue of augmenting relational database
systems with recursive processing and planning power, which many researchers

believe to be one of the most important issues in EDS research.




1.2. OUR RESEARCH

Our research is on the efficient realization of recursion in relational data-
base systems. We study the compilation and processing of recursive rules in
relational database systems, investigating two related approaches: pattern-based
recursive rule compilation and knowledge-directed recursive rule compila-

tion and planning.

Pattern-based recursive rule compilation is a method of compiling and
processing recursive rules based on their recursive patterns. We classify recur-
sive rules according to their processing complexity and develop three kinds of
algorithms for compiling and processing different classes of recursive rules:
transitive closure algorithms, SLSR wavefront algorithms, and stack-
directed compilation algorithms. These algorithms, though distinct, are
closely related. The more complex algorithms are generalizations of the simpler
ones, and all apply the heuristics of performing selection first and utilizing

previous processing results (wavefronts) in reducing query processing costs.

To further improve search efficiency, a knowledge-directed recursive
rule compilation and planning mechanism is introduced. We analyze the
issues raised for the compilation of recursive rules by incorporating domain-
specific knowledge, functional definitions, query constants, and a planning tech-
nique. We design and implement a prototype knowledge-directed relational
planner, RELPLAN, which maintains a high level user view and query interface
and which demonstrates the knowledge-directed compilation and planning for

relational databases.



1.3. ARCHITECTURE : THE DEDUCTIVE AUGMENTATION OF RELA-
TIONAL DATABASE SYSTEMS

1.3.1. EDS Architectures

There are several kinds of expert system architectures: rule-based sys-

tems, logic-based systems and frame-based systems. There are also several

kinds of database system architectures: relational, hierarchical, network,

entity-relationship, object-oriented, etc. We can combine and develop the

two kinds of systems in various ways to construct various new architectures for

EDS’s. Even in the current early stage of EDS development, there are

numerous and diverse proposals [Kers 84][Smit 84]}[Wied 84] on EDS architec-

tures:

(1)

)

ES -> DS

This approach starts from an existing expert system and adds database capa-
bilities such as indexing, clustering, database accessing, authorization, con-
currency control and recovery. A representative work of this kind is by
Warren [Warr 84] which expands a Prolog logic programming system to

include the functions and features of relational database systems.

DS -> ES

This approach adds deductive reasoning capabilities to an existing database
system, in most cases, a relational database system. Some work has been
done on augmenting relational database systems with a Prolog front-end
[Chan 84][Jark 84], but there are still many problemév in "bridging” logic
programming and relational database systems [Brod 84][Zani 84]. Many
researchers are interested in using general Horn clauses, not constrained

by Prolog syntax, semantics and control mechanisms, to enhance relational




database systems with the power of deduction. Research in this direction
has been characterized as deductive database system research [Gall 78,

81, 84]. This is essentially the area of our research.

(3) Object-oriented approach

This approach applies the concept of object-oriented programming
[Gold 83][Baro 81][Cope 84] to design for new applications an extensible
database system, whose architecture consists of several levels [Care 85].
These levels contain different objects such as data model objects, query pro-
cessing objects, access method objects, storage objects, etc. Operations can
be associated with the classes at each level to make them generic and easy
to extend. The extension to expert database systems is effected by adding

new objects for storing and processing rules.

1.3.2. Our Architecture: The Deductive Augmentation of Relational Data-

base Systems

Our EDS architecture for deductive augmentation of relational database sys-
tems starts with a core around which various kinds of high-level deductive query
interfaces, natural language interfaces, and more application oriented models
can be added. Our study is focused on the construction and efficient implemen-

tation of such a core architecture using rule compilation and planning.

The core architecture of our deductive database systems is presented in Fig-
ure 1.1, which will be explained in detail in later chapters. It is the deductive
augmentation of relational systems. For the case of non-recursive rules, such
an augmentation has been researched in the field of logic and databases
[Gall 84] and the field of relational database systems [Jark 84b]. The

development of recursion mechanisms for relational database systems has been
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an important focus of recent research [Gall 84][Hens 84][Ulim 85][loan 85].

1.4. ORGANIZATION OF THE DISSERTATION
The dissertation is organized into nine chapters.

Chapter 1 introduces the concept of expert database systems, their applica-
tions, and associated research issues. We outline our research and present the
EDS architecture we will be investigating: deductive augmentation of rela-

tional database systems.

Chapter 2 is a survey of deductive query compilation techniques for non-
recursive first-order databases. We contrast the compiled approach with the
interpretive approach, point out the equivalence of the compilation approach and
the view implementation technique using query modification, and discuss an

implementation of the compiled approach for non-recursive deduction rules.

Chapter 3 is a general discussion of recursive first-order databases. We
first survey the previous and current research work on processing of recursive
database queries. Then, we specify some assumptions and definitions for our
discussion, present a technique for transforming recursive rules into simplified
forms when possible, and present a classification of recursive rules based on
certain patterns, according to which their processing complexity can be deter-

mined.

From Chapter 4 through Chapter 6, we discuss compilation and processing

of recursive rules according to the classification of Chapter 3.

Chapter 4 is on the compilation and processing of queries in the transitive
closure class. After compiling a transitive closure rule into a general compiled
formula, we compare several different strategies for the evaluation of the for-

mula in databases and recommend a 3 wavefront algorithm with a tuple



marking technique for efficient processing. We also discuss transitive-closure

rule variations based on the & wavefront algorithm.

Chapter 5 is on the processing of queries that involve SLSR rules, i.e. sin-
gle looping rules with a single recursion point. After deriving the general com-
piled formula by compilation, four evaluation algorithms, Natural Evaluation
(NE), Single Wavefront (SW), Double Wavefront (DW), and Central Wave-
front (CW) are studied. The performance evaluation concludes that the Single
Wavefront Algorithm has the best performance in most cases. Performing
selection first and using previous processing resuits (wavefronts) are two

important heuristics in the efficient processing of the compiled formulas.

Chapter 6 presents a compiled approach for more complex recursive rules.
A stack-directed compiled approach is introduced. We perform a case study
to derive a stack-directed compilation algorithm for an SLMR (single looping,
multiple recursion points) rule set. We also discuss the processing of compiled

formulas using wavefront and potential wavefront relations.

In Chapter 7 and 8, we develop a knowledge-directed recursive rule
compilation and planning technique. This is motivated by EDS application
requirements characterized by functional definition, high processing cost against
large databases, and the availability of various kinds of domain-specific
knowledge. Our analysis shows that knowledge-directed recursive rule compila-

tion and planning can generate quite efficient processing plans.

Chapter 7 discusses new recursive rule processing problems which cannot
be solved by the compilation techniques developed in previous chapters but can
be solved by use of domain-specific knowledge, involving termination con-
straints, search constraints and query constants. The concept of a deductive

module is developed here.
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Chapter 8 introduces a two-phase planning technique for applying plan-
ning to recursive databases. The two phases are selection of a planning stra-
tegy and generation of a retrieval program according to the selected stra-
tegy. A relational planner, RELPLAN, for knowledge directed inference and
planning in DB-oriented problem solving is specified. Analysis demonstrates
significant improvement of processing efficiency by use of the proposed planning

techniques.

We present our conclusions in Chapter 9, which summarizes the deductive
compilation techniques that have been proposed, points out their limitations, and
proposes future research which includes development of a comprehensive recur-
sive query compiler, research on set-oriented heuristic search, and development

of a plan database.



CHAPTER 2

THE DEDUCTIVE QUERY COMPILATION TECHNIQUE

In this chapter we discuss deductive query compilation techniques for non-
recursive first-order databases. We contrast the compiled approach with the
interpretive approach, point out the equivalence of the compiled approach for
implementing virtual relations and the query modification technique for imple-
menting views, and discuss an implementation of the compiléd approach as a

deductive front-end for relational databases.

2.1. FIRST-ORDER DATABASES

A deductive database is a database in which new facts may be derived from
the facts that are explicitly contained in the database. A first-order database is a
deductive database consisting of first-order clauses. Such databases can be classi-
fied into definite and indefinite deductive databasesT, where a definite deductive
database consists of Horn clauses which are definite assertions and definite
data, and an indefinite deductive database may contain indefinite assertions
and indefinite data. An indefinite assertion is an assertion whose consequent
part consists of a disjunction of literals, and indefinite data contain facts
represented by disjunctions of literals. Our research deals only with definite
deductive databases. From here on, the term first-order database or deduc-

tive database refers to definite deductive database unless otherwise specified.

A deductive database consists of three parts: (i) an extensional database

(EDB), which consists of facts, represented by clauses with only one positive

T The terminology used here is from the research in logic and databases
and can be found in [Gall 84].
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literal containing no variables; (ii) an intensional database (IDB), which con-
sists of deduction rules, represented by clauses with one positive literal and one

or more negative literals; and (iii) a set of integrity constraint (IC) rules.

For example, in a personnel database, an extensional database stores the
specific facts, e.g., person with attributes name, sex, birth-year, father, mother,
etc. An intensional database contains more general information, e.g., rule defin-
itions of brother, uncle, ancestor, etc. Integrity constraints specify general
information, such as that the sex of a person’s father is male, or that a person’s

birth-year is always greater than his/her father’s.

Although integrity constraints, their efficient implementations, and their
applications in deductive databases are important issues for research
[Gall 78][Gall 81][King 81][Chak 84][Hens 84b], they are not going to be stu-
died here. We concentrate on the issues of deduction rules. Therefore, in the
following discussion, we ignore the issues of integrity constraints and treat

deductive databases as databases containing only two parts: EDB and IDB.

For our discussion, we further divide first-order databases into recursive
and non-recursive ones. A recursive database contains some recursive rules
in its IDB while a non-recursive one does not. To distinguish a recursive rule

from a non-recursive one, some notions need to be defined.
A virtual relation is jointly defined by deduction rules and elementary
facts in deductive databases. A deduction rule has the form:
0 :— P1,Pyy. ., Py @3-

where the virtual relation literal Q is called the left side, or the consequent

of the rule, while Pj ...,P; is called the right side, or the antecedent of the

rule.
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A predecessor of a literal is defined as follows: (i) P is the predecessor of
Q if Q appears on the left side of the rule while P is on the right side; and (i)
the predecessor relation is reflexive and transitive.

A rule is non-recursive if the literal on the left side is not a predecessor of
any literal on the right side, otherwise it is recursive.

For example, suppose that 4, B and C represent base relations, and other

letters represent virtual relations. In the following virtual relation definitions:

Q :— P,A
P:— B,C.

R :— A,S.
S:- B,C,R.
T:- A,T,C,T.

The rules for P and Q are non-recursive while those for R, § and T are recur-

sive.

2.2. DEDUCTION AND DATABASE ACCESS: COMPILATION VS.
INTERPRETATION

2.2.1. Two Approaches: Compilation and Interpretation

There are two approaches to performing inferences in conjunction with

database accesses: the interpretive approach and the compiled approach.

2.2.1.1. The Interpretive Approach

The interpretive approach [Mink 78] adopts a top-down search strategy
which maintains a tree structure to control the search for rules and explicit facts
and dynamically determines which portion (either explicit facts or implicit rules)

to be searched. A general problem solver is used at the time the query is
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initiated. At each step the problem solver involves a selection function by apply-
ing some heuristics in determining the path to be searched and the rule to be
applied in deduction. The control structure associated with the problem solver

guides the search.

In the interpretive approach, a base-predicate is evaluated as soon as it is
encountered. Search is interleaved with the extensional DB and intensional DB.
To increase database search efficiency, a set-oriented approach has been
explored [Warr 84]: at each access to DB, the search will obtain the whole set of
tuples that satisfy same selection instead of one tuple at a time. Implementations

of such a strategy can be found in [Warr 84].

The execution strategy in Prolog is essentially an interpretive approach.
Prolog uses a simple depth-first search and backtrack control strategy to extract
answers from its database, interleaving search of EDB and IDB. The Prolog
database system Solar 16 [Dahl 81] is a primitive implementation of the interpre-
tive approach. Another Prolog database system Chat-80 [Warr 81] applies a
predicate-ordering mechanism, which is similar to the ideas of relational data-

base access path selection [Seli 79].

2.2.1.2. The Compiled Approach

The compiled approach delays the evaluation of base predicates until all vir-
tual predicates have been resolved into base predicates. The refutations are
arranged so that all IDB literals are resolved away, leaving clauses consisting
only of EDB literals. Such clauses can be handled by passing off relational
expressions to a traditional relational database system, which can be processed
by well-developed relational query processing techniques. Reiter showed that in
the absence of recursively defined predicates, the set of all such EDB clauses

can be determined before the database is accessed [Reit 78].
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The compiled approach separates the theorem proving task from the data-
base retrieval task. It reduces a problem which requires both deduction and data-
base access to one which only requires database access, by using theorem prov-
ing techniques. In the initial step, only a theorem prover is applied. The
theorem prover "sweeps through” the IDB, extracting all information relevant to
a given query, without accessing the EDB. If the query contains an intensional
literal, the left-hand portions of rules are matched. When a maich occurs, the
theorem prover replaces the intensional literal in the query with the right-hand
sides of all the matching rules. This process continues until all the intensional
literals are eliminated from the query. This ends the compilation phase. The set

of compiled results is then passed to the relational DB system for retrieval.

The compiled approach transforms a query that requires deduction into a
set of queries that do not require deduction, hence shifting inference search
down to more efficient database search. The compiled approach is described in
[Chan 78][Reit 78][Hens 84] and implemented in systems described in
[Kell 78]1[Kell 81][Jark 84].

2.2.2. Processing Comparison: Compilation vs Interpretation

We illustrate with an example the processing of a non-recursive deductive

database query according to the two approaches.
Example 2.1. Find Mary’s tall uncles who are older than her father.

Suppose that the EDB contains only the relations: sex, age, height, father, and
mother. Other relations, such as uncle, brother, and category are defined by

deduction rules. Suppose the rules are as follows (using Prolog syntax),
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uncle(Name ,Unc) :— parent(Name, Par), brother (Par,Unc). 2-1)
parent(Name ,Par) :— father(Name , Par); mother(Name, Par). (2-2)
brother(Name ,Bro) :—

sex(Bro,male),

((father (Name , Fa), father (Bro, Fa));

(mother (Name , Mo), mother (Bro , Mo))). (2-3)
category(Name,tall) : —

height(Name , Height), age (Name , Age ),

((Age = 18,

((sex (Name ,male ), Height > 6);(sex(Name, female ), Height > 5.9)));

(Age = 12,Age < 18,

((sex(Name ,male ), Height > 5.8);

(sex(Name , female), Height > 5.7)))). (2-4)

category (Name ,medium) . — ... (2-5)

According to our question, the user’s query is written as,

?- uncle (mary, Unc),
category(Unc, tall),
age(U, Agel),
father (mary, Fa),
age(Fa, AgeF),
AgeF < AgeU.

The Interpretive Approach:

In the interpretive approach, the search can follow many possible search
paths. One simple arrangement is to evaluate each predicate in the order that

the query is presented. Such an arrangement is used by Prolog. Its efficiency
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depends on the programmer’s skill and on underlying database structures.

Optimal ordering strategies have been studied in [Warr 81]. We simply list the

query in a reasonable order for our analysis and comparison with the compiled

approach.

(1)

()

3)

“4)

(1)

The interpretation of the query proceeds as follows,

The search for Unc in uncle(mary,Unc) using query constant mary
invokes deduction on the uncle rule. The result is new queries

parent(mary,Par) and brother(Par,Unc).

The search for parent(mary,Par) invokes the deduction on the parent rule.
The search is then resolved to the union of father(mary,Par) and
mother (mary, Par). Solving these two clauses involves the accessing of the
EDB, which is done even though other literals in the formula have not yet

been deductively resolved.

The bindings of Par found by the EDB search are used to find Unc from

the brother rule, which involves more deduction and EDB accessing.

Then we start the evaluation of the second query literal category(Unc,tall)
based on the set of answers Unc and the category rule. Later processing

proceeds similarly and details are omitted here.
Comments on the interpretive approach:

Rules can be high level constructs involving several levels of indirection
and abstraction. It is a difficult task for a programmer or an optimization
routine to decide the optimal processing order without resolving the rules
into a single level construct containing EDB literals only. A mis-judged
processing order may result in inefficient processing. For example, access-
ing category(Unc,tall) first in our query might lead to quite inefficient pro-

cessing.
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(2) The interactions among the definitions of different predicates are not expli-
cit. It is difficult to perform global optimization. For example, the fact that
uncle is male (not directly available from the definition uncle) makes
irrelevant the half of the definition of category (which is about female).
The removal of the useless half is difficult without expanding with both

definitions before accessing the EDB.

(3) The definitions of different predicates may contain the same base predi-
cates. Thus delaying of the evaluation of base predicates may avoid redun-
dant processing. In the example, accessing father (mary,Fa) occurs more

than once.
The Compiled Approach:

In the compiled approach, theorem proving operations, such as condens-
ing, absorbing, factoring, and conflict removing [Chan 73][Love 78], are
applied before EDB search. The result is a compiled formula which can be
sent to relational query optimizers. In our example, the compiled result is in

Figure 2.1.

Compared with the interpretive approach, the compiled approach spends
more time on processing and optimizing clauses using theorem proving tech-
niques with main memory algorithms. The volume of clauses processed at this
stage is much smaller compared with the volume of data in large databases.

Such clause processing and optimization result in the following advantages:
(1) Take advantage of global optimization;
The compiled approach permits global decisions to be made concerning

which operations are to be performed on which tables and in which

sequence, since the entire EDB search expression is available before any
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(father(mary, Par); mother (mary, Par)),
sex(Unc,male),
((father(Par,Fa), father (Unc, Fa)),

(mother (Par , Mo), mother (Unc , Mo))),
height(Unc, Height),

age(Unc ,AgeU),

((AgeU= 18, Height >6);
(AgeU=12,AgeU <18, Height >5.8)),
father (mary,F),age(F,AgeF), AgeF < AgeU.

Figure 2.1. The Compiled Formula for the Example Query

EDB search is done. The interpretive approach uses local decisions to

guide the search process. However, locally optimal choices are often not
globally optimal.
(2) No EDB accessing takes place before EDB query optimization; and

(3) Optimized EDB access expression may be compiled once and saved for
recurring query types.

From the above discussion, we can see that the performance of the com-
piled approach in general surpasses that of the interpretive approach. However,
in some cases where the problems may not require finding all solutions, an
interpretive approach which uses a good heuristic search procedure (e.g. the A*
algorithm [Nils 80] with good estimation for the cost function) may have a

chance of performing better than the compiled approach.
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2.3. DEDUCTIVE QUERY COMPILATION AND QUERY MODIFICA-
TION

For non-recursive databases, deductive query compilation in the area of
logic and databases corresponds to query modification for view implemen-
tation [Ston 75][Cham 75] in the area of relational databases. They are
essentially the same technique developed in two different fields. Non-recursive
deduction rules are essentially equivalent to view definitions. The deductive
query compilation technique which performs resolution using deduction rules is
equivalent to the query modification technique which reduces a query containing

views to a query containing only base relations.

2.3.1. View Definition Is Equivalent to Definition with Non-Recursive

Rules

In relational databases, a view is defined in terms of database relations or
other views by a relational algebra or relational calculus expression. In non-
recursive deductive databases, a virtual relation is defined in terms of extensional
(base) relations or other virtual relations by Horn clauses. In non-recursive

databases, a virtual relation so defined is equivalent to a view definition.

For example, the virtual relation grand_parent may be defined either with a

view definition or with a Horn clause rule definition.

Example 2.2. Grand_parent is defined by two kinds of definitions.
View definition (in QUEL [Ullm 82]):

/* Assume the relation parent(ch,pa). */

range of pl is parent

range of p2 is parent

define view grand_parent (gs = pl.ch, gp = p2.pa)
where pl.pa = p2.ch
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Horn clause definition:

grand_parent(X,Z) :— parent(X,Y),parent(Y,Z). (2-6)

If there are several deduction rules which define the same virtual relation,

for example,

these separate rules correspond to use of disjunctive combination (i.e., use of
the operator or) in the view definition. This is shown in the following view

definition.

Example 2.3. parentis defined by two deduction rules and a view definition with

the disjunctive operator or.

Horn clause definition:

parent(X,Y) :— father(X,Y). 2-7)
parent(X,Y) :— mother(X,Y). (2-8)
1.

View definition

/* Assume relations father(ch, fa) and mother(ch,mo). */
range of f is father
range of m is mother
define view p: parent (ch, pa)
where
(p.ch = f.ch and p.pa = f.fa)
or

i

(p.ch = m.ch and p.pa = m.mo)
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2.3.2. Query Modification on Views Is Equivalent to ’Resolution’

In logic and database research, a query using deduction rules is resolved using
techniques [Chan 78][Reit 81] based on Robinson’s resolution principle
[Robi 65]. In relational database technology, a query using views is transformed
into relational operations on base relations by query modification techniques
developed in INGRES [Ston 75] and System R [Cham 75]. The &wo approaches

can be usefully compared with the following example.

Example 2.4. The transformation techniques: Query using deduction rules and

query using views. For the query: retrieve john’s grandparent.

In a deductive database system, the query can be written

?— grand_parent(john,GP).
which is resolved using the grand_parent rule and the resolution principle,
where "X" in the rule is unified with " john" and "GP" with "Z". The resolved
query becomes

?— parent(john,Y),parent(Y,GP).

If parent is a base relation, the resolved query involves a selection on the parent
relation, a join operation on the parent relations, and a projection on the last

column of the joined relations to obtain GP.

On the other hand, in a relational database system, the query is written as,

range of g is grand_parent

T A little license with QUEL syntax has been taken, because the syntax of
QUEL cannot accommodate this kind of definition nicely. This is discussed in
the next subsection.
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retrieve g.gp where g.gs = ’john’
Using query modification technique, the query is modified to

range of pl is parent
range of p2 is parent
retrieve p2.pa
where pl.ch = ’john’ and pl.pa = p2.ch

which involves exactly the same selection, join, and projection operations on the

same relations. O

The two techniques, although using different technologies, result in the
equivalent relational expressions. This general equivalence has also been

observed by [Wong 84].

However, recursive rules can be defined using Horn clauses and resolved
using resolution techniques, but views cannot be defined recursively, because a
view is defined by finite relational operations on base relations or previously
defined views. If a view is to be defined recursively, it will require the modifica-
tion of the view definition to include forward reference to some undefined views
[Han 85a]. Such a definition is beyond the scope of conventional view defini-
tion in terms of finite relational operations, because in general cases it contains
iterations with the number of iterations being data determined in the database

(and thus, in general, is not determinable before the database is accessed.)
Strictly speaking, even in the case of non-recursive databases, a Horn-

clause-specified virtual relation is more powerful than a view definition in two

aspects:

(1) A virtual relation can be defined both by rules and facts, while a view can
be defined only by rules (relational operations on data relations and other

views).
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For example, grand_parent may be defined using both rules and facts like,

grand_parent( john,andrew). (2-9)
grand_parent(X,Z) :— parent(X,Y),parent(Y,Z). (2-10)

This difference is essentially a naming difference. 1t can be accommodated
by either assigning a different name to the intensional relation, or initializ-

ing two searches simultaneously: database search and deduction search.

(2) Some disjunctive relationships cannot readily be expressed in the syntax of
view definitions. A virtual-relation definition containing defined attribute-

values is also not easy to fit into the syntax of view definitions.

For example, in Example 2.3, parent is defined as father or mother, which
can not be represented using strict QUEL syntax. However, with a minor
modification of the syntax of QUEL as we illustrated, it accommodates the
example. The rule definition with some atiribute value specified by rules,

such as the category rule definition in Example 2.1,

category(Name ,tall) :—

category(Name ,medium) :—

cannot be expressed in current view definitions (e.g. in QUEL or SQL
[Ullm 82]) unless we use separate view definitions of tall, medium, etc.
The modification of the syntax of a relational language to handle these cases

is discussed in [Han 85a].

These two points are, however, minor differences between view and
virtual-relation definitions, and they can be solved by slight modifications of the

view definitions in query languages.
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2.3.3. The Implementation of Non-Recursive Rules in Relational Data-

bases

The ideas of the preceding section raise the possibility of Horn clauses
functioning as a syntactic variation of relational languages as used in view defini-
tions and queries. We have coded a transformation program which transforms
simple relational view definitions and queries into Horn clauses and vice versa.
The program is coded in C language [Kern 78] using the UNIX i utilities LEX
and YACC.

For the realization of non-recursive deductive query compilation, a deduc-
tive query compilation program has been coded as part of our RELPLAN system
(see Chapter 7 and 8). The compilation is based on the principles of query

modification and variable substitution in deductive rule resolution.

The following example shows the compilation of a non-recursive deductive
query. The input is a collection of deduction rules and queries, while the output

is the resolved query which only contains relational operations on base relations.

Example 2.5. Find Mary’s tall uncles who are older than her father.

The first part of the RELPLAN input contains the schemas and virtual rela-
tion definitions in Figure 2.2 (a); the second part of the RELPLAN input is a
user deductive query shown in Figure 2.2 (b); and the output of the RELPLAN

preprocessor is the resolved query in Figure 2.2 (c).
The compilation process can be divided into several steps.

(1) For each variable which references a virtual relation, e.g. variable c, follow

the query parse tree up to find an or_node or a where_root, as the rule aug-

f UNIX is a registered trademark of Bell laboratories.




schema person ( name, age, sex, fa, mo, height)
range of pl, p2 ,p3 is person
define virtual relation’d : brother(name = pl.name, bro = p2.name)
where pl.fa = p2.fa and pl.mo = p2.mo and p2.sex = "male”
define virtual relation pa : parent(ch = pl.name, pr = p2.name)
where pl.fa = p2.name or pl.mo = p2.name
define virtual relation u : uncle(name = pl.name, unc = p2.name)
where pl.name = pa.ch and pa.pr = b.me andb.bro = p2.name
define virtual relation c : category(name , scale )
where c.name = pl.name and ((c.scale = "tall” and
(pl.sex = "male” and pl.height > 6) or (pl.sex = "female” and
pl.height > 5) ) or (c.scale = "medium” and (pl.sex = "male”
and pl.height <= 6 and pl.height > 5) or (pl.sex = "female”
and pl.height <= 5 and pl.height > 4)))

(a) Schema and Virtual Relation Definitions.

range of x is uncle
range of ¢ is category
range of pl, p2 ,p3 is person
retrieve (x.name, x.unc) where
x.name = "mary” and x.unc = c.name and
c.scale = "tall” and x.name = pl.name and
x.unc = p3.name and pl.fa = p2.name and p2.age < p3.age

(b) A User’s Deductive Query

range of pl is person
range of p2 is person
range of p3 is person
range of p-hf is person
retrieve ( pl.name , p3.name )
where pl.name = "mary” and p2.age < p3.age and
p2.name = pl.fa and p3.height > 6 and
( pl.fa = p_hf.name or pl.mo = p_hf.name )
and p_hf.fa = p3.fa and p-hf.mo = p3.mo and p3.sex = "male”

(c) The Resolved Query Program by Deductive Com pilation

Figure 2.2. Compilation of Non-Recursive Rules in RELPLAN

24
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mentation point.

