7 T I

88 8 &

B &

[- O T T - O~ - < < O - = I -

8 8 8

g EEE R B8 B 0

B B E QRO EBEDEREE @@

Distributed Query Processing with Load
Balancing in Local Area Networks

Hongjun Lu
Technical Report #624

December 1985

TRy

DISTRIBUTED QUERY PROCESSING WITH LOAD BALANCING
IN LOCAL AREA NETWORKS
by
HONGIJUN LU

A thesis submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN - MADISON

1985

ABSTRACT

This thesis presents a new approach to distributed query processing in
locally distributed database systems, load-balanced query processing (LBQP),
which integrates distributed query processing and load balancing. Several obser-
vations about previous research work in distributed query processing motivated
this study. First, only a few query processing algorithms have been developed
specifically for distributed databases based on local networks. Second, the use of
multiple copies of data to improve performance in a distributed database system
has not been addressed by most existing algorithms. Finally, and perhaps most
importantly, existing query optimization algorithms have considered only the
static characteristics of a distributed database. The algorithms reported here
consider the dynamic load status of the system and the existence of muliple
copies of data to provide better performance than is achievable with purely static

planning techniques.

The dynamic query allocation problem for a distributed database system
with fully-replicated data was studied first using simulation. Two new heuristic
algorithms were proposed for dynamically choosing a processing site for a newly
arrived query in a local network environment. Both of these heuristics use
knowledge about queries obtained during query optimization, such as their
estimated CPU and 1/0 requirements. A simulation model was developed and
used to study these heuristics and compare them to an algorithm that simply bal-
ances the number of jobs at each site. The resuits of this study indicate that

knowledge of query processing requirements can be used effectively to improve

ni

ACKNOWLEDGMENTS

I am greatly indebted to my advisor, Professor Mike Carey, for his extreme
earnesiness, excellent guidance, continued encouragement, and generous sup-
port, as well as extraordinary patience in improving my writing skills. 1 would
also like to thank the readers of this thesis: Professor Miron Livny, who intro-
duced me to the distributed system performance area and provided the simulation
languages used in this thesis, and Professor David DeWitt, who was the source
of many constructive ideas. All three readers of my thesis were extremely gen-
erous with their time in helping me to finish. | would also like to thank Profes-
sors Mary Vernon and Charles Kime for making the time and having the kind-
ness to serve as members of my exam committee, and for providing helpful com-

ments.

Special thanks must be given to the primary investigators and staff of the
Crystal project for providing an excellent research environment. Tad Lebeck,
Tom Virgilio, Nancy Hall and Robert Gerber were always willing to help with
questions and problems. Thanks are also due to the members of WiSS Project.
In particular, Hong-Tai Chou provided me with the instrumented version of
WiSS and helpful suggestions. 1 would also like to thank the staff of the IBM-
WISC Net Project for providing a large number of CPU hours for some of my

simulation experiments.

1 am grateful to Professor Ed Desautels and Paul Beebs, and to all my
friends and fellow students in the CS department’s Systems Laboratory. They

made my work there memorable.

overall system performance through dynamic query allocation,

In order to obiain empirical results regarding distributed query processing
in local area networks, a testbed was built using an experimental distributed sys-
tem, the Crystal multicomputer, to conduct experiments on the performance of
distributed join algorithms. Eight different distributed join methods were imple-
mented using the testbed. Join queries with a variety of relation sizes, join
selectivities, and join column value distributions were experimentally studied.
The performance results obtained indicate that pipelined join methods outper-
form sequential methods over a wide range of join queries. It was also found
that the communications costs in a local network environment are certainly not a

dominant factor with respect to performance.

A three-phase load-balanced query processing algorithm, Algorithm LBQP,
was developed based on these experimental results and the results of the study of
dynamic query allocation. This algorithm first statically generates a processing
plan for a query in a locally distributed database system, ignoring the physical
storage sites of the relations referenced by the query. A dynamic query unit
allocation algorithm is then applied to the plan to determine the processing sites
for each relation. Finally, specific processing methods for the distributed joins
in the resulting plan are selected. A model of distributed database systems with
partially-replicated data was used to investigate the performance of the dynamic
query unit algorithm of LBQP. The results show significant improvements in
performance, including improvements in both the mean waiting time for queries

and the overall system throughput.

Vi

I am deeply grateful 10 my parents, my brothers, my sisters and my in-laws
for their support and encouragement. To my wife, Juging, and my daughter, no
words can express my deepest gratitude. They deserve more than mere thanks

for their years of sacrifice and their endurance of hardships both material and

psvchological.

This research was supported by National Science Foundation Grant
Numbers DCR-8402818 and MCS-8105904, an IBM Faculty Development

Award and the Wisconsin Alumni Research Foundation.

CONTENTS

AB S T RACTT 1
ACKNOWLEDGEMENTS ... v
Chapter 1: INTRODUCTION, 1
1.1. DISTRIBUTED QUERY PROCESSINGcc..ooiiiiiinin, 2
1.1.1. The Objective and Cost Functionsccooeiiiiiinn.., 2
1.1.2. The Evaluation Function and Search Heuristics 3
1.1.3. The Semijoin and Join Operatorscocevviiiinnn.. 5
1.1.4. The Query Allocation Problemel. 7
1.1.5. Resource CONtentioncooiiiiiiieiiiieaeiiiiiniainiann., 8

1.2. TASK ALLOCATION AND LOAD BALANCING IN DIS-
TRIBUTED SYSTEMS o, 9

1.2.1. The Static Task Allocation Problem and Its Solution
Methods .. 10
1.2.2. Dynamic Task Allocation and Task Migration 13
1.2.2.1. Load Representation and Estimation 13
1.2.2.2. Information Policy 15
1.2.2.3. Control PolCy ... 17
1.3. MOTIVATIONS AND THESIS OVERVIEW 19

Chapter 2: DYNAMIC QUERY ALLOCATION: THE FULLY RE-

vii

PLICATED CASE

2.1. DISTRIBUTED DATABASE SYSTEMS WITH FULL RE-

PLICATION
2.2. HEURISTICS FOR DYNAMIC QUERY ALLOCATION
2.2.1. Balance the Number of Queries
2.2.2. Balance the Number of Queries by Resource Demands
2.2.3. Least Estimated Response Time
2.2.4. Discussion

2.3. MODELING A DISTRIBUTED DATABASE SYSTEM WITH

FULL REPLICATION

2.4.3. Simulation Experiments and Results
2.4.3.1. Mean Waiting Time Improvement
2.4.3.2. Dynamic Query Allocation and Fa‘irness
2.4.3.3. Sensitivity to Query Information

2.5. SUMMARY

Chapter 3: DISTRIBUTED JOIN ALGORITHMS: AN EMPIRICAL

STUDY

..

viil

23

23

26

27

28

30

31

32

38

38

40

41

42

48

50

52

54

3.1.1. Join Versus Semijoin

3.1.2. Sequential Versus Pipelined Processing
3.1.3. Access Paths and Local Join Methods

3.2. JOIN ALGORITHM DETAILS

3.2.1.SISM and SINL ..o

3.2.2. PISM and PJNL
3.2.3. SSSM and SSNL

3.2.4. PSSM and PSNL

3.3.1. The Crystal Multicomputer

3.3.2. The Wisconsin Storage System

3.3.3. The Wisconsin Database

3.4. EXPERIMENTS AND RESULTS,

3.4.1. Some Considerationsoouir e

3.4.2. The Experiments and Results

3.4.2.1. Query Resource Demands: A Detailed Example

3.4.2.2. Experiment 1: The Effects of Relation Size

3.4.2.3. Experiment 2: The Effects of Join Selectivity

3.4.2.4. Experiment 3: The Effects of Duplicate Atribute

Values

61

61

62

63

66

69

69

77

84

87

3.4.2.5. Summary of Test Results ... 88
3.8 SUMMARY 90
Chapter 4: QUERY PROCESSING WITH LOAD BALANCING 93
4.1. LOAD-BALANCED QUERY PROCESSING 93
4.1.1. Interpretative Planning and Dynamic Allocation 94
4.1.2. Alternative Compiled Plans, 95
4.1.3. Static Planning and Dynamic Allocation 97
4.2. THE STATIC PLANNING PHASE OF ALGORITHM LBQP
U 98
4.2.1. Heuristics for LBOQP 99
4.2.2. Siaatic Optimization and the Logical Plan Structure 107
4.3. THE DYNAMIC ALLOCATION PHASE OF ALGORITHM
LB P 110
4.3.1. Load Unbalance Factor ... 113
4.3.2. Query Units in the Logical Plan 115
4.3.3. The Query Unit Allocation Problem 116
4.3.4. The Basic BNQ-Based Algorithm 119
4.3.5. A Study of the Optimality of the BNQ-Based Algorithm
... 128
4.3.6. Enhancing the BNQ-Based Algorithm 133

4.3.7. The Cost of the BNQ-Based Algorithm 137

Xi

4.3.8. A BNQRD-Based Version of the Algorithm 141
4.3.9. Summary of the Dynamic Allocation Phase 144
4.4. THE REFINING PHASE OF ALGORITHM LBQP 144
4.4.1. Semijoin and Join Methods ..., 145
4.4.2. The Refining Procedure ..., 146
4.5. ALGORITHNM LBQP: A SUMMARY ..., 151

Chapter 5: QUERY PROCESSING WITH LOAD BALANCING: A

SIMULATION STUDY ... 153
5.1. MODELING A DISTRIBUTED DATABASE SYSTEM 153
S.1.1. The Generalized Modelo i, 154
5.1.2. Parameters of the Generalized Model 158
5.2. SIMULATION DETAILS .. 160
5.2.1. Dynamic Query Unit Allocation Algorithms 161
5.2.2. Parameter Seingscooiiiiiiiiiiiiiii i .. 163
5.2.3. Performance MEtTiCscoeiiiiiiiniiiniiiiiiiii e 165
§.3. EXPERIMENTS AND RESULTS ... 167
5.3.1. Experiment 1: Varying Data Replication 167
5.3.2. Experiment 2: Mix of Query Types ..., 175
5£.3.3. Experiment 3: Non-Uniform Query Arrival Rates 181
8.4, SUMMARY 184

X1l

6.1. SUMMARY OF RESULTS ... 186
6.2. FUTURE RESEARCH DIRECTIONS 189
REFERENCES 192
APPENDIX A: FORMAL MODELS FOR DYNAMIC QUERY UNIT
ALLOCATION o 202
APPENDIX B: SIMULATION RESULTS OF CHAPTER 2 207

LIST OF TABLES

Table 1.1: The cost components of different algorithms 3
Table 2.1: DB site parametersooooiiiiieiiii i e 36
Table 2.2: Class parameters ... 36
Table 2.3: Communications-related parameters 38
Table 2.4: Paramelter settings for the simulations 39
Table 2.5: Maximum number of terminals versus W 45
Table 3.1: A fragment of the "tenthoustup” relation 66
Table 3.2: Estimation of the number of messages 72
Table 3.3: Sizes of relations used in query group QGI1 and QG2 77’
Table 3.4: Costs for sorting relations ..., 79
Table 3.5: A comparison of local and distributed joins (|Ra]=10K) 89
Table 4.1: Opumality in general (Test 1). ..., 132
Table 4.2: Optimality versus the initial load (Test 2). 132
Table 4.3: Optimality versus the number of copies (Test 3) 132
Table 4.4: Optimality in general (Test 1, Enhancement 1) 135

Table 4.5: Opumality versus the initial load (Test 2, Enhancement 1).
... 135

Table 4.6: Optimality versus the number of copies (Test 3, Enhance-

NI L) e 136

xiil

Table 4.7: Optimality in general (Test 1, Enhancements 1 & 2).

Table 4.8: Opumality versus the initial load (Test 2, Enhancements]

& 2).

Table 4.9: Optimality versus the number of copies (Test 3, Enhance-

ments 1 & 2).

Table 4.10: The execution time of the allocation algorithm

Table 4

Table 4

Table 4

Table

Table

Table

Table 5.4: Workload parameters

Table

Table

Table

Table

Table

Tabhle

5

5.

5

5

5

n

5

-11: The complexity analysis per query unit

.12: Optimality of BNQRD-based allocation

.13: Total communications cost

.11 System parameters

.2: DB site parameters

3: Parameters related to communications costs.

.5: Different query unit allocation algorithms

.6: Parameter settings in the simulations

.7: The test query for Experiment 1

.8: Relations and their storage Siesc.ooooeiiiiiiinioinn...

.9: CPU utilization in Experiment 1, Test 1

.10: The workload for Experiment 2

X1V

138

138

139

139

140

143

147

159

163

164

168

168

171

178

LIST OF FIGURES

Figure 1.1: The "fetch inner tuples as needed” method of System R™

Figure 2.1: A large information service Centercoooeenn...
Figure 2.2: A partitioned distributed database system
Figure 2.3: Function to select processing site for query
Figure 2.4: Cost estimation function for BNQ algorithm
Figure 2.5: Cost estimation function for BNQRD algorithm
Figure 2.6: Cost estimation function for LERT algorithm
Figure 2.7: Distributed database system model
Figure 2.8: DB site model
Figure 2.9: Waiting time improvement faclors ..o,
Figure 2.10: UtHzations e
Figure 2.11: Waiting time improvement factors
Figure 2.12: UtIHzalions,
Figure 2.13: Waiting time improvement factors
Figure 2.14: Subnet utilizations o i
Figure 2.15: Waiting time improvement factorsc.oo...
Figure 2.16: CPU utilization,

Figure 2.17: Subnet utilization i

26

28

29

30

33

34

43

43

44

44

46

46

47

47

49

XV

Figure 2.18: Waiting time improvement factors

Figure 2.19

Figure 2.20: Waiting time versus estimation error

© Fairness

Figure 3.1: Join methods SISM and SINL ...,

Figure 3.2: Join methods PJSM and PJNL
Figure 3.3: Join methods SSSM and SSNL
Figure 3.4: Join methods PSSM and PSNL
Figure 3.5: The testbed for distributed join methods

Figure 3.6: General form of the test query

Figure 3.7:
Figure 3.8:
Figure 3.9:

Figure 3.10

Figure 3.11:
Figure 3.12:
Figure 3.13:
Figure 3.14:
Figure 3.15:
Figure 3.16:
Figure 3.17:

Figure 3.18:

Elapsed ime
Number of messages
Number of disk accesses ...

. Elapsed time (QGl)

Effects of duplicate values

Number of disk accesses (QG1)
Number of messages (QG1)
Elapsed ume (QG2.a)
Elapsed time (QG2.b)
Number of disk accesses (QG2.a)
Number of disk accesses (QG2.b)

Effects of join selectivity ..

58

58

60

60

63

67

70

71

78

80

81

83

83

85

86

86

Figure 4.1: Algorithm LBQP: static planning plus dynamic allocation

Figure 4.2: Different physical locations of three relations

Figure 4.3: Structure of the nodes in the processing graph

Figure 4.4: An example query for a distributed university database

Figure 4.
Figure 4.6: BNQ-based heuristic allocation algorithm

Figure 4.7: Procedure computing freedom

5: Processing graph of a query in example 4.4

Figure 4.8: Functions for computing benefit and potential benefit

Figure 4.9: Function SelectSite
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 5.

Figure 5.2: Results of Experiment 1, Test 1

10 : An example for query unit allocation

11 : Testing the optimality of the heuristic algorithm
12 : A search tree for finding the optimal plan
13: An example of Enhancement 1
14: An example of Enhancement 2
15: The elapsed time of the different algorithms
16: Algorithm Refining ...
17: The processing of two consecutive semijoins
1: The generalized DB site model

XVii

96

103

109

111

112

120

121

123

125

126

128

130

134

137

143

149

Figure 5.3: Results of Experiment 1, Test 2 oo 172
Figure 5.4: Resulis of Experiment 1, Test 3 ... 173
Figure 5.5: Results of Experiment 1, Test4 176
Figure 5.6: Comparison between Tests 1 and 4 response times 177
Figure 5.7: Results of Experiment 2, Test 1 179
Figure 5.8: Results of Experiment 2, Test 2oooviiniiiii . 180
Figure 5.9: CPU utilization (Experiment 2, Test2) 182

Figure 5.10: Results of Experiment 3 183

CHAPTER 1

INTRODUCTION

Distributed computing systems have been a most active research area in
computer sciences for the last decade. In the database management systems
(DBMS) area, more and more attention has been paid to the new problems
posed by the distribution of a database among different machines. Query optimi-
zation in a distributed environment, one of the important research topics in the
distributed DBMS (DDBMS) area, has been examined by a large number of
researchers [Aper83] [Bern81c] [Blac82] [Chan82a] [Chiu80]{DBES2] [Epst78]
[Epst80a] [Good79] [Goud81] [Hevn80] [Kamb82] [Kers82] [Lohm85] [Seli80]
[Wong77] [Wong80] [YuCh83] [Yu85]. In the operating systems area, an
important topic related to distributed computing has been task allocation and load
balancing. Researchers in this area attempt to improve the performance of a dis-
tributed systern by distributing tasks properly among the available resources
[Bokh79] [Chu80] [Chow79] [EIDe78] [Gyly76) [Livn83] [Ma82] [Ni8l]
[Pric79] [Rao79] [Ston77b] [Ston77a] [Ston78].

Despite the large amount of work that has been devoted to these topics, little
has been done to merge results from these two different areas to explore their
combined potential for performance improvement in distributed database sys-
tems. The work presented in this thesis aims to improve the performance of dis-
tributed database systems by integrating dynamic load balancing and distributed
query processing algorithms. In this introductory chapter, previous research

work in the areas of distributed query processing and load balancing is reviewed.

The motivation for this rescarch and an overview of the thesis are given at the

end of the chapter.

1.1. DISTRIBUTED QUERY PROCESSING

Many distributed query processing algorithms have been proposed in the
literature [Wong77] [Epst80a] [Bern8ic] [Hevn79] [Good79] [Wong80] [Scli80]
[Aper83) [YuCh83]. Detailed reviews of distributed query processing can be
found in a number of survey papers [Sacc82] [YuCh84]. Some issues and
results from previous work that is closely related to this research are briefly dis-

cussed here.

1.1.1. The Objective and Cost Functions

The objective function of a query optimization algorithm quantitatively
specifies the main goal for optimization. The goal can be to minimize the total
processing cost for a query (including 1/0 cost, CPU cosl, and communications
cost), or to minimize its response time. Minimizing communications cost is also

an objective of a number of optimization algorithms.

The cost function is used by a query optimizer to estimate the cost of the
steps of a processing plan. The cost of processing a distributed query, C, con-
sists of two basic components, the local processing cost Cjpeq; and the commun-

ications cost Cepmm -
C = Ciocal + Ceomm

Local processing costs are usually decomposed into the CPU cost Cepy and the
170 (disk) cost Cjg, while the communications cost can be represented as the

sum of a fixed message setup time Cp and a variable cost C,, (X) that is propor-

tional to the amount of data to be transferred, X.

Clocal = Ccpu + Cio

Ceomm = Co + Cn(X)

Not every comporient of the processing cost is considered by all of the pro-
posed algorithms, however. Table 1.1 shows the cost components considered by
a number of different distributed query optimization algorithms. The symbol
"X" indicates that the component is included in the cost function of the algo-
rithm. It can be seen that the access path selector of System R™ is the only algo-
rithm which takes all components of the cost into consideration. The CPU cost,
1/0 cost and message cost are all weighted and combined together into the

overall processing cost in system R™.

1.1.2. The Evaluation Function and Search Heuristics

One feature of distributed query optimization is its tremendous search

space. The size of this search space is determined by the physical database

The Cost Components of Different Algorithms
. Local Cost Network Cost
Algorithm
Ccru | Cio | Co | Cn(X)
SDD-1,0PT [Bern81c¢] X
Distributed INGRES [Epst78] X X X
System R™ [Seli80] X X X X
Apers-Hevner-Yao [Aper83] X X
Yu-Chang [YuCh83] X X

Table 1.1: The cost components of different algorithms.

organization and the number of relations and auributes referenced by the query.
Although cxperiments [Epst80b] indicated that there is a dramatic difference
between the quality of plans produced by limited and exhaustive search, and that
exhaustive search performs consistently better, most algorithms still use a limited
search strategy. One of the few algorithms that uses an exhaustive search is the
access path selector of System R™ [Seli80]. Other algorithms, including
Wong’s algorithm, SDD-1’s Algorithm OPT, Apers-Hevner-Yao’s algorithm,
and the Distributed INGRES algorithm, usc a hill-climbing search method. The
basic feature of this method is that the possible processing sieps are evaluated
one by one, without looking ahead or backwards. The locally optimal step is
always chosen as the next step. As a result, the global optimality of the result is
not guaranteed, as a globally optimal processing strategy will not be found unless

it is locally optimal at each step as well.

When comparing alternative processing steps, a metric is required for com-
parison purposes. This is specified by the evaluation function. Most algorithms
use processing cost as the evaluation function. At decision making time, the
costs of different alternatives are compared and the one with the least cost is
viewed as the optimal one. In the algorithms with the objective function of
minimizing the communications cost, the processing cost is often represented as
the amount of data transferred among different sites (in bytes). In such algo-
rithms, two other quantities, benefit and profit, are also sometimes used in
evaluating processing plans. The benefit of a processing step is its reduction
effect, denoted by the size change (in bytes) of the result relation. The profit of
a processing siep is the difference between its cost and its benefit. Algorithm

OPT of SDD-1 uses profit as its evaluation function [Bern81lc], and the most

profitable processing steps are selected as the final plan. Black proposed a
heuristic for a processing algorithm similar to OPT [Blac82]. The least cost and
maximum benefit criteria are both used during the search. Since these two cri-
teria arc usually not satisfied simultancously, the algorithm first finds the pro-
cessing steps with the least cost, and then chooses the one with the most benefit.
That is, there is a trade off made between these two extremes. Black’s simula-
tion results indicated that this heuristic is much better than that of both Hevner’s
algorithm and the SDD-1 algorithms in the sense that the resulting plans are

closer to the optimal ones.

1.1.3. The Semijoin and Join Operators

The semijoin was proposed as a useful primitive operator to reduce the data
transfer cost in distributed database systems. The semijoin Ry <A= B]R} is
defined as the join R;[A= B]R, projected on the attributes of R,. This operator

has several properties of interest:

(1) A semijoin always reduces the size of the database. In contrast, the

join operator can lead to a Cartesian product in the worst case.

(2) The communications cost incurred in a semijoin is usually less than
for the join operation since only the join attribute values and the

results of the semijoin need to be transferred.

(3) There is a class of queries that can be processed completely using a
sequence of semijoin operations [Bern79b]. Furthermore, a join

operation can always be replaced by two semijoins.

A number of distributed query processing algorithms have been developed based

on the semijoin operation [Bern8la] [Bern81c] [Goud&81] [Kamb82] [YuCh&83]

[Yu85].

However, there are several algorithms that do not usce semijoins at all. Dis-
tributed INGRES and System R™* are examples [Scli80]. A related method
known as "fetch inner tuples as needed” is used as one alternative o process
distributed joins in System R™. This method is similar to the semijoin, but it is
not exactly the same. Using this method, the join R; [A=B] Rp, is processed as
shown in Figure 1.1. It can be seen that relation R, is scanned just once dur-
ing the join. The wple of R, that is currently being processed stays in memory
to wait for the arrival of matching inner tuples. This is different from the semi-

join method, where relation R, is scanned more than once: once to complete the

Site of R; :
Repeat
Feich a tuple t; from R,;
Send ;.4 o site of Rp;
Receive 1, tuples from Ry ;
Join t,7s with 1,
Until all tuples in R, have been processed.

Site of Ry :
Repeat
Receive a tuple t; from Ry;
Find all 7, where #, .B = 1,.A;
Send these 1 ’s to site of R,;
Until no more tuples are received.

Figure 1.1: The "fetch inner tuples as needed” method of System R™.

projection of Ry on its join atiributes, and again to perform the join of R; with
the matching tuples returned from Rp,. Another difference between these two
methods is that, in the "fetch inner wuples as needed” method, the join attributes
are sent one by one. In the semijoin, the join attributes of all tuples are pro-

jected out first and sent together (with duplicate values eliminated).

1.1.4. The Query Allocation Problem

Data replication is one way to obtain high data availability as well as relia-
bility in distributed database systems [Alsb78] [Hamm80]. In a database with
replication, some data items are stored redundantly at multiple sites. If a user
query references such a data item, one of its sites has 10 be selected as the pro-
cessing site. This problem is similar to the task allocation or resource allocation
problem in operating systems, and is referred to as the query allocation problem

here.

Most existing algorithms have ignored the query allocation problem by
assuming either that data is not replicated or else that one copy of each piece of
data needed by the query, called a materialization of the database, has already
been chosen [Bern8lc][Aper83][(Epst78}[Hevn79]. A good query execution
plan is then selected given this materialization. The designers of System R*
have suggested ways to select from among several copies of a replicated relation
by picking the one for which the estimated cost of executing the query is minim-

1zed [Seli80].

Algorithms that consider site selection during query optimization were pro-
posed by Liu and Chang [Liu82]. In their algorithms, a user query that has

been translated into a sequence of relational algebra operations is represented by

a transaction graph. This graph specifies the order of the operations, the rela-
tions referenced by each operation, and the sites where the relation is stored.
The processing costs of the query are then estimated by traversing the graph and
computing the local processing costs and the communications costs when dif-
ferent copies of the referenced relation are used. The sites that lead to the
minimum cost are chosen as the processing sites. Their algorithms can be
applied to a subset of the class of all queries — queries whose transaction graphs

are trees.

Yu and Chang proposed a copy identification algorithm that chooses the
processing sites for a given query and data distribution [YuCh83][Yu85]. Since
the copy selection problem is NP-hard, even for simple queries, their algorithm
uses some heuristics. When communications cost is dominant as compared (o
local processing cost, the algorithm chooses the minimum set of sites containing
all relations referenced by the query as the processing sites. If local processing
cost is significant, they suggest selecting maximum set of sites containing the
relations referenced by the query in order to increase parallelism. This copy
identification algorithm is applied before the selection of the optimal processing

plan is performed. (In their case, the processing plan is a semijoin sequence).

1.1.5. Resource Contention

All distributed query processing algorithms to date have been based on the
static characteristics of a distributed database system. Both the cost functions
and the evaluation functions ignore dynamic characteristics of the system such
as transaction queuing effects caused by heavily loaded processors or the net-

work. However, dynamic system characteristics can be important factors which

9

affect the optimality of a processing plan. Take an extreme case as an example,
where a number of users at a site submit the same (or very similar) queries dur-
ing a short period of time. If the load situation of the system is not considered,
most query processing algorithms will generate the same processing plans for all
of the queries. These plans will have the same resource demands, and hence
will compete with each other. Some transactions will thus have to wait in long
queues for highly utilized resources at some of the sites, while other sites with
the same processing capabilities may be idle. Simulation results reported by
McCord indicate that significant performance degradation occurs when long

queues form at some of the sites in a distributed database system [McCo81].

1.2. TASK ALLOCATION AND LOAD BALANCING IN DISTRIBUTED
SYSTEMS

Task allocation and load balancing have been a major issue associated with
distributed computing systems. As Livny and Melman showed, the probability
that at least one processor is idle while tasks are waiting at other sites in a distri-
buted system (a "wait while idle” state) is remarkably high over a wide range of
network sizes and processor utilizations [Livn82]. Load balancing aims to
reduce this probability through redistributing the load of the system resources.
As a result, the queuing times of tasks are reduced and betier system perfor-

mance can be obtained.

In order to achieve a load-balanced system, tasks submitted to a distributed
system should be allocated to the sites in the system properly. This is known as
the task allocation problem. However, a good initial assignment does not

necessarily lead to a balanced system afterwards. Task migration is another pos-

10

sible step for improving the system’s performance. Task migration is the pro-
cess of transferring partially executed tasks at one site to an idle or less loaded
site to continuc their execution. Task allocation problems can be solved either
statically or dynamically, while task migration is dynamic by nature. Static task
allocation algorithms consider a fixed set of tasks, and they use only information
about the static properties of a system, such as the number of processors, the
processing capability of each processor, the memory size of each processor, etc.
and/or aprior information on tasks. Allocation plans generated by static alloca-
tion algorithms are therefore independent of the current system state. Dynamic
allocation, on the other hand, employvs information about the current system
state in making allocation decisions. The remainder of this section briefly
reviews some research issues and results on load balancing that are closely

related to the problem studied in this thesis.

1.2.1. The Static Task Allocation Problem and Its Solution Methods

The basic task allocation problem is to assign tasks to the sites in a system
whose capabilities are most appropriate for the tasks such that some objective is
achieved. The tasks can be either different processes from one user’s program,
or they can be different programs from different users. These tasks may com-
municate among one another. The objectives of most proposed task allocation
algorithms are to minimize the interprocess or intermodule communication costs
(IPC or IMC) and/or to minimize the completion time of a number of tasks. In
some cases, therc are additional constraints such as the memory space required
by the tasks. A number of solution methods have been developed for the task
allocation problem, including graph theoretic methods, integer programming

methods, brand-and bound search methods and heuristic methods.

11

Graphic theoretic methods. The allocation of program modules in dual-
processing syvstems, as studied by Stone [Ston77b], is a typical example of such
methods. The modules to be assigned and the two processors themselves are
represenied by the nodes in a graph. The arcs in the graph are weighted to
represent the intermodule communications cost. Network flow algorithms are
then applied to this graph to find the maximum flow minimum cutset that
corresponds to the allocation plan with the minimum total processing cost (the
sum of module execution costs and intermodule communications costs). This
method was later extended by the author and other researchers to add additional

constraints [Ston78] [Ston77a] [Rao79] [Bokh79].

Integer programming methods. Integer programming techniques can be
used to solve the task allocation problem if the problem can be formulated as an
optimization problem. For example, a task allocation problem of assigning m
tasks to a systern with n processing sites can be viewed as a problem with m-n

variables. Let:
(1) Xij = 1 denote the fact that task i is assigned to site j (and O otherwise);
(2) Ejj be the execution cost of task i if it is assigned to site j; and

(3) the communication cost between two tasks i and k that are not assigned to

the same site be Cj; (and O otherwise).

The objective function of minimizing the total cost can then be expressed as

m n m~1 m m=—1 n m
< EX- + ~ N C’u p— C’XX.
i= j;l S iE:‘I k=§,~~+] ik i1 jg]kzzl.u kA1 k]

The first term is the sum of the execution costs of all tasks, the second term is

the total communications cost if all tasks are allocated to different sites, and the

12

third term represents the communications cost eliminated due to pairs of tasks

. . m m . .
that are allocated to the same site. Since -Eu D]Cik 1S a constant, the objec-
1= =T+

tive function can be more simply expressed as:

m—1 n m

n
s EijXij - l_;”;]k:zwlcikxijxkj (1.2.1)

The constraint that each task can only be assigned to one processor can be

expressed as:

J_Z:x,,- =1 for 1= i=m (1.2.2)

This is a 0-1 integer programming problem [Pric84], so task allocation can be
performed by solving equation (1.2.1) subject to the constraint of (1.2.2). A
number of algorithms based on such methods have been proposed [Gyly76]

[Pric84].

Bound-and-branch search methods. The task allocation problem can
also be viewed as a search problem. An algorithm that uses a branch-and-
bound search method was proposed by Ma, Lee and Tsuchiya [Mag&2]. In their
algorithm, the tasks to be allocated are considered one by one. For every possi-
ble assignment of a task, the total processing cost is calculated up to the current
assignment. If this cost is greater than the current bound, the assignment is
pruned to reduce the search effort. The optimal plan is found in this way after
all tasks are assigned. Other objectives and constraints of the problem can be
included as input to the algorithm and considered during the assignment. For
example, in order to prevent some tasks from being assigned to the same proces-
sors, a "task exclusion” mal.fix can be included as input 1o the algorithm. Also,

a "task preference” matrix can be used to indicate the suitability of a task for a

Processor.

Heuristic search methods. Heuristics are widely used in search prob-
lems 1o reduce the scarch effort and still obtain optimal or nearly optimal solu-
uons. Several algorithms have been proposed which apply heuristic search tech-
niques to the task allocation problem [Gyly76] [Chu80] [Pric84]. One simple
and effective heuristic that is sometimes used is that the two modules with the
greatest intermodule communication cost should be assigned to the same site

first.

1.2.2. Dynamic Task Allocation and Task Migration

In a distributed computing system, the probability that at least one processor
1s idle while tasks are waiting at other sites, P,;, is remarkably high over a
wide range of network sizes and processor utilizations [Livn82]. Eager,
Lazowska, and Zahorjan recently studied the potential benefit of dynamic load
balancing using an analytical model [Eage84]. Their results indicate that even a
very simple dynamic load balancing mechanism can provide dramatic perfor-
mance improvements. However, it is not easy to implement a dynamic load
balancing algorithm. The representation and estimation of load, the load infor-
mation exchange policy and the control policy are all major concerns in design-

ing and implementing load balancing algorithms.

1.2.2.1. Load Representation and Estimation

The proper representation and accurate estimation of load information is a
key problem in load balancing algorithms. The basic requirement for such
representation and estimation is that it must be simple, effective, and efficient.

The representation of load information should be simple enough so that the

14

inter-computer exchange of load information introduces as little additional over-
head to the system as possible. To be effective and efficient, the estimation must
be fairly accurate and able to be evaluated in a short time period in order to

reflect the current status of the system.

In a number of research efforts, the load of a processing site is defined as
its degree of "busyness”. According to this view, the load of a site §;, L(S;), is
represented by the number of tasks being currently served at that site, N(S;)

[Ni8la] [Livn83]. That is,
L(S;) = N(Sp

Under this definition, site S; is idle when L(S;) = 0. When L(S;) > I, there
are tasks waiting to be executed at site S;. (In their models, a site consists of a

single server.)

A different approach is taken in the algorithm proposed by Bryant and
Finkel [Brya81]. Their algorithm views the load of a site as its ability to com-
plete new tasks. Under this view, the load of a site §; with respect to task k,
L(S;,k), is the estimated response time of task k if it were to be processed at S.

That is,
L(S;,k) = RES(S;,k)

This view seems more attractive for situations where minimizing response time
is the main objective. An algorithm to estimate this response time RES(S;,k)

was also proposed in the paper. Their response time estimate is

RES(S;,k) = s min(Rg(j),Re(k)) + Rg(k)
JES;
where Rg(j) is the remaining service time of job j.

—
N

Ferrari recently proposed another alternative load measurement [Ferr85].
In this work, a site is modeled by a closed multichain queuing network with ser-
vice centers that have population-independent service rates and are scheduled by
different scheduling policies. The mean value analysis method [Reis80] is
applied to the model to derive the load measurement, which is the increase in
task response time because there is more than one task served by the site. This
proposed measurement is a linear combination of the mean queue lengths at the
site being considered, the coefficients being the total times the task would spend

in each service center if it ran alone at the site.

1.2.2.2. Information Policy

The information policy of a load balancing algorithm specifies how the load
information described above is stored, collected, and exchanged. Since the
exchange of load information increases network traffic, and storing and collect-
ing load information introduces overhead at each site, a good information policy

is an important component of a load balancing algorithm.

Load information could be stored at one site in the system, and other sites
could then access this information whenever needed. The advantage of such a
global approach is that it is simple to implement and provides system-wide load
information. However, this is only practical in local networks of small sizes or
certain topologies, as keeping all information at one site is both expensive and
unreliable. The most common approach is that each site in the system keeps a
load vector to store load information about the other sites. Decision making is
then based on this locally stored information. Thus, the problem becomes one of

how to keep an up-to-date load vector with a reasonable amount of overhead.