(2) Substitute for the variable its rule definition, combine the query with the
rule definition at the rule augmentation point to form a combined query
tree, and rename the conflicting variable names that have resulted, if any,

e.g. rename pl to p_hf.

(3) Perform merging, conflict removing and collapsing on the combined query
tree to simplify it. For example, the medium part in the category rule con-
flicts with tall uncle in the query and is thus collapsed. The same happens
in the female part, which conflicts with the brother rule definition. Only the
male subtree of the tall part in the category rule is augmented with the

user’s query. The collapsing technique is a kind of query optimization.

(4) Repeat the above process for every virtual variable in the modified query

until all virtual relation references are resolved. O

Note that locating the rule augmentation point is important for rule aug-
mentation. The augmentation point is not always at the root of the
where_clause. This can be seen when all the references of a virtual relation are
located lower than the first ancestor or_node in the query tree, e.g., for the
query finding some people who either have a brother John or have a sister Mary.
In QUEL, itis

/* Assume relations brother(name ,bro) and sister (name,sis) */
range of p is person

range of b is brother

range of s is sister

retrieve p.name

where (p.name = b.name and b.bro = "john”)
or (p.name = s.name and s.sis = "mary”)

The rule augmentation point should be at the or_node: augment the brother rule

at the left subtree of the or node and the sister rule at the right subtree.




26

The compilation process can be summarized as Algorithm 2.1.

Algorithm 2.1. Compilation of Non-Recursive Deductive Queries.

(1)

(2)

(3)

“4)

Locating the rule augmentation point.

For each tuple variable which references a virtual relation, traverse up the
query tree to the first ancestor or_node or to the root of the where_clause,

whichever comes first. This node is then marked as the rule augmentation
point.

Rule augmentation :

Augment the rule definition by anding it with the referenced child of the
rule augmentation point in the query tree. The combined subtree is linked
to the rule augmentation point and the virtual relation reference is replaced
by its definition. If there is any variable in the rule definition which is

identical with the variables of the query, the variable is renamed.

Merging and collapsing.

Check if there are any conflicting subtrees of the query part with the aug-
mented rule definition, and collapse the conflicting part of the rule defini-
tion until the or_node is met. The or_node together with the conflicting
part is removed. If the collapsing continues to the root of the
where_clause, it means that the query contradicts the rule definition and a
null answer can be returned. Also check if there are any overlapped or
redundant subtrees. An overlapped part should be merged and a redundant

part removed.

Repeat the above process (step 1-3) for the modified query, until all inten-

sional (virtual) relation references in the query are resolved into extensional
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(base) relation references. O

The algorithm is implemented in RELPLAN and demonstrated in Example




CHAPTER 3

A GENERAL DISCUSSION OF COMPILATION OF RECURSIVE RULES

Beginning with this chapter, we direct our attention to the compilation and
processing of recursive rules in relational database systems. In this chapter, we
survey previous and on-going research work on the processing of recursive data-
base queries, specify some assumptions and definitions, develop a technique to
transform recursive rules into more standard forms, and present a classification

of recursive rules.

3.1. RECURSION IN RELATIONAL DATABASES : PREVIOUS AND
CURRENT WORK

3.1.1. The Challenge of Recursion and the Limitation of Relational

Languages

The last chapter demonstrates that non-recursive deductive queries can be
processed using either query modification techniques developed in relational
database systems or deductive query compilation techniques developed in
logic and database research. However, when extending processing power to

include recursion, both techniques are limited in their capabilities.

In database system research, early in 1972 Codd studied the completeness
of the relational calculus [Codd 72] and pointed out the limitation of relational
languages in dealing with one kind of recursive queries, least-fixed-point

T

queries.

T A least fixed point equation R = f(R, D) is set-monotonic if for all rela-
tions Z in D that are in the domain of f, Z C f(Z, D). For database states D and
all set-monotonic recursions, a unique least-fixed-point LFP(f, D) exists. This
was first concluded in [TARS 55].

28
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Aho and Ullman [Aho 79] further analyzed the least-fixed point problem,
pointing out that conventional relational algebra and calculus languages cannot
specify recursive rules and recursive queries. They suggested use of program-
ming primitives such as iterative and conditional constructs like "while” and "if"
to augment relational languages to be able to handle least-fixed-point problems.
However, the efficient implementation of this solution to least-fixed-point prob-
lems in relational databases was not explored. Also, unlike non-procedural

recursive rules, the solution is a procedural extension of relational languages.

3.1.2. The First Attempt : Reiter and Chang’s Compilation Approach

Both compiled and interpretive approaches to processing recursive queries
have been studied [Chan 78][Chan 81][Reit 78][Mink 78][Mink 81]. The inter-
pretive approach often results in tuple-oriented processing and redundant pat-
terns of database access. Moreover, this approach has difficulties in determin-
ing termination conditions, because it cannot tell when complete answers have
been found [Gall 84]. The compiled approach applies the resolution principle
to generate compiled formulas for recursive queries. Because these formulas do
not contain intensional literals, set-oriented relational operations and well-
developed relational query processing techniques can be applied for efficient pro-
cessing. However, recursion causes two problems, termination and processing

efficiency, for the compiled approach:
(1) Recursion may make the resolution chain grow indefinitely long, and
(2) 1t also often involves costly iterative processing on large databases.

[Reit 78] and [Chan 81] first studied recursion in relational databases using
the compiled approach. [Reit 78] developed a compilation technique for data-
bases containing recursive literals in the deduction rules. [Chan 81] developed a

method which transforms a query involving a recursive statement into an
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iterative program.

However, Chang’s method suffers from two drawbacks. First, at most one
intensional literal is allowed in the antecedent of the recursive statement.
Second, the termination condition for the derived program is not stated.
[Reit 78] suggested that one of the literals causing the recursion should be expli-
citly represented in the database, but the solution undercuts one of the major
benefits of having indirect intensional literals. [Mink 81] derives iterative pro-
grams, as in [Chan 81}, for a particular class of recursive axioms, called singu-
lar axioms. These discussions have been restricted to the compilation of transi-
tive closure rules. The compilation of more complex recursive rules was not
discussed. The efficient processing of compiled retrieval programs in relational
databases and the determination of termination conditions were not studied.
Their research should be considered as an important first step in studying recur-

sion in relational databases.

3.1.3. Shapiro and McKay’s Work

In the field of AI research, Shapiro and McKay [Shap 80][Mcka 81]
reported a solution for processing recursive rules, in which the entire relation
corresponding to a recursive statement is generated. This method is oriented
toward Al applications and would be inefficient if applied to large database sys-
tems. Further, it makes no distinction between intensional and extensional com-
ponents of databases. The performance of Shapiro and McKay’s approach in a
large database will be compared and contrasted with Henschen and Naqvi’s

approach in Chapter 5.
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3.1.4. Henschen and Naqvi’s Compiled Approach

Henschen and Naqvi [Hens 84] applied resolution-proof techniques over
connection graphs [Kowa 79] to compile recursive rules into iterative database
retrieval programs that give all answers to a query and contain a well-defined
termination condition. Their method applies to recursive rules with a single
resolution cycle (only one cycle in the connection graph where links are built up
between literals resolvable using resolution-proof techniques). There are two
distinct features to their solution. The first is that their approach takes into con-
sideration the need to use query constants at the earliest possible search stage.
Doing so may considerably reduce the space to be searched and the size of inter-
mediate relations generated. The second is that they make use of previous pro-

cessing results to avoid some redundant processing.

Their approach works out a general form of potential recursive loop
(PRL) from a connection graph, and applies the concepts of determined vari-
ables and induced variables to derive iterative query programs for recursive

database queries. For example, for the following rule set

T(x,J’)i”‘P(W,Z),S()’,W)- (3'1)

§$(x,2):—M(x,y), T(y,2). (3-2)
and

T(y,2):— F(y,2). (3-3)

the connection graph illustrated in Figure 3.1 can be built. Its potential recur-
sive loop (PRL) can be identified, and a query on an intensional literal such as

the following can be compiled into a query program.

?7-8(?,a). (3-3)
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" P(w, 2) T (y, 2) ~ S (y, W) S (7, a)

\

"M, y) | T, 2) S (%, 2)

"F(y,2) | T(y,2)

Figure 3.1.

An Example of Henschen and Naqvi’s Connection Graph

However, the Henschen and Naqvi algorithm has some limitations. First,
for recursive rules containing more than one resolution cycle, e.g., complex
mutual recursions, they propose a set of mutually recursive processes o perform
evaluation, but the proper control of the processes needs "operating systems
research”. Second, although their approach eliminates most of the redundancy,
some still remains. Also, the derived programs contain tuple-oriented processing
such as dequeue and enqueue of intermediate-result tuples, and the enqueue

process may be time consuming.



33

3.1.5. Capture Rules: Ullman’s Approach

Ullman explored query processing techniques for recursive rules using the
concept of capture rules [Ullm 85]. A capture rule is a law that under certain
conditions we may "capture” certain nodes of the rule/goal graph provided that
certain other nodes (perhaps none) are already captured. It is information
abstraction from a graph representing clauses and predicates. He defined four
different kinds of capture rules: a basic capture rule, which corresponds to
application of operators from relational algebra; a top-down capture rule,
which corresponds to "backward” chaining; a bottom-up rule, corresponding
to "forward chaining”, to deduce all true facts in a given class; and a side-way
rule, passing results from one goal to another. He pointed out that these rules
can be applied independently, thus providing a clean interface for query evalua-

tion systems that use different strategies in different situations.

His approach uses a technique of "smearing” detail, sometimes causing an

effective evaluation strategy to be missed. For example, consider the rule,
A(l,x) :— B(x), A(2,x). (3-4)

This rule will not produce any recursive answers, because the head of the clause
does not unify with the occurrence of 4 in the body. However, Ullman’s basic

rule cannot tell this.

Our research does not apply the concept of Ullman’s capture rules.
Instead, we develop our approach using the more traditional compiled approach,
based on the deductive resolution principle and Kowalski’s connection graphs
[Kowa 79]. The effectiveness of Ullman’s approach, compared with the tradi-

tional approach, remains to be seen.
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3.1.6. The Recognition of Pseudo-Recursion: Ioannidis’ Approach

Joannidis has developed a special variable connection graph to detect and
determine the upper bound on the number of recursions necessary to form a

recursively defined virtual relation, independent of base relations [loan 85].

His approach distinguishes a special kind of recursion in which the upper
bound of recursive calls is independent of the data stored in the database. This
technique is useful for some special kinds of variable patterns, but these kinds
may not occur frequently in practice.

loannidis graph is constructed by (1) associating with every variable a node
in the graph, (2) building an undirected edge with length zero for every pair of
variables in the same non-recursive literal, (3) building a directed edge x -y
with length one for every variable pair x and y such that x is in the antecedent
recursive literal and y is in the corresponding position of the consequent literal.
The recursive rule is bounded if the graph contains no cycles of non-zero

length.
For example, consider the recursive rule
R(x,z) :— R(y,x), B(2). (3-5)

By construction of the loannidis graph in Figure 3.2(a), we find that the upper
bound of the recursive application of this rule will be two (the length of the

longest path in the graph), which is data independent.
But more frequently we meet a rule like
R(x,z) :— R(x,y), B(y,2). (3-6)

which has the loannidis graph Figure 3.2(b). It clearly does not have a data

independent upper bound.
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o

S A
(@) R(x, z) :- R(y, x), B(2). (b) R(x, 2) :- R(x, ¥), B(y, 2).

Figure 3.2.

An Example of Ioannidis’ Variable Graph

3.1.7. Other On-Going Research

There is some on-going research at MCC and other research organizations,
emphasizing the efficient processing of transitive closures, the simplest form of
recursion in relational databases. Such recursion is indeed important, because
most practical recursion problems involving large databases appear to fall within
this class.

Although our research has concentrated on the more complex forms of
recursion, we do pay attention to the efficient processing of transitive closures.
The difference is that we use knowledge-directed compilation and planning,

which involve Al techniques.

3.1.8. Our Research: Processing Complex Recursion and Applying Al
Techniques

Our research is based on deductive resolution and compilation techniques
developed in logic and database research [Kowa 79][Gall 78][Gall 81] [Gall 84].

We have been strongly influenced by the work of Henschen and Nagqvi




36

[Hens 84] on compiling recursive queries against first-order databases.

Our research can be considered as an extension of Henschen and Nagvi’s

work in three aspects.

(1)

(2)

3)

Compiling Recursive Rules in the Context of Relational Database Pro-

cessing.

We have further studied the processing of recursive rules in the context of
relational database processing. The enqueue and dequeue processing is
replaced by database set-oriented operations (join, selection, projection, and
union). Customized algorithms are developed for different recursion pat-
terns. The termination condition for each algorithm has been studied in the

T

context of both acyclic and cyclic databases .

Stack-Directed Compilation of Complex Recursive Rules and Queries.

[Hens 84] studied the compilation of recursive rules containing only one
resolution cycle. We studied the compilation of recursive rules containing
more than one resolution cycle. A stack-directed compilation technique has
been developed for these recursive rules and queries. The method extends

the compiled approach to more general recursion on relational databases.

Development of a Knowledge-Directed Compilation and Planning

Mechanism.

We have analyzed the problems in database oriented applications and
developed a knowledge-directed compilation and planning technique as a

solution to these problems.

T If no data item in a database derives itself in a series of joins with the rela-

tion itself, it is an acyclic database; otherwise, it is cyclic database.
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3.2. ASSUMPTIONS AND DEFINITIONS

To systematically derive compilation strategies for recursive databases, the

appropriate assumptions and definitions provide a formal framework for our dis-

cussion. We make the following assumptions: the model assumption, the

vector assumption, the single query literal assumption, and the variable

pattern assumptions. We also define some terms for classifying recursive

rules and for later discussions.

3.2.1. Assumptions

Notational conventions:

(1)

()

3

Upper case letters denote relations or literals, where R, §, and T indi-
cate virtual relations (intensional literals), while others indicate base

relations (extensional literals);

Lower case letters denote vectors (a set of relational attributes), where
a, b, c,... near the start of the alphabet indicate constant vectors, and u,

v, .., z near the end of the alphabet indicate non-constant vectors.

The join operation in this dissertation is denoted as |><, or the power of a
relation, for example, Ak , AT, or A * . However, it is interpreted differently
from the natural join. For us, the join of Ry and R; is the natural join of
R; and R, followed by the projection on the non-joined attributes. More

accurately, it should be called a projected join.

For example, Ry(x, y) I>< Ra(y, z) is interpreted in the natural join as
relation R(x,y,z), but in our (projected) join, the join attributes are pro-
jected out, and the result is R(x,z). The reason for this projection is that
the join attribute is in general useless for coming iterations in the process-

ing of recursive rules.
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(4) The union operation is denoted with U, but it is also interpreted differently
from the union operation in conventional set theory. Our union of
Ry(x,y,z,w) and Ry(y, z) is not the union of the tuples with different
numbers of atiributes, but the union of the two relations projected on the

common aftributes. More accurately, it should be called projected union.

For example, for muliiple transitive closure looping rules,

R(x,z) :— B(x,y),R(y,2). (3-7)
R(x,z) :— Ay(u,x,t,2). (3-8)
R(x,2) :— Az(x,y,2). (3-9)

If we compile them into one formula, we may write it using the union

operation,
B”,(A]UAy) (3-10)

where (A;UA,) represents the projected union of 4; and Aj, with unre-
lated attributes projected off. This is quite useful in the derivation of com-

piled formulas, especially for multiple exit rules.

Model assumptions: The database we discuss is a first-order Horn database
(or definite deductive database) which contains two parts, (1) an extensional
database (EDB) which consists a set of base relations, and (2) an intensional
database (IDB) which consists of a set of Horn-clause specified deduction

rules.
A Horn clause in IDB has the form
R :— Pl,...,Pk. (3-11)

where the intensional literal R on the left side (the consequent) is a virtual rela-

tion which is defined by its right side (the antecedent), the conjunction of
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intensional or extensional literals Py, ...,P;. Each literal P or R may contain a

list of variables, e.g.,
R(x1,%9,..5%,). (3-12)

where x; may be a variable or a constant. Each formula of a Horn clause must
be a safe (or range restricted) formula, i.e., every variable in the literal on the

left side must also appear in some literal on the right side.

The model assumption is the assumption which defines the problem
domain of our research. It will not be relaxed, else our problem domain would

be changed.

Vector assumption: An extensional literal in a rule may denote a relation
obtained by applying finite relational operations to a sequence of base relations,
and a variable in a relation may denote a vector of variables. For example, x
may denote a vector consisting of xq, x5, x3, and 4 (x, y) may denote
A(x,y):— B(x,2),C(z,w),D(w,y).
The vector assumption enables our discussion to avoid irrelevant complex-
ity. Extensions to full detail can be immediately and directly achieved, should

they be required.

Simple query assumption: We assume that queries we discuss consist of a
single query literal, with a single constant vector (called the query constant)

and a single variable vector.
The typical recursive query studied is thus
?-R(a,z). (3-13)

where a is a constant vector (the query constant), z is a variable vector, and R

is a virtual relation defined recursively by some Horn clauses. A simple illustra-
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tion of such a query is "retrieve John’s ancestors”, which can be written as,

?— ancestor(john,Anc)., in Prolog syntax [Cloc 81].

The simple query assumption is relaxed in Chapter 7 where some other

forms of queries are studied.

Variable pattern assumptions: Here we make three related assumptions:

function-free assumption, constant-free assumption, and linear variable

pattern assumption.

(1)

2)

Function-free assumption: There is no evaluable function symbol among

the argument terms of the recursive rules we study.

Evaluable function symbols in a recursive rule may lead to infinite rela-
tions. For example, for the rule R(x+1) :— R(x). , the process of gen-
erating the recursive relation may never terminate because it may determine
a relation which contains all positive integers. Non-evaluable functions
such as those often used to represent complex objects in logic program-
ming, e.8.,
Employee (empno ,name , age ,education(school , degree graduation_date)).

will not cause termination problems. However, complex database objects

[Zani 85] are not considered in this thesis. We simply assume that there

are no functions at all in our recursive rules.

Evaluable function symbols do appear in many practical problem solving
applications, and the relaxation of this assumption will be discussed in

Chapter 7.

Constant-free assumption: There is no constant symbol among the argu-

ment terms of recursive rules.
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If a recursive rule does contain constant symbols, we may remove them by
performing selections and projections on the relations involved. The new
rule, free of constant symbols, when applied to the new set of relations pro-
duced by the same operations, will generate the same results. Adopting this

assumption simplifies discussion.

Linear variable pattern assumption: We assume that the variable pat-
terns in recursive rules are linear variable patterns, which have the fol-
lowing characteristics: (i) The antecedent relations form well-formed join
expressions, i.e., the neighboring variables of adjacent relations are the
same, and there are no shared variables among non-consecutive relations.
(ii) Variables in the consequent literal correspond to the starting and ending
variables of the antecedent, respectively. For example, the following rule

manifests a linear variable pattern.
R(x,z) :— A(x,y),R(y,w),B(w,2). (3-14)

From now on, for rules and formulas manifesting a linear variable pattern,
we simply do not write variables explicitly, because they are implied. For

example, the above rule is written as
R :— A,R,B. (3-15)

Some variable patterns not having linear form can be transformed into
linear pattern by changing the order of relations in the antecedent, chang-
ing the order of variables for each appearance of a relation of the rule,
and/or projecting off variables not occurring in more than one literal. The

transformation of variable patterns is discussed in the next section.

Clearly, some variable patterns can not be transformed into a linear pattern.

For example, some variables may be shared among more than two literals,
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or not be shared among any antecedent literals at all. Our discussion is
concentrated on linear patterns. Compilation for more complicated variable

patterns is briefly mentioned in Chapter 6.

3.2.2. Some New Terms

Here we define terms for the classification of recursive rules.

(1) Exit rule, looping rule, and indirect rule.

(2)

A rule is a Horn-clause containing a non-empty consequent. An inten-
sional literal is a literal defined by a rule, i.e., that occurs on the left side
of a rule. An exit rule is a rule whose antecedent contains no intensional
literals. A looping rule is a rule whose antecedent contains one or more
intensional literals and each intensional literal is the same as the consequent
literal. An indirect rule is a rule whose antecedent contains some inten-

sional literal which is other than the consequent literal.

For example, in the rule set,

R:- S,R (3-16)
S :— B,R,C. (3-17)
R :— A (3-18)
R :— B,R,C,R,D. (3-19)

(3-19) is a looping rule, (3-18) is an exit rule, and (3-16) and (3-17) are

indirect rules.

Mutual Recursion.

Two predicates R and S are mutually recursive if the resolution of R
involves the resolution of §, and conversely. For example, in the above

rule set, R and § are mutually recursive. Many mutually recursive rules
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can be reduced to non-mutually recursive ones by simple transformation,

which is discussed in Section 3.3.

Recursion level.

Two recursive relations R and S are at the same level if the resolution of
one rule relies on the resolution of the other, and conversely. R is said to
be at a lower level than S if the resolution of S requires that of R, but the
converse is not true. A recursion level consists of a set of mutually recur-
sive relations { Ry, Ry, ..., R, }. For example, if we add more rules to

the above rule set,

T :— R,A,S. (3-20)
T:— A,T (3-21)

R and S are at the same recursion level, but they are at a lower level than

T.

Because a call (resolution) to a lower level relation will never lead to a loop
involving a higher level relation, the termination problem is essentially a
one-level problem. Our discussion is therefore focused on one-level recur-

sion.

Potential recursion point.

A potential recursion point (PRP) in a rule is any intensional literal in
the antecedent. It is called so because the resolution on this literal poten-
tially contains recursions. For example, for the rule (3-20), R and S are
potential recursion points. If there is only one potential recursion point in
a rule, we call the rule a single potential recursion point (SR) rule,

correspondingly for a multiple potential recursion point (MR) rule.
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3.3. THE TRANSFORMATION OF RECURSIVE RULES

Rules may be in quite complex forms involving mutual recursion, redun-
dancy, or irregularity. It is difficult to process rules in such complex forms to
best advantage. We introduce a transformation to detect and remove redundant
or conflicting rules, reduce some mutually recursive rules into rules which do
not contain mutual recursion, and transform some complex variable patterns into
linear patterns. With appropriate transformation, some rules in complex classes
may be shifted down to simpler classes so that easier processing strategies can be
applied.

Transformation is divided into three steps: (i) indirect rule elimination; (ii)

variable pattern transformation; and (iil) redundancy and conflict checking.

3.3.1. Indirect Rule Elimination

An indirect rule in many cases can be reduced by simple resolution to

non-recursive rules or looping rules. For example, the rules

S :— T,A. (3-22)
T:— B,C. (3-23)

can be transformed into an exit rule for literal S by simple resolution on 7. The

result is a rule which does not contain any recursion at all.
S:- B,C,A (3-24)

As another example, rules
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R :— S,A. (3-25)
and
S :— R,B. (3-26)

can be transformed into
R :— R,B,A. (3-27)

for literal R, or
S :.— S,A,B. (3-28)

for literal §, by one step resolution on S, or R, respectively. Thus we

transform mutual recursion into non-mutual recursion.

Such a transformation eliminates some intensional literals though there may
still be some in the remaining antecedents. Hence we call it partial compila-
tion. Such partial compilation transforms indirect rules into looping rules

and/or exit rules.

Mutual recursion has conventionally been considered a hard problem
which can not be handled using conventional compilation techniques [Hens 84].
We feel that mutual recursion as such is not a good indicator of processing
complexity, because some mutually recursive rules can easily be transformed
into non-mutually recursive ones and be processed easily, while some non-
mutually recursive rules require more complex processing than many mutually

recursive ones. These more complex rules will be discussed in later chapters.

Next we develop a criterion for whether mutually recursive rules can be
transformed into non-mutually recursive ones and show how to perform the

transformation.

The antecedent of a mutually recursive rule contains intensional literals

other than the consequent literal (i.e., it is an indirect rule). If these literals can
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be eliminated by partial compilation, we call it reducible mutual recursion,

otherwise irreducible mutual recursion.

The following method can be used to judge whether a mutual recursion is
reducible. Suppose we have two mutually recursive literals R and S. We first
assume that the intensional literal R is instead a base relation and check whether
the definition of § still contains the same level of recursion. If it does not, it
means that § is fully defined on R, and/or some base relations, and/or some
intensional relations which are defined on base relations, lower level recursions,
or R only. Hence S can be eliminated by substituting for it its definition. Oth-
erwise, if S still contains recursion, it cannot be eliminated by such substitution.

This can be shown by an example.

Example 3.1. The reduction of mutual recursion to non-mutual recursion.

Suppose we have the following rule definitions.

R :— B. (3-29)
R :— S,A,T. (3-30)
S :— B,R,C. (3-31)
S :— E. (3-32)
T :— A,R. (3-33)

By assuming R is not an intensional literal, the intensional literals § and T do
not contain recursion, so § and T can be eliminated by partial compilation.

After the partial compilation, the rule set becomes,

R :— B. (3-34)
R :— B,R,C,A,A,R. (3-35)

R :— E,A,A,R. (3-36)
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where mutual recursion has been eliminated. O

The transformation can be summarized in the following algorithm:

Algorithm 3.1. Elimination of Indirect Rules by Partial Compilation.

(1)

(2)

The judgement of reducible transformation.

Under the assumption that the consequent literal on which the query is
inquired is instead a base relation, we examine the intensional literals in the
antecedent of the rule. If none of these intensional literals are recursively
defined, they can be eliminated by partial compilation. If all the indirect
rules defining this consequent literal can be eliminated, the mutual recur-

sion is reducible.

The partial compilation process.

Perform resolution on the reducible intensional literal(s) by substituting for
each its definitions. The resolution continues until the consequent literal is

encountered. O

This transformation transforms an indirect rule into a looping rule(s)

and/or an exit rule(s). An exit rule is ready for processing using conventional

relational database techniques. The processing of looping rules is the major topic

of the following chapters.

3.3.2. Variable Pattern Transformation

It is hard to determine the best processing strategy for recursive rules with

complex variable patterns. However, many complex variable patterns can be

transformed into simpler ones, especially into linear patterns.

We may perform the following transformation on variable patterns.
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(1) Eliminate those variables which are irrelevant to a recursion pattern. For

example, in the rule
R(x,y) :— A(x,z,u),R(z,w),B(w,v,y). (3-37)

the variables u and v are irrelevant T, because they do not have any effect
among literals in the antecedent or consequent. They should be eliminated

in the recursion analysis.

(2) Swap the corresponding orders of literals and variables to form a well-

formed join expression. For example, the rule

R(x,y) :— B(y,w),A(z,x),R(z,w). (3-38)
can be transformed into the linear pattern,

R(x,y) :— A (x,2),R(z,w), B (w,y). (3-39)

by (i) swapping columns of base relations A(z,x) to A (x,z) and B(y,w) to
B (w,y); and (ii) adjusting the order of literals on the right side from

B,A,R to A,R,B.

The swapping of the variables of a relation is equivalent to the swapping of
the join column of a relation. For example, from A4 to A, the join of the
first attribute of A corresponds to the join of the second attribute of 4.
Notice that the swapping must be performed on all occurrences of a literal
in a rule at the same time. For example, to swap z and w in R(z,w), the
corresponding variables x and y in R(x,y) of the consequent in (3-38)

must be swapped at the same time.

i This corresponds to anonymous variable in Prolog, represented by under-
score " ".
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The adjusting of the order of literals of the antecedent is based on the link-
age of the variables within the consequent and the antecedent. For exam-
ple, the transformation of B,A,R to A,R,B is based on the fact that (i) x in
A (x,z) links to the variable x in the consequent R(x,y), and z to the z in
R(z,w); and (ii) w in R(z,w) links to the w in B’ (w,y), and y in B (w,y)

links to y in the consequent R(x,y).

3.3.3. Redundancy and Contradiction Checking

In practical applications, rules may contain redundancy and contradiction.
If such redundancy and contradiction can be detected and removed, considerable

processing cost can be saved, especially in cases of recursion.

(1) Elimination of redundant rules:

Some rules may have overlapped consequents and partially overlapped
antecedents. This may cause redundant processing, which could be quite
expensive when involving recursion. But the detection of such redundancy
may not be straightforward. The transformation discussed in the last section
may help the detection of such redundancy because after the transformation

the relationships among rules are more explicit.

Weakest Precondition Principle : If several rules have the same conclusion
but overlapped preconditions, use the rule with the weakest precondition and

eliminate the others.

For example, for rules

R :— A,S,B. (3-40)
R :— A,S. (3-41)

(3-41) has weaker precondition than (3-40), so (3-40) should be eliminated.
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The correctness of the weakest precondition principle is obvious from the

principles of logic deduction and resolution [Chan 73].

Dealing with contradictory rules:

Besides the redundancy check, a contradiction check is often necessary,
because some new knowledge might be inconsistent with the existing rule
bases and databases. There are several variations in dealing with contradic-
tion: (i) simply reject new rules or data which contradict old; (ii) interac-.
tively communicate with a user or an expert to decide whether to abandon
or modify new or old rules or data; or (iii) set up exception cases. The
detailed discussion of these is another research field, viz. the field of
knowledge assimilation [Kowa 79]. Our brief allusion to the problem here

should not be taken as implying that it is simple.

Our assumption is that after such transformation processes, the rules and

data in the database are non-redundant and consistent. Our later study concen-

trates on rules with linear variable patterns and without redundancy and incon-

sistency.

3.4. CLASSIFICATION OF RECURSIVE RULES ACCORDING TO THEIR
PROCESSING COMPLEXITY

Based on the above assumptions, the transformed recursive rules are classi-

fied into five classes according to their processing complexity.

(1)

Class 1 : Transitive Closure Class.

The primitive transitive closure rule set is written as follows,

R:— A (3-42)
R:— A,R (3-43)
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The rule in the form of R :— A,R. or R :— R,A. is called a transitive clo-
sure rule, or a TC rule. 1t is a looping rule whose antecedent constitutes a
single join expression ( a one-sided join expression) which contains the join

of the consequent relation literal with a vector of extensional relations.

We define the transitive closure class in a broader sense. It includes recur-
sive rules involving only transitive closure processing strategies, which have

the following cases,

(a) a different exit expression: The antecedent of the exit rule is different
from the induction base (the extensional literal) of the TC rule, e.g., we

have (3-44) instead of (3-42).

R :— B. (3-44)
(b) multiple exit rules: e.g., (3-44) and (3-45) instead of (3-42).

R :— C. (3-45)

(¢) multiple TC rules:

R :— A

R :— B,R
R :— B,,R
R:— R,Cy
R :—- R,C,

The processing of multiple TC rules requires a minor modification of the

primitive transitive closure algorithm.
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(d) a special SLMR ( single looping rule with multiple recursion point ) rule,
where the looping rule does not contain any extensional literal, e.g.,

R:— R,R, - *,R (3-46)

which may be jointly defined with one or more exit rules. Such a recursive

rule set can be processed with a transitive closure strategy.

The compilation and processing of the transitive closure class is discussed

in Chapter 4.

Class 11 : SLSR (Single Looping rule with Single potential Recursion point)

rules.

A rule set in Class 11 contains a single looping rule with a single potential
recursion point, and one or more exit rules. For example, (3-42) and the

following rule
R :— B,R,C. (3-47)

The processing of such a looping rule cannot be simply reduced to transi-
tive closure. The compilation and processing of Class 11 queries are dis-

cussed in Chapter 5.

Class 111 : SLMR (Single Looping rule with Multiple potential Recursion

points) rules.

A rule set in Class 111 contains a single looping rule with multiple potential
recursion points, and one or more exit rules. For example, (3-42) and the

following rule
R :— By R,By R,B3 R,B4 (3-48)

The method for compiling Class 111 rules is discussed in Chapter 6.
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(4) Class IV : ML (Multiple Looping) rules.
A rule set in Class IV contains multiple looping rules. The general form of
Class 1V is:

R :— Al.

R :— Bll,R’312,R9--°9Bli”~l,R!Bli.
R :— le’R,Bzz,R,...,sz_1’R,B2j-
R :— Bnl,R’Bn2,R’""Bnk-l,R9Bnk.

(5) Class V : IMR (Irreducible Mutually Recursive) rules.

Class V includes all irreducible mutually recursive rules, €.g.,
R :— Ay
R :— By S,By R,B3 R,B4,
S :— A,
§:— C,5,C,,S,C3,
§:= Dy, R,D;p,

The methods for compiling rules in these two classes are similar to that of
class 111 and are briefly mentioned in Chapter 6. Besides the recursive classes
listed above, other forms of recursion, such as recursion involving multiple

query constants and function symbols, are discussed in Chapter 7.
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In our detailed discussion of various compilation algorithms in later
chapters, We may observe an interesting evolution of our deductive compilation
concept. For non-recursive rule sets (discussed in Chapter 2), query compila-
tion is "pure” in the sense, that once a query is compiled, the database access
plan is fully determined. For recursive rule sets of Classes I and 11 (discussed
in Chapters 4 and 5), compilation is less "pure” in the sense that the database
access plan cannot be fully determined before any database access occurs
because the number of iterations (the termination point) is data dependent. For
rule sets which need stack-directed compilation (discussed in Chapter 6), the
compilation is even less "pure” in the sense that even the generation of compiled
formulas is dependent on what is found in the extensional database. This obser-
vation may help us understand the derivation of different compilation algorithms
for different recursion patterns. This is also the reason that we have called our

compilation technique pattern-based compilation.



CHAPTER 4

TRANSITIVE CLOSURE CLASS

This chapter presents compilation and processing of queries using transitive
closure rules. We study the issues of compiling transitive closure rules, evalua-
tion strategies for general compiled formulas, and performance improvement
techniques. We conclude that the 8 Wavefront algorithm is the most promising
of the algorithms studied. Based on this algorithm, we also discuss variations in

the transitive closure class.

Transitive closure rules are in the simplest recursive rule class and are also
the most frequently used in practical applications. For example, transitive rela-
tions (ancestor, friend, supervisor, part), Al inheritance relations (is-a and has-
a), circular definitions, equivalences and some search problems (the path-
finding, air-flight problem) involve transitive closure rules and may also involve
large data relations. In fact, a scan of existing literature reveals that most recur-
sive rules found in practical applications can be categorized into the transitive

closure class or its variations.

4.1. THE DERIVATION OF A GENERAL COMPILED FORMULA FOR A
TRANSITIVE CLOSURE RULE SET

Deduction rule resolution and the compilation method can be applied to
derive the general compiled formula for a transitive closure rule. This for-
mula is a compiled formula which represents a complete set of compilation
results and guides the processing of the rule. Because the processing of a recur-
sive rule often involves iteration, the formula usually contains closure or power

operations.
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Example 4.1. The compilation of a simple transitive closure rule set.

Consider the recursive rule set
R(x,z):— A(x,y),R(y,2). 4-1)
R(x,2):— A(x,2). 4-2)

where (4-1) is a looping rule and (4-2) is an exit rule. The recursive rule set

may also be written in the clause form with positive and negative literals as,
R(x,2),~A(x,y),~R(y,2). (4-3)
R(X,Z),HA(X,Z). (4'4)

Because the scope of the variables is the Horn clause, (4-1) can be rewritten as:

R(y,2):— A,y )R ,2). (4-5)
or,

R(}’9Z)9"A(y9yl )’““R(y’ ’Z)- (4‘6)

(4-6) can be resolved with (4-3) by the Robinson resolution principle. We

thus obtain,
R(x,2),~A(x,¥),~A¥,Y )~ R(Y ,2). 4-7)
that is,

R(x,z):—-A(x,y),A(y,y’ )R »2). (4-8)

The resolution process from (4-1) to (4-8) can be thought as a call of the
looping rule. A call is a replacement of an intensional literal in the calling rule
by the antecedent of the called rule. In the following discussion, we alternatively

use the terms call and resolution to denote such a resolution process.

If we keep calling the non-exit rule, we generate formulas which contain a

growing sequence of joins with relation A. Each formula so generated may
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have its intensional literals resolved by calling the corresponding exit rules. The
formula thus generated contains extensional literals (base relations) only. These
formulas, together with the first two formulas, the exit expressions and the call
of the looping rule directly by its exit rule, determine a sequence of formulas.
Because the intensional literals in the formulas are resolved by the deduction

compilation technique, they are called compiled formulas.

In Example 4.1, the compiled formulas are
A(x,z).
A(x,y),A(y,2).
A(x,¥),A(¥,Y ), A 52).

A(x,9),A,Y ), A "), A", 2).

According to the resolution principle, this set of compiled formulas forms the
complete expansion of the recursive rule set (4-1) and (4-2), hence forms the

complete set of resolution results.

The variable patterns of these formulas are in linear form. Thus the vari-
ables inside literals can be omitted, implicitly represented by the order of the
literals ( according to the convention in Section 3.2). Using transitive closure

notation, the whole set of compiled formulas can be written in one formula:
At. (4-9)

If the whole set of compilation results of a recursive rule can be simply written
with a small set of compiled formulas, the formulas are called the general com-
piled formula of the recursive rule. The general compiled formula of recursive

rule set (4-1) and (4-2) is AT, the transitive closure of relation A4.
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If a recursive rule set can be compiled into a small number of general com-
piled formulas, the processing plan for the recursive rule set can be worked out
by examining these formulas only. Next we study processing transitive closure

rules using the general compiled formula AT,
4.2. THE PROCESSING OF TRANSITIVE CLOSURES

Here we study the processing for the query

?—R(a,z). (4-10)
which can be stated as, for query constant a, find all z’s in the transitive clo-
sure relation R. A simple example in this form is retrieve all John’s ancestors,

which can be written as, ?— Ancestor (John,z).

In studying this problem, both efficient processing and termination need to
be taken into consideration. This chapter introduces several transitive closure
algorithms: the Basic-TC algorithm, the Wavefront algorithm, the 3 wave-
front algorithm, and the logarithmic algorithm. Based on our analysis, we
conclude that the & wavefront algorithm with a tuple marking technique is one of
the most promising techniques for processing transitive closure queries in data-

bases.

4.2.1. The Basic-TC Algorithm

The idea of the Basic-TC algorithm is: (i) obtain the first set of answers by
performing selection on the formula, i.e., A(a, z), and add the set to the closure;
(ii) incrementally append new answers into the closure where the new answers
are derived by joining the closure with relation A4 on corresponding join

columns; and (iii) terminate the process when the closure reaches a stable state.
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The algorithm is stated as follows:

Algorithm 4.1 (Basic-TC): The Basic Transitive Closure Algorithm
(1) Data structure: two relations Old_Closure and New_Closure.
(2) Initialization:
Retrieve z into Old_Closure from A(a,z) by performing selection using

constant a on relation A.

(3) Iteration and Termination:
(i) Join Old_Closure with relation A to obtain New._Closure.
(ii) If New-closure is equivalent to Old_Closure, the transitive closure
arrives at its stable stage and the iteration terminates.
(iii) Otherwise, union New_Closure and Old_Closure (with redundant

tuples removed), and set Old_Closure as the result of the union. O

We’ll prove that the algorithm terminates for both cyclic and non-cyclic
data relations. We first distinguish a cyclic data relation from a non-cyclic one.
If a tuple in a relation may traverse back to itself by following along its deriva-
tion path in closure derivations, we say that it is a cyclic tuple and the relation
contains cycles. For example, both (a, b) and (b, a) are cyclic tuples in the data
relation { (a, b), (b, a) }. If there is some cyclic tuple in a data relation, the

relation is a cyclic data relation, otherwise it is a non-cyclic data relation.

Theorem 4.1. Algorithm Basic-TC derives complete answers and terminates for

both cyclic and non-cyclic data relations.
Proof Sketch
(1) Completeness.

The algorithm is derived according to the definition of a transitive closure.

At each iteration, the processing uses the accumulated closure results to
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derive the new one by joining the base relation with the existing closure.
According to the completeness of the deductive resolution, the complete set
of answers are derived from such operations. When the closure does not
grow at some iteration, the further joining of the same closure with the
same base relation must produce the same closure again. Hence that is the

point we find the complete set of answers.

(2) Termination for both cyclic and non-cyclic data relations.

It is obvious that the processing terminates for a non-cyclic data relation
when no new tuple is generated at some iteration. For a cyclic database,
suppose that there is a set of cyclic tuples aj, ag, ..., & with cycle length
k in the transitive closure relation 4. For any two tuples ¢; and a;1
where g; derives g;,.1 by a join operation, if g; is included in the closure,
but a; 1 is not, the next iteration must generate the new tuple g;.1. When
no new tuple can be generated at some iteration, it must be that every tuple
in this cycle is already in the closure. Further iteration will not generate

any new tuples in this cycle. O

Algorithm Basic-TC is not a completely naive algorithm, because it per-
forms selection first using the query constant, which reduces the size of inter-
mediate relations, and it uses the accumulated results (Old_Closure) in deriving
new results rather than starting the processing of each compiled formula from

scratch.

But there is obvious redundancy in the algorithm. Suppose the first itera-
tion generates tuples b, c; d from tuple a which is in the closure. The union of
New_Closure and Old_Closure becomes a, b, ¢, d. According to the algorithm,
a is still being used in the second iteration, but obviously no new tuples can be

derived from a, and during later iterations, the process will repeatedly append b,
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Iteration No. Old_Closure New_Closure Unioned Closure
1 a b, c, d a, b,c,d
2 a, b,c,d b, ¢, d, ... ab,c, d, ..

Table 4.1. The Processing Redundancy in Algorithm Basic-TC

¢, d into the closure, which is clearly unnecessary processing. This is shown in
Table 4.1.

Obviously, the driver tuples used in an iteration to derive new tuples can
not generate any new tuples in later iterations; hence they should not be
included in future iterations. A modification to the Algorithm Basic-TC obtains

a new algorithm, TC-Wavefront.

4.2.2. The TC-Wavefront Algorithm

If we apply a temporary wavefront relation WAVE to hold the result tuples
of the last iteration and derive new tuples for the next iteration, the redundant
regeneration of tuples derived in previous iterations can be avoided. TC-
Wavefront uses only the results of the last iteration in deriving new results. Itis

stated as follows:
Algorithm 4.2. (TC-Wavefront): The Transitive Closure Wavefront Algo-
rithm

(1) Data structures: temporary relations, WAVE, NEW-WAVE and RESULT.




(2)

(3)

“4)
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Initialization:

Retrieve z from relation 4 by performing selection on a, i.e., retrieve
values of z that satisfy A(a, z), and put the result tuples into RESULT and
also into WAVE;

Iteration:

Join A with relation WAVE, set result relation as NEW-WAVE,

append tuples in NEW-WAVE into RESULT with redundant tuples
removed, and

set WAVE to NEW-WAVE;

Termination:
Terminate when WAVE goes to empty. For cyclic data relations, terminate

also when RESULT does not grow at some iteration. O

Theorem 4.2: Algorithm TC-Wavefront generates complete answers and ter-

minates for both noncyclic and cyclic data relations.

Proof Sketch

(1)

(2)

Completeness.

Since the join of the same set of tuples with the same data relation will gen-
erate the same set of answers, a used set of tuples cannot generate new
answers when joining with the same data relation. Thus the excluding of
the used tuples will not change the completeness of the solution. Because
the algorithm is an execution of the compiled formulas derived from the
deductive resolution in accordance with the completeness of resolution, the

algorithm is complete.

Termination.

The process terminates when WAVE goes to empty. This is because at each
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iteration we take WAVE as an operand for the join operation. If WAVE is
empty, since the join of an empty relation generates an empty relation, no
new RESULT tuples are generated. The closure is stable, and thus meets

the termination condition.

For cyclic data relations, WAVE may not be empty even when RESULT
does not grow. At this point the tuples in WAVE are tuples previously used
for generating tples in RESULT. If each tuple in WAVE has been used
previously, the joins of WAVE with relation A cannot generate any new

tuples. Stability is reached and the process terminates. O

Algorithm TC-Wavefront is an improvement over Basic-TC because it
reduces redundant processing by including only tuples generated in New-
Closure. But there is still some redundancy in the processing. The problem
can be illustrated by continuing our previous example. For Algorithm TC-
Wavefront, the second iteration will use b, ¢, d but not a to generate new tuples.
Suppose e, f, g, a, b are obtained at this iteration and put into the new WAVE.

If tuple b is generated by a tuple other than b, it is a redundant tuple, because

Iteration No. WAVE New-WAVE RESULT

1 a b, ¢, d a, b,c,d

2 b, ¢, d e, f,gab a,b,c,dye, f, g

3 e, f,g,ab b,c,d, ... a, b,c,d e f, g ...

Table 4.2. Redundancy Still Exists in Algorithm TC-Wavefront
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the further processing on b will not generate any new tuples. If tuple b is gen-
erated by the same tuple b, bis a cyclic tuple and the further processing of the
cyclic tuple is also redundant. For the same reason, cyclic tuple a should not be

processed further. This is presented in Table 4.2.

From this we can see that further improvement is needed.

4.2.3. Our Preference: The 8 Wavefront Algorithm

Here we propose another algorithm, Algorithm & Wavefront 3W). The
idea is that at each iteration we check each newly generated tuple against the
tuples in RESULT. If it is already in RESULT, we do not include it in NEW-
WAVE. This modification further reduces redundancy, and the processing ter-
minates when WAVE becomes empty even for cyclic data relations. The algo-

rithm is named Algorithm & Wavefront.

Algorithm 4.3 W) : The 3 Wavefront Algorithm for Processing Transitive

Closure

(1) Data structures: two temporary relations RESULT and WAVE.

(2) Initialization :
(i) perform selection on relation A using the constant vector a provided by
the query; and
(ii) put the selected results into RESULT and also into WAVE.

(3) lteration: (use WAVE to generate new results and new WAVE;s iteratively)
(i) join WAVE and relation A4 on the corresponding join attributes; and
(ii) append to RESULT the result tuples that are not in RESULT, and form
the new WAVE.

(4) Termination: terminate when WAVE becomes empty. U
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Theorem 4.3. Algorithm 8 Wavefront generates complete answers and ter-

minates for both noncyclic and cyclic data relations.
Proof Sketch

(1) Completeness.

A tuple which has been used in previous iteration will not contribute any
new tuples to the result if it is used again. Its removal does not alter the
completeness of the solution. Because the algorithm modifies the previous
one by removing only the tuples from WAVE that have been used previ-

ously, it still possesses the completeness of the previous algorithm.

(2) Termination.

For a non-cyclic database, because of the finiteness of the database, the
infinite traversing of the same data rélation along a derivation path is impos-
sible. There must be a point along all traversing paths at which no new
tuples will be generated. Thus at some iteration, there will be no tuple that
can contribute to WAVE any more, and WAVE becomes empty. No new
tuple can be generated by joining an empty relation. Hence the process ter-

minates.

For cyclic databases, a cyclic tuple is deleted from WAVE if it is already in
RESULT. WAVE thus goes to empty for the same reason as for the non-

cyclic case. Thus the process terminates when WAVE becomes empty. O

For the same example relation, the process using Algorithm & Wavefront is

presented in Table 4.3.

Algorithm & Wavefront has two advantages:
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Iteration No. WAVE New-WAVE RESULT

1 a b, ¢, d a, b,c,d

2 b, c, d e, f, g a,b,c,dye, f, g
3 e, f, g, a,b,c,d, e f, g .

Table 4.3. Redundancy Eliminated in Algorithm & Wavefront

(1) Redundancy has been eliminated. The re-processing of already processed

tuples is avoided.

(2) Termination judgement is simplified for cyclic databases. Algorithm &
Wavefront terminates for cyclic databases by simply checking whether
WAVE is empty. This is obviously more efficient than the method of com-
paring two large relations Old_Closure and New_Closure in Algorithm
Basic-TC, and of checking whether every tuple in WAVE is already in
RESULT in Algorithm TC-Wavefront.

4.3. THE PERFORMANCE IMPROVEMENT: IMPLEMENTATION CON-
SIDERATIONS

Performance in processing transitive closures can be improved using vari-
ous techniques. Here are three of them: the tuple marking technique, per-
forming iterative joins on join indices, and the logarithmic algorithm for

deriving the transitive closure of the entire relation.



67

4.3.1. A Tuple Marking Technique

There are two temporary relations, RESULT and WAVE, involved in Algo-
rithm & Wavefront. The RESULT relation accumulates the transitive closure
results which may grow quite large. The checking of each tuple generated in
WAVE against RESULT and the appending of new tuples into RESULT at each
iteration may be expensive. A tuple marking technique can be used to avoid the

generation of the large RESULT relation.

The tuple marking technique works as follows: instead of using a temporary
relation RESULT to hold result tuples, a marking bit is used for each tuple to
identify whether it is in the closure. Initially, the marking bit of each tuple in
the data relation is set off At each iteration, some new set of answers is derived
according to the algorithm. If a tuple in the database corresponding to the gen-
erated set has not been previously marked on, mark it on and put the answer into
WAVE for generating new answers. That is, only the answers corresponding to
the newly marked tuples are included in WAVE. The process terminates when
no tuple can now be marked, i.e., WAVE becomes empty. The answers to the
original query can be obtained from the marked tuples in the database, for

example, by projection on the appropriate attributes.

Tuple marking needs an extra bit for marking but it saves the generation of
large data relations. The marking bits do not need to be saved into the database,
but instead we may use a bit-vector to keep them in main memory for fast
access. Because each tuple takes only one bit, a page, say of 1000 16-bit words,
may hold bits for 16k tuples. This works fine for medium-sized data relations.
For large data relations, for example, one containing a million tuples, advanced
techniques similar to the filtering mechanism used in differential files [Seve 76]

need to be developed for more efficient processing.
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4.3.2. Performing Iterative Joins on Join Indices

An obvious saving can be obtained by utilizing indices in iterative joins.
Indices have been widely used in relational query processing. They will be
more important and beneficial for processing recursive queries, because in this
case join operations are often performed on the same attributes of the same rela-
tions iteratively. Index files on those join attributes can be built up once and

utilized repeatedly.

There are two methods for using indices. One is to use conventional indices
on the join attributes of one of the relations being joined. Another is the use of
join index files. In either method, the iterative joins can be performed on

smaller index files, instead of on the complete data relations.

The use of individual index files of joined relations is popular in conven-
tional relational query processing. An index file is built for the join attribute of

the iteratively joined relation. Iterative joins are performed on the index file.

The join index method was studied by Haerder [Haer 78] and Valduriez
[Vald 85]. A join index is an abstraction of the join of two relations. Itis a
binary relation that directly represents the linkage of tuples of two relations in a
database. Because the length of an index is considerably shorter than that of a
tuple, performing iterative joins on join index files may considerably reduce

CPU and 1/0 costs.

For example, the join of relation R and S on attributes R.A and S.B may be
iteratively executed in deriving transitive closure. A join index file for the join

attribute can be simply represented as
JI=(r;,8;) | r; . A=5;.B (4-11)

where r;,s; are surrogates which are system generated identifiers that never
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change. The size of the join index depends on the join selectivity factor
JS=|Ri><S|/|R|*|S]|. (4-12)

where |R| is number of tuples of the relation R, and likewise for S. If the join
has high selectivity (JS is low), the join index is small. Otherwise, it can be
close to the Cartesian product, making the join index quite large. Similar to
other index files, a join index file may be stored using database storage struc-

tures such as B-trees.