16

The solution is to select a balancing region of the proper size and an appropriate

information exchange scheme [Livng3].

The balancing region of a site §; is a subset of a distributed system that
consists of those sites which §; will consider as candidates for receiving one or
more of its tasks. A larger balancing region leads to a better global balancing
effect, with the disadvantage being higher message traffic if broadcast communi-
cation is not available. The choice of a balancing region in systems without a
broadcast mechanism is quite critical [Livn83]. For example, if the balancing
region extends too far in a point-to-point network, the transmission time for
returning the results of a remotely executed task will be difficult to predict since
the load of the communication channel can change frequently. Furthermore,
the routing algorithm has to be invoked to find the best path to send the result
back, introducing more overhead. The usual choice is to include only the
directly connected processors in the balancing region for a processor in a point-

to-point network.

For exchanging load information within a balancing region, a number of
schemes have been proposed. One scheme is to have each site broadcast every
change in its load status — whenever a task arrives at or departs from a site, the
site broadcasts its new status to the other sites in its balancing region. In this
scheme, each site has the most recent information about all other sites, and
therefore the task migration decision can be based on accurate information. The
drawback of this strategy is its large overhead. One way to reduce this overhead
is to have sites broadcast their load status periodically [Livn83]. If the broadcast

interval is chosen appropriately, the use of out-of-date load information can still

be avoided.

17

If a system migrates tasks only when some site in the system becomes idle,
the only information needed is an “idle” message that is sent whenever a site
enters an idle state. With this approach, message cost is minimized, and much
of the cost is incurred at an otherwise idle site. The Broadcast When ldle (BID)
and Poll When Idle (PID) algorithms [Livn83] are two examples of this
approach. The information policy used in the distributed load balancing algo-
rithm proposed by Ni [Ni82] can be viewed as a variation of this scheme. In
Ni's algorithm, a status message is broadcast to all neighbors when a site enters
an idle siate from a busy state or a busy state from an idle state. As long as a site

is busy, it will not report the change in the number of jobs in its queue.

Another example of a different sort of information exchange policy is the
"exchange while pairing” scheme of Bryant and Finkel [Brya81]. Before a task
rigration decision is made, a site that wishes to send out tasks asks each of its
neighbors in turn to establish a "pair” for possible job migration. Load infor-
mation from the originating site is included in the request. The pairing process

is terminated whenever a mate is found, and load information exchange is also

stopped.

1.2.2.3. Control Policy

The control policy of a load balancing algorithm determines the origin, the
destination and the time at which to migrate a task. It also determines which
site(s) will initiate the load balancing algorithm and the number of tasks to be
migrated. As discussed above, A task transfer can be initiated when one site in
the system becomes idle. That is, when a site becomes idle, it checks load

information kept locally or it sends request messages to its neighbors. A heavily

18

loaded site is then chosen as the source for task migration. However, it is not
necessary to postpone the transfer tasks until the system enters a "wait while
idle” state Tasks can be transferred earlicr to prevent the occurrence of such a

state, and better system performance can be achieved [Livn83].

The initiator of a task transfer can be either a heavily loaded site that asks
for help (the task sender), or a lightly loaded site that is willing to help (the task
receiver). The main disadvantage of having a heavily loaded site invoke a
transfer is that this further increases the burden on the already heavily loaded
site. Also, without proper coordination, more than one heavily loaded site may
migrate its jobs to the same lightly loaded site and in turn make it overloaded.
Thus, many algorithms allow a lightly loaded site to invoke the transfer instead.
In Livny’s BID and PID algorithms [Livn83], a site that enters an idle state
sends messages to inform its partners that it is ready to receive a job. In the
algorithm proposed by Ni [Ni82], a processor invokes the balancing algorithm
when the scheduling queue of a processor becomes empty. Wang and Morris
reported results indicating that, with the same level of information available,
receiver-initiated algorithms have the potential for outperforming sender-initiated
algorithms [Wang85]. This conclusion was derived for cases where interprocess
communication overhead was negligible. Recent results reported by Eager,
LLazowska, and Zahorjan [Eage85] comparing receiver-initiated and sender-
initiated load balancing strategies indicate that neither of the strategies dominates
the other for all svstem characteristics and parameter values. If the system load
is light to moderate, or if the cost of transferring executing tasks is significantly
greater than the cost of transferring newly arrived tasks, then sender-initiated

policies are recommended. If the system load is high and the transfer costs are

19

comparable for the two strategies, then receiver-initiated policies are recom-

mended.

When the balancing algorithm is invoked, task migration may occur.
There are several common criteria regarding task migration. The most important
is that the migration should be fruitful and stable. Processor thrashing, a situa-
tion where a lask continually migrates around the network without accomplish-

ing any useful work, should be avoided [Brya81].

1.3. MOTIVATIONS AND THESIS OVERVIEW

In the last two sections, various aspects of distributed query processing and
load balancing issues identified by research work in both the database manage-
ment systems field and the operating systems field were briefly reviewed. One
basic observation is that the existing distributed query processing algorithms are
still based on static system characteristics, while load balancing is known to be
able to improve the performance of distributed computing systems. If queries in
a distributed database system can be processed in such a way that the loads of
different sites in a database system are equalized 10 some extent, resource con-
tention will be relaxed and better overall system performance can be expected.
The possibility for doing so is provided by multiple copies of data which are to

be likely available in a locally distributed database system.

The job of balancing the load in a distributed database system could be
charged to the operating system which supports the DBMS. However, there is
another alternatuve: Let the DBMS take the responsibility. In this later
approach, the load balancing mechanism becomes an integral part of the query

opuimizer. The query processing plans chosen are those that will lead to a bal-

20

anced system. This alternative has several attractive features:

(1) The query optimizer produces important information about a query, such as
estimates of its resource demands (including its 1/0 and CPU require-
ments). This information may only be approximate, but it can be used o

guide the allocation of queries to sites.

(2) A query is usually decomposed into subqueries during its execution. The
query processing problem thus has clear boundaries between steps, provid-
ing natural decision-making points for load balancing. For example,
subqueries could be the unit of allocation and migration. (Not all ordinary

computing tasks are so structured).

(3) To have the DBMS migrate a query is easier and more natural. The fol-
lowing steps are need to migrate a process at the operating systems level :
(1) remove the process from execution, (ii) ask the source kernel to move
the process, (iii) allocate a process state on the destination processor, (iv)
transfer the process state, (v) transfer the program, (vi) forward pending
messages, (vii) clean-up the process state and (viii) restart the process
[Powe83]. I migration is instead initiated by the DBMS at the right point,
some of these steps can be omitted — migration will need only to initiate a
new process at the destination site. There is no need to save or clean-up

process states. Also, no message forwarding is needed.

The potential benefits of load balancing in distributed database systems
combined with the advantages of incorporating the load balancing mechanism
into the DBMS motivated the research work described in this thesis. The

remainder of this thesis is organized as follows:

21

Chapter 2 demonstrates the potential of dynamic query allocation in fully
replicated distributed database systems. Three basic algorithms for dynamic
query allocation in such systems are proposed. A closed, two-class queuing net-
work model is established for a fully replicated distributed database system, and
a simulation study based on this model is presented. The results indicate that
dynamic query allocation is a promising way to improve system performance,

and that the queuing time of queries can be significantly decreased in this way.

Chapter 3 describes an experimental study of the performance of different
distributed join algorithms. The algorithms tested, the testbed that was built and
the results that were obtained are presented. This study shows that local pro-
cessing cost is the dominant part of the total query processing cost for local net-
works. Pipelined join processing was found to yield better performance than
sequential join methods in most cases. This study also leads 10 observations that
are important for the design of a load-balanced query processing algorithm

(which was the motivation for this study in the first place).

Chapter 4 presents the design and details of a load-balanced approach to
distributed query processing. Possible ways to achieve load-balanced query pro-
cessing are discussed first. Algorithm LBQP, a three-phase load-balanced query
processing scheme, is then described in detail. The rationale behind the heuris-
tics used in the first phase, the static planning phase, are analyzed. The main
part of the algorithm is the second phase — dynamic allocation. The optimality
and complexity of an algorithm for this phase is studied. The results indicate
that the proposed heuristic algorithm generates the same optimal plans obtained
by exhaustive search in most cases, and in much less time. Finally, the purpose

and methods used for the last phase, the refining phase, are discussed.

22

In order to indicate the effectiveness of the proposed load-balanced
approach to query processing, a queuing network model for partially-replicated
distributed database systems was established, and simulation cxperiments were
carried out using this model. Chapter 5 describes the model and the results of
these experiments. The results indicate that load-balanced query allocation sig-
nificantly decreases the mean waiting time of queries and increases system

throughput in systems with multiple copies of data.

Finally, Chapter 6 summarizes what was learned from this study and indi-

cates directions for future research.

CHAPTER 2

DYNAMIC QUERY ALLOCATION: THE FULLY REPLICATED CASE

Inh order to investigate the potential of integrating a load balancing mechan-
ism with distributed query processing and to explore possible query placement
criteria, the problem of dynamically assigning queries to sites in a distributed
database systern with fully replicated data is studied in this chapter. Several
heuristic algorithms are proposed for achieving good query allocations dynami-
cally. A simulation model is developed for studying these algorithms, and the
results of a set of simulation experiments using this model are presented and dis-

cussed.

2.1. DISTRIBUTED DATABASE SYSTEMS WITH FULL REPLICATION

A database system is said to be fully replicated if every site in the system
has a copy of all relations in the database. User queries can always be processed
locally (i.e., processed with no data movement) in this case. This case is easier
to deal with from a load balancing prospective than the general case, as the only
communications costs which need to be considered in query allocation are the
costs of initiating a query at a remote site and then getting the results back to the
originating site. Thus, the fully replicated case was selected for the purpose of

this feasibility study.

The problem of load balancing in a fully replicated distributed database sys-
tern might also have practical applications by itself. Consider a large informa-
tion center that consists of a number of computers with large, high speed storage

systems connected via a communications subnet. Requests for information

23

24

! |
‘ !
! !
|
| Q <r> Q |
l
[
| 000 |
| M M M }
| |
' |

COMMUNICATIONS SUBNET
]

PC
PC T
—— 1

Figure 2.1: A large information service center.

retrieval might come from end user terminals (T), personal computers (PC),
workstations (W) and other computers which are connected to the same com-
munications subnet, as shown in Figure 2.1. In order to provide fast and reli-
able service, the information stored in the database could be fully replicated
among these computers.% The problem of load balancing among the computers
in such a system 1s exactly the query allocation problem being studied in this

chapter.

" Such information centers mainly provide information retrieval services to customers, so
having to update multiple copies may not be a serious problem.

COMMUNICATIONS SUBNET

Figure 2.2: A partitioned distributed database system.

The dynamic query allocation problem for the fully replicated case can also
be thought of as a basic problem underlying more general load-balanced query
processing. As as example, consider the system shown in Figure 2.2. This
system consists of N database servers D;, 1 = i = N. The database is designed
in such a way that it is divided into P partitions with no data overlap, and each
partition of the database is replicated on several machines so as to ensure availa-
bility. A query processing plan in such a system consists of subqueries, O,
interwoven with intersite data moves, and each subquery will be executed at a
site within some partition P;. Within the partition, then, the data referenced by
Oy is fully replicated. The dynamic allocation problem for subquery Qy in par-
titon Py is the same problem as the dynamic allocation problem for a complete

query in the fully replicated case.

26

2.2. HEURISTICS FOR DYNAMIC QUERY ALLOCATION

In this section, three heuristic algorithms are presented for query allocation
in the fully replicated case. Each of these algorithms allocates a newly arriving
query to a site in the system where it will be processed to completion. The goal
of each of these algorithms is to dynamically achieve a load-balanced system
which performs better than a system without load balancing. The basic heuristic
used by the algorithms is to choose the processing site with the minimum
estimated cost. Figure 2.3 describes the selection process in this manner. (One

detail not shown in the figure is that the "foreach” loop that examines possible

function SelectSite(q: query; arrival_site: site): site;
var
cur_cost, min_cost: real;
remote_site, best site: site;
begin
best_site : = arrival_site;
min_cost : = SiteCost(q, arrival_site);
foreach remote_site in {sites} - arrival_site do begin
cur_cost : = SiteCost(q, remote_site);
if cur_cost < min_cost then begin

mIN_cost : = Cur_cost;
best_site : = remote_site;
end;
end;
SelectSite : = best_site;
end;

Figure 2.3: Function to select processing site for query.

27

remote execution sites should scan these sites in a round-robin fashion). In the
case that the processing cost of the local site is the minimum, the local site is
always chosen as the processing site. What is different from algorithm to algo-
rithm is their cost estimation procedures. Before describing the details of these

cost estimation procedures, two assumptions are made.

(1) The query allocation algorithms have information about the estimated pro-
cessing costs of the newly arrived query. This processing cost is
represented by a triple {num_reads, page cpu_time, result_fraction }, and
this cost information is assumed to have been produced by the query optim-
izer. Num_reads is the number of disk accesses needed for retrieve the
data from the database. Page_cpﬁ,time is the CPU time needed to process a
page that has been fetched into the memory. Result fraction is the ratio of
the number of result pages and num_reads. This last component is used to
estimate the communications cost for sending the result of a query back to

its originating site if it is executed remotely.

(2) Every site in the system has knowledge about the load status of other sites

needed by the query allocation algorithms.
Each of the three query allocation algorithms are now considered in turn.
2.2.1. Balance the Number of Queries

One simple heuristic for dynamic query allocation is to try to keep the
number of queries at each site evenly balanced. This appro'ach 1s called the
BNQ ("Balance the Number of Queries”) algorithm. Each site knows the
current distribution of queries in the system. Then, when a new query is ini-

tiated from a terminal at some site, that site routes the query to the site with the

28

smallest number of queries for processing. Figure 2.4 gives the cost estimation
function for the BNQ heuristic. This balancing goal is similar to the approach
that several previous load balancing algorithms have used [Livn82] [Livn83]
[Ni81] [Ni82] and is fairly typical of the approach taken at the operating system
level. It does not use any information about the arriving query, so it is referred
to as a non-information-based query allocation algorithm. Its knowledge about
the load status of a site is also very simple — it uses only the number of queries

at the site.

2.2.2. Balance the Number of Queries by Resource Demands

The first information-based heuristic is a simple extension of the BNQ
algorithm. This heuristic, called the BNQRD ("Balance the Number of Queries
by Resource Demands”) algorithm, requires that each site knows the number of
CPU-bound queries and the number of 1/0O-bound queries at every site in the
system. (One could perhaps generalize this classification along the lines of the
work of Ferrari [Ferr85].) When a new query is initiated from a terminal at

some site, this query is classified as being either an I/O-bound query or a

function SiteCost(q: query; s: site): integer;
begin

SiteCost : = Num_Queries(s);
end;

Figure 2.4: Cost estimation function for BNQ algorithm.

29

CPU-bound query based on the knowledge of its resource demands. The query
is then routed to the site with the smallest number of queries of the same type
(i.e., 1/0-bound or CPU-bound). Figure 2.5 gives the site cost estimation func-
tion. The actual cost calculated in Figure 2.5 is the sum of two terms. The first
term is the number of queries of the same type at the site, and the second term
is the number of queries of the other type multiplied by a small constant. This
cost estimation function ensures that, in the case that more than one site has the
same smallest number of queries of the same type , the query is routed to the

site (or one of the sites) with the smallest total number of queries.

To classify a query as being 1/0- or CPU-bound, its 1/0 demand per disk,
defined as its 1/0 time divided by the number of disks per site, is first computed.
This per-disk 1/0 demand is then compared with the CPU demand of the query.
If the IO demand is greater, it is an 1/O-bound query; otherwise it is CPU-

bound.

function SiteCost(q: query; s: site): integer;
const
Epsilon = 0.001;
begin
if (disk_time / num_disks) > Page_CPU._Time(q) then begin
SiteCost : = Num_1O_Queries(s) + Epsilon*Num_CPU_Queries(s);
end else begin
SiteCost : = Num_CPU_Queries(s) + Epsilon*Num_10_Queries(s);
end;
end;

Figure 2.5: Cost estimation function for BNQRD algorithm.

30

2.2.3. least Estimated Response Time

The second information-based heuristic, LERT ("Least Estimated Response

¢

time"), uscs the 1/O and CPU demand information for a newly arrived query 1o
estimate the response time of the query at each site in the system, routing the
query to the site with the least estimated response time. This approach is related
to the work of Bryant and Finkel [Brya81]. As in the BNQRD algorithm, each

site must know the number of CPU- and 1/0-bound queries at all sites in the

system.

The response time computation itself, given as the site cost estimation func-

tion in Figure 2.6, is based on several simplifying approximations: First, it is

function SiteCost(q: query; s: site): real;
var
cpu_lime, io_time, neL_time: real;
cpu_wait, io_wait: real;
begin
cpu_time := Num_Reads(q) * Page_CPU_Time(q);
io_time : = Num_Reads(q) * disk_time;
if s = arrival_site then begin
net_time : = 0.0;
end else begin
net_time := Transfer_Time(q) + Return_Time(q);

end;

cpu_wait : = cpu_time * Num_CPU_Queries(s);

1o_wait : = io_time * (Num_lO_Queries(s) / num_disks);

SiteCost : = cpu_time + cpu_wait + io_time + io_wait + net_time;
end;

Figure 2.6: Cost estimation function for LERT algorithm.

31

assumed that competition for a given resource type at a site is only with those
queries at the site that rely most heavily on this type of resource. (That is, a
query will compete mainly with 1/O-bound queries for 1/0 service at a site, and
it will compete mainly with CPU-bound queries for CPU service at the site.)
Second, it is assumed that both the CPU and the disks at each site have proces-
sor sharing (PS) service disciplines. This is probably accurate for the CPU, but
it is only a rough approximation for the disks. The disks actually have more of a
round-robin flavor — requests for page accesses are served one at a time by a
disk, perhaps using a SCAN ("elevator” algorithm), shortest seek time first
(SSTF), or firsi-come first-served (FCFS) discipline [PeS83], and each query
cycles through the disk que‘.ue a number of times making page access requests.
Third, it is assumed (for lack of better information) that the number of CPU-
and 1/0-bound jobs at each site will not change during the execution of the
newly-arrived query. Thus, the cost of executing a query at a site is the sum of
its service demands at the site, the message costs for sending the query to the
site and returning its results to the site of origin (if the execution site is not the
site. of origin), and the waiting time for CPU and 1/O service based on the

number of competing jobs at the site.

2.2.4. Discussion

The three algorithms described in this section represent three different
approaches to dynamic query allocation. The BNQ approach is based only on
the load distribution (the number of queries at each site), whereas the BNQRD
and LERT approaches are based on more load distribution information (the
numbers of 10-bound and CPU-bound queries at each site) and information

about the arriving query. Thus, only the latter two approaches use information

39

s

ahout the resource demands of queries. It is expected that BNQRD and LERT
will outperform the BNQ algorithm. Also, only the LERT algorithm takes the
cost of sending a query to a remote site, i.e., the message costs for sending the
query elsewhere and returning its results to the site of origin, into account. The
inclusion of these costs should make the LERT algorithm less likely to call for
unprofitable query transfers than the other algorithms. LERT also uses some-
what more information about the arriving query (i.e., its estimated number of
page accesses and result size). Thus, one could expect that LERT should out-
perform BNQRD, and BNQRD should outperform BNQ. However, a perfor-

mance study is needed to investigate the degree to which this is true.

2.3. MODELING A DISTRIBUTED DATABASE SYSTEM WITH FULL
REPLICATION

In order to evaluate the performance of different dynamic query allocation
algorithms, a queuing network model of a database system with full replication is
needed. Figure 2.7 depicts the model used here. The system consists of a col-
lection of database processing sites, or DB sites, each of which stores a complete
copy of the database. The DB sites are connected together by a local area com-
munications subnetwork. Each site' has a collection of terminals from which
queries originate and to which the results are returned, so the model is a closed
queuing network model. The system is assumed to be completely homogeneous,
i.e., all sites are configured identically and have the same workload characteris-

tics.

Figure 2.8 shows the detailed model of a DB site. Each site has a set of

terminals, several disks, a CPU, and a number of queues. The diamonds in the

DB SITE DB SITE DB SITE

COMMUNICATIONS SUBNET

Figure 2.7: Distributed database system model.

B

figure depict decision points in the model. The decisions that are related to the

dynamic query allocation algorithm are represented by the doubly-outlined dia-
monds. When a query is initiated by a terminal, the query allocator looks at its
processing requirements and decides whether to process the query locally or to
transfer it to another site. The query starts its execution at the disk service
center at its execution site. The query is routed to this center either directly or
via the communications subnet depending on whether it is to be executed locally
or remoltely. Once the query has begun execution, it cycles through the disk and

CPU service centers a number of times, reading and processing pages from the

34

TERMINALS

N
\g/‘

no

no

Ayes <“>
s

disk gueues DISKS
job CPU queue
°
o
msg CPU queue no
. z?>
yes
out msg queue
A —
FROM NETWORK TO NETWORK

Figure 2.8: DB site model.

(e
s

daLabase.J(Once finished, the query is returned to its terminal of origin. In the
case of a remotely executed query, this requires sending the results of the query
back to its home site. In order to initiate a query at a remole site or 1o return
the query result back to its home site, messages are passed around the communi-
cations subnet. In addition to the use of the communication lines, the messages
also consume CPU time (for preparing the message, executing the protocol,
etc). At each site, therefore, all incoming and outgoing messages enter a
msg_cpu_queue 1o receive a certain amount of CPU service. The outgoing mes-
sages then enter the our_msg_queue to be served by the communications sub-
net. An incoming message is directed either to the disk service center for execu-
tion (if it is a remote query to be executed at this site) or to the terminal (if it is a

query result sent back by the remote execution site).

The scheduling discipline for the disks is FCFS (first come, first served).
The CPU server serves jobs from two queues — one for query processing and
the other for message processing. The scheduling discipline is PS (process
sharing) for query processing and FCFS for message processing. Between these
queues, message processing is given higher priority over query processing.
That is, if a message arrives at the msg_cpu_queue while the CPU is processing
queries, the query processing service will be preempted, and the message will
receive CPU service immediately. The preempted query is resumed after all

queued messages have been served.

Table 2.1 summarizes the parameters associated with the DB sites in the

model. The storage hardware at each DB site i1s described by two parameters.

"It is assumed that the results of each query are accumulated in main memory as the query
executes.

36

DB Site Parameters

num _disks number of disks per site
disk_time | mean access time for a disk page
mpl | number of terminals per site
think _time] mean terminal think time
class_prob | class distribution function

Table 2.1: DB site parameters.
The parameter num_disks is the number of disks at the site, and disk_time is
the mean time required to access a disk page. The workload at each site is
characterized by three parameters: mpl, the number of terminals or multipro-
gramming level for the site; class_prob, the class distribution function that
determines the probability that a newly generated query will be a class C query

(for each class C); and think_time, the mean think time for the terminals.

Queries are classified into two classes in this study. Each query class Q; is
characterized by parameters page cpu_timej, num reads;, andresult_fraction;.
Table 2.2 summarizes these class parameters. The page_cpu_time parameter is
the mean CPU time required to process one page of data (read from the disk) for
queries of the class. The parameter num_reads is the mean number of times

that queries of the class cycle through the 1/0 and CPU service centers, i.e., the

Class Parameters
page _cpu_time | mean per-page CPU demand for the class
num _reads mean number of reads for the class
result_fraction mean fractional result size for the class

Table 2.2: Class parameters.

37

mean number of disk pages that they read. The parameter result_fraction is the
mean number of result pages produced for queries of the class (expressed as a

fraction of the total number of pages read).

The model of the communications subnetwork is a simple token-ring style
local network model. The network has a single message buffer for each site and
sites are polled in a round-robin fashion for requests to send messages. The
cost of sending a message along the communication line is a linear function of
the length of the message. When the network finds a site that is ready to send a
message, it sends its message, delays for the appropriate amount of time, and

then continues on with the polling process.

The main component of the message delay in real systems based on local
area networking techniques is not the transmission delay over the communica-
tions line, but the time needed to establish a connection between two sites and to
prepare the message packets [Cher83]. This preparation includes copying the
data from memory to the network interface and vice versa. Even if the network
protocol is supported by a memory access mechanism, message sending and
receiving still causes a certain amount of CPU overhead. Therefore, the total

cost for sending a message between two sites is simulated as:

total _msg_time = msg_setup +

(msg_cpu_time + trans_rate) - data_length

The communications-related parameters are listed in Table 2.3. The
parameter msg_setup is a fixed time delay for each message. The parameter
trans_rate is the time needed to transmit one byte of data along the communica-

tions line. These first two parameters represent network time. Msg._cpu_rate is

Communications-related parameters

msg _setup fixed amount of time needed to establish a connection
msg _cpu _rate CPU tme needed for transferring one byte of data
trans__rate time needed for transferring one byte over the network
query_descrip _size | size of one query message in bytes

Table 2.3: Communications-related parameters.

the CPU tme needed for transferring one byte of data. The parameter
query_descrip_size is the number of bytes required to describe a query (i.e., the
amount of data that would have to be transferred to initiate a query remotely).
One assumption that should be mentioned is that the overhead associated with
load status messages is neglected, as it is assumed for the purpose of this study

that each site simply knows the current loads of all other sites in the system.

2.4. A SIMULATION STUDY

This model of a fully replicated database system has been implemented to
support investigations of the behavior of different dynamic query allocation
heuristics. The details of the implementation, the experiments conducted, and

the results of the experiments are all presented in this section.

2.4.1. Simulation Details

The simulation was implemented in the DISS simulation language
[Melm84] and run on an IBM 4341. DISS is a high level simulation language
based on the SIMSCRIPT 11.5 simulation language.

in the experiments reported here, the model parameters used are those

values listed in Table 2.4. The probability that a query is an 1/O-bound query is

System Parameters

num__sites 2-14

DB Site Parameters

num_disks 2

disk _time 25 msec

disk_time _dev 20 %

mpl 5 - 45 terminals

think _time 4.0 - 18.0 sec

class;, _prob 0.2-0.8
Communications Costs

msg _setup 150 psec

msg..cpu_rate 2.0 psec/byte

trans _rate 10 MB/sec

query_descrip_size | 2048 bytes
Class Parameters I/0 Bound | CPU Bound

page_cpu_time 1.25 msec 25 msec
num_ reads 20 pages 20 pages

Table 2.4: Parameter settings for the simulations.

classi,_prob; the other class of query is CPU-bound. The number of reads for
queries has an exponential distribution with a mean of num_reads. Disk service
times (to access a page of data) are uniformly distributed on the range
disk_time * disk_time__dev. CPU service times have an exponential distribution
with page_cpu_time as the mean. Think times at the terminals are exponen-
tially distributed with mean think_time. The model parameter result_fraction
is the mean of an exponential result size distribution. For the parameters which
are shown in Table 2.3 as varying over some range, their values when not being
varied are as follows: num_sites = 6, mpl = 20, class;,_prob = 0.5, and

think _time = 10.0 seconds.

40

2.4.2. Performance Metrics

Two performance metrics are of primary interest in this study: the mean
waiting time for queries and the fairness of the algorithms. The mean waiting

time (or queuing time) for the queries, W(x), is the difference between the

mean response time of the queries, R, and their mean execution time, x:
Wix)y= R — x

Although response time itself is a widely used performance metric, the waiting
time is preferred over response time here. This is because the response time of
the queries has a fixed component, their execution time, which no query alloca-
tion algorithm can affect. What the query allocation algorithms can affect is the
waiting time component of response time. The waiting time should thus better

indicate the different behavior of the different query allocation algorithms.

In order to quantify the performance improvements provided by the various
dynamic query allocation algorithms, the notion of the mean waiting time
improvement factor, WIF(Ly Lj), is introduced. WIF(L1 Lj) is the mean wait-
ing time improvement factor of allocation algorithm L with respect to Ly, and
is defined as:

WLz(x) - —WLl(X)
WL, (x)

WIF(Ly Lpy =

In this study, the dynamic allocation algorithms are compared with the static
allocation algorithm LOCAL, where every query is processed locally at its home
site. For example, the waiting time improvement factor of the algorithm BNQ

can be represented by

41

WIF(BNQ ,LOCAL) = YLocaL(x) = Weng(x)
WiocaL (x)

Another metric of interest is related to the "fairness” of the allocation algo-
rithms. The expected waiting time of a query with a given execution time (i. e.,
service demand) can serve as a measure of fairness for an allocation policy as
follows: Two users with service demands x1 and x; are likely to agree that the
allocation algorithm is fair if the ratio of their respective expected waiting times
is equal to x1/x3. The mean normalized waiting time, W(x), is defined for this
purpose; it is defined as the ratio of Wix) to x. The fairness of a system with
respect to two query classes €; and C; when allocation algorithm L is used is
defined as the difference between the normalized waiting times of these two

classes. That is,

-

F]_(Ci,Cj) = V:/l - Wj

The closer the F; value is to zero, the more equitable the system is being in
serving the two classes of queries. The sign of the F; value indicates which

query class is being favored by the system.

2.4.3. Simulation Experiments and Results

Several experiments have been performed to investigate how the three
dynamic query allocation algorithms of Section 2.1 affect performance in terms
of the metrics defined above. These experiments investigate the waiting time
improvement factor and the fairness of the different algorithms, and they also
examine the sensitivity of the LERT algorithm to estimation errors in the service

demands.

42

2.4.3.1. Mean Waiting Time Improvement

Examining the effects of the different algorithms on the mean waiting time
W is one of the main objectives of this studv. The experiments described here

investigate these effects under the following conditions:
(1) Different site load situations.
(2) Different numbers of DB sites in the system.
(3) Different communications costs.

First, the behavior of the different algorithms under different system load
situations is studied. One way to obtain different system loads is to vary the
think_time of queries. Figures 2.9 and 2.10 present the results of such an
experiment, giving WIF and the CPU and disk utilizations as a function of think
time. 1t is evident from Figure 2.9 that each dynamic query allocation algorithm
leads to a significant decrease In W with respect to local processing, clearly
displaying the beneficial effects of dynamic query allocation. Comparing Figure
2.9 with Figure 2.10, it can be seen that greater improvements are achieved
when the system utilization is lower. The reason for this is that when the utili-
zation is low, there is a better chance that a newly arrived query can be allocated
to a lightly loaded or perhaps even idle DB site and therefore encounter minimal
queuing delays. As anticipated, the BNQRD and LERT algorithms outperform
BNQ by using additional information about query resource demands and the dis-
tribution of the query classes at each site. Finally, the performance of LERT
and BNQRD is seen to be almost the same here. Thatis, LERT s more detailed
information about the newly arrived query and its consideration of the communi-

cations cost in detail does not appear to help for the situation tested here.

43

WIF(X,LOCAL) (%) Utilization (%)
7 901
70 , . BNQ B—8 pisK
) BNQRD 80‘ G CPU
60 &—A [ERT
50 70
60
4017
507
307
407
207 301
107 201
0] 107
4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
mean think time (sec) mean think time (sec)
Figure 2.9: Waiting time Figure 2.10: Utilizations.

improvement factors.

Various system loads can also be obtained by varying the number of termi-
nals (the mpl) at each DB site. Figures 2.11 and 2.12 show the effect of mp!
on WIF and system utilization, respectively. The trends observed in this experi-
ment are similar to those observed previously. From a multiprogramming level
viewpoint, the effect of dynamic query allocation is that the number of terminals
al each of the DB sites can be increased over the local processing case without
decreasing the mean query response time. In other words, the capacity of the

systemn can be increased through dynamic query allocation. This point is illus-

44

WIF(X,LOCAL) (%)

Utilization (%)

801 1007
70] 907

; g——a DISK

60 80 o——o (CPU
507 70]
407 60
507
30]
40
207]
0 30
10 20'
0] 10]

5 10 15 20 25 30 35 40 45 S5 1015 20 25 30 35 40 45
MPL MPL
Figure 2.11: Wailing time Figure 2.12: Utilization.

improvement factors.

trated in Table 2.5, which shows the maximum number of terminals for which

various expected normalized waiting times can be provided using two different

allocation algorithms (LOCAL and LERT). Using LERT, the number of termi-

nals at each site can be increased while providing the same normalized waiting
time as the system with fewer terminals when queries are always processed
locally.

Figures 2.13 and 2.14 summarize the results of an experiment which

examines the effect of the number of DB sites in the system (num_sites) on

45

Normalized Maximum mpl
Waiting Time || LOCAL LERT
= 0.20 10 16
= 0.40 15 22
= 0.90 25 31
= 1.25 30 35
= 1.80 35 38
= 2.50 40 42

Table 2.5: Maximum number of terminals versus W.

WIF . Increasing the number of DB sites in a distributed database system has two
competing effects: On one hand, it improves the probability that a query can be
allocated to an idle or a lightly loaded site. This is visible in Figure 2.13 — the
waiting time reduction due to dynamic allocation increases as num_sites is
varied from 2 to 12. On the other hand, however, it increases competition for
the communication channel and thus increases the waiting time for messages.
To illustrate this phenomenon, Figure 2.14 shows the subnet utilization for each
of the num_sites settings. Due to the combination of these two effects, the wait-
ing time improvement factor is approximately constant for num_sites values
greater than 10. Even the improvement for LERT decreases when the number
of DB sites increases. Although LERT takes message costs into account, it does
not consider the waiting time for messages caused by the heavily loaded com-
munication line. If the communication cost were higher, the value of WIF
would actually begin to decrease after a while as num_sites is increased
[Care85]. This result illustrates an important design consideration for distri-
buted database systems — from the viewpoint of dynamic query allocation, there

is an optimal value for the number of copies of data items, and an important

46

WIF(X,LOCAL) (%)
60]
507

407

207

107

4 ¢ 8 10 12 14
Number of DB Sites

[]

Figure 2.13: Waiting time

improvement.

' BNQRD & 2 LERT
Utilization (%)
207
157
107

N

T Y T T

2 4 6 8 10 12 14
Number of DB Sites

Figure 2.14: Subnet utilization.

parameter affecting this value is the data transfer rate of the communications

network. This observation coincides with the idea of selecting a suitable load

balancing region, as discussed in Chapter 1.

Another experiment conducted investigates the improvement in the mean

waiting time for queries under different communications costs. In order to vary

the communications cost, the result fraction of the query was varied. Figure

2.15 shows the results of this experiment. With a small result fraction, say

47

0.01, only one packet is sent and returned for a remote query. When the result
fraction increases, the size of the result becomes larger. With a result fraction
of 0.3, and a num_reads setting of 20, the mean result size will be 6 pages. The
total time needed to return these results, excluding any waiting time for the com-
munications line, is about 118 milliseconds — or about 22% of the execution

time for an 1O bound query.

The BNQ and BNQRD algorithms do not take this cost into account when

they make their transfer decisions, leading to poor performance for these

6—opNQ T—+BNQRD & 2 LERT

WIF(X, LOCAL) (%) CPU Util. (%)
601 65
40 60’
20] 557

0 507
| \A G

-20] 45
0.10 0.20 0.30 0.10 0.20 0.30
Result Fraction Result Fraction
Figure 2.15: Waiting time Figure 2.16: CPU utilization.

improvement factors.