Performing iterative joins on indices by using either index files or join
index files is obviously superior to methods which perform iterative joins on
whole data relations. The choice between using (individual) index files and using
join index files is determined by the join selectivity (JS) of the two relations on
join attributes. When JS is small, the join index file (JI) may be comparable in
size to index files, and the utilization of join indices in iterative joins obviously
saves processing. But when JS is large, the JI file may be quite large, and per-
forming joins on JI files will be more expensive than performing joins on

smaller index files.

4.3.3. A Logarithmic Algorithm for Deriving the Entire Transitive Clo-

sare

The generation of the entire transitive closure, if it is not impossibly large,
and saving it for later selection operations might be a good alternative to deriving
a partial transitive closure for each query. Also, some queries require finding

the entire transitive closure anyway.

The generation of the entire transitive closure may adopt a more efficient
algorithm, a logarithmic algorithm, developed by [Vald 85b]. The idea of the

algorithm is as follows: instead of using a linear iteration to progressively derive
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a transitive closure, a logarithmic-style of processing is used.

Algorithm 4.4. (Logarithmic): Derivation of the Entire Transitive Closure

Using A Logarithmic Algorithm [Vald 85b].
(1) Data structure: three temporary relations: RESULT, WAVE, and
LOG_-WAVE.

(2) Initialization:

Set the base relation A(x,z) as LOG_WAVE and also as RESULT;

(3) lteration:
(i) Join LOG_WAVE with LOG_-WAVE to derive new LOG_WAVE,
(ii) join RESULT with LOG-WAVE to derive WAVE, and
(iii) union RESULT, WAVE and LOG.WAVE to get new RESULT;

(4) Termination:
Terminate when LOG_WAVE or WAVE is empty; and for cyclic data rela-

tions, terminate also when RESULT does not grow at some iteration. O

The process is logarithmic. This is shown by the following analysis.
(1) At the initial time LOG_WAVE is relation A(x,z).

(2) At the first iteration, LOG-WAVE becomes A4 |>< A, written as A2; the
join of RESULT, which is 4, with LOG-WAVE (4?) derives WAVE, A3;
and the union of RESULT, WAVE and LOG_WAVE derives the new
RESULT, which is AUA%UA3.

(3) At the second iteration, LOG_-WAVE becomes A2 >< A2, written as A4;
the join of RESULT, which is 4UA%UA>, with LOG-WAVE (A%) derives
WAVE, A4°UA4%0A47; and the union of RESULT, WAVE and
LOG_WAVE derives the new RESULT, AUA2U43U4%U4%04%047;
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(4) At the i-th iteration, LOG_WAVE, WAVE, and RESULT becomes

LOG_WAVE = A2 1>g4?" = 4% (4-13)
WAVE = RESULT |>< LOG_WAVE
201 ‘ o
= U 4 A
o 1><
21+1__.1
= U Ak (4-14)
k=2'+1
RESULT = RESULT U WAVE U LOG_WAVE
2!'+1__‘1 k
= U A4 4-15
s (4-15)
At the i-th iteration the algorithm generates results which need 21+ 1 jtera-

tions in conventional (linear) join algorithms.

Using reasoning similar to the proof in Theorem 4.1, we can prove that the
termination condition in the algorithm works for both acyclic and cyclic data-

bases. The detailed proof is omitted here.

The logarithmic algorithm works for the derivation of the entire transitive
closure, but it is not suitable for the derivation of partial transitive closures. The
reason is that, if we start with the selected tuples and ignore the other tuples in
deriving LOG_WAVE, since the progress of the WAVE may reference other
tuples which are not available in LOG_-WAVE, such tuples cannot be included

in processing, so many desired answers will be missing.

4.4. ALGORITHMS FOR PROCESSING VARIATIONS OF THE TRANSI-
TIVE CLOSURE CLASS

In our recursive rule classification (Section 3.4), we listed the other cases
of the transitive closure class: (a) the exit rule antecedent (called exit expres-

sion) being different from the extensional literal in the TC rule, (b) multiple exit
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rules, (c) multiple TC rules, and (d) a special SLMR rule.

In the following analysis, we omit the compilation process because of its
similarity to that in Section 4.1. We simply present the general compiled formu-
las and study the processing plans, which are minor modifications of the pro-
cessing plans we have presented above. In the following discussion, Algorithm
§ Wavefront is the base for the derivation of the new algorithms. The new pro-
cessing algorithms lead to reasoning similar to that presented above for Algo-

rithm & Wavefront, so we do not present explicit proofs for them.

4.4.1. A Different Exit Expression

In a transitive closure rule set, the exit expression may be different from

the extensional literal in the TC rule. For example, we may have the following

rule set,
R(X,Z) o A(X,Y),R()’,Z)- (4-16)
R(x,2) :— B(x,2). 4-17)

This is the case of Class I(a) (Section 3.4). Using the compilation method, the
general compiled formula can be easily derived:

A*B (4-18)

Note that in this case the processing may start from two different directions:

first process 4 * then the exit expression B; or first process the exit expression B

then A™. The two processes are asymmetric. The former processing direction is

best when the query is ?- R(a, z)., while the latter is best when the query is ?-

R(x, a). or the looping rule is defined differently, i.e., R :— R,A. With rules

fixed, the processing direction is decided by query constant location.

Algorithm 4.5. (8WA): The Processing of 4 *B (A Different Exit Expres-

sion).
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(1) If the process starts from B, the algorithm is the same as 8W except it is

initialized by performing selection on relation B instead of on A.

(2) If the process starts from A, we modify Algorithm W as follows:
(i) derive the partial transitive closure A™ using Algorithm 3W;
(ii) obtain solutions by unioning the results of the selection on B and the

join of the transitive closure A1 with B. O

4.4.2. Multiple Exit Rules

There are often multiple exit rules in a recursive rule set. For example, we

may have (4-16), (4-17) and the following as our rule set.
R(x,y) :— C(x,y). (4-19)

This forms the Class I(b) case (multiple exit rules) which has the general com-

piled formula
AT (BUC). (4-20)

The processing of such a formula is a minor modification of Algorithm 3W.

Algorithm 4.6. (§WB): The Processing of A4 *(BU C) (Multiple Exit Rules)

(1) If the process starts from (BUC), the algorithm is the same as Algorithm
dW except at the initialization: (i) perform selection on both relations B and

C, and (ii) take the union of the selected results as RESULT and WAVE;

(2) If the process starts from A, the processing should be,
(i) derive the partial transitive closure A% using Algorithm 8W;
(ii) obtain solutions by unioning the two results (a) selection on BU C, and

(b) the join of the transitive closure A* with (BUC). D




74

The above discussion uses quite simple exit rules. In more general cases,

exit rules may not be so simple and well-formed. However, they may be

transformed into the simple form.

(1)

()

(3)

Some exit expressions may be joins of more than one base relation, for

example,

R(x,z) :— A(x,y),B(y,2). (4-21)
This can be simply transformed into a well-formed exit expression, such as

R(x,z) :— E(x,2). (4-22)
by taking E as the join of 4 and B

E(x,z) :— A(x,y),B(y,2). (4-23)
Some exit expressions may contain a different number of variables from
that of the consequent literal. For example,

R(x,2) :— A(x,y,w),C(w,y,u,2). (4-24)

This can be simply transformed into the standard form, by taking the join
on the join attributes and projecting on the attributes which are used in the

consequent literal.

Some exit expressions may contain non-recursive intensional literals.
R(x,2) :— A(x,y),8(y,2). (4-25)
S(y,z) :— B(y,w,u),C(w,z),D(u). (4-26)

This can be reduced to case (2) by simple resolution, in this case, resolving

on the literal §.

If we compare the processing for multiple exit rules (Algorithm 8WB) and

that for a single exit rule (Algorithm 8WA), we find that the only difference is



75

that the former one contains a union operation BU C, while the latter one does
not. If we substitute BU C for the literal B in Algorithm 3WA, the algorithm is

autornatically switched to Algorithm oWB.

In fact, for any complex transformation, if we have more than one exit
expression, we may use a union operation which simplifies discussion. For
example, if we have E1,R,E,, where E; and E; may be any complex expres-
sions and R is going to be resolved with exit rules R :— Bj.and R :— Bj.

The result, Ey,(B1UB>),E,., is obviously simpler than
(ElyBl1E2)U(ElaB29E2)-
In this case, the two exit rules may be better thought of as one, R :— Bj;Bj.

From the above discussion, we can derive a multiple exit rule principle.

Multiple Exit Rule Principle: Multiple exit rules can be treated as a single exit
rule in the derivation of a recursive rule processing plan. The exit rules are simpli-
fied by relational operations and resolutions, and unioned into one by union opera-
tions.

The multiple exit rule principle is quite useful in the discussion of recur-
sive rule compilation. In the following study, only a single exit rule is con-
sidered. Multiple exit rules can be immediately handled by applying this princi-

ple.

4.4.3. Multiple Transitive Closure Rules

The general case of a multiple transitive closure (TC) looping rule set

(Class 1(c))
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R:— A

R :— B},R
R :— B,,R
R :— R,Cy
R :— R,C;

can be compiled into

n k

(.HlBi VA( _Hle ) (4-27)

1= ot

The processing strategy can be derived from the formula, according to the dis-
cussion in this chapter. Here we discuss a special and more frequently used
case, which is the rule set containing two transitive closure rules with exten-

sional literals joining with different variables of the recursive literal.

R:— A (4-28)
R :— B,R. (4-29)
R :— R,C. (4-30)

This rule set can be compiled into

* *

B*AC”. (4-31)

The processing may proceed in either direction: from B toward 4 and C, or
from C toward A and B. The selection of the processing direction is decided by

the query constant, as we discussed before. Suppose the processing direction is
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from B to the right. We have the following algorithm. (The algorithm for the

other direction can be stated similarly.)

Algorithm 4.7. ®©WC): The Processing of B *ac™ (Multiple Looping Rules)
(1) Derive the partial transitive closure BT using Algorithm 3 Wavefront.

(2) Join the BT with relation A, and union it with the result of selection on A;

and

(3) Set the result obtained in step (2) as RESULT and WAVE, and the rest of

the processing is the same as finding the partial transitive closure of C. O

4.4.4. A Special Multiple Potential Recursion Point Rule

There is a special multiple potential recursion point rule set (Class 1(d)),

which can be handled as a transitive closure class. The rule set can be written as
R:— R,R, - - ,R (4-32)
R :— A (4-33)
Such a rule set can be seen in practice in the definition of a "part”, where
Part(x,z) :— Part(x,y),Part(y,z). (4-34)
If there are two intensional literals in the antecedent, the rule set can be easily
compiled into
AT, (4-35)
Its processing strategy is the same as that for the basic transitive closure types
discussed already.

If there are rn intensional literals in the antecedent, the rule set can be com-

piled into

A U An+ k(n-—-l). (4—36)
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where k is an integer that goes from O up to the termination point. The process-

ing strategy can also be derived according to the discussion in this chapter.

4.5. SUMMARY : PROCESSING TRANSITIVE CLOSURE QUERIES

Rules in transitive closure classes can be compiled into general compiled
formulas and processed iteratively using relational query processors. To
improve processing efficiency, our analysis suggests use of the following heuris-
tics:

(1) Perform selection first, using query constants;

(2) Utilize a wavefront of newly generated tuples;

(3) Remove from the wavefront tuples which were placed in the accumulating
closure in previous iterations. This will eliminate redundant processing and

facilitate processing data relations containing cyclic tuples;

(4) Perform iterative processing only on indices rather than on data tuples. We
may use either join index files or individual index files, depending on the
join selectivities;

(5) Apply a logarithmic algorithm to reduce the number of joins performed in

deriving the entire transitive closure.

In practice, the processing of transitive closure queries involving functional
definitions and multiple query constants is more frequently met than that of the
cases we have discussed here. These more complex cases will be studied in

Chapter 7.



CHAPTER 5

THE COMPILATION AND PROCESSING OF SLSR RULES

This chapter presents the compilation and processing of Class II: SLSR
rules (rule sets with a Single Looping rule with a Single Recursion point). We
first compile an SLSR rule set into a general compiled formula, then analyze
four algorithms for the evaluation of the compiled formula: Natural Evaluation
(NE), Single Wavefront (SW), Double Wavefront (DW), and Central Wave-
front (CW). Our performance evaluation concludes that performing selection
first and using previous processing results (wavefronts) are two important
heuristics in the efficient processing of compiled formulas. We call the three

wavefront algorithms SLSR wavefront algorithms.

5.1. The General Compiled Formula for an SLSR Rule Set

An SLSR rule set consists of one or more exit rules and one looping rule

with a single recursion point. The typical SLSR rule set studied here is
R(x,2):—A(x,2). (5-1)
R(x,z):=B(x,y),R(y,w),C(w,2). (5-2)

where A, B and C are base relations, R is a recursively defined virtual relation,

and x, y, z and w are vectors of variables.
The recursive query studied is
?—R(a,z). 5-3)
where a is a constant vector and z is a variable vector to be retrieved.

Similar to the compilation of transitive closure rules, the general compiled

formula for an SLSR rule set can be derived using the deductive compilation

79
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method.

An SLSR rule set is a more general case of recursion than a transitive clo-
sure class. The looping rule of an SLSR rule set consists of two base relations,
one on each side of the recursive literal. If there were one base relation missing
in the looping rule, the SLSR rule set would be reduced to a transitive closure
class. The first thing to try is to make SLSR rules fit into the frame of the avail-
able transitive closure algorithms. This can be done by permuting predicates R
and C to group B and C together as one base relation BC, and deriving the tran-

sitive closure of BC. The formula could be written as

R(x,z):— BC(x,y,w,2),R(y,w). (5-4)
where BC is obtained by

BC(x,y,w,z):— B(x,y),C(w,2). (5-5)

Notice that the relation BC involves the cross-product of two unrestricted data

relations B and C. Moreover, the further call will obtain
R(x,2):— BC(x,y,w,2),BC(y,y ,W ,w),R(y ,W ). (5-6)

which involves joins of the cross-product relation BC, something requiring
prohibitively inefficient processing. Thus the processing of an SLSR rule set
must be with something other than transitive closure algorithms. The relations
which share join attributes should be processed together. In the SLSR rule set
(5-1) and (5-2), using step-wise recursive calls on rule (5-2), we obtain a

sequence of expansions

R(x,z):— B(x’y1)7B(y1’}’),R(y7W)’ C(w,w1), C(wy,2). (5-7)

R(x,z):"B(xLVk)’ T ,B(yl,y),R(y,w),C(w,wl),...,C(wk,z). (5-8)
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where yq , ..., y; and wy , ..., wy are vectors of variables.

Using the exit rule (5-1) on the above sequence, the solutions are obtained

by processing the following sequence of formulas and unioning the results.

A(a,z2). (5-9)
B(aa)’)’A()’9W)’C(Waz)- (5-10)
B(a:yl):B(.YIay)’A(y9w)y C(w,wq), C(w1,2). (5-11)

......

B(a,y1)sB(YgsYk—~1)s--B(¥1,¥),A(y,w),
C(W,W]),...,C(Wk_l,wk),C(Wk,Z). (5-12)

The expansion sequence terminates when no new solution is found in the

database. The sequence can be represented with a general compiled formula
0Bt ><Aa><Ct (5-13)

where o, B means the selection of a on the corresponding attribute of relation
B, |>< means the join on the corresponding attributes, and B¥ means the joins
formed by k B relations. Join atiributes are omitted in the formula for simpli-
city, and the range of index k is from O to n where n is the number of iterations

up to the termination point. When no ambiguity results, we will simply write
oB*ACk (5-14)

for the general compiled formula.

5.2. THE PROCESSING OF THE SLSR COMPILED FORMULA IN RELA-
TIONAL DATABASES

The general compiled formula o B* AC* for SLSR rule set can be evaluated
using different ordering and grouping strategies. We develop and compare per-

formance of four evaluation algorithms: NE (Natural Evaluation), SW (Single
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Wavefront), CW (Central Wavefront), and DW (Double Wavefront).

The simplest algorithm we can think of is a naive evaluation algorithm
which evaluates the compiled formula from scratch at each iteration. No inter-
query grouping and sharing are performed. The execution plan can be written

in a sequence as (5-15), and the flow of processing is shown in Figure 5.1.

oBi><B - - - ><B>A><C1>< - - - C><C. (5-15)
At the k-th iteration, the formula contains k B’s to the left of A and k C’s to
the right of A. The processing is: (1) perform selection on relation A to get 0 A
and on relation B to get oB; (2) starting with the selection result 0B, join
corresponding attributes on relation B k-1 times to get o Bk; (3) join with rela-
tion A once to get o B* A; and (4) join with relation C k times to obtain the
final result o BXACK. The total number of joins for all iterations is
k
S (2n) = k*+k.

n=

Because the same relations B, A and C are used for joins at each iteration,

it will be beneficial to build up indices on the join columns of these relations or

n 0 oA

n =1 cBp>g AP C

n=2 cBpP<gBPgAPgCi>qC

n=23 oB><gBP<BP>gARPIC>qgC>gC
n =%k oBpg...pIBPgAPRPICPg...>gC

Figure 5.1. The Processing Flow of Algorithm NE (Natural Evaluation)
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join indices on them.

The NE algorithm does not save intermediate results for later iterations.

The only heuristic used is to perform selection first when possible.

5.2.1. The Single Wavefront Algorithm

If the intermediate result, o B* ”1, is saved for the coming k-th iteration,
some redundancy can be avoided. The saved result behaves like a wavefront to
derive a new wavefront o B*. Such saving gives us Algorithm Single Wave-
front. It preserves one redeeming feature of Algorithm NE: performing selec-
tion first to reduce the size of the relation to be joined. The processing plan is
illustrated in Figure 5.2 and can be simply illustrated as follows, where the

parentheses show the grouping of the operations.

(0 B* " l>qB)><qA1><Ci>< * - - C><C. (5-16)

At the k-th iteration, using the result o B*~1 which was saved as the old wave-

front, perform join with relation B one more time to get B¥, which is in turn

n=20 oA

n=1 (oB)P>9APQC

n =72 (6B><q4B)>gAPgCP<gC
n=3 (0B >qB)><gAPICP<C><C
n =k (6B 1 >qB)pgAPqCp<g...><C

Figure 5.2. The Processing Flow of Algorithm SW (Single Wavefront)
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Iteration:

(i) increment IterNum by 1;

(ii) perform join of B with WAVE to derive a new WAVE; and

(ili) use the new WAVE to perform join with A, and then consecutively

perform joins with C for IterNum times to derive another set of results.

Termination:

Terminate when WAVE is empty.

If B is cyclic and WAVE is not empty, terminate when (i) WAVE generates
no new tuples (only cyclic tuples), and (ii) all the cyclic tuples ever gen-

erated by WAVE are marked dead. (See below for the explanation of
dead). O

The determination of the termination condition for cyclic data can be imple-

mented as follows.

1)

2)

Modify the implementation of the join operation for traéing the tuples gen-

erated by each tuple.

Observe the cyclic driver tuples i to see if they can produce any new
results. This is done as follows. At some iteration when WAVE derives a
tuple t, enter it into BUFF, and examine the result generated from tuple t.
If any new tuple is generated, add it to BUFF; if t generates no tuple or all
the tuples generated are already in BUFF, mark t as dead. The dead tuple
will not be used to generate new tuples in future iterations. The process
terminates when (i) WAVE is empty or (ii) it generates no new tuples and

all the driver tuples ever generated by WAVE are marked dead.

T A cyclic tuple can be detected by checking whether a newly derived tuple

is already in BUFF.
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The processing done by SW is based on the soundness and completeness of
deductive compilation. All we need to verify are the necessary and sufficient

conditions for termination.

Theorem 5.1. The termination condition in Algorithm SW is a sufficient condi-

tion for both acyclic and cyclic databases.

Proof Sketch

Each new solution is derived by using WAVE to perform more operations.
When WAVE is empty, there is no hope of generating any new tuples or new

WAVE’s. Thus WAVE being empty is sufficient for the process to terminate.

For cyclic databases, when WAVE is not empty, the process terminates
when (i) WAVE generates no new tuples, and (ii) all the cyclic tuples ever gen-

erated by WAVE are marked dead. The reasoning behind this follows.

When WAVE still contains some new tuples, we cannot conclude termina-
tion because a new tuple may derive some new results driving the second half of

the processing.

We now argue that our tuple marking method is correct for marking dead
tuples. A tuple is marked dead if it cannot derive any new tuples. When a tuple
t cannot derive any new tuples in BUFF at the k-th iteration, it means there will
be no new tuples derived later for tuple t, because tuples from the k-th iteration
are the base for deriving tuples at the k+1 th iteration. If each tuple has
appeared before, it means that it has already been used at some previous itera-
tion. Using it again can only generate what is already in BUFF. So the tuple t
should be marked dead.

When WAVE generates no new tuples (it contains cyclic tuples only), all

the tuples generated by WAVE later will be from among the tuples it has
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previously generated. But if all the cyclic tuples ever generated by WAVE are
marked dead, it means that WAVE will henceforth generate dead tuples only. So

the process should terminate at this point. O

Interestingly, the termination condition in Algorithm SW is, though suffi-
cient, not a necessary condition. There is some chance that the result of the join
sequence A><Ci>< - - * |><C becomes empty at some iteration before WAVE
reaches empty or before it reaches the termination state for cyclic data. In this
case, further iteration with WAVE will be fruitless. This could happen, for
example, when the C relation has a data distribution similar to ancestor where

the database registers only several generations but no more.

The reasons we do not include within our algorithm making the termination
condition both sufficient and necessary are: (i) it is quite expensive to compute
the iterative joins of the entire relations A><Ci>< - - - [><C; and (i) we
expect that for practical cases it will be rare that the later halves of our compiled
formulas, which contain joins of whole relations, will reach empty before the
earlier halves, which are started with a selection. Testing only the sufficient

condition would thus appear to cost less than testing both conditions.

When there is no case for some given relations where the later half
becomes empty before the termination condition is met, the termination condition
in Algorithm SW is a necessary condition for cyclic databases. This is demon-

strated in the following example.

Example 5.1. The termination condition in Algorithm SW is a necessary condi-

tion for the following database.

Suppose the recursive rule set is the same as (5-1) and (5-2), and the data rela-

tions A, B and C contain the following tuples. Note that some are cyclic tuples.
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B: { 1, 2),(1,6), 2,1), 2,7) }
A:{(1,2),(2,5), 3,4}
C:{(,2),(2,3), 3, 1),4,5),(5, 4}

The cycle length for B is 2 and that for C is 3. The tuples in the relation form

directed graphs as in Figure 5.3.

For a query ?- R(l, z)., the solutions are z = { I, 2, 3, 4 }. The execution
sequence is as in Table 5.1, where * means that the tuple in o Bk (WAVE) is
marked dead. Even when WAVE contains only dead or cyclic tuples (for exam-
ple, at the third iteration, WAVE contains just 2 and 6), we still do not terminate
because the cyclic tuple 1 which was generated in WAVE has not died yet. That
is why the algorithm requires that the process terminates when WAVE generates
no new tuples and all the cyclic tuples ever generated by WAVE are marked

dead. O

.
.

Figure 5.3 A Directed Graph for Cyclic Tuples
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k o B* A ck Buff { driver : [derived]] } Solution
0 / 2 / {} [2]

1] 2, 6% 51 4 {2:[41} 12, 4]

20 1,7¢ | 2| 1 {2:141} {1:011} (1, 2, 4]

30 2%, 6% | 5 | 4 {2:141} {1:111} [1, 2, 4]

4 1, 7% 2 3 {2:141} {1:[1, 31} [1, 2, 3, 4]
5 2v,6 | 5| 4 £2:[41} {1:[1, 3]} (1, 2, 3, 4]
6 1% 7% 2 1 £2:141Y {1:[1, 31} [1, 2, 3, 4]

Table 5.1. Recursion and Termination for Cyclic Data

Algorithm SW has two important features: (i) it performs selection first to
reduce the size of relations to be joined later, and (ii) it takes advantage of previ-
ous processing by using a wavefront relation. These two heuristics are the main
features of Henschen and Nagqvi’s algorithm [Hens 84]. Essentially, SW is the
same as Henschen and Nagqvi’s algorithm, except that we apply relational opera-
tions instead of their enqueue and dequeue operations on the queue of tuples.
Based on the performance results presented later, SW performs the best in most

cases among the four algorithms we consider.

5.2.2. The Central Wavefront Algorithm

If we want to reduce the number of joins performed in the processing, we
may let the processing start from the center to join relations B and C at each
iteration, and a central wavefront is saved for the next iteration. Then each set
of solutions is obtained by performing selection on the new wavefront. The

result is the union of all such solution sets.
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The processing flow is illustrated in Figure 5.4 and the formula is simply
o(B>4B*14ack " 1><0) (5-17)
At each iteration, the last central wavefront B¥"14C*1 is used to join rela-
tion B which results in an intermediate relation, then we perform a join with
relation C to get new central wavefront B¥ACF. The set of answers for this
iteration is then obtained by selection on this new wavefront. The total number
of joins for all iterations is
k
Z 2=12k
n=0
As with the algorithms NE and SW, it is beneficial to build index files on

corresponding join columns or to build a join index file for relations B and C.

Algorithm 5.2 (CW) : The Central Wavefront Algorithm
(1) Data structure : the wavefront relation WAVE.

(2) Initialization : take relation A as the initial WAVE.

n 0 g A

n=1 o (B*A*C)
n=2 o (B * BAC * C)

n =3 o (B * B2AC? *C)
n=k o (B * B¥lack~1=¢)

Figure 5.4. The Processing Flow of Algorithm CW (Central Wavefront)
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(3) lteration :
(i) perform selection on WAVE to derive one set of results.
(ii) join relation B with WAVE, and then join the result with with C to
derive the new WAVE.

(4) Termination : The process terminates when WAVE goes to empty or does

not change. O

The idea of Algorithm CW is to work out the full joins for the entire rela-
tions A, B, and C at each iteration and then perform selection based on the
specific query constant. The evaluation plan is derived from the general com-
piled formula which is sound and complete. Now we verify that the termination

condition is both necessary and sufficient.

Theorem 5.2. The termination condition in Algorithm CW is both necessary

and sufficient.

Proof Sketch

The termination condition is sufficient for both cyclic and acyclic databases
because, when WAVE is empty or does not change from joining B and C, there
will be no more change from joining them yet one more time. The selection
will be on the same WAVE relation for all later iterations, hence no new result

will be obtained.