48

algorithms (even worsc than LOCAL) when the result fraction of the query
increases. The LERT algorithm, which considers this effect, thus performs
better than BNQRD when the result _fraction increases. Still, two factors are
neglected by the LERT algorithm. The first factor is the CPU time needed to
process the incoming and outgoing messages. When the result fraction becomes
larger, the CPU time consumed by the messages increases dramatically. This
can be seen in Figure 2.16, which shows the CPU utilization as a function of
the result fraction. As the result fraction goes from 0.01 to 0.35, the CPU utili-
zation increases about 15 percent; furthermore, message processing has high
priority, so the query scheduling discipline for the CPU queue will not be
"pure” processor sharing (which is one of the assumptions made by LERT).
The second factor which is not considered by LERT is the waiting time for mes-
sages in the network. When the result fraction increases, the load on the com-
munications subnet also increases, as shown in Figure 2.17. These two factors
make LERT’s estimation of response time less accurate and lead to incorrect
allocation decisions. This explains why the LERT algorithm leads to somewhat

poorer performance than LOCAL when the result fraction is high.

2.4.3.2. Dynamic Query Allocation and Fairness

To investigate the effects of dynamic allocation algorithms on the fairness of
the system to the two job classes, another experiment was performed in which
the parameter class;j,—prob was varied from 0.2 to 0.8 (which makes the system
without dynamic query allocation favor one or the other of the query classes).
The results are shown in Figures 2.18 and 2.19. Along with the significant
waiting time improvement, shown in Figure 2.18, an improvement in the fair-

A ~

ness measure Fr, W, pound = Wepu_bound, 15 evident in Figure 2.19 in most

49

Subnet Util. (%)

207
G—=—0 BNQ
A BNQRD
151 L——A LERT

107

U

T v T ¥ Y

0.10 0.20 0.30

Result Fraction

Figure 2.17: Subnet utilization.

cases. When class;,_prob is less than 0.5, the system favors 1/0 bound
queries (i.e., Wi pound is less than chu_bound)- When classj,_prob is
greater than 0.5, the system begins to favor CPU bound jobs. This can be seen
from the LOCAL curve in the figure. It is interesting that, no matter which
class of query the system favors in the local case, dynamic query allocation tends
to decrease the difference in the normalized waiting times between the two

classes.

B—8 10cAL “° BNO ™ BNQRD 4—% |ERT

WIF(X,LOCAL) (%) Fairness
601 0.2
] 0.17
50
0.0]
40
-0.1
30]
-0.2
20 -0.3
107 -0.4]
0.2 04 0.6 0.8 0.2 0.4 0.6 0.8
Prob(1/0O) Prob(1/0)
Figure 2.18: Waiting time Figure 2.19: Fairness.

improvement factor.

2.4.3.3. Sensitivity to Query Information

The dynamic allocation algorithms BNQRD and LERT use information
provided by the query optimizer about the processing costs of queries. However,
the query optimizer can only provide an estimate of the processing cost of a
query. That is, the information given to the load balancing algorithm is not the
actual service demand for a query. Since LERT depends more upon these ser-

vice demands to make allocation decisions than BNQRD does, the inaccuracy of

51

the estimates is expected to have a greater influence on the performance of the
LERT algorithm. An experiment was run to investigate the sensitivity of the
LERT algorithm 1o such inaccuracies. In this experiment, instead of using per-
fect information about the resource demands of a query (io_cost and cpu_cost),
their estimates (est_io_cost and est_cpuw_cost) were used to estimate the response
times in the LERT algorithm. Both est_ io_cost and est cpu_cost were assumed
to be normally distributed random variables with io_cost and cpu_cost as their
respective means. The mean waiting time for queries as a function of the devia-
tion of these normal distributions is shown in Figure 2.20 for the LOCAL,

BNQ, and LERT algorithms.

Seconds
0.5]
LOCAL
)
0.47
0.3 “4
0.2 LERT

0 20 40 60 80
Est. error (%)

Figure 2.20: Waiting time.

52

The trends shown in the figure are encouraging: While the mean waiting
time increascs as the estimation error increascs, the LERT algorithm performs
betier than the BNQ algorithm when the estimation error is less than 80% of the
mean execution time. That is, even with quile inaccurate information about
queries’ resource demands, the information-based algorithm (LERT) still out-
performs the non-information based algorithm (BNQ). One argument explain-
ing the importance of accurate query processing demand estimation is that the
information needed for dynamic allocation is probably not the absolute response
time, but rather the relative response time for the different sites. That is, if the
estimated response time for a query at site S; is greater than that of another site
§j, and if this implies that the actual response time at S; will be greater than that

at §j, then absolute estimation accuracy is not at all that significant.

2.5. SUMMARY

In this chapter, the problem of allocating queries to sites in a fully repli-
cated distributed database system has been studied. Dynamic allocation algo-
rithms which use different amounts of query and site Joad information were
described. A closed, two-class queuing network model was established for a
fully replicated distributed database system. A set of simulation experiments
were conducted using this model, and the results indicate that significant
decreases in the mean waiting time for queries can be obtained when queries are
allocated to sites based on load information. Another impénam conclusion of
this study is that using information about query resource demands leads to signi-
ficantly better performance than the simple ‘balance the number of queries’
approach. It was found that the overall fairness of the system can be improved

through dynamic query allocation. Finally, it was also found that the query

resource demand estimates do not have to be exact to yield improvements in per-

formance.

The environment in which these dynamic allocation algorithms have been
studied is that of a distributed database system with both CPU and 1/0 (disk)
resource demands. However, database systems are not the only application in
which 1/0 as well as CPU usage is important, nor is knowledge of the re]étive
CPU and 1/0 needs of tasks restricted to the database environment. Many stan-
dard system utilities, such as compilers, text formatters, and file systems, have
resource demands which could be characterized either statically or dynamically,
and this information could be used by a distributed operating system to make

more informed load balancing decisions, as in the database environment.

Finally, it should be pointed out that nothing has been mentioned about
how site state information is to be exchanged among the sites — this omission is
intentional. This study has focused solely on the issue of how such information
can be used and the extent to which performance can be improved through its
use. A good information exchange policy will not overburden either the sites or
the communications subnetwork, and yet it will provide the sites with informa-
tion that is sufficiently current so that the performance improvements offered by
the heuristics are not lost. The design and analysis of such a policy is not

addressed in this thesis, being left instead for future work.

CHAPTER 3

DISTRIBUTED JOIN ALGORITHMS: AN EMPIRICAL STUDY

Compared to the number of distributed query processing algorithm papers
that have appeared in the literature, relatively few papers have addressed the per-
formance of distributed query processing algorithms. In order to get a deeper
understanding of distributed query processing issues in local networks, an
empirical performance study of different distributed join methods was conducted
using Crystal [DeWi84b], an experimental locally distributed computer system.
This chapter describes these join methods, the testbed built for the experiments
and the implementation details. The results obtained are then presented, and
their implications and relationship to other work are discussed at the end of the

chapter.

3.1. DISTRIBUTED JOIN METHODS

Given an equi-join query RyP><Rp' in a distributed database system,
where R, and R, reside at (different) sites S; and Sp, respectively, there are a
number of distributed join methods available for processing it. These methods

can be categorized along three dimensions.

(1) General approach: Which primitive operator is used — the "traditional”

join operator or the semijoin operator?

(2) Execution paradigm: How does the pair of sites involved cooperate during

join processing — in a sequential fashion or in a pipelined fashion?

+Ra ><{Rp is used as an abbreviation for R;[A = B]Rp, here.

54

55

(3) Local processing. What access paths and local join mcthods are used for

local data access and processing?
3.1.1. Join Versus Semijoin

As described in Chapter 1, a distributed join can be processed either using
the traditional join operator or the semijoin operator. If the traditional join
operator is used, the two relations must be brought together at one site. This can
be done by either transferring one relation to the site where the other relation is
stored or by transferring both relations to a third site. In either case, the whole
relation is transferred. Using the semijoin operator, the join column values of
one relation, say R,.A, are transferred to the site where the other relation Rp
resides to perform the semijoin R, ><RbT. The join Ry><Rp is completed by
sending the semijoin results to the site of R; and joining them with R,. If inter-
site data transfers are expensive, the join field width is small compared to the
width of an entire tuple, and the semijoin selectivity between the two relations is
small (i.e. there are not many matching tuples), the use of semijoins can result
in a significant savings in communications cost. In local area networks, how-
ever, the data transfer rate between sites is much higher. It is questionable
whether or not semijoins will be beneficial in such an environment, as using
them requires multiple scans of the source relation R, and therefore more disk

accessces.

3.1.2. Sequential Versus Pipelined Processing

The concept of pipelined processing is widely used. In query processing,

the partial result of one operation can be used as the input of the next operation

TRa ><]Rp is used as abbreviation for R; <A = B]Rp here.

56

to speed up the processing [Smit75][Yao79]. The same concept can be applied
to the processing of a single join operation, R,P><1Rp, where Ry and Ry, are al
two different sites. That is, the site that requests remote data will begin its pro-
cessing as soon as the first tuple or packet of data has arrived. This is in con-
trast to sequential processing, where the site receiving data will not begin its pro-
cessing until all of the required data has arrived. One advantage of the pipelined
approach 1s its pafallelism — the two sites work in paraliel, so the elapsed time
for the query will be reduced in proportion to the amount of overlapped process-
ing. Second, and perhaps more important, is the fact that the receiving site
doesn’t need to actually store the incoming data in a temporary relation, thus
saving the time and disk accesses required to store and then re-retrieve the data
received from the remote site. Pipelined processing can be applied to both join-
based and semijoin-based join processing. Its main drawback is that flow con-
trol i1s needed to synchronize the processing at two sites, so its implementation is

somewhat more complicated than that of sequential processing.

3.1.3. Access Paths and Local Join Methods

Since any distributed join involves local processing, the local join algorithm
and associated access methods are still important factors in distributed join pro-
cessing. There are a number of options available along this dimension. For
centralized join methods, Blasgen and Eswaran found that, except for very small
relations, the nested loops join or sort-merge join methods were always optimal
or near optimal [Blas77] As for access methods, the nwo major options are
sequential scan or an index scan using various index structures. Recently, it is
reported that even better performance can often be obuained using hash-based

join methods [DeWi84a]. Only the nested loops and sort-merge methods are

I
~1}

examined here, however.

In this study, the availability of an unclusiered B* tree index on the join
column of the inner relation is assumed in all experiments with the nested loops
join methoduT An unclustered index is assumed because it is not always reason-
able to assume that the join column will have a clustered index available. If the
inner relation is shipped to the outer relation’s site, an unclustered B* tree
index is constructed for the inner relation at the outer site. An unclustered is
used here because it is faster 1o build an unclustered index than a clustered one.
Furthermore, since the join column values of the outer relation are not ordered,

clustered and unclustered indices will produce the same performance.

3.2. JOIN ALGORITHM DETAILS

Eight algorithms were implemented for this study. In terms of the three
dimensions described above, the algorithms are the eight possible combinations
of the semijoin-based or join-based approach, the pipelined or sequential execu-
tion st es, and the nested loops index join or sort-merge local join methods.
These | methods are abbreviated as SISM, SINL, PJSM, PJNL, SSSM,
SSNL, PSSM, and PSNL respectively. For the first letter, "S” stands for
sequential and "P" stands for pipelined. The second letter, "J” or "S", is used
to represent "traditional”join versus semijoin. The last two letters indicate either
sort-merge ("SM") or nested loops ("NL") join. In all tests, site S, initiates the

join query, and S, is both the join site and the result site. In the remainder of

this section, each distributed join method is described in turn.

" The cost of a nested loops join without an index for relations of reasonable size is usually
prohibitive [Bin83], so this possibility is not considered.

SITE Sa SITE Sb < CTART > < START >

...

RECEIVE Rb [7°] SENDRb

l y
[¥y JOIN Tb, Ra
| BUILD n:)x_J DONE

G T
JOIN Ra,Rb
no
Figure 3.1: Figure 3.2 :
Join methods SISM and SJNL. Join methods PJSM and PJNL.

3.2.1. SJSM and SJNL

The sequential join methods SISM and SINL are the simplest of the distri-
buted join methods. Figure 3.1 illustrates the details of the two methods. The
remote relation Rp is shipped to join site S; as a whole and stored there as a
temporary relation. It is then joined with R, at site S, using either the sort-
merge method (SISM) or the nested loops method (SINL). For SISM, the two
relations are each sorted at their local sites to increase parallelism (as shown in

the dotted box); no sorting is performed in the case of SINL. For SINL, a B+

59

trec index is built on the join column of the relation received at site S, before

the local join is performed (indicated by the dashed box in the ﬂgure).T

3.2.2. PJSM and PJNL

Like SISM and SINL, the PJSM and PJNL algorithms transfer the whole
relation Ry from site S to site §;. However, the joins are processed in a pipe-
lined fashion, so relation Rp is not stored as a temporary relation at site S,.
Instead, tuples of R, are joined with R, tuples on the fly as they arrive, as
shown in Figure 3.2 (with the sorting steps only being present in the sort merge
case). Using the PJISM method, both relations are sorted first. Then, when a
group (packet) of Ry tuples arrives at site S,, a scan cursor on R, is incre-
mented to find matching tuples. Matches are merged with the tuples from the
Rp group and written to the result relation. In the PJNL case, since no tem-
porary relation for Ry is stored at site S, the local relation R, always serves as
the inner relation and the remote relation Rp serves as the outer relation. Both

PJSM and PJNL can be viewed as distributed executions of the corresponding

centralized join algorithms.

3.2.3. SSSM and SSNL

Figure 3.3 illustrates the details of two implementations of the semijoin-
based methods, SSSM and SSNL. One important detail of the implementation is
that the join column R;.A, which is sent from site S, to site Sp, is not stored
on disk at site S, — the incoming values are processed on the fly as they arrive.

Similarly, the semijoin result Rp" = Rg.AP><1Rp, which is transferred back to

"One possible local optimization for sort-merge methods is to complete the last phase of
sorting on the fly: the sorted tuples are not stored and sent to the network directly.

60

SITE Sa SITE Sb SITE Sa SITE Sb
: SORT Ra SORT Rb :
s i‘ [s SORT Ra SORT Rb
) .) 1) ¥
PROJECT Ra A| | "ARECEIVE Ra.Alf] ETRIEVE T
! - a) —-—> oecEIV
: | mw}%‘ A, Rb SEN%T“L RECEIE,E —
— . — HL a.A,
' SEND Ra.A] q . ,
STORE IN Rb L Join Ta.A,Rb
yes o RECEIVE Tt * RESULT Tt
SCE R I ~ I
no no ‘ ' l_ SEND]
N . _[Senp TepLE JOIN Ta.Tb TPl ES Th-
RECEIVE T’ Th' IN Rh’
1
es
JOIN Tb",Ra “@
no

yes
S

no

Figure 3.3: Figure 3.4:
Join methods SSSM and SSNL. Join methods PSSM and PSNL.

site Sg, is also processed on the fly as it arrives at S, instead of being stored
there as a temporary relation. Although there is therefore some limited pipelin-
ing involved in the SSSM and SSNL execution stralegies, they are still categor-
ized as being sequential as compared to the much more pipelined PSSM and

PSNL algorithms to be described next.

3.2.4. PSSM and PSNL

The pipelined semijoin methods, referred o as “fetch inner tuples as
needed” in System R™ [Seli80], were the most complicated of the eight join
methods to implement. As shown in Figure 3.4, relation R, is scanned in a
tuple-by-tuple manner (conceptually), and join column values R;.A4 are sent to
site §p. Upon receiving an R, .A4 value, site S, selects the matching tuples
from Rp and sends them to S,; a null message is sent if there are no matching
tuples. These tuples are then merged with the corresponding tuple of R,, which
is waiting for them (still in main memory). However, the implementation used
here is a little differem‘from System R* method. R, tuples are actually pro-
cessed in one-page batches, so one buffer page is allocated for holding the

tuples from R,.

3.2.5. Discussion

The eight distributed join methods described in this section represent a
range of possible methods. The sequential join methods, pipelined join
methods, and pipelined semijoin methods are all among the methods used by
System R™ [Seli80][Lohm85], although the implementation here may differ in
minor ways. Of these methods, the sequential join methods are attractive for
their simplicity, while the pipelined methods allow more concurrency and avoid
the cost of storing and retrieving tuples from a temporary relation. The pipe-
lined methods, of course, require some synchronization of the two processing
sites (in the form of flow control, so the receiving site can indeed avoid having
to store incoming tuples). One resulting limitation of PINL (the pipelined

nested loops join method) is that R, must be the inner relation, regardless of

62

how its size compares with that of Rp, as the inncer relation has to be available
for multiple scans. The semijoin methods are expected to reduce communica-
tions costs. The main difference between the pipelined and sequential semijoin
methods is related 1o duplicates — since the pipelined versions simply scan R,
instead of projecting on R,.A, they will send duplicate join column values if any
are present in Ry; however, the sequential semijoin methods require multiple
scans of R,, increasing the local processing cost. Clearly, there are tradeoffs

among all of these algorithms.

3.3. THE EXPERIMENTAL TESTBED

Figure 3.5 depicts the testbed system used for this performance study. A
collection of test programs was written to implement (hard-wired) distributed join
queries using the different methods described in section 3.2. These programs
access a synthetic database, the Wisconsin database [Bitt83], via WISS, the
Wisconsin Storage System, [Chou85]. The programs run on a pair of node
machines from the Crystal multicomputer, an experimental distributed computer
system [DeWi84b]. Monitor programs run on a \/AX/UNIXvT host machine to
initiate test program execution and to collect performance statistics after the test
programs terminate. For communications between the node machines, or
between the node machines and the host, a Crystal communications package
called the Simple Application Package (SAP) is used. In this section each of

these components of the system is briefly described.

%UNIX is a Trademark of AT&T Bell Laboratories.

NODE Sa NODE Sb
T T T 7 . T I
! | HOST : |
! i - - - - - - -~] ! i
| WISC ! | ! | WISC |

| |
1 | | | MONITOR | | l B |
| | ' | PROGRAMS | | { |
| WISS | ! * | WISS |

L |

| LT | | | | 1T |

' SAP |
} TEST | | ! ! TEST |
| [PROGRAMS | | | | NUGGET | | | PROGRAMS |
' | 1 | |
| | SR S J | |

! |
{ SAP | | ! SAP |
| | |

! |
| | NUGGET ; | | | NUGGET :
’ T | | 7 ‘
e o | bl]

\ | /
\ — e

TOKEN RING NETWORK

Figure 3.5: The testbed for distributed join methods.

3.3.1. The Crystal Multicomputer

At the time of these experiments, the Crystal multicomputer [DeWi84b]
consisted of 20 DEC VAX 11/750’s interconnected via a 10-Mb/sec Proteon
token ring network. The Crystal ring network is also connected to several of the
Computer Sciences Department’s research VAXes, each of which can serve as a
host machine. Crystal multicomputer users can claim a number of node

machines as a partition. The partitions of different users in the system are

64

logically isolated from each other — cach partition is basically a virtual distri-
buted computer system. A partition of two node machines with 2 megabytes of
memory and 160 megabyle Fujitsu disks was used to create the distributed data-

base system testbed for this study.

There are several levels of software available on Crystal. To avoid
unnecessary overhead, only two of the lowest levels, the Crystal Nugget and the
Simple Applications Package (SAP), were used in the experiments. The Nugget
is a simple communications kernel that resides permanently on each node
machine and host machine, providing low-level message-passing primitives and
ensuring that no messages are sent to nodes outside the user’s partition (i.e.,
enforcing the logical isolation of partitions). SAP is a set of subroutines that sit
on top of the Nugget, providing buffered communications using two queues, one
for incoming messages and other for outgoing messages. With SAP, the mes-
sage sender busy-waits until a send buffer is available, fills the buffer with data,
indicates its destination, and then invokes a non-blocking send routine. To
receive a message, the receiver busy-waits on a flag that indicates that the input
buffer is full. The flag is set when a message is received from the Nugget and
reset when it is consumed by the user’s program. Thus, SAP provides a some-
what higher-level message facility than the Nugget. The message packet size is

2K bytes, including 60 bytes of control information for the experiments.

3.3.2. The Wisconsin Storage System

The Wisconsin Storage System, or WISS, is an access-method level data
storage system that can run either on top of UNIX or directly on top of a "raw”

disk [Chou85]. When used on top of a raw disk, WISS implements an extent-

65

based file system. For this study, WISS was installed on the Crystal nodc
machines and accessed their disks directly. WISS has a lavered structure that
consists ol four levels — physical 1/0 , buffer management, storage structure
and access methods. The physical 1/0 management level is responsible for
reading pages from and writing pages to the disk. The buffer management level
maintains pools of buffer pages. One such pool is associated with each WISS
user. When the buffer pool is full, the buffer manager makes a replacement
decision using an LRU replacement strategy and some hints from the system
about which pages are important. These hints give preference to pages such as
Bt tree root pages and system directory pages. The storage structure level of
WISS is responsible for implementing a record-level storage abstraction.
Sequential files, long data items, and B* tree indexes (clustered or unclustered)
are all provided as structured files by this level of WISS. Finally, the highest
level of WISS, the access method level, implements the access methods of
sequential scan, index scan, and long data item scan and provides control over
scans (such as the capability to reset a scan cursor). This level also provides
routines for creating and destroying files, indexes and long data items. The dis-

tributed join programs interface with WISS mainly at this level.

3.3.3. The Wisconsin Database

The Wisconsin Database was designed for use in systematically benchmark-
ing relational database systerns [Bitt83]. There are four basic relations in the
databése, "thoustup”, "twothoustup”, “fivethoustup”, and “tenthoustup”, which
contain 1000, 2000, 5000, and 10,000 tuples, respectively. Tuples in all of
these relations are 182 bytes long, each consisting of thirteen 2-byte integer

attributes and three 52-byte string attributes. All of the integer attributes have

66

uniquel || unique2 | two | four | ten | thousand | fivethous
1347 6709 0 0 0 937 929
9354 1591 1 1 4 985 1762
1595 2651 0 2 3 829 1967
3806 4474 1 3 2 936 2923
8727 1930 0 0 1 820 3849
9282 1293 1 1 5 187 1042
8124 885 0 2 8 198 4737
3228 9584 1 3 9 734 4082
3654 2307 0 0 6 184 1621
3761 2508 | 1 7 445 3231

Table 3.1: A fragment of the "tenthoustup” relation.
uniformly distributed values, but the range of their distributions varies. Table
3.1 shows a portion of the "tenthoustup” relation to illustrate the purpose of the
different integer attributes. The "uniquel” and "unique2” attributes are both
candidate keys, taking on values from 0 to 9999. The other integer attributes all
take on random values chosen in a way indicated by their name — for instance,
the "ten” attribute takes on values from 0 to 9 (i.e., 10 distinct values). Thus,
different columns of a relation can be used in queries to obtain desired selectivi-
ties, projectivities or join selectivities. The integer atiributes in the "thoustup”,

"twothoustup”, and "fivethoustup” relations are similar.
3.4. EXPERIMENTS AND RESULTS

3.4.1. Some Considerations

The first problem that arose in designing the tests was the issue of choosing
an appropriate set of test queries. In their classic study of join methods for cen-

tralized database systems, Blasgen and Eswaran used a query that selected a sub-

67

set of tuples from two relations, joined these together, and finally projected out a
subsct of the resulting fields as a general query for their analyses [Blas77). This
query could also be used for a study of distributed joins. However, since the
effects of the data distribution on various join methods are the main issue of
interest, the simple two-site join shown in Figure 3.6 was used for the test
queries. The sizes of relations R, and Ry, the size of the result relation R, and
the value distributions of the join attributes are varied in the experiments 1o
observe their respective effects on performance. Using this simple join query
does not really limit what can be learned from the study — adding the two pre-
join selections and a post-join projection would only increase the fraction of the
execution time due to local processihg, and this time would be the same for all

the distributed join algorithms.

The choice of source relations for this study followed the methodology
presented in [Bitt§3]. First, it was felt that relation sizes should be large enough
to be realistic. The basic relations used in the tests have 1,000 tuples and 10,000

tuples (the "thoustup” and "tenthoustup” relations of the Wisconsin database),

range of a is Ra at Sa

range of b is Rb at Sb

retrieve into R(a.all,b.all) at Sa
where (a.A = b.B)

Figure 3.6: General form of the test query.

68

occupying about 46 and 456 pages (page size in WISS is 4K), respectively.
Second, it was felt that random atiribute value distributions are desirable in order
to provide an unbiased treatment of each of the join methods. This is particularly
important in the sort-merge join case. Third, in order to insure that the results
of the various tests were not biased by previous tests, it had to be ensured that no
test query was likely to find useful pages sitting in the buffer pool from its prede-
cessors. The technique described in [Bit83] was used, where two copies of
source relations are maintained (at each site in our case), and alternate queries

use alternate copies of the source relations.

Another important decision was the choice of an appropriate set of perfor-
mance metrics and a reasonable measurement approach. In all experiments, the
elapsed time of a query was the main metric measured. This ume is defined as
the time interval beginning when site S, initiates the query and ending when the
result is completely stored at site S;. The Crystal Nugget provides a timing pro-
cedure that is accurate to the nearest 10 milliseconds; this procedure was used
for the elapsed time measurements. For each query, the number of disk
accesses performed and the number of messages sent were also measured. The
disk access measurements were taken using a special version of WISS that is
instrumented to trace disk operations [Chou85]. For each disk access, the start
and completion times of the access were recorded. An analysis of the trace
records from the experiments indicates that an average disk access in this test
environment takes about 25.5 milliseconds (for a 4K-byle page). To measure
network traffic, the number of messages were recorded. To measure the actual
message send and receive times, a separale test that sent and received a large

number of single-packet "null” messages between two node machines was con-

69

ducted. This message sending and receiving program uscd the same communi-
cations interface routines used for the test queries. The results indicated that the
average message transfer time is about 16.6 milliseconds for a 2K-byte packet.
Finally, while the CPU time used by the test queries is also an important perfor-
mance metric, it was not easily measured at the level at which the experiments

ran (i.e., stand-alone on Crystal nodes).

3.4.2. The Experiments and Results

The test queries were designed to investigate the effects of a number of dif-
ferent factors on the performance of the aliernative distributed join algorithms.
The factors investigated include the sizes of the source relations and the join
selectivity (i.e., the result relati‘on size and the distributions of the join column
values). The experiments and the results obtained are described in this section.
First, however, the results from one of the distributed join executions are
described in detail in order to illustrate the costs and benefits of the various
approaches and to provide the reader with useful background knowledge for later

discussions.

3.4.2.1. Query Resource Demands: A Detailed Example

The example examined in this section involves a query where both R, and

Rp are "thoustup” relations and the result relation has 100 tuples.

Figure 3.7 shows the elapsed time for processing the example query using
the eight different join methods. The elapsed time for site S, is the actual
elapsed time of the query, and the elapsed time for site S, shows the portion of
time during which §p was involved in the query. The general trend is that the

pipelined join methods — PJSM, PSSM, PJNL, and PSNL — executed the join

70

Seconds
307
SITE Sa
B--g
201 \
\ G- El\
\ /
\\ // //A \\\
\ ;7 B
SITE Sb N} K =g
] 0 7 A A > N // /
\ NN /
AN /' AN a /
ya N /
N7 N/
P h<
O T T T T T T T }

SJSM SINL PJsM PJNL SSSM SSNIL. PSSM PSNL

Figure 3.7: Elapsed time.

more quickly than the sequential methods did. Of the pipelined methods, the
nested loops join methods outperformed the sort-merge methods for this exam-
ple. (That is, PJNL did better than PJSM, and PSNL did better than PSSM).
This can be explained by taking a look at the resource demands of the various

join methods.

The Number of Messages:

Figure 3.8 shows the number of messages that were required to transfer
data between the two sites S; and §p, (measured at site S,), illustrating the com-
munications cost of each of the join methods. It can be seen that the sequential

semijoin methods (SSSM and SSNL) require the least number of messages and

Messages SITE Sa, RECEIVE
1007 B--B--8--8
\
\
i
\
757 \
i
\
\\ B
50 \\ /E,Q_A
\
/
\ //
- 1 /!

28 \ /1
\ /1
G- -8

SITE Sa, SEND o
0 Y e el SRS S

SJSM SINL PJSM PINL SSSM SSNL PSSM PSNL

Figure 3.8: Number of messages.

that the join-based methods require the most. Table 3.2 gives estimates for the

number of messages required by each join method. Before explaining the esti-

mates in details, the message factor, Fpy is introduced to represent the number

of tuples or attribute values that can be held in one message. That is,

Fp(R) = l msg_.size
and

tuple _len(R)

Fy(R.A) = l msg_size

artr _len(R.4)

(3.4.1)
For each of the join-based methods (SINL, SJISM, PJSM and PJNL), site

S, sends no messages to site Sp, and the messages received by §; contain the

whole relation Rp. For the sequential semijoin methods (SSNL and SSSM), site

72

The Number of Messages (at Site Sa)
Method Send Receive
SISM
SINL

Ry |
, 0 | Ry

PINL
SSSM | Ry.Al Js(Ra,Rb)- | Ry |
SSNL Fp(Rg.A) Fu(Rp)
PSSM

| Ra | . Fp - | Ra | . Fg
PSNL Fg Fpy(Rg A) - Fg Fy(Ry . A)

Table 3.2: Estimation of the number of messages.

S, sends its join column values to site Sp. The number of messages received is
determined by the size of the result of the semijoin R, <A=B]Ry. If
Js(Rg,Rp) is the selectivity of the semijoin, the number of tuples in the result
relation will be Js(Ra,Rp)-| Ry |. In this example, FM(Ra.,fi> = 094, so all
join column values can fit in two message packets with control information, and
Js(Ra,Rb) is 0.1, so the communications costs of the sequential semijoin
methods are much lower than those of the other join methods. However, it is
important to realize that the fractional communications cost (i.e., the communi-
cations cost as a portion of the total elapsed time) is not high in any of the join
methods. For the non-semijoin methods, 100 messages were required in all,

yielding a total message time of about 1.65 seconds.

The message cost analysis for the pipelined semijoin methods (PSNL and

PSSM) is a bit more complicated. The number of messages sent by site S, is

73

affccted not only by the message packet size M, but also by the buffer space
size B (in bytes) that is allocated at site S, for holding R, tuples. The buffer
factor, Fg, is used to denote the number of R, tuples which can be held in this

buffer space:

ngl B

tuple _len(R)

To process the whole relation R, the number of "batches” (where a batch

involves filling the buffer space with R, tuples and processing these tuples) is

given by [Jg% The number of messages needed to send the join column

The total

values for one batch to site S, can be expressed as I”F’“M(FR“TB j
a.

number of messages needed is thus the product of these two numbers, as is
given in Table 3.2. In the example here, one buffer page is allocated for scan-
ning Ry, and 22 wples fit in a page, so Fp = 22 << Fp(R,.A). Thus, the
number of tuples sent by one message is limited by the buffer space used, so the
message packets going to Sp are not fully utilized. As a result, more messages
are sent by S, for the pipelined semijoin methods (PSSM and PSNL) than for
the sequental semijoin methods. (Since one message packet can hold many join
column values, it may be better in practice to select the number of R, buffer
pages according to the number of join column values that fit in one message

packet.)

Another complication involved in the pipelined semijoin message analvsis is
that the number of messages received by site S, is influenced by the distribution
of the join column values. That is, each message sent 1o S, results in at least

one return message that either contains matching tuples or tells S, to read

74

another page; the degree to which a given return message fills its message
packet will depend on the number of matching R tuples found. For some mes-
sages sent by S,, many values, hence more than one message packet, will be
returned, but other messages may simply say "no matches” or may contain just
a few tuples. As a result, the number of messages received by S, will equal or
exceed the number of messages sent by S;, as shown in table 3.2. This is in
contrast to the sequential semijoin case, which will totally fill all but the last of
the message packets returned by Sp to S;. For all of the reasons cited above,
then, the number of messages for the PSSM and PSNL algorithms usually
exceeds the number for SSSM and SSNL, as is the case in Figure 3.8. (Again,

however, the total message cost is far from being the dominant cost factor here.)

Finally, for the semijoin-based sort-merge methods, fewer messages may be
needed due to the differences in the ranges of the join column values of the two
relations. One relation may be exhaust first when the other relation has only
been partially scanned, in which case the corresponding data transfer is stopped.

This probability is not reflected in Table 3.2.

The Number of Disk Accesses:

The number of disk accesses for a join method depends on the number of
different pages accessed during the operation (of course), but it also depends
strongly on the available buffer space, on the page replacement policy used by
the buffer manager, and on the allocation of records to pages in each relation.
Figure 3.9 shows the measured number of disk accesses at each site for the
example query, and provides insight into the 1/O cost of the various join

methods. The differences in the number of disk accesses for the different join

Accesses
4001
SITE Sa
Q
N o
o /\
300 . I
\\ ;o\
SITE Sb - I
T& B/ ﬁ /A \ /m\
\\ /\{ // "\ \\ -\
_ /A / AN
200 \ /N AN A
\ /A rrooy N o
\ /N I/ A AN
\ / Wy v\ \
\ / Wy V@, W
\\ / \i I - I\
: / 7 \
100 A AW/ \\ // \
X & X B
O T T Y T T T T 1

SJSM SINL pjsM PINL SSSM SSNL PSSM PSNL

Figure 3.9: Number of disk accesses

methods can be explained to some extent by estimating the number of different
pages accessed at each site for the different methods, although not every page

access causes a disk access (since some pages might be already in the buffer).

Site Sp (where relation Rp resides) is examined first since its disk access

analysis is simpler.

(1) SINL and PJNL: At site S, both methods require just one scan of Rp to

send it to S, .

(2) SJSM and PJSM: Both methods require more page accesses in order to

sort relation Rp.

(3)

lar.

(3)

(4)

76

SSSM and PSSM: These two methods require the same number of page
accesses 1o sort Ry. SSSM requires somewhat more page accesses because
it has to store the intermediate result R;.A[A= B]Rp and then retrieve it

again to send it back to S,.

SSNL and PSNL: the number of page accesses depends on the number of
matching tuples in R, and the depth of the index (i.e., the average number
of data and index page accesses for each outer tuple from Rg). Like

SSSM, SSNL requires more page accesses due to storing and retrieving the

intermediate semijoin result.

The estimation process for the number of page accesses at site S, is simi-

The number of page accesses at S, for the eight methods are as follows:

SISM and PJSM: Both methods have to sort R, first. SJSM requires
more page accesses for storing the remote relation Rp. At site §,, the
merge scan is done only on R, for PJSM and on both R, and the tem-

porary R, relation for SISM.

SINL and PJNL: The number of page accesses for R, is determined by

the join selectivity. SJNL requires additional page accesses for storing the

temporary Rp and building a Bt tree index.

SSSM and SSNL: Both methods require page accesses to scan R, first to
project the join column and eliminate duplicates. Then an index scan is
used to fetch the tuples matching the tuples received from S, for SSNL,

while a merge scan is used for SSSM.

PSSM and PSNL: For PSNL, the number of page accesses is simply the

number of pages in relation R,. PSSM requires more accesses to sort

relation Ry first before the merge scan.
3.4.2.2. Experiment 1: The Effects of Relation Size

Two groups of queries, QGI and QG2, were tested 1o investigate the
behavior of the different join methods as the relation sizes are varied. QGlI con-
sists of joins between two relations of the same size; the result relations have the
same sizes as the source relations (making the join selectivity simply the inverse
of the source relation size). QG2 consists of joins between two relations of vari-
ous differing sizes; the join selectivity is kept constant in query group QG2 (at a
value of 10™4). Since the two sites in the QG2 queries are asymmetrical, QG2 is
further divided into two subgroups of queries, QG2.a and QG2.b. In QG2.a,
the site having the larger relation was chosen as the join site; in QG2.b, the
smaller relation resided at the join site. (As before, the result site is taken to be

the join site for these tests.) These query groups are listed in Table 3.3.