The termination condition is necessary for both cyclic and acyclic databases
because, if WAVE is not empty and it changes for joining B and C, there is the
possibility that the selection on the given query constant will obtain some new
result. It cannot terminate at this point. So the termination condition is neces-

sary. O
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Algorithm CW is essentially the evaluation strategy proposed by Shapiro
and McKay [Shap 80][McKa 81]. It has a quite small number of joins and a
quite simple termination condition, but at each iteration it involves two joins on
three unrestricted relations. Thus it tends to generate very large intermediate
relations and could easily run into combinatorial explosion. The performance
evaluation results presented later show that in most cases it is less efficient than

Algorithm SW.

5.2.3. The Double Wavefront Algorithm

Algorithm CW does not use the query constant in its earlier processing and
thus results in joining unrestricted relations. A possible modification is to make

earlier use of the constant while keeping the number of joins small.

This leads to Algorithm DW which has double wavefronts (Figure 5.5).
We form one wavefront by starting from relation B, performing selection first,
and then performing successive joins with relation B to achieve oB* from

oB*~ 1. and we form another wavefront by starting from relation A, performing

n=20 oA

n=1 (o B)*(A*C)

n =2 (oB *B) * (AC * C)
n=3 (cB? *B)* (4C? *C)
n=k (o BF"1x By * (4ck~1 =)

Figure 5.5. The Processing Flow of Algorithm DW (Double Wavefronts)
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successive joins with relation C to achieve ACk from AC*~1. This algorithm is

illustrated with the formula,

(@B*1xB)y*(AC*~1%(C) (5-18)
At the k-th iteration, using the two saved wavefronts oB*~1 and AC*™1,
we perform one join on relation B (to derive the new wavefront o Bk ), a second
join on relation C (to derive the other new wavefront ACK), and a third join on
the two wavefronts o B* and ACF to get the k-th result oB*ACk. The total
number of joins for all iterations is
k
2 3= 3k

n=0

It is again beneficial to build index files on joined columns for relation B
and C, or join index files. There will be no index files available for the two
changing wavefronts oB* and ACK. Different join methods, such as hashing

may be used to facilitate the join process.

Algorithm DW performs selection during early processing and reduces the
number of joins to 3k, but the second wavefront AC* involves joining two large

unrestricted relations, which renders the algorithm less attractive.

Algorithm 5.3 (DW) : The Double Wavefront Algorithm

(1) Data structure :
(i) two wavefronts WAVE] and WAVE?2; and
(ii) a buffer relation BUFF used in the determination of termination for
cyclic databases.
(2) Initialization :
(i) perform selection on relation A to get the first set of results;
(ii) perform selection on relation B to obtain the initial WAVEI; and

(iii) join relation A with C to obtain the initial WAVE2.
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(3) Iteration :
(i) join WAVE1 with WAVE?2 to derive a set of results.-
(ii) join B with WAVEI to derive the new WAVEL; and
(iii) join WAVE2 with C to derive the new WAVE2.

(4) Termination:
When either WAVE] or WAVE2 becomes empty, or when both wavefronts

do not change, terminate. O

A further termination judgement for cyclic B may be obtained using the

same method as for algorithm SW, which is not presented in detail here.

Algorithm DW follows the ideas underlying algorithms SW and CW. It
takes advantage of early selection to reduce the size of relations to be joined for
WAVEI, and it needs only three joins at each iteration. But WAVE2 involves
joining two large unrestricted relations. The join of two temporary relations,
WAVE1 and WAVE2, may cause some extra burdens. Based on the perfor-
mance analysis in the next section, Algorithm DW performs less well than Algo-

rithm SW in most cases.

5.3. PERFORMANCE COMPARISON OF THE SLSR ALGORITHMS

Obviously, processing cost can not be simply related to the number of
joins, as the size of the joined relations contributes a significant factor to total
cost. In order to compare the algorithms provided in this chapter, both analyti-
cal modelling and experimental tests were used to determine 1/0 cost, CPU cost,

and maximum storage space needed.

Our performance experiment is based on research on query processing and
query optimization for conventional relational database systems [Jark 84b]. In

recursive processing, because the same join attributes (columns) of the joined
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relations B, A, and C are used repeatedly, indices on join attributes should be
built to facilitate the repeated accessing of the same columns. The results of
Blasgen and Eswaran [Blas 77] indicate that two join methods, the indexed
nested-loop join and the sort-merge join, perform well for both small and large
relations. In our experiment, the indexed nested-loop join method using B-tree
indices was used for all four algorithms, and non-clustered index files on the
corresponding join attributes of B, C, and A were built to facilitate iterative
joins. In fact, some other access structures and join methods could also be
applied, such as a hashed indicies or a sort merge join algorithm, io improve the
performance of the algorithms. Our experiment emphasizes the comparison of
the algorithms under similar structures and join methods. Further improvement

of accessing mechanisms should be explored in future research.

5.3.1. Analytical Model

We first built an analytical model to calculate the costs of the four algo-
rithms. The calculation of cost is based on the following parameters: (1) join
selectivities on relations B and B: Jp,, on relations B and A: Jp,, on relations A
and C: J,., and on relations C and C: J,.; (2) the selectivity of selections on

relations A and B; and (3) the sizes of relations B, C, and A.

The analytical formulas are extracted from the analysis of the query access
paths in relational databases [Seli 79] and from the experience obtained in exper-

imental performance testing in relational database systems [Lu 85].

For the indexed nested-loop join, the processing is performed with a
sequential scan of the outer relation and an indexed scan of the inner relation,
i.e., the outer relation is scanned once and, for each outer relation tuple, the
index on the inner relation is used to probe for matching tuples. If a matching

tuple is found, the data page is fetched for accessing. Hence we have the
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formula for 1/O cost
10 Costjy;, = (NumPage (Outer)+ NumOfTuples(Outer)*
(w1 *depth (Innerlndex)+ wo *J; *NumOfTuples (Inner)))
*Page 10 cost (5-19)
where J; is the join selectivity of two relations Inner and Outer, depth is a func-
tion representing the estimated depth of the B-tree, w; is the probability of the

inner relation index pages not being in the buffer and w is the probability of

data page fetching.
The 1/0 cost for the selection operation is
I0 Costyppecsion= s*NumOfTuples(Rel)*
(w1 *depth (Index of Rel)+ wy)*Page 10 cost (5-20)
where s is the selectivity of the relation, wy is the probability of the index page
not being in the buffer and w is the probability of data page feiching.

The CPU cost can be calculated with
CPU_Costjyiy, = CPU_Costyy 10+ CPU_Costipep + CPU_CoStyorge (5-21)

where CPU_Cost,,,,, is the CPU time needed to fetch the wples of the outer

relation. It can be expressed as
CPU_Cost,,;,r = Tuple_ CPUCO0S1,y,50, * NumOfTuples (Outer) (5-22)
CPU_Cost;yp,, is the CPU time needed to fetch the tuples of the inner relation

given outer relation tuples

CPU_Costyyy,er = Tuple_CPUCostipper *

NumOfTuples (Quter)*depth (Inner)* FanOut (5-23)
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where FanOut is the average fan-out of a B-tree node that should be searched in
finding a matching tuple in a B-tree index node. Finally, CPU.-Costy,pe,

represents the cost for merging the result tuples from two relations

CPU_Costyerge = Tuple_ CPUCOStyopge *J; *

NumOfTuples (Outer)* NumOfTuples (Inner) (5-24)

Also, we have

CPU_Costypocsion = S¥NumOfTuples(Rel)*
Tuple _CPUCOSp1001i0n *depth(Rel ) * FanOut (5-25)

The total processing cost is calculated by summing up the 1/O and CPU costs

Total _Cost = 10_Cost+ CPU_Cost (5-26)

The maximum space needed for storing intermediate relations during the
iterative processing is also presented in the test. It is the maximum number of
pages used in the processing. It is calculated by counting the number of tuples
newly generated in the iterative joins and then calculating the maximum storage
needed to hold these new tuples. These formulas are used in our analytical test-
ing, with the parameters related to specific databases adopted to be the same as
in the experimental testing. Other parameters are estimated based on the experi-

ence obtained in [Lu 85] and adjusted by the experimental tests.

5.3.2. Experimental Method

The performances of the four algorithms were also evaluated by experimen-
tal tests. This is important since (1) the formulas presented in the last section
enable only a rough estimation of processing costs, and they need to be vali-
dated; and (2) the formulas represent estimation of processing costs given gen-

eral database characteristics, and they do not reflect the data dependent aspects of
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different databases and implementation details.

The tests were conducted on a synthetic database, Wisconsin Benchmarking
Database [Bitt 83], built on WISS ( Wlsconsin Storage System ) [Chou 83] run-
ning on a VAX11/750 machine (Wisc-devo) in a single user environment.
There are three data relations B, A, and C in the database. Each relation con-
tained 1000 tuples, and each tuple was 182 bytes long. The join columns of the
three relations were generated using a random number generator. We use the
built-in random number generator function rand of UNIX. The ranges of the
values of join columns are restricted to control the join selectivity between rela-
tions. We assume that the outer relation was unordered, so we built non-

clustered B-tree indexes on the join columns.

5.3.3. Performance Testing

The results of analytical modeling and experimental testing are presented in
Figures 5.6 to 5.10. With both approaches, we compare the four algorithms
NE, SW, CW and DW presented in this chapter. The results of the analytical
and experimental evaluation are quite similar. Because Algorithm SW is a
direct improvement of Algorithm NE by saving the previous processing results,
which obviously saves processing power, the performance of NE is only
presented for the analytical model and is not explicitly shown for the experimen-
tal tests. Both approaches are applied to computing the processing time (in
seconds) versus selectivity on relation B, and versus join selectivities Jpp, Jpg

and J, or J, T, under certain different situations.

f J,, Tepresents the join selectivity of joining relation B with B. Other no-
tations for join selectivities are similar.
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With the analytical model we also show the result when both join selectivi-

ties of Jp, and J,. become larger (Figure 5.9). We also tested the maximum

disk storage needed vs. selectivity in our analytical tests (Figure 5.10), because

the recursive processing of databases consumes large amounts of intermediate

storage space. (Sometimes we ran out of the disk space during the testing!).

For simplicity, we have Jp, = Jy, and J,. = J,. in both experimental and

analytical tests. To distinguish the two different situations in iterative joins, we

call join selectivity low (high) when the joined result relation is smaller (larger)

than the original one. The iteration number is set to 5 for both experimental

and analytical tests.

(1)

()

3)

4)

&)

The analytical and experimental results are presented as follows.

Figure 5.6: Processing time vs. selectivity with join selectivities Jy, and J,.

fixed.

Figure 5.7: Processing time vs. join selectivity Jp;,, where (a) (b) are the
tests using high selectivity s ((a) is the analytical test, and (b) is the
experiemental test), and (c) (d) are the tests using low selectivity s ((c) is

the analytical test, and (d) is the experiemental test).

Figure 5.8: Processing time vs. join selectivity J.., where (a) (b) are the
tests using high selectivity s ((a) is the analytical test, and (b) is the
experiemental test), and (c) (d) are the tests using low selectivity s ((c) is

the analytical test, and (d) is the experiemental test).

Figure 5.9: The analytical test on processing time vs. join selectivity Jpp

with medium selectivity s and high join selectivity J,.; and

Figure 5.10: The analytical test on storage required vs. selectivity s with

medium join selectivities Jpp, and J...
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5.3.4. Summary of Testing Results

The experimental tests and analysis present some interesting results. A first
observation is that processing recursive queries using compiled formulas and
relational operations is practical for relational databases, provided (i) the join
selectivities of the data relations are not large, (i) the selectivity s is low, and
(iii) the appropriate algorithm is adopted. A second observation is that different
algorithms have diverse performances under different situations. Choice of the
best algorithm is definitely database and query dependent. Nevertheless, there

are some important heuristics for the selection of an appropriate algorithm.

(1) Perform selection first.

When a query provides highly selective information (s is low), Algorithm
SW, performing selection first and avoiding joining the whole (non-
restricted) data relations, has much better performance than the other two
algorithms. Since most practical queries provide such information, e.g.
retrieving John’s ancestors rather than retrieving everybody’s ancestors, Algo-

rithm SW should be selected for most recursive query executions.

In those cases that the query does not provide highly selective information
(i.e. when s is quite high, our test would indicate in the range s > 0.1),
performing selection first may not win, because the number of joins will be
an important factor for total processing cost. In these cases, Algorithm CW

and DW may perform better.

(2) Save previous processing results to avoid redundant processing.

The utilization of previous intermediate processing results (wavefront algo-
rithms) avoids some redundant processing, thus reducing total processing

cost. The reduction is demonstrated in our comparison of Algorithms NE
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and SW. The comparison shows that the wavefront idea should be incor-

porated in all situations.

Group processing of joins with diverse join selectivities, which may

generate smaller intermediate relations.

Diverse join selectivities means that in a sequence, of joins the join selec-
tivities of some joins are quite high while the join selectivities of others are
quite low. The joins with diverse join selectivities may be grouped for pro-
cessing together in order to generate smaller-sized intermediate relations to
offset the huge intermediate relation sizes which would be generated from

iteratively joining relations with higher join selectivity.

For example, when the join between relation B with itself has high join
selectivity while the join of relation with C has low join selectivity, Algo-
rithm CW and DW will generate smaller intermediate relations than itera-
tively joining B’s only (Figure 5.10). This resulis in lowered processing

cost (Figures 5.7 (a) and (b)).

Reduce the size of relations to be iteratively joined.

From the figures we can see that the join selectivities are essential in contri-
buting to processing cost. High join selectivity tends to run into combina-
torial explosion, while low join selectivity generally results in quite efficient
processing. To reduce the high cost of recursive processing, we must try to

reduce the size of relations to be iteratively joined.

One approach is to apply better indexing techniques to reduce the size of
tuples to be iteratively joined, for example, performing joins on index files

only instead of on entire data tuples, or building join index files and per-
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forming joins on join indices only [Vald 85], where a join index is a binary
relation that consists of the joined attributes of two relations. Because the
length of an index is shorter than that of a tuple, the size of the data to be

iteratively joined will be reduced considerably.



CHAPTER 6

STACK-DIRECTED COMPILATION OF COMPLEX RECURSIVE RULES

This chapter introduces a stack-directed compilation method for processing
recursive rules more complex than those discussed in the previous two chapters.
A recursive rule set which requires stack-directed compilation is one whose
resolution graph contains more than one cycle. Such rule sets are in Class 111,
IV or V of Chapter 3. In this chapter, we develop a stack-directed compilation
algorithm for SLMR (Single Looping rule with Multiple Recursion points) rule
sets (Class I111), and we study the optimization of accessing the database for such
rule sets using wavefront and potential wavefront relations. This approach can
be applied to other forms of recursion with appropriate modification of the basic

algorithm.

In the compilation of transitive closures and SLSR rules, complete general
compiled formulas can be derived before any accessing of the database needs
occur. However, there are no such general compiled formulas that can be
derived for recursion with more than one resolution cycle. The stack-directed
processing should be applied for such cases. The stack-directed processing is
not pure compilation, because the stack operation is determined by results
returned from accessing data relations. But it has more flavor of compilation
than of interpretation, because it delays evaluation of base predicates until the
deductive resolution for a formula has been finished, and the execution of com-

piled formulas can be subjected to relational set-oriented operations.

Since no general compiled formula can be derived for recursion involving
more than one resolution cycle, a blind test-and-try method is generally incom-

plete or redundant. Our approach is to generate a processing plan which is

109
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complete (i.e., no possible solution will be missed), which is non-redundant
(i.e., the same formula will not be derived more than once), which is easy to

optimize, and for which termination conditions can easily be determined.
6.1. A STACK-DIRECTED COMPILATION ALGORITHM

6.1.1. A Case Study

We first perform a case study for an SLMR rule set which consists of a sin-
gle looping rule with double recursion points and a single exit rule. We assume

that data relations contain no cyclic data.

Example 6.1. Derive a processing plan for query ?- R(a, z). where R is defined
with the SLMR rule set

R(x,z):— A(x,2). (6-1)
and

R(X,Z)I"B(x,}’)aR(}’»W), C(W’u)9R(u’V),D(V,Z)- (6'2)

In order to achieve ordered expansion, a compilation stack is used to hold
intermediate formula expansions for generating compiled formulas. Each stack
element is a clause consisting of a list of query literals or their expansions gen-
erated by calling non-exit rules. Thus a stack element consists of a list of literals
which may be extensional or intensional. An intensional literal within a stack

element is called a potential recursion point (PRP).

We identify three states for each PRP in a compilation stack: active, poten-
tially active, and exhausted. Active is the state where the PRP is to be
expanded immediately by non-exit calls; potentially active is the state where the
PRP is not to be expanded immediately but will become active later; and

exhausted is the state where the PRP has already been exhaustively expanded
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and can not be further expanded by non-exit calls.

The following analysis of the example illustrates the stack-directed compila-

tion process.

(1) Step 1: The query literal R is pushed onto the compilation stack. The first

()

PRP of the top stack element, R, is set to active. The first compiled for-

mula is generated by substituting for R using the exit rule. We have

Stack Top: R
Compiled Formula Generated: o A.

Our conventions are that when an intensional literal on the stack is shown
in boldface, it is active, when it is italicized, it is potentially active, and

when it is in Roman, it is exhausted.

Step 2: Because there is on top of the stack an active PRP, which could be
replaced by its non-exit definition, we set the action to PUSH. PUSH is
performed by the following steps: (i) A new stack element is formed by
substituting for the active PRP its non-exit definition, with the states of
newly generated PRP’s initialized to potentially active, the states of the rest
of the literals on top of the stack remaining unchanged, and the first poten-
tially active PRP on top of the stack set to active; (ii) the new stack element
is pushed onto the stack; and (iii) a set of compiled formulas is generated

by substituting for all PRP’s of the new stack element their exit definitions.

In our case, because R is active, PUSH is performed as follows: (i) R is
replaced by its non-exit definition, forming a new stack element: B, R, C,
R, D.; (ii) the new element is pushed onto the top of the stack; and (iii) the
compiled formula: o B, A, C, A, D. is generated by substituting for all R’s

in the new element according to the exit rule R :— A. We now have
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Stack Top: B, R, C, R, D

Compiled Formula Generated: ¢ B, A, C, A, D.
Step 3: Suppose the expression in front of the active PRP is not exhausted,
i.e., 0B is not empty T. The stack is pushed again. Then we have

Stack Top: B, B, R, C, R, D,C, R, D
Compiled Formula Generated: ¢ B, B, A, C, A, D, C, A, D.

Step 4: If PUSH is the action for one more step, the stack becomes

Stack Top: B, B,B,R,C, R, D,C, R, D,C, R, D
Compiled Formula Generated:
oB,B,B,AC A D,C,AD,C, A D.

Suppose the expression in front of the active PRP is exhausted due to empty
oBBB. The generated compiled formula produces no answer so it is use-
less to expand on this PRP further. The stack is then popped. POP is per-
formed by the following steps: (i) decrement the stack pointer by 1; (ii)
change the state of the active PRP to exhausted; and (iii) if there is a next
non-exhausted PRP (the first potentially active) PRP in the top stack ele-
ment, set it to active, otherwise pop the stack again. The popping may con-

tinue until the stack is empty.

In our case, when stack element No. 4 is popped, the active state is shifted

to the non-exhausted PRP of stack element No. 3.
Step 5 : After the active state is shifted, PUSH is called again and the situa-

tion becomes

Stack Top: B, B, R, C, B, R, C, R, D, D, C, R, D.
Compiled Formula Generated:

i Here we .study the acyclic database and simply apply the termination con-

dition discussed in Algorithm SW.
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oB,B,A C B,AC,A, D, D, C, A, D.

The snapshot of the stack at this point in the processing is presented in

Table 6.1.

The compilation process is directed by stack expansion, which mirrors the
execution of a recursive function. The difference between the two (stack-
directed compilation and the execution of a recursive function) is that the former
is controlling the generation of database access plans before accessing a data-
base, while the latter uses a stack to create local execution environments and to

pass execution results.

The stack-controlled generation of compiled formulas facilitates the group-
ing of similar processing patterns and the use of previous processing results. For

example, to process the formula generated at Step 4
oB,B,B,A,C,A,D,C,A,D,C,A,D.

we may use the Step 3 processing result, o B2, in deriving o B3, and we may

group operations together, e.g., (C,A,D)>.

No. Stack Element

4 B,B,R,C,B,R,C, R D,D, C, R D.
3 B,B,R,C,R, D, C, R D.

2 B, R, C, R, D.

1 R.

Table 6.1. Snapshot of the Compilation Stack (at Step 5)
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This is reminiscent of our wavefront algorithms. The saving of o B? for
deriving oB3 is essentially the Algorithm SW. The grouping of (C,A4,D) and
using previous results (C,A,D)? for deriving (C,A,D)3 is essentially the second

wavefront of Algorithm DW.

Moreover, the saving of previous results is not confined to the active PRP.
A saving connected with a potentially active PRP may benefit further processing
after popping. For example, the saving of cBBAC at step 3 may benefit the pro-
cessing for the compiled formula generated at step 5: cBBAC, BACADDCAD.

We call this kind of saving potential wavefront.

Based on the performance analysis of the previous chapter, we predict that
the grouping and saving of (C,A,D)2 for deriving (C,A,D)3 may not gain
much because it involves the join of unrestricted relations. The benefit of per-
forming selection first and then using wavefronts is obvious. That is why we
explore two kinds of wavefront relations in stack-directed processing: WAVE,
which is the saving of processing results up to but excluding the current active
PRP, and Potential WAVE’s (P_-WAVE’s) , which are the savings of the process-
ing results up to but excluding potentially active PRP’s. Once the s/tack is
popped, the first Potential WAVE is used to derive the new WAVE. There is
only one WAVE; the number of Potential WAVE’s is equal to the number of

potentially active PRP’s on the stack. O
6.1.2. The Essential Stack-Directed Compilation Algorithm

Based on the discussion of Example 6.1, we present an stack-directed compila-
tion algorithm, Algorithm ES. The algorithm works only for simple SLMR rule
sets on acyclic databases. However, for more complex rule sets and cyclic data-

bases, it can be extended by appropriate modifications. It does realize the essen-
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tial ideas of our stack-directed compilation approach. Although we have worked
through the details, there does not appear to be anything of major conceptual
interest in extending the Algorithm ES to handle greater complexity so we do not

present the details in this dissertation.

Similar to the algorithms in previous chapters, the processing start point is
decided by query constants. The algorithm is presented by assuming that the
start point is at the left. A different query may require starting at the right, but

the logic would be symmetric to what is presented here.

Algorithm 6.1 (ES) : Stack-Directed Compilation for an SLMR Rule Set

(1) Data structures:
(i) a compilation stack where each stack element consists of a clause, i.e., a
list of literals;
(i) a state marker which indicates the state of each PRP: active, potentially
active, or exhausted;, and
(i) an ACTION flag to indicate the action to be performed: PUSH, POP,
or SHIFT.

(2) Initialization: Initially, the compilation stack is empty.
(i) the query literals are first pushed onto the stack, and the leftmost PRP is
set to active and the remaining PRP’s to potentially active;
(ii) a compiled formula is generated by substituting for each PRP on top of
the stack its exit definition; and
(iii) if the active PRP on top of the stack is not exhausted T , set ACTION to

PUSH, otherwise set it to POP.

i For acyclic databases, an active PRP becomes exhausted when WAVE (the
result of evaluating the sub-expression in front of the PRP) becomes empty, be-
cause at this point further pushing of the stack cannot generate any new answer.
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(3) Iteration:

If ACTION is PUSH, then

(1) increment the stack pointer by 1;

(i) substitute for the active PRP of the current top stack element its non-exit
rule definition, to form a new top stack element;

(iii) initialize the states of the new PRP’s of the new top stack element
potentially active, while the states of the PRP’s that already existed in the
parent stack element are as they were there (i.e., potentially active or
exhausted.);

(iv) set the state of the first potentially active PRP on top of the stack to
active,

(v) generate a compiled formula by substituting for the PRP’s of the top
stack element their exit definitions; and

(vi) if the active PRP on top of the stack is not exhausted, set ACTION to
PUSH, otherwise set it to POP.

If ACTION is POP, then pop the top stack element, decrement the stack
pointer by 1, and set ACTION to SHIFT.

If ACTION is SHIFT, then

(i) if there is no potentially active PRP in the top stack element to be
activated, reset ACTION to POP;

(ii) otherwise, set the current active PRP to exhausted, set the first poten-

tially active PRP to active, and set ACTION to PUSH.

(4) Termination: The process terminates when the stack becomes empty. ©
Proof of the completeness and non-redundancy of the algorithm is in the next

section.
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6.2. DISCUSSION OF STACK-DIRECTED COMPILATION

6.2.1. Compilation vs. Interpretation

Should we consider the stack-directed processing compilation or interpre-
tation? Obviously, it is not pure compilation, because the stack operation, such
as PUSH or POP, is determined by the results that are returned from accessing
data relations. This is unlike the compilation of transitive closures and SLSR
rules, where complete general compiled formulas can be derived before any
accessing of the database need occur. However, it has more flavor of compila-
tion than of interpretation. The interpretation approach evaluates base predicates
as soon as they are encountered, while the method being discussed here delays
evaluation of base predicates until the deductive resolution for a formula has
been finished, and the execution of compiled formulas can be subjected to rela-
tional query optimization routines. In this sense, it is still a compilation algo-

rithm.

We may observe an interesting evolution of our deductive compilation con-
cept. For non-recursive rule sets, query compilation is "pure” in the sense that,
once a query is compiled, the database access plan is fully determined. For
recursive rule sets of Classes 1 and 11, compilation is less "pure” in the sense
that the database access plan cannot be fully determined before any database
access occurs because the number of iterations (the termination point) is data
dependent. For rule sets which need stack-directed compilation, the compilation
is even less “pure” in the sense that even the generation of compiled formulas is
dependent on what is found in the extensional database. This is the reason that

we need a feedback information line in our architecture design (Figure 1.1).
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Theorem 6.1. The compiled formulas generated by Algorithm 6.1 are neces-

sary, complete and non-redundant.