Figure 3.10 shows the elapsed time measured for each of the QG1 queries.
For the join of the two "tenthoustup” relations, the nested loops methods lost 10

the sort-merge methods even though the sort-merge methods must sort these

QG2
QG2.a 0QG2.b

|Ral | IRo| | IR| || |Ral | IRs] | IR] | [Ral | IRb] | IR|
10K | 10K | 10K | 10K | 1K | 1K || IK | 10K | IK
1K | 1K | 1K | 10K | 100 | 100 || 100 | 10K | 100

500 500 500 10K | 10 10 10 10K 10
100 100 100 10K | 1 1 1 10K 1

QGl1

Table 3.3: Sizes of relations used in query group QGI and QG2

78

SISM PJSM SSSM PSSM
5 &L---A &---0 B---8B 06---©
econds
1000 A SINL PJNL SSNL PSNL
A——p L —) G—] -9
100 -
10
1 L 1 1 1
(10K, 10K) (1K, 1K) (500,500) (100,100)

RELATION SIZE (Ra,Rb)

Figure 3.10: Elapsed time (QG1).

large relations. This is because the amount of work saved through sorting signi-
ficantly outweighs the work required to perform the sorts. This is illustrated by
Table 3.4, which shows the measured elapsed times and disk accesses for sort-
ing the "tenthoustup”, "thoustup” and "hundredtup” relations, and by the fol-
lowing analysis. 1t takes 64.89 seconds to sort the "tenthoustup” relation, and

this involves 1911 disk accesses. This constitutes the pre-join "overhead” por-

79

Relation Elapsed | Number of Disk Accesses
Time Total Rcads Writes
hundredtup 0.54 13 6 7
thoustup 6.46 196 97 99
tenthoustup 64.89 1911 955 956

Table 3.4: Costs for sorting relations.
tion of the sort-merge methods for this case. After sorting, the merge phase
accesses each page of cach relation at most oncc—‘:.T In contrast, for the nested
loops join using a nonclustered index, the number of disk accesses is much
larger; this is due to the number of inner relation data pages (randomly)
accessed. Figure 3.11 shows this clearly. Of the four nested loops methods,
three of them required more than 10,000 disk accesses, which is what was
chosen as an upper limit for the number of disk accesses traced due to space
considerations. The one exception was PSNL (pipelined semijoin-based nested
loops), which keeps tuples in memory at site S,, scanning R, only once. How-
ever, this method involved a large number of disk accesses at site S (not
shown), where Rp is searched using the index to find the matching tuples for
the 10,000 join attribute values sent by R,. The elapsed time was mainly deter-

mined by the processing rate at site S, in this case, which explains its elapsed

time as compared to the sort-merge methods.

Table 3.4 also shows that, as the relation sizes decrease, the cost of sorting
the relations begins to outweigh the cost of performing an inner relation disk
access per outer relation tuple. With smaller relation sizes, Figure 3.11 shows

that the total numbers of disk accesses for the pipelined nested loops methods

"The join column values are unique in this experiment.

80

SJSM PJSM SSSM PSSM

A---4A 6---¢© B---8 0---0

SINL PJNL SSNL PSNL

10000
1000 -
100 1
SITE Sa
10 ¥ J T T
(10K,10K) (1K,1K) (500,500 (100,100

RELATION SIZE (Ra,Rb)

Figure 3.11: Number of disk accesses (QG1).

(PJNL and PSNL) are lower than those for the sort-merge methods. Thus, the
pipelined nested loops methods are the best performers except at the largest rela-

tion size tested for QGI1.

81

Figure 3.12 shows the total number of messages involved in executing cach

of the eight join methods tested. Only three curves are evident. The highest cost

Messages

3125 A

[3%
n
]

44

(10K,10K) (1K,1K}) (500,500) (100,100,

Figure 3.12: Number of messages (QG1).

&2

here is for the pipelined semijoin methods, the next highest cost is for the
sequential semijoin methods, and the lowest among the message costs are the
four non-semijoin methods. This is because, in this case, the join is a "one-to-
one join" — each tuple of R, joins with exactly one tuple of R, and vice versa.
Thus, the use of semijoins here does not reduce the amount of data ultimately
transferred to the join site; rather, it increases the overall message cost by the
amount of data sent to the remote site from the join site initally. In all cases,
given the packet transfer time of 16.6 milliseconds, the overall message time is
less than 10% of the overall elapsed time. (Also, the effect of the message time
is even less significant for the pipelined algorithms, as there is processing going

on while messages are in transit.)

Figures 3.13 and 3.14 give the measured elapsed times for the queries in
query groups QG2.a and QG2.b. These results clearly illustrate the differences
between the various join methods tested. The diversity of the results can be
explained based on the discussion of the detailed example and analysis given in
the Section 3.4.2.1. 1t is evident from the figures that the nested loops join
methods are more sensitive to relation size differences than the sort-merge
methods, particularly at the larger relation sizes. This is because the sort-merge
methods have a fixed component of their costs due to sorting the "tenthoustup”
relation (see Table 3.4 for this cost). An extreme case is illustrated in Figure
3.14 for the the pipelined join case (PJSM). With the smaller relation site as
the join site, PJSM’s cost remains nearly constant over the whole size range
investigated. The main components of the cost of PJSM are sorting Rp at site
S, and scanning Rp 1o send it to site S;. (These two factors alone account for

about 90% of the elapsed time.) The sort-merge methods can never execute fas-

SISM PJSM SSSM PSSM SINL PJNL SSNL PSNL
K--A ©--© [B--8 G--0 b&-—A o—Oo F—H 6—O

Seconds Seconds
2007 2007
1507 1507
1007 1007
50 507
0 L] A d ¢ L] L n
(10K,1K) (10K,100) (10K,10) (10K, 1) (1K,10K) (100,10K) (10,10K) (1,10K)
RELATION SIZE (Ra,Rb) RELATION SIZE (Ra,Rb)
Figure 3.13: Elapsed time (QG2.a). Figure 3.14: Elapsed time (QG2.b).

ter than the time it takes to sort and scan one of the two relations. The nested
loops join methods are different, however. When the size of one of the source
relations decreases, the number of disk accesses decreases dramatically for at
least one of the nested loops methods in both query groups, as shown in Figures
3.15 and 3.16. This is due to the absence of sorting overhead and the effective-
ness of the index for smaller outer relation sizes. The winner for query group
QG2.a is the pipelined join version of nested loops (PJNL). The winner for
query group QG2.b is the pipelined semijoin version of nested loops (PSNL);
the sequenual semijoin method (SSNL) is the next best choice, with nearly
identical performance for the smaller relation sizes. While the message counts

are not given here, they represent an insignificant portion of the overall query

84

processing cost (as in the previous cases examined).

One note here: It seems that the queries in QG2 are representative of a
class of queries that is likely to arise in real database systems — that is, queries
with a small number of tuples in one relation (the result of a selection) being
joined with tuples from a much larger relation. An important observation from
the tests covered by query groups QG1 and QG2 is that, when one relation is
small, the pipelined nested loops join methods perform much better than their
sequential counterparts or any of the sort-merge methods. When both relations
are large, however, as when both were "tenthoustup” relations in the tests of

QG1, the optimal methods will be the pipelined sort-merge methods.

3.4.2.3. Experiment 2: The Effects of Join Selectivity

Join selectivity, which is the ratio of the size of the result relation to the
product of the sizes of the source relations, is an influential factor with respect to
join algorithm performance. To see just how various join selectivities affect per-
formance, tests on the eight distributed join methods using two relations each
with 1000 tuples were run. However, these relations were not just "thoustup”
relations from the Wisconsin database. Rather, the join selectivity was varied to
obtain result sizes of 1000 tuples, 100 tuples, 10 tuples, and 1 tuple. Getting a
result size of N tuples was accomplished by selecting R, from the "tenthoustup”
relation with "uniquel” values in the range [4500..5499], selecting N of Rp’s
tuples from the "tenthoustup” relation randomly in the same range, and select-

ing the remainder of Rp’s tuples randomly outside this range.

Figure 3.17 shows the measured elapsed times for the different join

methods for the various join selectivities tested. Higher join selectivities (i.e.,

SJSM PJSM SSSM PSSM SINL PINL SSNL PSNL
L--A &--0 B(B--B 06--0 b—up o6—O GF—8H 06—

Accesses
Accesses
31257 et ~ s - s 256
6257 64
1257 16
257 47
SITE Sa SITE Sb
5 Y T T] l r r 'Y
(10K,1K) (10K,100) (10K,10) (10K,1) (10K,1K)» (10K,100) (10K,10) (10K,1)
RELATION SIZE (Ra,Rb) RELATION SIZE (Ra,Rb)
Figure 3.15: Number of disk accesses (QG2.a)
Accesses Accesses
;" -
3M28) — 4096 B s
e A — A
625] g 1024
\ &) £ f
1257 256
257 64
5 .
SITE Sa 16 SITE Sb
1 : : ; , 4 . Y :
(1K,10K) (100,10K) (10,10K) (1,10K) (1K,10K) (100,10K) (10,10K) (1,10K)
RELATION SIZE (Ra.Rb) RELATION SIZE (Ra,Rb)

Figure 3.16: Number of disk accesses (QG2.b)

&6

smaller result relations) mean that fewer tples will match during the join,
which leads to several cost savings. First, the result relation is smaller, so fewer
disk accesses are needed to write out the result. Second, fewer data pages are
accessed for the indexed nested loops join methods. Third, fewer tuples will be
retrieved from the remote site for the semijoin methods, so the communications
cost is reduced in their case. The pipelined nested loops join and semijoin
methods were the winners in this experiment, with the semijoin method doing
somewhat worse than the join-based method. Their pipelined sort-merge coun-

terparts were the next best in terms of elapsed time here.

SJSM PJSM SSSM PSSM
H——A - ——0 G --8 (€ e 3]
SJNL PINL SSNL PSNL
B—p O 3 £] S ©
Seconds Seconds
2007
30
. 1507
20
10 1 100.
0 — - ' ' 50 ' ' '
1000 100 10 1 1000 100 10 1
Figure 3.17: Figure 3.18:

Effects of join sclectivity. Effects of duplicates.

87

3.4.2.4. Experiment 3: The Effects of Duplicate Attribute Values

Another factor which can influence the performance of a join method is the
degrec of join column value duplication. In the merge phase of a sort-merge
join, duplicate join attribute values can cause multiple scans of pages of the
inner relation. Perhaps more significant is the effect of duplicates on sequential
versus pipelined semijoin performance. In the semijoin methods, site S, sends
the join column values of R, to site Sy, and site Sp uses these values to fetch
and return the matching tuples in relation R,. In the sequential variants of the
semijoin method, duplicate R;.A values are removed before sending them to
Sy, which has two effects. First, less data is sent — duplicate join column
values are avoided in messages from S, to Sp, and (as a result) each matching
Rp tuple is sent to S, just once. The second (related) effect is the avoidance of
multple disk accesses in Ry for a given R;.A4 value. These two savings reduce
both the communications cost and the local processing cost in comparison to the
pipelined semijoin methods. A group of queries which join two relations on an

atiribute with duplicate values is tested in this experiment.

In order to quantitatively describe the degree of duplication, the duplication
factor D of attribute A of relation R, is defined. This factor is defined as the
ratio of the number of tuples in relation R to the number of distinct values of
attribute A. For example, in the "tenthoustup” relation shown back in Table
3.1, the duplication factor of the "hundred” attribute is 100, and that of the
"thousand” attribute is 10. Figure 3.18 shows the effects of duplicates on the
sequenual and pipelined semijoin methods (SSNL and PSNL). In these tests,
one of the source relations, R,, had 10,000 wples. The size of relation Rp was

the same as the size of the result relation, so it was 1,000, 100, 10, and 1

&Y

(tuples) respectivelv. The join column of Ry, Ry A, was varied so that different
duplication factors could be obtained (1, 10, and 100). It can be scen from the
figure that duplicates have almost no effects on PSNL. For SSNL, however, an
increase in the duplication factor moves it from being much worse than PSNL to
being much better. Obviously, the benefit due to the elimination of duplicates
outweighs the usual disadvantages of the sequential methods when the duplica-

tion factor is high.

3.4.2.5. Summary of Test Results

There are several important observations to be made from the test results.
First, if the issue of join site selection is set aside, Figures 3.13 and 3.14 show
that the three nested loops methods PJNL, PSNL and SSNL provide the best
performance when joining a large relation with a small one. For "medium”
similar size relation joins, such as those shown in Figure 3.10, PJNL and PSNL
also perform the best, and the sequential SSNL algorithm becomes worse than
the two pipelined sort-merge methods (PJSM and PSSM). This leads to the con-
clusion that pipelined join and semijoin methods seem to be the most promising
of the distributed join methods tested. To join very large relations of similar
size, the pipelined sort-merge methods seem 1o be the best choices, as shown in
Figure 3.10. These conclusions hold for the entire range of queries investi-

gated.

Another general conclusion of this study is that the communications cost
did not play a significant role in determining algorithm performance in the
environment of this study. The contribution of communications costs to the

overall measured elapsed times was around 10%. As an illustrative example, to

89

i Elapsed Time (seconds)

Relation Size T T T .

; local join | distributed join | degeneration (%)
IR| = |[Rb| = IK 55.8739 58.6128 4.90
' |IR| = [Rb] = 100 8.0877 9.3826 16.00
IR[= |Rb| = 10 0.9503 1.1164 17.48
I |R| = |Rb] =1 0.3500 0.3895 11.29

Table 3.5: A comparison of local and distributed joins (|Ra| = 10K).

transfer a "tenthoustup” relation from one site to another requires about 1000
messages, which only takes about 16-17 seconds. In queries where such a
transfer might be useful, however, the processing cost may be as high as several
hundred seconds. The relatively poor performance of the sequential semijoin
methods provide additional evidence that a communications cost savings alone
does not help much. As a more concrete example, Table 3.5 compares local
join costs with distributed join costs in the same environment. In all cases, |R,|
= 10K, and the local and distributed join methods used were those that gave the
least elapsed time (i.e., local nested loops join with an index and PJNL). It is
clear from the example that the message cost is not the major determining factor

for performance.

The last point to be made is that choosing the right combination of a join
processing site and a join method is important. Figures 3.13 and 3.14 indicate
that, if the two relations to be joined have different sizes, the pipelined nested
loops join method (PINL) needs the site with larger relation to be the join site
(i.e., it needs the outer relation to be the smaller of the two source relations).

In contrast, the semijoin nested loops methods (PSNL and SSNL) perform much

90

better when the smaller relation site is chosen as the join site (i.e., they also
need the outer relation to be the smaller of the two). The intuition behind these
results is fairly simple, in retrospect: PJNL and PSNL are basically the same
algorithm if the communications cost is zero, both being distributed executions
of a simple nested loops join; they therefore have the same local processing
costs. The outer relation should be the smaller of the two in the centralized case
as well [Blas76][Seli79]. Note also that in a low communications cost environ-
ment such as this, the join’s result site choice can be switched with little or no
significant impact on performance. For example, suppose that Ry is a small
relation, Rp, is a large relation, and that S, is to be the result site. The pipelined
semijoin (PSNL) method is the best choice in this case. If Sp is the preferable
result site for some reason, this can be arranged by using a pipelined join

(PJNL) at site S instead.

3.5. SUMMARY

The performance of a number of different join methods for a distributed
daiabase system was studied in this chapter. Eight different methods were
implemented on an experimental distributed computer system, the Crystal mult-
computer. Join queries with various sizes, join selectivities, and attribute value
distributions were tested. The results have shown that, in a local network, com-
munications cost is not the dominant factor. Shipping an entire relation from
one site to another site is a reasonable way to process a distributed join query —
as long as it is done correctly. Correctly in this case means that a pipelined join
algorithm, such as one where the outer relation is shipped to the join site (the
inner site) in paraliel with the local join processing itself, is employed.

Although traditional (sequential) semijoin methods can reduce the

91

communications cost, and they perform well in cases where the join column
duplication factor is high (i. e., many matching inner relation tuples per outer
relation tuple), pipelined semijoin methods were found to be preferable in most
of the test cases examined. These results hold over a wide range of query
characteristics. For the case where two very large relations are to be joined,
pipelined sort-merge methods are recommended. [t was also found that the
combination of the join method and the join site is important, as it is very impor-
tant to ensure that the outer relation for the join is the smaller of the two source

relations (as in centralized database systems).

The experiments dgscribed in this chapter are related to several other stu-
dies of distributed query processing techniques. First, the pipelined semijoin
methods that were implemented are the ones used in System R*, known there as
the "fetch inner tuples as needed” methods [Seli80]. They opted to use the pipe-
lined version of semijoin over the more traditional sequential version because
they believed that it would tend to win in most situations due to lower local pro-
cessing costs. The results obtained in this study indicate that this is indeed the
case in a local network. The results of this chapter also concur with the claims
of Page, which indicate that, in a distributed database system based on a local
network, it is far more important that joins be done in the correct order and with
the correct inner and outer relations than that they be done at the site which
minimizes communications [Page83]. The key difference between Page’s
results and the results presented here is that his conclusions were based on a
cost analysis of the INGRES database system and the LOCUS distributed operat-
ing system, whereas these results were obtained by measuring the performance

of a number of actual distributed join queries. Finally, earlier analytical studies

92

have indicated that pipelined query evaluation techniques provide the best perfor-
mance in centralized database systems [Smit75][Yao79]. The results of this
chapter can be viewed as showing experimentally that pipelining is still the
method of choice in a locally distributed database system (even when the pipeline

is used to execute a single join operation). s

CHAPTER 4

QUERY PROCESSING WITH LOAD BALANCING

This chapter presents a new approach to distributed query processing,
load-balanced query processing, for locally distributed database systems. The
distinguishing characteristic of this approach is that, in addition to picking a
good static query processing plan, the subqueries are distributed dynamically in
such a way as to balance the load of the system. Here, the phrase "locally dis-
tributed” refers to a collection of processing sites connected by a communica-
tions subnetwork with low latency and a high data transfer rate. In addition,
uniform connectivity is assumed in this study. That is, the cost of transferring

data from one site to another is assumed to be the same for all pairs of sites.