Proof Sketch

(1)

(2)

Necessity

In the algorithm, a new stack element is obtained by "calling” the non-exit
rule definition of the active PRP, when the top stack element is not
rexhausted”; and a compiled formula is generated by "calling” the exit rule
definitions for all PRP’s in a new stack element, when the new element is
pushed onto the stack. Both calls are based on the deductive resolution
process. According to the compilation method discussed in previous
chapters, each generated formula represents a set of solutions, which is a
subset of all possible solutions. Thus the generation and processing of

these formulas are necessary.

Completeness

Suppose a stack element contains two recursion points as follows

o Riye R .

(6-3)
According to the algorithm of deduction rule resolution, there are three
possible non-exit calls on rule definitions: calling on R; with R; fixed, cal-
ling on Rj with R; fixed, and calling on R; and RJ- at the same time. The
first call is realized in the algorithm when R; is active and R; potentially
active. The second call is realized in the algorithm when R; is exhausted
and R; active. The third call is realized in the algorithm when R; was first

active and called with its definition pushed on to the stack to form a new

stack element
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6.2.2. Depth-First Search vs. Breadth-First Search

Interestingly, the algorithm reflects a combination of two search paradigms:

depth-first search and breadth-first search.

If we observe only stack manipulation, we may conclude that we have
adopted a depth-first search and backtracking mechanism to find all possible
expansions. Each expansion is focused on one possible active point at a time.
When this active point is exhausted, we backtrack (pop the stack) and resume
expansion of the deepest unexhausted point. This imitates the depth-first search

mechanism of many Al algorithms and of Prolog.

However, if we observe the execution of each compiled formula, we may
conclude that we have adopted a breadth-first search mechanism for finding all
possible solutions using database set-oriented operations. The formula is

evaluated against the whole database instead of a tuple at a time.

The combination of the two search paradigms not only takes advantage of
the execution efficiency of relational set-oriented operations and makes the solu-
tion complete, but it also benefits the inter-query optimization, i.e., optimization
across the successively produced compiled formulas. Recurring sub-expressions
in the compiled formulas can be extracted and evaluated only once, rather than

at each occurrence.

6.2.3. The Algorithm is Complete and Non-Redundant

Stack-directed compilation produces a sequence of compiled formulas, and
their processing clearly demands a considerable amount of processing power. It
is important to make sure that the compiled formulas produced are necessary,
complete and easily optimized. Necessity and completeness are analyzed in this

section, and optimization is discussed in the next.
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...,Ril,...Rim,...,Rj,... (6-4)

and R; becomes active in this new element. This kind of reasoning can be
extended to any number of recursion points, and so every possible recursive

call will be realized at some stage. The solution is complete.

(3) Non-Redundancy

Considering the same formula (6-3), there are only three possible non-exit
calls expanding the two recursion points of the compilation formula on the
stack. For these three calls, the first can be realized only when R; is active
and R; potentially active, the second only when R; is exhausted and R;
active, and the third only when R; was first active and called with its defini-
tion pushed on to the stack to form a new stack element as in (6-4) and R;
becomes active. There is no chance that one of these particular expansions
could be caused by other calls of some kind, and each compiled formula is
generated by calling the exit definitions of the recursion points in a newly
generated stack element. Because there is no redundancy in the recursive
rule set (by our assumption in Chapter 3), there is thus no chance for a
compiled formula to be generated more than once by the algorithm.

Hence, the compiled formulas generated are non-redundant. O

6.2.4. Improving Processing Efficiency of the Generated Formulas

To improve the processing of the generated compiled formulas, several

techniques can be considered.

An important one is to start from the most selective point and perform
selection first. This reduces the size of the intermediate relations iteratively pro-
cessed, hence saves processing cost. The value of performing selection first has

been emphasized by Henschen and Naqvi’s algorithm, verified by our
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performance testing reported in the previous chapter, and should be part of
Algorithm ES. Moreover, if there are several query constants available, the pro-

cessing should start at the most selective point determined by these constants.

A second important technique is the use of wavefront relations. Observing
the generated compiled formulas, we find that there are many common sub-
expressions among the formulas, and thus it is beneficial to save processing
results for the processing of other compiled formulas. Besides the wavefront
ideas explored in previous chapters, we develop a new kind of wavefront: Poten-

tial WAVE.

The idea behind using wavefront relations is to prevent redundant process-
ing by re-using intermediate processing results. In the processing of formulas
generated by stack-directed compilation, not only should the intermediate results
for the initial sub-expression preceding the active PRP (wave) be saved, but also
those for the initial subexpression preceding potentially active PRP’s (potential
waves). The former is useful when the active point is not yet exhausted, while

the latter are useful when the stack is popped and the active point shifted.
In Example 6.1, we apply these two kinds of wavefronts.

(1) The wavefront relation.

The function of the wavefront relation WAVE is similar to that for the algo-
rithms studied in previous chapters. WAVE saves the intermediate process-
ing results for the initial sub-expression up to but not including the active
recursion point. When WAVE goes to empty, which indicates that the

active point is exhausted, the stack is popped and the active point shifted.

(2) Potential wavefront relations.

In Example 6.1, we suppose that the wavefront relation cBBB is empty.
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No. The Compilation Stack WAVE
4 B,B,B,R,C,R,D,C,R,D,C,R,D | oBBB
3 B,B,R,C,R,D,C,R,D oBB

2 B,R,C, R, D oB

1 R

(a) Wavefronts for processing formulas generated at pushing

The Compilation Stack WAVE 1st P_WAVE
4 B,B,R,C,B,R,C,R,D,D,C, R D oBBACB oBBACBAC
3 B,B,R,C,R,D,C, R, D oBB oBBAC
2 B,R,C, R, D oB oBAC
1 R

(b) Potential wavefronts for processing formulas generated at popping

Table 6.2. The Benefits of Wavefronts and Potential Wavefronts

According to the algorithm, the stack is popped, and the active recursion
point is shifted to the first potential recursion point. The top stack element

becomes
B,B,R,C,R,D,C, R D.

When the new active point is called, it generates the new stack element
B,B,R,C,B,R,C,R D,D,C, R D.

The new compiled formula generated is

oB, B, A,C,B, A, C, A, D,D,C, A, D.
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The potential wavefront cBBAC is a common sub-expression of compiled
formulas generated by stack elements No.3 and No.4 (See Table 6.2). The
saving of s BBAC from the processing for the formula from No.3 speeds up
the processing for the formula from No.4. The application of wavefronts

and potential wavefronts can be summarized in the following algorithm.

Algorithm 6.2. The Optimization of Algorithm ES Using Wavefront and

Potential Wavefront Relations.

(1)

(2)

In the processing of a compiled formula, the processing result for the por-
tion of the formula up to but excluding the active recursion point is saved as
WAVE. The processing of the succeeding formula starts from WAVE

instead of from the beginning.

The processing result for the portion up to but excluding each potentially
active recursion point of the compiled formula is saved as a Potential
WAVE. When WAVE becomes exhausted, the stack is popped, and
WAVE is replaced by use of the first Potential WAVE for the newly desig-
nated active recursion point. The processing of the next compiled formula

starts from the new WAVE instead of from the beginning. 0

Interestingly, from Algorithm ES we can rederive Algorithm SW. Because

there is only one recursion point in an SLSR rule set, there is no potential wave-

front to be saved, and once the stack starts popping there will be termination

because the popping will continue until the stack becomes empty. Algorithm ES

is in effect a generalization of Algorithm SW.

6.3.

SUMMARY: STACK-DIRECTED COMPILATION OF COMPLEX

RECURSIVE RULES
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This chapter has introduced a stack-directed compilation method for compil-
ing complex recursive rule sets. We presented a compilation algorithm for an
SLMR rule set in acyclic databases. We have studied the required modifications
of Algorithm ES for the cases of cyclic databases, multiple looping rules (Class
1V), mutually recursive rules (Class V), multiple recursion levels. But we do not
present those modifications here. The interested reader may find the details in

[Han 85€].
In summary, we may conclude the foliowing:

(1) Stack-directed compilation is a method for compiling complex recursive
rule sets containing more than one resolution cycle. The method generates
a non-redundant sequence of compiled formulas that will together produce

all possible solutions.

(2) The manipulation of the compilation stack is dependent on execution of the
compiled formulas. Hence the method is not "pure” compilation. It com-
bines depth-first stack manipulation with set-oriented relational operations

and thus makes the search more efficient than either alone would be.

(3) The two heuristics advocated in previous chapters apply to stack-directed
processing as well. These are: (i) perform selection first and start from
the best selective point and (ii) make use of previous processing
results. The second heuristic is realized by using wavefront and poten-

tial wavefront relations.

Nevertheless, recursive processing in databases generally involves costly
processing, and more efficient processing methods need to be explored. One
solution to this problem is the knowledge-directed compilation and planning

to be introduced and evaluated in the next two chapters.



CHAPTER 7

EXPERT KNOWLEDGE-DIRECTED RECURSIVE RULE COMPILATION

In previous chapters, we studied the compilation of function-free recursive
rules without special augmentation of domain-specific expert knowledge. The
techniques developed there are interesting for both theoretical and practical rea-
sons. However, if we rely only on those techniques, we cannot adequately solve
many practical application problems, because those problems often (i) contain
function symbols in their recursive rule definitions, and/or (ii) involve costly

iterative processing of large databases.

Such problems are often categorized as database-oriented problem solv-
ing problems. In artificial intelligence research, problem solving is the process
of developing a structure of (in the simplest case, a sequence of) actions to
achieve a goal, whose processing often involves application of search and plan-
ning techniques. Database-oriented problem solving involves recursion in

relational databases and also demands application of such techniques.

In this chapter, we study the problems of and mechanisms for compiling
recursive rules with the aid of domain-specific knowledge, and we demonstrate
that expert knowledge can play an important role in the correct and efficient pro-
cessing of recursive database problems. We confine our discussion to the transi-
tive c}osure class (Class 1 queries) only because (i) most recursive rules in prac-
tical domains appear to fall in this class, and (ii) the study of this simple case

can provide a base for investigation of more complex recursion patterns.

125




126

7.1. NEW PROBLEMS OF RECURSION IN DATABASE ORIENTED
PROBLEM SOLVING

Recursion arises naturally in many applications that have to do with
scheduling, planning, routing, and path-finding [Aho 79][Kung 84]1[Smit 84].
Practical applications pose new problems that cannot be solved with the conven-
tional compiled approach. With an example we examine the issues raised in
database-oriented problem solving. The air-flight reservation problem has
served as a paradigmatic problem for several artificial intelligence (Al) research

efforts. See, for example, [Wood 68].

Example 7.1. An air-flight reservation problem: Suppose there are two relations
flight and airport in the database:

flight (fno, dpt, arr, dpttime, arrtime, fare)
airport(port, size, lat, long)

To schedule a flight from one airport to another distant airport, one-step simple
retrieval is inadequate, and we must connect flights. This involves recursion on
the flight relation. The recursive relation new_flight can be defined as in Figure

7.1 (in Prolog).

Besides a recursive rule definition, expert knowledge is usually available.
For example, an air-flight administrator may have some regulations, such as that
the lay-over time (the interval between the respective arrival and departure of
two connected flights) must be within some range. A travel agent may use some
»common sense” knowledge in scheduling flights, e.g., each flight should be in
the same general direction as the direction from the initial departure to the final

destination. These can be coded into knowledge rules to assist in problem solv-
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new._flight (Flight_No, Deparwre, Arrival, Dpt_Time, Arr_Time, Fare ) -
flight (Flight_No, Departure, Arrival, Dpt.Time, Arr_Time, Fare ).

new_flight (Flight_No, Departure, Arrival, Dpt_Time, Arr_Time, Fare) :-
new_flight (Flight_No sub 1 , Departure, Intermediate,
Dpt_Time, Arr_Time, Fareq),
flight (Flight_No sub 2 , Intermediate, Arrival,
Dpt_Time, Arrival_Time, Fares),
Fare is Farey + Fare,.
Flight_No is Flight_No1 & Flight_No2.!

Figure 7.1. Recursive Rules for Air-Flight Reservation

ing.

Moreover, a database user may impose many different query requirements
interacting with recursive rules and knowledge rules. For example, suppose a
customer wants to find inexpensive flights from Madison to Shanghai where the
departure time is between 8:00 am and 11:00 am, the total flight time is under
30 hours, and the fare is less that $1000. In QUEL

range of x is new_flight
retrieve (x.dpttime, x.arrtime, x.fare)
where x.dpt = "Madison” and x.arr = "Shanghai” and

x.dpttime > 8 and x.dpttime < 11 and
x.arrtime - x.dpttime < 30 and x.fare < 1000

It is an interesting problem to compile such a query using domain-specific

knowledge. O

T & is a concatenation operator which forms a new Flight_No by con-
catenating Flight_Neo1 and Flight_No,.
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The compilation methods studied in previous chapters are not adequate for
solving this problem, because it generates new problems including functional
definition and its termination problems, use of search constrainis, interaction among
query constants, finding only some solutions vs. finding all solutions, and the

preserving of high level views and high level query interfaces.

7.1.1. Evaluable Functions in Recursive Rule Definitions

We assumed that there were no evaluable functions in the recursive rule
definitions studied earlier (see Chapter 3). The primary reason for such an
assumption was to avoid termination problems. However, in practice, evaluable
functions do appear in many database-oriented recursive problems (Table 7.1
which is based on [Daya 85]). In the new_flight rules of Example 7.1, there are

two evaluable functions: summation ”+ " and concatenation "&".

Application Problem Property Function
Aggregate Concatenate
shortest path length/time | min +
critical (longest) path length/time | max +
maximum capacity path capacity max min
most reliable path reliability max *
Bill of materials item count + *
List all paths edge name U &
List any paths edge name choose_any &

Table 7.1. Evaluable Functions in Recursion Problems
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Fare is Farey + Fare,.

Flight_No is Flight_Nol & Flight_No2.
A deductive database with such recursive rules is essentially a database with new
tuples iteratively generated using recursive rules. New_flight defines new data
which are not stored in the database. If there is no constraint or bound, the gen-
eric data relation new_flight may grow indefinitely and never terminate, because
one could fly around the globe indefinitely many times or fly back and forth
indefinitely between two intermediate points before settling down and going on to

the destination.

7.1.2. Search Constraints in Recursive Rule Compilation

Recursion in large databases usually requires considerable processing
power. However, if we do not further reduce the search space, processing may

still be too expensive for practical applications.

This can be seen from Example 7.1. Suppose (i) there are 10° tuples in
the relation flight; (ii) the maximum acceptable propagation cycle (the number of
edges in a flight path) from Madison to Shanghai is 20; (iii) at the beginning
there are 10 tuples selected; and (iv) the average join selectivity is 1073, ie.,
the second iteration will generate 10* 105%1073 = 1000 tuples. The total
number of tuples processed in 20 iterations will be : 10 + 1000 + ... + 10020
= 10 * (10020 - D/(100 — 1) = 1039, a number too huge to be processed with

a reasonable amount of processing power in a reasonable time.

Recursion on large databases tends to run into combinatorial explosion.
Combinatorial explosion is a major challenge in both Al and database-oriented
problem solving. But a DB problem solver usually searches an even larger

search space than an Al problem solver, due to the breadth-first flavor of DB
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operations that arises from exploring all possible solutions. Most Al problem
solvers use various heuristics to reduce the large search space. Obviously, use

of search constraints is critical in DB-oriented problem solving as well.

7.1.3. Query Constants in Recursive Rule Compilation

A recursive query processor should be ready to deal with various kinds of
query constants, which may be related to the initial condition (e.g., the depar-
ture port and time), the final condition (e.g., the arrival port), and the relation-
ship between the two (e.g., the total flight time and fare). For example, in the

query of Example 7.1, we have several query constants,

x.dpt = "Madison" and x.arr = "Shanghai" and x.dpttime > &
and x.dpttime < 11 and x.arrtime - x.dpttime < 30
and x.fare < 1000

The use of the query constants in recursive processing is a non-trivial prob-
lem. Query constants should be used as early as possible to reduce the search
space, but they can not be indiscriminately used at the beginning of iteration.
For example, the minimum fare x.fare > 800, if user poses such restriction in
the query, can not be used until the final stage, otherwise most possible answers
will be cut off at early iterations; while the maximum fare x.fare < 1000 must
be used at each iteration to terminate those flight paths with accumulated fares

exceeding $1000.

In the following sections we show how a recursive rule compiler can use

query constants at the right time and correctly.

7.1.4. Finding All Solutions vs. Finding Some Solutions

In the previous chapters we have developed algorithms which exhaustively

search for all solutions for a recursive query. However, many practical applica-
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tion problems, such as those listed in Table 7.1, require finding just a small por-
tion of all solutions, and it is certainly not the case that the best way to find one
or a few solutions is always to find all possible ones and then to select from
among them. When addressing the problem of finding only some from among
all possible solutions, one can often use various search constraints, planning
techniques, and other kinds of heuristics that expedite finding solutions at the

cost of ruling out some possible solutions.

For example, in the query of Example 7.1, all the flights from Madison to
Shanghai include flights via tiny intermediate ports, flying back-and-forth, etc.
Most users are not interested in seeing such solutions although they would

definitely be included in the set of all possible solutions.

7.1.5. User Transparency

An important advantage of a relational interface over network or hierarchi-
cal database interfaces is a high level view of databases and a high level query
interface. Considering high level relational query interface, recursive extension
is preferable to the procedural extension of relational languages [Aho 79] in pro-
cessing of least-fixed-point queries. When applying domain-specific knowledge,
we will encounter the problem of specifying and using diverse kinds of

knowledge while preserving a high level query interface.

7.2. A SOLUTION: KNOWLEDGE-DIRECTED RECURSIVE RULE COM-
PILATION

Our solution to these problems is knowledge directed recursive rule
compilation. In this section, we study compilation using termination con-
straints, search constraints, and query constants. A  modularized

knowledge-directed recursive rule compiler is presented in the next section.
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7.2.1. Termination for Monotonic Functions

The termination problem for recursion containing evaluable functions can
frequently be solved by using bound information and characteristics of a mono-

tonic function. Such information is available in many application problems.

7.2.1.1. Monotonic Functions and Termination Constraints

In a function definition, if the value of the function increases or decreases
monotonically when the value of the function argument increases, it is a mono-
tonic function; otherwise, it is a non-monotonic function. For example, f(x)
=2*x +agand fix}) = 1 — x3 are monotonic functions, while f(x) = random(x)
is a non-monotonic function. Even for some nonnumeric functions, there may
still exist some monotonic characteristics of the function. For example, concate-
nation of lists makes the length of the resulting list monotonically grow, so we

consider concatenation a monotonic function.

In Example 7.1, fare is defined by a monotonic function,

Fare = Fare|+ Fare,

Suppose a user specifies an upper bound in the query, such as

x.fare < 1000

Because iterative computation makes fare monotonically increase, a generated
tuple with fare beyond $1000 should be dropped since further exploration will
never meet the constraint x.fare < 1000. Based on monotonicity characteristics,
the more iteration, the more generated tuples will be dropped from the new flight
buffer relation. There must be a time when all tuples have been dropped from
the buffer and it becomes empty. That is the termination point. Bound informa-
tion is useful at the termination of a monotonically increasing or decreasing

function. Thus we call such bound information a termination constraint.
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Theorem 7.1. If a recursive rule contains an evaluable function definition on
an attribute, and the function value increases or decreases monotonically when
the attribute value increases, the search in the database using the recursive rule
terminates when the attribute value of every driver tuple increases or decreases

beyond a termination constraint.

Proof Sketch

(1) According to the recursive rule compilation discussed in previous chapters,
the compilation process transforms recursion into iterative execution. Sup-
pose the attribute value monotonically increases in iteration. At some itera-
tion, the attribute value of a driver tuple surpasses the upper bound. Then,
future iterations can only generate values greater than the upper bound.
That is, further exploration from this tuple cannot generate any new value

which meets the query requirements.

(2) According to the monotonic behavior of the attribute functional definition,
iteration makes every driver tuple grow. Eventually, all tuples will grow
beyond the upper bound. If all driver tuples are beyond the bound, there
will be no new tuple generated by further iteration. The process terminates

at this point. O

However, there is no such termination point for non-monotonic functions.
For example, for the function f(x) = random(x) each call will randomly generate
a number. No termination constraint can be applied to eliminate further explora-

tion.

7.2.1.2. The Specification of Termination Constraints

There are several ways to provide termination constraints for monotonic

functions.
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(1) User’s query implied: e.g., x.fare < 1000 in Example 7.1. It is important

to incorporate query constants in termination judgement, if at all possible.

(2) Expert specified: A termination constraint may be specified by a domain

expert.

(3) System exception: A termination constraint may be determined by a specific
system exception. For example, maxint (the maximum integer) can be used

by a system exception handler to terminate iteration.

A termination constraint may be discoverable from databases with mono-
tonic data distribution. For example, the birth_year of a person is always greater
than that of his or her parents, thus forming a monotonic data distribution in the
person relation. When a query asks for all John’s ancestors born in the 18th
century, search following any tuple with birth_year value less than 1700 should
terminate. Without utilizing a termination constraint, search still terminates
when all paths are explored, but it would be less efficient than with the applica-

tion of the termination constraint.

7.2.1.3. Determination of Monotonicity in a Database

There are two methods for determining monotonic characteristics in a data-
base: derivation and specification.

(1) Derivation: Derive monotonicity of a function definition or data distribution

by deduction from integrity constraints and recursive rule definitions.

For example, the monotonicity of the birth_year atiribute can be deter-

mined from the integrity constraint,

range of pl is person
range of p2 is person
define integrity pl.birth_year > p2.birth_year
where pl.fa = p2.name or pl.mo = p2.name
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For the virtual relation new_flight, using the integrity constraint

range of f is flight
define integrity f.fare > 0

and the new_flight definition where Fare = Farei+ Farep, we can con-
clude that Fare > Farej and Fare > Farey, which means that the summa-
tion of Fare is monotonic.

(2) Specification: Explicitly specify monotonicity of a function. For example,
the keywords upper bound and lower bound specify that a function is
monotonically increasing or decreasing. The specification upper bound
ffare specifies that f.fare is a monotonically increasing function. This

method is adopted in our language for RELPLAN.

7.2.2. Use of Search Constraint Rules

Search constraint rules are constraints applied in iterative search. They
represent restrictive information which, if used appropriately, may considerably

reduce search space.

In Example 7.1, we have two search constraint rules: (1) same-direction
constraint. the new flight path should have the same general direction as from
the start location to the final destination; and (2) lay-over time constraint. the

transfer time between two consecutive flights should be within some range.

In general, a constraint rule does not preserve the possibility of finding all
possible solutions derivable from other rules above, because it modifies the rules
by restricting the set of possible solutions. In database-oriented problem solving,
there are usually many constraint rules. The use of a sequence of constraint
rules is equivalent to incremental modification of recursive rules. The more con-

straint rules applied, the more precise knowledge provided, and the smaller
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search space to be explored. An important task is to find constraint rules and
selectively use them to keep database search within a reasonable cost and solu-

tion range.

The general mechanism of constraint use in recursive rule compilation is
similar to the ADDQUAL mechanism described in [Ston 84], but here we dis-

cuss some techniques for optimal processing.

When a knowledge rule is added to a recursive rule set, it often generates
what in effect is a loop invariant. Similar to the loop optimization technique in
compiler construction, a loop invariant should be moved outside of the loop
instead of repeatedly processed inside the loop. For example, for the looping

rule

R(x,y,1):— A(x,2,1),R(2,9,7).  ~ (7-1)
if a query has the form

?—R(x,y,a). (7-2)

a selection should be first performed on the base relation A4 to reduce the size of
the relation to be iteratively processed. After performing the selection, the loop-

ing rule becomes

R(x,):= A (x,2),R(2,Y). )
where A results from performing selection on 4, i.e.,

A (x,2):— A(x,2,0). (7-4)
and is usually much smaller than A4.

As another example, if we have a constraint C(z, b) added to (7-1), the

augmented rule becomes
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R(x,y,1):—A(x,2,1),R(2,y,1),C(z,b). (7-5)
The constraint should be computed before entering the loop to reduce the size of

the relations to be iteratively joined. Thus we have

R(x’y,t):‘Al (x,2,1),R(z,y,1). (7-6)
where

A (X,Z,I)Z—A(X,Z,I),C(Z,b). (7-7)

A practical example of such optimization is that in the air-flight reservation
example, if the constraint is flying via big-ports only, the big-port restriction
should be performed on the relation flight before starting iteration, to reduce the
size of the relation to be iteratively processed.
BigFlight(fno,dpt,arr ,dpttime ,arrtime , fare ). —
Flight(fno,dpt,arr,dpttime ,arrtime, fare),
Airport(arr,port_size,lat,long),

port_size > 10. (7-8)

7.2.3. Use of Query Constants in Recursive Database Search

Query constants play an important role in reducing iterative search in data-
bases. Query constants can be applied appropriately at different points: start,

iteration, and termination.
In the query of Example 7.1, query constants
x.dpt = "Madison” and x.dpttime > 8 and x.dpttime < 11

should be used at the start point to restrict the number of tuples to start with,

while

x.fare < 1000 and x.arrtime - x.dpttime < 30

should be applied in the iteration to cut off tuples out of bounds, and
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x.arr = ’Shanghai’
should be applied at the end of iteration to select the qualified answers.

In general, suppose we have a rule

R(x,y,f5t):—
AQSY S sWRG 3, [ FUEF 5 7)) (7-9)
where F is a function definition which defines f as dependent on the values f
and f".

We divide the variables of a recursive rule into five different classes: B-var,
F-var, L-var, R-var, and T-var. We call the extensional literal (A) in the
antecedent the extensional literal, and the intensional literal ( R ) in the
antecedent the recursive literal.

(1) A B-var is an induction base variable contained both in the consequent

literal and the extensional literal, e.g., x.

(2) An F-var is a function variable contained in the evaluable function defini-
tion, e.g., f, f and f".

(3) An L-var is a link variable which is not in the consequent literal but links

the extensional literal and the recursive literal in the antecedent, e.g., y' .

(4) An R-var is a recursive variable contained in both the consequent literal

and the recursive literal, e.g., y.

(5) A T-var is a through variable which passes through the consequent,

extensional and recursive literals in a recursive rule definition, e.g., .

Observe an iterative expansion of the above rule
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R(x,y,f,t):—
A,y 5 f 1),
A 5" M 51)s
R(Y",y:f"s1);
F(fi, 5 f")s
F(f>f 5 fi). (7-10)

We see that during the expansion: (i) B-vars always remain in the first exten-
sional literal; (ii) R-vars always remain in the recursive literal (if the intensional
literal is replaced according to an exit rule, the R-vars will be in the exit literal);
(iii) F-vars form a sequence of applications of the function definition; (iv) L-vars
do not appear in the consequent literal, hence will not interact with query con-

stants; and (v) T-vars always remain in every expanded literal.

For efficient processing, we may start from query constants in the position
of either B-vars or R-vars, whichever is the most selective point, and terminate
the iterative search using F-vars. The query constants in the position of R-vars
or B-vars that were not used for starting selection will be used for final selec-
tion. For a T-var position, if it does not contain a query constant, and it is not
contained in the query results, it is useless and should be projected off before
iteration; otherwise, if it contains a query constant, we should use the query
constant to reduce the size of the base relation to be iteratively processed. The

above discussion is summarized in the following algorithm.

Algorithm 7.1. Use of Query Constants in Compiling Transitive Closure

Rules.




1)

2)

(3)

“4)

(5)
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Classify the variables in the consequent literal into four sets: B, F, R, and

T.

If a query constant is in the T set, perform selection on the base relation
thus using the constant before iteration. Project off T-var positions before

iteration starts, if it is not contained in the final query result.

Choose the best selective point by comparing the selectivity on data relations
of query predicates involving constants in the B set and in the R set. Set
the winner as start set and the loser as the end set. To start the iteration,

use the query constants in the start set.

At each iteration, use the termination predicate (determined by the F set).
If there is no query predicate involving constants in the F set, use expert-
specified termination constraints. Collect solutions which satisfy the termi-

nation predicate into the result buffer.

After termination, the answers for the recursive query are obtained by
using the query constants in the end set to select from the result buffer

those tuples which satisfy the query. O

The algorithm is based on the discussion presented in this section, and it

implements the knowledge-directed compilation of RELPLAN presented in the

next section.

7.3.

MODULARIZATION OF DEDUCTIVE PROCESSES

In this section we present a knowledge-directed recursive rule compiler,

which is a primitive implementation of the principles discussed in the last section

and which preserves a high level relational query interface with a syntax similar

to that of QUEL. It constitutes the knowledge-directed compilation part of the

RELPLAN project.
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The design philosophy of the recursive query compiler has focused on the
modularization of the specification of recursive rules, search constraints, termi-
nation constraints, and other aspects of recursive rule compilation. Deductive
modules serve to classify diverse expert knowledge, realize search and termina-
tion constraints, isolate the interaction of different rules, and preserve high-level

view and high-level query interfaces.

7.3.1. The Architecture of the Relational Planner RELPI.AN

The architecture of RELPLAN is presented in Figure 7.2. The motivation
for developing such a relational planner has been to experiment with
knowledge-directed compilation and planning mechanisms for compiling recur-

sive database queries in relational DB systems.

RELPLAN uses expert knowledge to transform users’ deductive queries
into non-deductive query programs. Expert knowledge is coded in the form of
rules and entered into a rule base consisting of global rules and local rules. The
global rules are available for all scopes of deductive queries, while local rules
are confined to deductive and plan modules to be used only by queries that expli-
citly reference these modules. The transformation of a deductive query into a
non-deductive query program is based on the resolution principle. The output
query program of RELPLAN can be sent to query optimization routines to gen-
erate database access plans.

RELPLAN is implemented in C, using YACC running under UNIX. The
RELPLAN grammar, using extended BNF, is specified in Appendix 1.

Like other database languages, RELPLAN contains a data definition part
and a data manipulation (query) part. To ensure a high level query interface,
the RELPLAN query language is defined to be the same as the relational query

language QUEL, except that the entities that queries reference may also be
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Figure 7.2
The Architecture of the Relational Planner RELPLAN
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deductive modules. The data definition part, where rules and modules are speci-
fied, is the major enhancement over other relational languages. Rules are speci-
fied as virtual relation definitions, search constraints and other module rules
(such as start, iteration, bound, etc.) in deductive modules. A deductive module
contains (i) the specification of local schemas (for temporary generic relations to
be used during the problem solving process) and local rules, (ii) module rules,
and (iii) an optional planning section which contains local specification and plan-
ning steps. Each planning step contains planning rules which append, delete or

modify the corresponding module rules in the deductive module.

When processing a query which references a deductive module, RELPLAN
uses information provided in the query along with rules in the deductive module
to decide which planning strategy should be adopted and what constraints should
be used during the problem solving process. The query is then resolved by using
the knowledge provided in the rule base and/or in the deductive module. A
query program is generated with all virtual relations resolved and ready for

further processing in a relational database system.

7.3.2. Development of Deductive Modules

A deductive module is a module that consists of a group of rules, schemas
and built-in queries which form a problem solving package. 1t modularizes the
rule system and focuses the problem solving process on a small group of rules,
thus reducing search effort devoted to rule invocation as well as minimizing

interaction among different rules and goals.

A deductive module can be viewed by a database user as a virtual relation.
The module defines the procedures according to which instances of the virtual

relation are obtained.
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RELPLAN follows scope rules similar to the scope rules of conventional
block-structured programming languages, such as Modular. Rules, schemas
and built-in queries defined inside a module can be referenced and executed
only by the rules and queries inside the same module. User queries which
reference the module relation treat the module as an "abstract” virtual relation.
No individual rule or relation inside the module can be referenced by the user’s
query. Rules outside the module cannot reference rules inside. Rules inside the
module can reference rules in the global rule space but not those in other
modules. There can be declared and used inside the module a variable that

references the entire virtual (module) relation.

To facilitate iterative rule processing, which is a major motivation in the
design of deductive modules, a sequence of module rules can be defined within a
deductive module. The sequence specifies start condition, iteration, final condi-

tion, search constraints and upper and/or lower bounds.

Example 7.2. Specification of the deductive module flight for the air-flight

reservation problem.

Constraints and heuristic rules proposed by database administrators or
experts are considered as query independent knowledge which should be speci-
fied inside the module T, while user’s queries are considered as dynamic
requirements to be specified outside. The deductive module is presented in Fig-

ure 7.3.

The module flight contains several components: (1) definition of a local

generic relation new_flight; (2) local rules, e.g., the constraint rule

1 Rules inside a module can be modified, added or deleted by experts using
primitives similar to those for plan rules discusssed in the next chapter. This
feature is not hard to add but is not included in our prototype implementation.
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schema flight( fno, dpt, arr, dpttime, arrtime, fare)
airport(port, lat, long, size) /* lat : latitude, long : longitude */

module flight

schema new_flight( fno, flno, f2no, dpt, arr, dpttime, arrtime, fare)
range of mf is module flight

range of T is flight

range of n is new_flight
range of p0, pl, p2, p3 is airport
define constraint s : same_direction(dptl, arrl, dpt2, arr2) is
(p0.lat — pl.lat) * (p2.lat — p3.lat) > 0 and
(p0.long — pl.long) * (p2.long — p3.long) >0
where s.dptl = p0.port and s.arrl = pl.port and
s.dpt2 = p2.port and s.arr2 = p3.port

start — > retrieve into new_flight (f.fno, 0, f.fno, f.dpt, f.arr,
f.dpttime, f.arrtime, f.fare) where f.dpt = mf.dpt

iteration — > retrieve into new_flight (n.fno & f.fno, n.fno,
f.fno, n.dpt, f.arr, n.dpttime, f.arrtime, n.fare + f.fare)

constraint — > n.arrtime + 3 > f.dpttime and n.arrtime + 1 < f.dpttime
constraint for iteration — > same_direction(f.dpt, f.arr, mf.dpt, mf.arr)
upper bound — > (1) mf.fare  (2) mf.arrtime

end module

Figure 7.3. Example of A Deductive Module

same_direction; and (3) a sequence of module rules to specify initialization, itera-

tion, final states, constraints and bounds.
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The generic relation new_flight is used to iteratively generate flight paths
during the problem solving process. The local rules such as same_direction are
used for performing inference inside the module. The module rules include: (1)
general constraints, e.g., the lay-over time between two flights should be
between 1 to 3 hours (n.arrtime + 3 > f.dpttime and n.arrtime + 1 < f.dpttime),
and constraints for iteratively connecting the consecutive flights, e.g., flying in
the same general direction as the initial departure and the final arrival posed in
the query, i.e., same_direction(f.dpt, f.arr, mf.dpt, mf.arr); (2) initial state: the
portion of the base relation flight which has the same initial departure as the
user’s query; (3) iteration rule: iteratively connecting base relation flights to
obtain new_flight, where the departure of the tuples in flight is the same as the
arrival of the tuples in the generic relation new_flight, and (4) bound rules, used
for terminating the iteration and for implicit control of constraint use. In this
example, we specify that there must be an upper bound rule for fare or arrival

time. O

7.3.3. Compiling Deductive Queries Using Deductive Modules

Using a deductive module, a user query can be compiled into an iterative
query program with the rules in the module appropriately used. The rules inside
the module use the query constants to perform deduction and other query modif-
ication. The output is the modified query program, with rules resolved, query
constants used, and termination conditions determined. Such a compilation pro-
cess is called knowledge-directed compilation. Here we illustrate the compila-

tion process with the air-flight example.

Example 7.3. Compilation of an air-flight reservation query using the flight

module.
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Suppose a user wants to book a ticket from Madison to Shanghai. The fare
requested is less than $1000, and the total travel time is required to be less than
30 hours. The database query is formulated in QUEL and shown in Figure 7.4.

The resolved query program produced by RELPLAN is shown in Figure 7.5.
The compilation process proceeds as follows.

(1) Selection of the deductive module. The user’s query

range of x is flight
retrieve (x.dpttime, ...)
where ...

references the relation flight which is a deductive module, hence that
module is selected.

(2) Initialization: First we retrieve the data in the database which immediately

satisfy the query,

retrieve ( x.dpttime , x.arrtime , x.fare )
where x.dpt = "Madison” and x.arr = "Shanghai”
and x.fare < 1000 and x.arrtime — x.dpttime < 30

Then we apply the start rule to initialize the iteration, with the start vari-

ables x.dpt = "Madison” and termination constraints x.fare < 1000 and

range of x is flight
retrieve (x.dpttime, x.arrtime, x.fare)
where x.dpt = "Madison” and x.arr = "Shanghai”
and x.fare < 1000 and x.arrtime — x.dpttime < 30

Figure 7.4. RELPLAN Input: A User’s Deductive Query
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range of x is flight
range of n is new_flight

retrieve ( x.dpttime , x.arrtime , x.fare )
where x.dpt = "Madison” and x.arr = "Shanghai”
and x.fare < 1000 and x.arrtime — x.dpttime < 30

retrieve into n_ : new_flight (fno, flno, f2no, dpt, arr, dpttime, arrtime, fare)

wheren_.fno = x.fno and n_flno = 0 and n_.f2no = x.fno
and n_.dpt = x.dpt and n_.arr = x.arr and
n_.dpttime = x.dpttime and n_.arrtime = x.arrtime and

n_.fare = x.fare and x.dpt = "Madison” and
n_.fare < 1000 and n_.arrtime — n_.dpttime < 30

loop

range of p0 is airport
range of pl is airport
range of p2 is airport
range of p3 is airport
retrieve into n_ : new_flight (fno, flno, f2no, dpt, arr, dpttime, arrtime, fare)

where n_.fno = n.fno * 1000 + x.fno and n_.flno = n.fno
and n_.f2no = x.fno and n_.dpt = n.dpt and
n_.arr = x.arr and n_.dptime = n.dpttime and
n_.arrtime = x.arrtime aond n_.fare = n.fare + x.fare and

n.arrime + 3 > x.dpttime and n.arrtime + 1 < x.dpttime
and p0.port = x.dptand pl.port = x.arr and

p2.port = x.dpt and p3.port = x.arr and n_.fare < 1000
and n_.arrtime — n_.dpttime < 30

and ( pO.lat — pl.at ) *( p2.Jat — p3.lat ) > 0

and ( pO.long — pl.long ) * ( p2.long — p3.long ) > 0

retrieve ( n_.dpttime , n_.arrtime , n_.fare ) and deleten_: new._flight
where n_.dpt = "Madison” and n_.arr = "Shanghai”
and n_.fare < 1000 and n_.arrtime — n_.dpttime < 30

exit when new_flight is empty

end loop

Figure 7.5. RELPLAN Output: The Resolved Query Program
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x.arrtime — x.dpttime < 30 used.

The iteration part is enclosed inside a loop ... (loop body) ... end loop state-
ment and it is divided into three parts: (i) use the iteration rule of the
module with search constraints and termination constraints (the bound part
of the user’s query) added to generate new tuples, which are placed into a
generic relation; (ii) retrieve and delete from the generic relation the tuples
which satisfy user query requirements; and (iii) terminate when the generic

relation becomes empty.

The algorithm is summarized as follows,

Algorithm 7.2. Compilation of a Deductive Query Using a Deductive

Module.

(1)

2)

3)

The selection of a deductive module.

A deductive module, viewed by a database user as a virtual relation, is
selected when the query references the module relation.

Initialization:

(i) retrieve the data in the database which immediately satisfy the query.

(ii) initialize a generic relation by modifying the start rules as following: (a)
take the start rule as the central rule, (b) add query constants that match the
referenced variable of the start rule, (c) add query constants that match the
termination constraints, and (d) add search constraints if they are specified
to be applied to the start rule; and then execute the modified rules to derive

the relation.

Iteration:

If there is no iteration part in the deductive module because it has been
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deleted (see Section 8.3), the module is non-iterative and there is nothing

generated for the iteration part.

The iteration part will be enclosed in a loop .. end loop statement which

contains the following:

(i) retrieve data into the generic relation by modifying the iteration rules as
following: (a) take the iteration rule as the central rule, (b) add the query
constant that matches the referenced variable of the iteration rule, (c) add
the query constant that matches the termination constraints, and (d) add
search constraints if they are specified to be applied to the iteration rule.
The modified iteration part becomes a query with the format retrieve into

temporary relation, which will be iteratively executed.

(ii) Tuples in the generic relation satisfying the query requirements are

retrieved as portions of the answer and removed from the generic relation.
(iii) Iteration terminates when the generic relation becomes empty. O

7.4. SUMMARY: KNOWLEDGE-DIRECTED RECURSIVE RULE COMPI-
LATION

The knowledge-directed compilation technique we have studied can be sum-

marized as follows:

(1) Knowledge-directed compilation incorporates domain-specific knowledge in

recursive rule compilation to reduce the cost of database search.

(2) Functional symbols which cause termination problems in recursion can be
dealt with by using termination constraints and the monotonicity of func-

tions;
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Search constraints can be used to add more qualification requirements in

modifying recursive rules, hence serve to focus search.

Query constants are useful in performing selection first by using the most
selective information, determining termination, and reducing size of rela-

tions to be iterative executed.

A modularized knowledge-directed compiler has been realized in REL-
PLAN to perform knowledge-directed compilation while maintaining a

high-level query interface.




CHAPTER 8

PLANNING IN DATABASE ORIENTED PROBLEM SOLVING

In this chapter, we further investigate knowledge-directed recursive rule
compilation by developing a planning technique for compiling recursive queries
in relational databases. Planning is a hierarchical augmentation of recursive
rules with knowledge. We develop a two-phase planning technique in our rela-
tional planner: the first phase is determination of an appropriate plan stra-
tegy, and the second phase is generation of the query program according to
the selected strategy. The two phases (plan selection and plan generation)
constitute the planning section of a modularized plan module in RELPLAN.
The function of planning is demonstrated in an example, and analysis shows that
planning may drastically reduce the cost of iterative accessing of a relational

database.

8.1. PLANNING: A NECESSARY TECHNIQUE FOR DATABASE-
ORIENTED PROBLEM SOLVING

By planning we mean the development of a representation of a course of
actions before acting to solve a problem. Planning is widely used in Al problem
solvers [Sace 77][Nils 80]. For complex problem solving in expert database sys-
tems, planning will also be a necessity. This is illustrated by the air-flight reser-
vation problem.

In the air-flight reservation problem, if a traveller wants to fly from a small
port to another small port a long distance away, experience suggests that we
schedule the flight path as follows: first fly from the departure airport to a neigh-

boring big airport, then fly to a big airport near the destination via big airports

152



153

only and in the same direction as from the start to the final destination. The
final flight should be the flight from this adjacent airport directly to the final des-
tination. Because most small airports are ignored in such scheduling, the

search space is reduced considerably.

This scheduling technique results from a quite useful planning strategy
called means-ends ana.lysis [Newe 72], which compares the goal with the
currently achieved state, extracts a difference between them, and then selects a
relevant operator to reduce the difference. The small-big-big-small flight plan is
a hierarchical representation that divides the search space into different search
space, uses different search constraints at different search space, and avoids con-

sideration of most small ports in scheduling long distance travel.

There are at least two alternative approaches to developing a planning pro-
cess: a top-down approach and a bottom-up approach. In the top-down
approach, we first find a path of consecutive flights from a big airport near the
initial departure airport to a big airport near the final destination, then find local
flights connecting to these big airports. In the bottom-up approach, we first find
a flight from the initial departure to a neighboring big airport, then find a path
of flights from this airport to a big airport near the final destination, etc. We

demonstrate our planning mechanism using the bottom-up approach.

8.1.1. Different Kinds of Knowledge: Constraints, Plans, and Heuristics

A planning process is guided by planning rules: rules that capture planning
knowledge. Similar to Al problem solving, database oriented problem solving
needs various kinds of knowledge rules. In the last chapter, we studied the use
of constraint rules in recursive rule compilation. In this chapter we study the
specification and application of planning rules. Heuristic rules will be briefly

discussed as raising future research issues.
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Planning rules and heuristic rules are different from constraint rules. A
constraint rule is a uniform application of expert knowledge across the entire
scope of the recursive rules. In effect, it serves to confine and thus reduce the

total search space.

A planning rule is hierarchical application of expert knowledge. A plan-
ning process partitions the search space for a recursive rule into a hierarchy.
Each level in the hierarchy constitutes a separate search space and may involve
different constraints and heuristics. For example, planning may divide the flight
from Madison to Shanghai into two stages: first flying from Madison to a big
nearby airport such as Chicago, or Minneapolis, then flying from that port to
Shanghai via big ports only. In the different stages, database search strategies

may apply quite different search constraints.

A heuristic rule represents knowledge to be applied for controlling heuris-
tic search. It is neither uniform across the entire scope of the recursive rules,
nor hierarchical in its effect upon the shaping of search. For example, if a user
asks for an inexpensive flight, the problem solver may dynamically decide to
explore some promising initial paths and prune away others that appear
unpromising, based on cost estimates (i.e., estimates of final cost made before a
path is completed and cost can be computed exactly). Other heuristic criteria on
which pruning is based might include search depth, path length, accumulated
search cost, the number of tuples generated for the next search step, etc. The
application of heurisfic rules to recursive database search is an interesting topic

for future research.

8.1.2. Planning in Database-Oriented Problem Solving: A Hierarchical

Search Mechanism
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The partitioning of the search space into a structure of hierarchical, staged
search spaces is called planning in the Al literature. In solving recursion prob-
lems for database systems, we need planning in just this sense, i.e., for parti-
tioning the search space into a structure of hierarchical, staged spaces and then

applying the appropriate constraints and heuristics for each partition.

Suppose we want to fly from Madison to Suzhou (a small city near
Shanghai). The small-big-big-small planning strategy should be adopted, thus
partitioning the original problem into three different stages: small-big, big-big,
and big-small. The two local flights, small-big and big-small involve only one
flight step each. The major search cost will be for finding big-big flight paths.
To reduce this cost various constraints should be applied. If the problem is par-
titioned and the search for big-big flight paths is distinguished from the local
searches, appropriate constraints can be applied at exactly those points where
they will do the most good. There are at least two other advantages in proceed-
ing this way:

(1) Smaller data relations are iteratively processed.

The data relation flight is confined to airports containing big ports only. A
restriction like
(farr = p.port or f.dpt = p.port) and p.size > 10

should be executed before entering the loop, thus drastically reducing the

size of the data relation to be iteratively joined.

(2) Fewer iterations.

Because each big-big flight flies a longer distance and consumes more time
and money, fewer iterative joins need be performed to meet the given

bound constraints.
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8.2. PLANNING PHASES

In the air-flight reservation problem, the small-big-big-small strategy is only
one of several possible strategies. The user may pose different queries that
require different strategies. The best strategy is query and data dependent, and
its selection is prerequisite to correct application of the planning mechanism.
Thus we need first select the appropriate planning strategy, and then generate the
actual plan according to the selected strategy. These constitute two separate

phases in the planning process.

If a user wants only a local flight, say, from Madison to Chicago, the
planner doesn’t need to consider any hierarchical partitioning. If a user wants a
flight from New York to Tokyo, the planner should construct flight paths via big
ports only. If a user wants a cheap flight from Los Angeles to any city in north-
ern England, the planner must consider arriving at both big and small ports in

northern England. Different queries clearly require different planning strategies.

A flexible planning mechanism must be able to select different strategies for
different situations. Similar to advice typically given for building expert systems,
our advice is that the various plan strategies should be specified by problem
domain experts (though we do not exclude the possibility that in some future
development, the strategies may be discovered or learned by more intelligent sys-
tems). Our emphasis is on providing the experts with a formalism for specifying
the strategies and on developing a mechanism for automatically selecting plan
strategies appropriate for particular user queries and for the data stored in the
database.

The selection of an appropriate strategy is not hard for a human expert. A

travel agent can easily choose the best strategy according to the different require-

ments of his customers — because he has good knowledge of geography and of
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the air transportation system.

If a system is designed to automatically select the best strategy, it must pos-
sess the same kind of knowledge. Such knowledge is usually stored in the data-
base or rule base, e.g., airport and air-flight information. We must retrieve and
examine such information to determine an appropriate strategy. The retrieval
and examination constitute the first distinct phase in planning. The generation
of a query program for further database retrieval according to the selected stra-
tegy can only be done after a strategy is selected and constitutes a second distinct

phase.

8.2.1. The First Phase: Selection of a Planning Strategy

Because a planning strategy is usually query and data dependent, the selec-
tion of an appropriate strategy should take into consideration both query con-
stants and data in the database. In the air-flight reservation problem, there may

be several planning strategies as in Table 8.1.

size_of_dpt size_of_arr distance plan_strategy
any any < = 100 miles local

> 10 > 10 > 100 miles big_big

> 10 <= 10 > 100 miles big_big_small

<= 10 > 10 > 100 miles small_big_big

<= 10 <= 10 > 100 miles small_big_big_small

Table 8.1. Different Planning Strategies for Different Queries
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In the strategy selection phase, we still use set-oriented relational operations
in order to facilitate implementation of the planner in relational database sys-
tems. We specify several tiny relations as planning relations using local sche-
mas, with one relation for each planning strategy. For the air-flight example,
there will be a separate such planning relation for each row in Table 8.1. Dur-
ing plan strategy selection, data is retrieved from global databases into the plan-
ning relations, based on query constants. This retrieval will generate one or
several tuples for some planning relations. Such tiny relations can be stored in
buffer space for immediate and efficient accessing. Strategy selection is based

on which planning relation is non-empty.

If there is some planning relation which is non-empty, the corresponding
strategy is selected and the planner uses the information contained in the non-
empty planning relation to generate a detailed plan. If there is more than one
non-empty planning relation, more than one planning strategy will be selected,
and several plans will be generated according to the different selected strategies.
This would be the case, for example, if a user wants to book some flights from
Madison to any port in northern England. Shared processing can be explored
for the coordination of several similar plans, but we do not pursue this possibil-
ity in this thesis.

For our air-flight example, we implement the first phase as follows: (1)
specify the planning relations, one relation for each planning strategy; (2) based
on the information provided in the query, retrieve airport information from the
database into the planning relations; and (3) use the non-empty planning rela-
tions to determine the selection of planning strategies. For the example, we

specify five planning relations:
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Local (dpt, arr), which represents that the departure port is quite close to
the arrival port and only local scheduling is needed. The other planning

relations are for non-local flight schedules.

Big_Big ( dpt, arr), which represents that both the departure and the arrival
ports are big ports, and scheduling flights via big ports only is the correct
strategy.

Big_Small (dpt, arr), which represents that the departure port is a big port
but the arrival port a small one. The planner will suggest flying 10 a big port
near the destination via big ports only and then flying directly to the destina-
tion.

Small_Big (dpt, arr), which represents that the departure is a small port and
the arrival is a big one. The appropriate planning strategy is worked out
accordingly.

Small_Small (dpt, arr), which represents the departure port is a small port
and the arrival port a distant small one. The planning strategy for this case

will be described here in more detail.

In the strategy selection phase, we use user query information to retrieve

airport information into the five planning relations -— Local, Big Big,

Big_Small, Small_Big and Small_Small. The retrieving queries are stored in the

planning section of the plan module. One example query is as follows.

Example 8.1. A query specified in the plan module flight for plan selection.

Here we demonstrate a query in Figure 8.1 for plan selection which

retrieves information into the planning relation, Small Small, based on the

user’s query and data stored in the database.
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range of pl, p2 is airport
retrieve into s : Small_Small(dpt = pl.port, arr = p2.port)
where

pl.port = mf.dpt and p2.port = mf.arr
/* pl and p2 are both small ports */
and pl.size < 10 and p2.size < 10
/* Two ports are located beyond local distance */
and pl.lat — p2.1at > 5 and pl.lat — p2.lat > -5
and pl.long — p2.long > 5 and pl.long — p2.long > —5

Figure 8.1. A Built-In Query for Plan Selection

In most cases, the retrieval in plan selection will result in only a small
number of tuples being pulled into one of several planning relations. The query
asking for flights from Madison to Suzhou will result in only one tuple in the

Small_Small relation. O

8.2.2. The Second Phase: Plan Generation

The second phase of our planning is the generation of a query program
based on the strategy selected and on the tuples in the planning relation. The
non-empty planning relation indicates what strategy is to be selected, while the
tuples in the planning relation provide more information based on query con-

stants for generating the final plan.

For the query asking for flights from Madison to Suzhou, the planning
relation Small_Small will end up containing a single tuple with two attributes
s.dpt = "Madison" and s.arr = "Suzhou". From this, (1) the strategy

Small_Small should be selected, and (2) two query constants are provided for the



161

generation of the final plan.

In RELPLAN, we use the following syntax to specify use of the selected

strategy,
for tuples in variable: planning relation_name do
query program generation

end for

In the query program generation part, we specify several steps which
correspond to the plan hierarchy. Each step defines specific constraints and
heuristics for its search space. Each step consists of a set of rules which specify
modification of rules stored in the non-plan part of the deductive module. The
modification consists of adding constraints and changing start condition and/or
final conditions. After the plan is selected, the modification rule for each
hierarchy level determined by the selected plan is executed. The execution gen-

erates a compiled query program based on modified rules and query constants.

8.2.3. The Function of the Plan Module in Plan Generation

In RELPLAN, planning is prescribed with a plan module. A plan module
is a deductive module augmented with a planning section at the end of the
module. The planning section is divided into two parts for the two-phase plan-
ning. The first part consists of a set of query statements which retrieve informa-
tion for the selection of the planning strategy. The second part consists of one
or more planning steps for each possible planning strategy. Each such step
serves to modify some module rules of the deductive module that precedes the
planning section. The modification instructions are coded using syntax similar
to that of QUEL. The syntax for the planning section is also specified in the

extended BNF in Appendix 1. Figure 8.2 is the structure of the planning section
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Planning Strategy Selection

Local Schema (for planning relations)
Built-in Queries
retrieve into

planning relation

where ...

Retrieval Program Generation

(plan rules for each planning relation)

for wples in  var : planning relation

do
step 1: (plan rules)

step 2:  (plan rules)

......

end for

The Structure of the Planning Section of RELPLAN

Figure 8.2
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Example 8.2. The specification of one step of the plan generation part for the

planning strategy Small_ Small.

In the planning strategy Small_Small, the second step is to fly from a big
airport iteratively to a big airport which is near the destination. The modification

rules in this step are as in Figure 8.3.

The first rule append ... restricts the arrival port to being a big airport,
which reduces the size of the data relation to be iteratively searched. The second
rule replace ... changes the final state of the iteration (the arrival port) from the
final destination port to a port near it. (The final destination port is stored as

s.arr = ... in the small planning relation.) O

A plan module is generally much longer than a deductive module without a
planning section, because it contains plan selection and plan generation opera-
tions for each possible planning strategy. But the generated iterative query pro-
gram will not be as complex as one might conclude from looking at the plan
module. For example, for the planning strategy Local, the iteration part in the

plan generation part is deleted, and the query program generated is just a one-

step 2: /* flying from a big port to a big port which is close to the
destination by via big ports only. */

append constraint for iteration — > f.arr = pl.port and pl.size > 10
replace final — > n.arr = pl.port ands.arr = p2.port and

pl.lat — p2.lat < 5 and pl.lat — p2.lat > —5
and pl.long — p2.long < 5 and pl.long — p2.long > —5

Figure 8.3. Plan Modification Rules in One Plan Step of Plan Generation
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step simple retrieval. And, even for a complex planning strategy such as
Small_Small, the generated program will be much more efficient than would be
a program generated without the tailoring done by the planning section. This

will be demonstrated in Section 8. 4.

Example 8.3. The structure and planning rules of the plan module flight.

The planning section of the plan module flight in RELPLAN is shown in Figure
8.4. To simplify our discussion, only the case Small_Small is demonstrated.
The other four cases, Local, Big_Big, Big_Small and Small_Big, are not included

in the figure. O

8.3. COMPILATION OF RECURSIVE RULES ACCORDING TO PLAN-
NING STRATEGIES

A query program is generated by the execution of the modified deductive
module. The generation is similar to what is described in Section 7.3 with the
difference being that the generation of a query program using planning tech-
niques uses modified rules, while the one without planning directly uses the

rules stored in the non-plan section of the deductive module in RELPLAN.

Algorithm 8.1. Compilation of Deductive Queries Using Planning Tech-

niques.

(1) Phase 1: The selection of planning strategies.
(i) The plan selection is performed based on the rules and queries specified
in the plan selection part of the planning section;
(ii) The queries specified in the plan selection part are executed against the
user’s query and data stored in the database;
(iii) The execution of the queries possibly results in some non-empty plan-

ning relations. Each non-empty planning relation triggers selection of a
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module flight

......

plan — >

schemaSmall_Small(dpt, arr)

......

retrieve into Small.Small(pl.port, p2.port)
where . .

......

for tuples ins : Small_Small do

step 1: /* First fly to a big port in one step. */
append constraint for start — > f.arr = pl.port and pl.size > 10
delete iteration

step 2: /* Then fly via big ports only to a big port
which is close to the destination. */
append constraint for iteration — > f.arr = pl.port and pl.size > 10
replace final — > n.arr = pl.port and s.arr = p2.port
and pl.lat — p2.lat < 5 and pl.lat — p2.lat > —5
and pl.long — p2.long < 5 and pl.long — p2.long > —5

step 3: /* Finally fly from that port directly to the destination. */
delete iteration

end for
end module

Figure 8.4. The Planning Part of a Plan Module in RELPLAN

particular planning strategy.

(2) Phase 2: Plan generation.
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A plan-based retrieval program is generated based on each plan strategy

selected and the user’s query. It has the following steps:

T

For each plan step, do
(i) modify the module rules in the deductive module as instructed by the
planning rules. Instructions will be to append, delete or replace the module
rules originally in the deductive module with rules specified in planning
section;

(ii) generate the query program based on the modified module. The query
program generation is based on the algorithm (Algorithm 7.1) for the gen-
eration of query programs from deductive modules containing no planning

sections. O

The algorithm is demonstrated by the following example.

Example 8.4. Apply the planning technique to generate a query program for the

query " retrieve flights from Madison to Suzhou.”

User’s query :

range of x is flight
retrieve (x.dpttime, x.arrtime, x.fare)
where x.dpt = "Madison” and x.arr = "Suzhou”
and x.fare < 1000 and x.arrtime — x.dpttime < 30

Figure 8.5. A User’s Deductive Query for Planning

f If the planning relation is empty, the for statement is skipped. This serves
as the test for which planning strategy has been selected.



The plan-based query program that results from RELPLAN:

/* Only the second phase, plan generation, is demonstrated here. */

range of x is flight
retrieve (x.dpttime, x.arrtime, x.fare)
where x.dpt = "Madison” and x.arr = "Suzhou”
and x.fare < 1000 and x.arrtime — x.dpttime < 30

range of pl is airport

retrieve into n_ : new_flight (fno, flno, f2no, dpt, arr,
dpttime, arrtime, fare)
where n_.fno = x.fno andn_.flno = 0 and n_.f2no = x.fno
and n_.dpt = x.dpt and n_.arr = x.arr and
n_.dpttime = x.dpttime and n_.arrtime = x.arrtime and
n_.fare = x.fare and x.dpt = "Madison” and x.arr = pl.port
and pl.size > 10 and n_.fare < 1000
and n_.arrtime — n_.dpttime < 30

loop

range of pl is airport
range of p2 is airport
/* Collect the new_flights whose arrival are close to the destination */
retrieve into tmp_relation and delete new_flight
where
n.arr = pl.port and s.arr = p2.port
andpl.lat — p2.lat < 5 and pl.Jat — p2.lat > —5
and pl.long — p2.long < 5 and pl.long — p2.long > —35

range of n is new_flight

range of p0 is airport

range of p3 is airport

/* Obtain new_flights by connecting the old new_flights
with the flights which meet the constraints. */

retrieve into n_ : new_flight (fno, flno, f2no, dpt, arr,
dpttime, arrtime, fare)
where
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n_.fno = n.fno & x.fmo and n_.fino = n.fno and n_.f2no = x.fno
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andn_.dpt = n.dpt andn_.arr = x.arr and n_.dpttime = n.dpttime
and n_.arrtime = x.arrtime and n_..fare = n.fare + x.fare

and n.arrtime + 3 > x.dpttime and n.arrtime + 1 < x.dpttime
and p0.port = x.dpt and p-mg.port = x.arr and

p2.port = x.dpt and p3.port = x.arr and x.arr = pl.port

and pl.size > 10 and n_.fare < 1000 and

n_.arrtime — n_.dpttime < 30 and

( pO.lat — p.mg.lat ) * ( p2.lat — p3.lat ) > 0

and ( p0.long — p_mg.long ) * ( p2.long — p3.long ) > 0

exit when new_flight is empty
end loop
range of n is tmp_relation

/* Flying from the port which is close to the destination directly to
the final destination. */
retrieve into n_ : new_flight (fno, flno, f2no, dpt, arr,
dpttime, arrtime, fare)
where
n_.fno = n.fno & f.fno and n_.flno = n.fno and
n_.f2no = f.fno and n_..dpt = n.dpt and
n_.arr = f.arr and n_.dpttime = n.dpttime
andn_.arrtime = f.arrtime and n_.fare = n.fare + f.fare
and n.arrtime + 3 > f.dpttime and n.arrtime + 1 < f.dpttime
and n_.fare < 1000 and n_.arrtime — n_.dpttime < 30

retrieve ( n_.dpttime , n_.arrtime , n_.fare )
where
n_.dpt = "Madison” and n_.arr = "Suzhou” and
n_.fare < 1000 and n_.arrtime — n_.dpttime < 30

Figure 8.6. The Generated Query Program that Results from Planning

The generated query program can of course be sent to a relational query

optimizer for further optimization.
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8.4. THE PERFORMANCE GAIN FROM PLANNING IN DATABASE
ORIENTED PROBLEM SOLVING

The planning process in Example 8.4 generates a longer query program
than one not based on planning. People may wonder whether the program will
result in more efficient processing. Next we examine the processing efficiency
measured by the number of tuples generated during the iterative searches of

each program.

Suppose there are 100 k tuples in the database, each requiring 100 bytes, in
the relation flight and 5 k tuples, each requiring 100 bytes, in the relation port.
The total database of 10.5 megabytes cannot be processed by main memory algo-
rithms, so database processing is a necessity. Suppose that the average cost of
each local flight is $50.00 and of each flight from one big port to another is
$150.00. Then the average number of flight connections (iterations) for a max-
imum $1000 fare is twenty, if via both big and small ports, and seven, if via big

ports only. We divide the discussion into several cases:

(1) Bare iterative search without any restriction and with the user’s query pro-

cessed at the end.

The process will never terminate because without restriction iteration will
generate an infinitely large number of tuples in the generic relation
new_flight.

(2) Iterative search with user’s bound information used during iteration.

With bound information (e.g., maximum fare $1000) used, the iteration
will terminate. Suppose the average join selectivity is 1073, and the initial
start state has 10 tuples selected. The second iteration will generate 10 *

1073%10% = 1000 tuples. The total number of tuples processed in 20 times
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would be : 10 + 1000 + ... + 10 * 100! = 10 * (1002 - 1)/(100 - 1) =
103°, a number too huge to be processed in a reasonable amount of com-
puting time.

Iterative search with (2) and the same-direction constraint used.

With the same-direction constraint used, the join selectivity will be improved
by about four times, and the total number of tuples processed would be: 10
+ 10 25 + ... + 10 * 2519 = 10?7, a significant reduction but still too

huge to be processed.

Iterative search with (3) and the lay-over time constraint used.

With the lay-over time constraint used, assume that the selectivity will be
increased by about a factor of 10, so the total number of tuples processed
would be: 2.5 + 2.5%2 + ... + 2.520 = 1.6%10%, another significant reduc-

tion, which may or may not require reasonable processing power.

Jterative search with (4) and planning technique used:

With our planning technique used, the search on small ports is limited to
the end of the search. The average number of iteration will be significantly
reduced. Suppose the number of iterations is reduced to eight in our exam-
ple. The total number of tuples processed would then be: 2.5 + 2.5 +

+ 2.58 = 2500. The planning technique contributes significantly
because it reduces the average number of iterations from 20 to 8. Note
here we have just considered the effect of fewer iterations. If we were also
to consider the reduction in the size of the relations to be iteratively joined
at each iteration (restricted to big ports only), we obtain an even better cost

reduction.
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Method Search Strategy Tuples Generated Comparison
1 Bare iteration Infinity Infinity
2 Use of bounds 10 4%1034
3 2 + one-direction 1027 41022
4 3 + lay-over time 1.6%10% 64000
5 4 + planning 25000 1

Table. 8.2. Search Efficiency Using Knowledge and Planning

Taking the processing cost for the case using planning to be unity, we com-
pare costs in Table 8.2. We use the number of tuples generated as a rough cost
measurement. The table shows that the more knowledge is applied, the more
focused and efficient the search is. Planning clearly can play an important role

in achieving efficient search in recursive database problems.

Although our coarse estimation only estimates order of magnitude differ-
ences in the number of tuples processed, it is reasonable to expect that more
detailed simulation and performance testing would give comparable results in

favor of knowledge-based constraints and planning.

8.5. SUMMARY: PLANNING IN DATABASE ORIENTED PROBLEM
SOLVING

The planning techniques we have studied can be summarized as follows:

(1) Planning is hierarchical space shaping with expert knowledge. It is to be
distinguished from search reduction with constraints and with heuristic

rules.
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4)
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(6)
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Planning should enable flexible use of different planning strategies for dif-
ferent queries and different kinds of data. A planning process should have
two-phases: the selection of a planning strategy and the generation of a

plan-based retrieval program according to the selected strategy.

The strategy selection phase uses built-in queries to decide an appropriate
strategy. The selection is based on information from the user query and

retrieved from the database.

The retrieval program generation phase is performed by modification of
rules in a deductive module, according to selected planning strategy, using
the user query and the the modified rules to generate a plan-based retrieval

program.

A plan module in RELPLAN implements this two-phase planning technique
at the same time preserving a high-level query interface. The planning

mechanism is transparent to database users.

By adopting different search constraints and heuristics for different hierar-
chy levels, planning may considerably reduce search cost in database

oriented problem solving.



CHAPTER 9

CONCLUSIONS AND FUTURE RESEARCH ISSUES

9.1. CONCLUSIONS

In this thesis, we have studied two related approaches for compiling and
processing relational queries involving recursive rules: pattern-based recur-
sive rule compilation and knowledge-directed recursive rule compilation

and planning.

9.1.1. Pattern-Based Recursive Rule Compilation

Recursive rules are transformed and classified into several classes according
to their recursion patterns. We have studied three kinds of compilation and pro-
cessing algorithms for different classes of recursive rules: transitive closure
algorithms, SLSR wavefront algorithms, and stack-directed compilation

algorithms.

For processing rule sets in the transitive closure class, we studied several
algorithms and found the & Wavefront algorithm to be preferable. For rule
sets in the SLSR (Single Looping rule with a Single Recursion point) class, we
compared four different evaluation algorithms using analytical models and per-
formance tests, and we concluded that the Single Wavefront algorithm per-
forms the best in most cases. Stack-directed compilation algorithms were
introduced for recursive rule sets with more complex forms of recursion, and we
studied an SLMR rule set with acyclic databases. For shared processing, we pro-
posed the use of two kinds of wavefront relations: wavefront and potential
wavefront. Performing selection first and making use of previous process-

ing results (wavefronts) are two important heuristics to reduce query
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processing cost, and they are common heuristics for all these algorithms.

By comparing different kinds of recursive rules and their respective compi-
lation techniques, we have observed an interesting evolution of the compilation
techniques. The more complex the recursion, the less "pure” the compilation.
That is, for more complex recursion, expansion and termination of "compiled”
formulas cannot be completely isolated from the deductive resolution and the
entire process takes on aspects of interpretation. The ordered generation of
compiled formulas is a depth-first process while the processing of compiled for-
mulas using set-oriented relational operations can be a breadth-first process.
The deductive compilation and processing of recursive queries in relational data-
bases is thus essentially an integration of breadth-first and depth-first search

paradigms.

9.1.2. Knowledge-Directed Recursive Rule Compilation and Planning

For solving database-oriented application problems, we have studied the
application of Al techniques in compilation and evaluation processes, and we
introduced knowledge-directed recursive rule compilation and planning.
Our approach incorporates functional definitions, domain-specific knowledge,
query constants, and a planning technique into the compilation of recursive

queries.

Knowledge-directed compilation incorporates termination constraints,
search constraints, and query constants into the compilation of recursive rules.
Planning partitions the search space hierarchically and enables utilization of dif-
ferent constraints for different levels. We proposed a two-phase planning tech-
nique: selection of an appropriate planning strategy and generation of a

database accessing plan according to the selected strategy.
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We have designed and implemented a knowledge-directed relational
planner, RELPLAN, to experiment with knowledge-directed compilation and
planning while maintaining a high level query interface. We have shown that
knowledge-directed recursive rule compilation and planning can result in signifi-

cant performance improvements.

The two approaches, pattern-based recursive rule compilation and
knowledge-directed compilation and planning, are complementary in many
ways. The former is the basic approach for compiling recursive rules, while the
latter adds ideas from Al research for reducing the search space in processing.
The former emphasizes the techniques of deductive query compilation and rela-
tional query processing, while the latter applies Al search and planning tech-
niques. Integration of the two approaches reflects the contemporary confluence

of research in Al, logic, and database systems.

9.2. LIMITATIONS OF OUR RESEARCH

The algorithms we studied need to be implemented and validated in real
systems. More efficient algorithms need to be designed and researched in
depth. We have observed several limitations of our research results. Some are
explicitly presented here, and others are implied in our discussion of future

research issues.

(1) Customization of algorithms for efficient processing.

Our stack-directed compilation algorithms, though general, may involve
costly processing. More customized algorithms and processing techniques

for specialized recursion patterns should be explored in depth.

(2) The procedural flavor of RELPLAN’s deductive and plan modules.
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RELPLAN’s deductive and plan modules, though preserving a high-level
user view and query interface, have a procedural flavor. In RELPLAN, a
looping rule is specified in iterative form rather than recursive form, and
other module rules are represented in rigid, stereotyped forms. Such
specification discourages more flexible control of the compilation process.
For example, the start rule dictates the iteration start point and excludes any

other start points (such as backward search).

(3) Automatic construction of planning strategies.

In RELPLAN, planning strategies are constructed by human experts. The
proposed system certainly cannot automatically construct a planning stra-
tegy. More intelligent systems should be capable of discovering planning
rules from analysis, from experience (learning), or by deduction from other

rules. This is a most interesting topic for Al research.

(4) Knowledge-directed compilation and planning for complex recursion.

Our research on knowledge-directed compilation and planning focused on
transitive closure recursion. For compiling more complex recursion, the
knowledge-directed compilation and planning techniques we have investi-

gated will almost certainly have to be significantly extended.

9.3. PROPOSALS FOR FUTURE RESEARCH

We propose for future research: (1) development of a comprehensive recur-
sive query compiler, (2) research on breadth-first flavored heuristic search, and

(3) development of a plan database.
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9.3.1. Development of a Comprehensive Recursive Query Compiler

An immediate software development project, which applies the theories and
algorithms studied in this dissertation, is to develop a comprehensive

knowledge-directed recursive rule compiler for relational database systems.

Such a compiler would function as a deductive front-end similar to our
relational planner RELPLAN, but it would be different from RELPLAN in two
aspects: (1) it would deal with rules in declarative recursive forms instead of
procedural iterative form, which would radically change the means of user con-
trol; and (2) it would deal with more complex recursive rules, in particular,
those requiring SLSR wavefront algorithms and stack-directed compilation algo-

rithms.

The proposed compiler would contain the following components: (1) recur-
sive rule transformation routines (based on the discussion in Chapter 3), (2)
knowledge use and planning (based on Chapters 7 and 8), and (3) pattern-based

recursive rule compilation (based on Chapters 4 through 6).

The construction of such a knowledge-directed recursive query compiler is
not just a software development project. It would involve some interesting
research issues, e.g., those associated with the development of a comprehensive

high-level recursive query interface.

9.3.2. Breadth-First Flavored Heuristic Search

The proposal for studying breadth-first flavored heuristic search is based on

the following observations:

(1) Different search philosophies for expert systems and database systems.

Different search philosophies are adopied by expert systems and by database

systems. The former usually adopt depth-first flavored heuristic search and
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follow along one search path (likely a promising one according to some
heuristic information or expert judgement), and then they backtrack if the
path ends in failure. The latter usually apply breadth-first flavored search
which explores all possible solutions using set-oriented relational opera-
tions. The search in an EDS should somehow combine the best features of

these two approaches.

(2) The merit of set-oriented search.

In finding multiple solutions, set-oriented search generally costs less than
tuple-oriented search, especially for searching large databases. The gain
from set-oriented search suggests that the search method in EDS should
explore searching with a certain width of paths rather than one path at a
time. Backtracking based on single-path search often costs too much,
among other rteasons, because there is so much redundant processing

across different paths.

(3) The merit of heuristic search.

Heuristic search has been the key to successful Al problem solving,
because (1) for many Al problems searching, all paths is prohibitively
expensive; (2) most Al problems require finding only a small number of
good solutions (which need to satisfy certain criteria but need not be the
best possible); and (3) quite useful heuristic information is available in
many cases (e.g. information that can provide rough but usable cost evalua-
tion functions). Heuristic search may be even more important in an EDS,

because it may involve even larger search spaces.

Finding some but interesting answers, rather than all answers, in EDS

applications requires the exploration of set-oriented heuristic search which we
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called a breadth-first flavored heuristic search. It should have the following

characteristics:

(1) It should incorporate relational database techniques such as data storage
structures, query optimization techniques and set-oriented relational opera-
tions;

(2) 1t should study heuristics for dynamically cutting off unpromising paths.
Only initial paths that satisfy search constraints, heuristic criteria and plan-
ning rules should be preserved. Other paths should either be tossed
(depending on the danger and cost associated with missing a successful

path) or stacked for some modified kind of backtracking.

(3) The key problems concern balance and control of search width and depth,
finding good heuristic functions that apply to database search, and control

of backtracking.

9.3.3. Development of a Plan Database

Compared to human planning, the planning of RELPLAN is still a rigid
process. Experience tells us that for many situations there are often several plans
available, and the best plan is often identified on the basis of experience. This
observation encourages us to develop a plan database, which is a special database
relation. This relation would be generated by planning processes and enriched
by executions of generated plans. It would register a variety of information
important for planning, such as problem domain characteristics, database status,
available plans, query execution costs of the plans, etc. Performance informa-
tion would be accumulated from the history of executing plans selected out of the

database.
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During the plan selection phase, the available plans stored in the database
which meet database characteristics and query requirements would be retrieved,
and their performance history would be compared. The best performer for the
current kind of situation would be selected. Feedback from execution of the gen-
erated plan would be registered. Thus, a plan database is essentially a database
for storing available plans and their performance histories. Such a database, if it
could be adequately implemented and studied, would make experience accumu-
lation (learning) and database retrieval (remembering) central to successful plan-
ning and scheduling. Expert human planners and schedulers clearly make use

of something comparable.
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APPENDIX I

SYNTACTIC SPECIFICATION OF RELPLAN

The syntactic specification of RELPLAN adopts the extended BNF, where {

... } denotes a set of zero or more occurrences, [ ... ] denotes one or zero
occurrences, and ( .. | .. ) denotes one of several occurrences.

<RELPLAN > : <Data_Definition > <Data_Manipulation >
<Data_Definition>  : { <Data_Defl> } { <Module_Definition > }
<Data_Defl > : <Schema_Definition >

| <Var_Declaration >
| <Rule_Definition >
<Schema_Definition > : schema { Rel_Name ’(’ Attr_Name
’)” Attr..Name } °)’ }
<Var_Declaration> : range of Var_Name {’,” Var_Name }
is [module] Rel_Name
<Rule_Definition> <Virtual_Rel_Defn >
| <Constraint_Defn >
<Virtual_Rel_Defn> : define virtual relation [ Var._Name ’:’ ] Rel_ Name
’( <Attr_Reference > {°,” <Atir_Reference> }’)’
[ where <Qualification > ]
<Constraint_Defn>  : define constraint [ Var_Name ’:’ ] Constraint_Name
' <Atir_Reference> {’,” <Attr_Reference> }’)’

[ where <Qualification >]
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< Attr_Reference > : Attr_Name

| Attr_Name =’ <Expression >
<Module_Definition > : module Module_Name <Module Body > end module
<Module Body > : { <Data_Defl > } { < Mod_Rule_Defn >}

[ <Plan_Definition > ]

<Mod_Rule_Defn> : <Step>’=>’ <Num_Query> { <Num_Query> }

| constraint [for <For_Step>]’=>’

<Num_Clause > { <Num_Clause> }

| (upper | lower) bound’= >’ <Num_Atiribute >

<For._Step> : start| iteration | final

<Num__Attribute > :[ ’C Integer )’ ] <Attribute >
<Num_Query> : [’C Integer ’)’ ] <Query>

<Num_Clause > : [’C Integer *)’ ] <Clause>

< Attribute > : Var_Name ’.” Attr_Name

< Plan_Definition > : plan’>= >’ <Plan Prelude > <Plan_Steps >
<Plan Prelude > . <Data_Defl > <Data Manipulation >
<Plan_Steps > . for tuples in Var_Name ’:’ Rel_Name do

<Step> { <Step> } end for
<Step> : step Integer *:” <Modification > { <Maodification > }
< Maodification > - (append | replace) <Stereo_Typed_Rule_Defn >
| delete ( <Step> constraint [for <Step> ]
(upper | lower) bound)
<Data_Manipulation> : { { <Var_Declaration> } <Query> }
<Query> . retrieve <Target Listl > where <Qualification >
| retrieve into Rel_Name <Target List2 >
where < Qualification >

< Target Listl > . 7" <Attribute> {,” <Attribute> } °)’
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<Target List2> : ’( <Expression> {’,” <Expression > 1y
<Qualification> : ’( <Qualification > ’)’
| not <Qualification >
| <Qualification > (and | or) <Qualification >
| <Clause>
< Clause > . <Expression > <Relop> <Expression >

| Constraint_Name >( <Adtribute> {’,” <Attribute> } °)’

<Relop> o= ll=<|<=|>]|>=
<Expression> : <Term> ( + |-) <Term>
<Term > . <Factor> ( * | / ) <Factor >

< Factor > . <Attribute > | Constant | String