The first section briefly discusses the possible methods for integrating load
balancing with distributed query processing. An approach based on static plan-
ning and dynamic allocation, Algorithm LBQP (Load-Balanced Query Process-
ing), is then described in detail. This algorithm consists of three phases —
static planning, dynamic allocation and refining. Several heuristics are derived
for the planning phase based on the experimental results presented in Chapter 3
and on other related research work. Heuristic algorithms are developed for the
dynamic allocation phase and the performance of these algorithms is studied.

The principles of the refining phase are discussed at the end of the chapter.

4.1. LOAD-BALANCED QUERY PROCESSING

The dynamic query allocation problem was studied for database systems

with fully replicated data in Chapter 2. There are several ways to integrate the

93

94

basic ideas devcloped there with distributed query processing algorithms to
achieve load-balanced query processing. Interpretative planning and dynamic
allocation, alternative compiled plans, and static planning and dynamic alloca-

tion are three possible schemes.
4.1.1. Interpretative Planning and Dynamic Allocation

Interpretative query processing algorithms [Wong77][Epst78][Epst80b]
decompose a user query into a sequence of subqueries (query pieces). The next
subquery 1o be processed is selected at runtime after the previous one has been
processed and its result relation has been obtained. The dynamic query alloca-
tion algorithms BNQ, BNQRD and LERT could be combined with such inter-

pretative query optimization algorithms in either of two ways:

(1) The next subquery to be processed could be chosen as usual, i.e., without
considering the current system load. Then, if there is more than one site
where the chosen subquery can be processed, one of the dynamic query
allocation algorithms (BNQ, BNQRD, or LERT) could be used to select

the processing site.

(2) The load of different sites could be included in the processing costs for the
subqueries by applying the LERT algorithm to each candidate subquery and
processing site combination. The subquery and the site that lead to the

least response time would be selected as the next processing step and site.

This approach to load-balanced query processing has several advantages.
First, the exact sizes of the intermediate relations are known when query alloca-
tion decisions are made. The processing cost information needed for dynamic

query allocation is therefore quite accurate. Second, the processing site for each

95

subquery is determined right before the subquery is to be executed, so the query
allocation algorithm can use the most current svstem load information to obtain a
betier load balancing cffect. However, this method has the suundard drawbacks
of all interpretative query optimization methods. First, it has a high runtime
overhead since optimization takes place at runtime. In addition, this overhead is

incurred every time a query is executed, even if it is to be executed many times.

4.1.2. Alternative Compiled Plans

User queries are precompiled into processing plans in some centralized and
distributed database management systems [Seli80][Dani82]. If the storage sites
and access paths of the relations referenced by a query remain unchanged after
compilation, its processing plan is executed directly using its precompiled object
modules. A possible approach to achieving load-balanced optimization when
compilation is used would be to compile the query into several alternative plans
instead of just one plan. Each plan would have an associated load constraint that
specifies the load status under which it should be used as the processing plan for
the query. Then, when the query is to be executed, the load status of the system
is checked, and the plan with the load constraint closest to the current load is
chosen as the processing plan. Alonso suggested a scheme like this for use in

System R™ [Alon84].

Since precompilation is used in the alternative compiled plans approach, the
query optimization overhead at runtime is fairly small. The only runtime over-
head is the comparison of the current load with the load constraints of each of
the alternative plans. However, the query optimization process itself becomes

more complicated in this case, as both the possible load situations and the

96

storage sites of relations have to be considered at the same time. Considering
more Joad-balanced alternatives will lecad to more effective load balancing and
hence better performance, but the number of alternative plans that can be con-
sidered is limited by storage space and by the complexity of the query plan itself.
Furthermore, predicting possible system load conditions and choosing appropri-

ate load constraints for the alternative processing plans may be quite difficult.

STATIC

DYNAMIC |, CLOBAL) | DISTRIB.
PLANNING

ALLOC. PLAN REFINING PLAN

LOCAL
DBMS

LOCAL
DBMS

o
<
<

LOCAL
DBMS

Figure 4.1: Algorithm LBQP: static planning plus dynamic allocation.

97

4.1.3. Static Planning and Dynamic Allocation

In the remainder of this chapter a third and different approach to the prob-
lem of load-balanced query processing is proposed. The proposed algorithm,
Algorithm LBQP, uses the static planning and dynamic allocation scheme out-
lined in Figure 4.1. This approach represents a compromisc between the two
previously discussed possibilities. Query processing consists of three phases in
Algorithm LBQP: the static planning phase, the dynamic allocation phase, and
the refining phase. During the static planning phase, a user query is
transformed into a logical processing plan which is a sequence of relational
operations on logical relations (1.e., relations without physical Jocations having
been bound yet). The local processing costs for each relation and the possible
processing sites (the sites where the relation is stored) are attached to the plan
for later use. The dynamic allocation phase performs the copy (site) selection
process for the plan. In this phase, a dynamic allocation algorithm is applied to
the logical plan, and a physical copy is selected for each relation referenced in
the plan. The logical plan is thus transformed into a global processing plan.
Finally, the refining phase chooses between semijoin-based and join-based pipe-
lined distributed join methods for those joins that will be processed in a distri-
buted fashion as a result of dynamic allocation. The refined global plan is then
distributed to all participating sites. Each local DBMS translates its part of the

plan into executable code and the query is executed.

This approach has two advantages. First, the separation of dynamic query
allocation from static access planning simplifies the optimization process.
Although some information must be recorded to facilitate the dynamic allocation

phase, no new difficulties are introduced in the planning phase as compared

98

with existing query optimization algorithms. Existing algorithms can thus be
casilv augmented to include a dynamic allocation phasc in order to achieve load
balancing. Second, the major portion of the work required for query optimiza-
tion, the generation of the logical plan, can be performed at query compilation
time. Only the dynamic allocation and refining phases are done at runtime
(right before the query is executed). Thus, the runtime overhead should be

small.

It should be pointed out that the objective of load-balanced query optimiza-
tion is o obtain an optimal plan under the current load conditions of the system.
However, load balancing itself might introduce extra costs in the static sense.
As an example from Chapter 2, a locally executable query might be shipped to a
remote site for processing, and extra communications costs would thus be intro-
duced. However, dynamic query allocation was still found to improve overall
system performance in Chapter 2. The philosophy employed in Algorithm
LBQP is to obtain a statically optimal local processing plan using some objective
function, and then 1o execute the plan in the most favorable way given the
current load status of the system. In the remainder of this chapter, the three

phases of this approach are each described in turn.

4.2. THE STATIC PLANNING PHASE OF ALGORITHM LBQP

As mentioned above, statically optimal processing plans are generated for
user queries in the static planning phase of Algorithm LBQP. Since the
dynamic allocation and static planning phases are separate from each other, any
existing query optimization algorithm could be used in the static planning phase

to transform a query into a logical plan (as long as the information needed for

99

allocation is collected and attached to the plan). Thercelore, it is not the purpose
of this scction to propose vel another detailed query optimization algorithm.
Instead, the important principles for the static planning phase are discussed.
The first part of the section discusses some heuristics thatl are applicable for
static planning. Its most important conclusion is that issues related to the physi-
cal storage sites of the relations referenced by a query can be ignored during the
static planning phase. The optimization method based on this approach and the

structure of the resulting processing plan are then described.

4.2.1. Heuristics for LBQP

Based on the experimental results presented in the last chapter and other
related research work, the following heuristic rules can be justified for the static

planning phase in distributed database systems based on local area networks.

During this discussion, the two relations of a join are referred to as the
outer and inner relations. The outer relation is the relation from which a tuple
will be retrieved first, and the inner relation is the relation from which matching
tuples will be retrieved for a given outer relation tuple. Using this convention,
the processing cost for a join Ry><1Rp, where R, is the outer relation and Ry

the inner relation, can be expressed as:
TC(join) = AC(Rg) + AC(Rp | Rg) + CC(R4,Rp) (4.2.1)

In equation (4.2.1), TC{join) represents the total cost of processing the join,
AC(R,) is the access cost of retrieving tuples from the outer relation R, and
AC(Rp | Ry) is the total access cost of fetching inner tuples from Rp with R, as
the outer relation. CC(Rg,Rp) is the communications cost for transferring data

between the sites of R, and R, during the join operation, which is zero in the

100

local join case. The cost of storing the result is not included in equation
(4.2.1), as the result is assumed either to be transferred directly to the user ter-

minal or 10 be used by the next operation in pipelined processing.

Heuristic 1. Only linear sequences of the possible of 2-way joins (i.e.,
joins of two relations with common join columns) are considered as candidates

for the plan’s join order for an n-way join R1><1 Ry < ... >< R,

This is the same heuristic as that used in System R [Seli79] and System R*
[Seli80]. Linear join sequences have the form ((...((R; > R2)P>< R3)...)
>< R,). While other join sequences could be considered, such as those of the
form (R} <t Ry)< (R3p><t Rg) < ... (R;—1 P Ry), considering only
linear join sequences limits the search space considerably with the risk of miss-
ing the optimal sequence only in a few cases [Lohm85]. Furthermore, the
resulting plan is easily executed in a pipelined way without requiring complicated
synchronization. Intermediate relations are stored only when the next join uses

the sort-merge algorithm and the sort operation is needed.

Heuristic 2. The optimal local join method for a join is unaffected by the
locations (i.e., storage sites) of the participating relations. That is, if a join
method (e.g., nested loops or sort-merge) is optimal for joining two relations at
one site, its pipelined version will be the optimal method when the two relations

) . T
are stored at different sites.

As described in Chapter 3, the pipelined distributed join methods are exten-
sions of the corresponding local join methods. The only difference is that tuples

from the two relations to be joined are brought together via the communications

"Note: It is assumed here that all copies of a given relation have the same access paths
available, an assumption that will be addressed in Section 4.2.2.

101

network in the distributed case. The communications cost for a distributed join
is mainly determined by the sizes of the two relations rather than by the local
join method. For example, both the pipelined nested loops join (PJNL) and
pipelined sort-merge join (PJSM) algorithms transfer the entire outer relation.
For pipelined semijoin methods, both the nested loops and sort-merge methods
transfer the join column values of the outer relation and the maiching tuples of
the inner relation. Therefore, pipelined distributed join processing adds the
same amount of communications cost to each of the local join methods, so the

optimal method in the local case will still be optimal in the distributed case.

Heuristic 3. The optimal choice for the outer and inner relations of a join
is unaffected by the location of the participating relations. That is, if the local
join method requires R, to be the outer (inner) relation for a join Ry >< Ry,
R, should also be the outer (inner) relation when the join is processed in a dis-

tributed manner.

For the sort-merge join methods, the selection of the outer and inner rela-
tions is of little importance. As for the nested loops join methods, the experi-
mental results for the distributed versions of these join methods in Chapter 3
suggest that the outer relation should be the smaller relation, just as in central-

ized systems.

One case where the choice for the outer and inner relations of a join might
appear to be affected by the locations of the two relations is as follows. Consider
the join R; >< Rp, where R, is smaller than R, and is therefore chosen as the
outer relation in the local case. When the two relations are at different sites and
the desired result site is the site of R,, the optimal distributed join method might

at first seem to be to use Rp as the outer relation to eliminate the

102

communications cost for transferring the result back to the site of R;. That is,
Rp would be sent to the site of Ry, and the join would be processed there. In
Chapter 3, however, it was shown that pipelined semijoin methods and pipelined
join methods have similar performance but different result sites. Thus, instead
of switching the outer and inner relations, a pipelined semijoin method can be
used in place of a pipelined join method, leaving the choice for the outer and
inner relations the same as in the local case. (As will be seen later, this switch

is actually considered in the refining phase of algorithm LBQP.)

Heuristic 4. The optimal join sequence (order) chosen for an m-way local
join remains optimal or nearly optimal if part of the sequence is processed in a

distributed manner.

This heuristic is based on the following basic observations: (1) Different
join orders usually result in local processing costs with large differences, and (2)
communications costs in local area networks are a secondary component of the
total processing cost (as shown in Chapter 3). Consider the following 3-way join

as an example:

retrieve into R (R, .all,Ry .all R, .all)

where R;.A = Rp.Aand R..C = R,.C

Let us denote this join by Ry <1 Ry <1 R., and let ((Rg; < Rp) <1 R.) be
the optimal join order when all relations are at the same site as in Figure 4.2(a).
Further, suppose that each join is to be processed using PINL (the pipelined

nested loops join method).

103

If the relations are at three different sites as in Figure 4.2(b), it can be
shown that it is quite likely that (R; <t Rp) <t R, will still be the optimal
order. In case (b), the total processing cost for this locally optimal join order,

TC = ACipal + CCipua (4.2.2)

where AC;,;q 15 the total local access cost and CCypyq; is the total communica-

tions cost. These two cost components can be expressed as:

ACio1ar = AC(Rg) + AC(Rp | Rg) + AC(R. | Rgp) (4.2.3)
and
CCio1 = CC(Ry,Rp) + CC(Rgp,R-) + CCp(R) (4.2.4)
Sac
T /"\
Re¢
Sabe Sa | Ra Ra

Ra

/
Re¢ . /D
Rb &_’/ TS

(a) (b) (c)

Figure 4.2: Different physical locations of three relations.

104

where Rgp 1s the result relation of the join Ry <t Rp, and CC(R) is the com-

munications cost for sending the final result relation R to the result site.

Consider another join order, say, (Rg ><t R,)<t Rp. lts total processing

cost is
TC’ = AC’lolal + CC’lolal (4.2.5)
with
AC' o101 = AC(Ry) + AC(R, | Rg) + AC(Rp | Ryc) (4.2.6)
CC' 1p1al = CC(R4,R.) + CC(Rye,Rp) + CC'(R) (4.2.7)

where Rg is the intermediate result relation of the join Ry i< R.. As shown

in Chapter 3, communications costs are secondary in local area networks, so:

ACip1ar >> CCipal 4.2.8)
and:

AC 1p1a1 >> CC' o1 (4.2.9)
The difference between the processing costs of the two join orders is:

TC' — TC = ACgzy + CCgif (4.2.10)
where:

ACdijf = AC o101 = ACio1al

CCdiﬁ‘ = CC' p1a1 = CCpral

Since (R, <t Rp) B><1 R, is the optimal order in the local case, and dif-
ferent join orders usually result in Jocal processing cost with large differences, it
is expected that ACg >> 0. Itis also expected that ACyr >> CCyip since

communications costs are secondary. Thus, 7C' — TC > 0, and the locally

105

optimal join order will still be optimal.

Even if the communications cost difference CCyp were large enough to be
a factor in determining the value of TC' — TC, there is littlc chance that
CCgiff << 0. From Equations (4.2.4) and (4.2.7), the difference in the com-

munications costs for these two join orders is:

CCuiff = (CC(Rg,R.) + CC(Rqae,Rp) + CC'(R))

= (CC(Ry,Rp) + CC(Rgp,R) + CC(R))

Since the pipelined nested loops join method is 10 be used for the joins, both
CC(Rg,R.) and CC(R;,Rp) are simply the cost of transferring relation R, to a
remote site. That is:

CC(Rg,R:) = CC(R,,Rp)
and thus:

CCuif = (CC(Rge,Rp)— CC(Rgp,R:)) + (CC'(R) = CC(R))

Since (Rg <1 Rp) B>< R, is the optimal order in the local case, the inter-
mediate relation Ry, is expected to be smaller than the result relation of R, b<

Rcs Rge. Thus:
CC(RgeyRp)Y > CC(Rgp,R.)

As a rtesult, the only thing that could make CCgp << O would be if
CC'(R) — CC(R) << 0. This could only be true if §5 is the result site and
thus C'(R) is zero (since otherwise the two communications costs for transfer-
ring the result relation are the same). However, the discussion in Heuristic 3
about switching between pipelined join methods and pipelined semijoin methods

is fully applicable in this case. The second join in (R, < Rp) <t R., the join

106

Rgp ><1 R., can be processed using the pipelined semijoin method (PSNL).
This would make S the result site, making CC(R) zero as well. Note that this
will change the cost CC(Rgp,R.) for the join Rgp ><t Rc, but the change will
most probably decrease this cost since semijoin methods tend to transfer less data

(see Chapter 3). Thus, the locally optimal join order will be still optimal.

Figure 4.2(c) shows another possible distribution of the three relations. In
this case, R, and R, are at the same site and R, is al another site. A possible
optimal order with this distribution when Sp is the result site is (R < R) P
Ry, since the original optimal order involves more data transfers (from S, to
Sy for the first join, from Sy 1o S, for the second join, and then from S,. back
to Sp for returning the results). As discussed in case (b), however, the local
processing cost is the dominant factor in the total processing cost, and the local
processing cost of the join R, >< R, is likely to be much greater than that of
the join R; >< Rp. Furthermore, the communications cost CC(Rg-,Rp)
should be greater than CC(Rgp,R.), and the additional communications cost for
returning the results can again be virtually eliminated by using the pipelined
semijoin method to process the second join. The locally optimal join order

should still be optimal in this case as well.

Heuristics 2 through 5 described above lead to an important conclusion in
regard 1o the static planning phase of the load-balanced query processing algo-
rithm: For locally distributed database systems, an optimal or near optimal pro-
cessing plan that specifies the join order, the local join methods and the right
outer and inner relations can be obtained by ignoring the physical storage siies
of the relations in the system. A locally distributed database can thus be treated

as a centralized database in the static planning phase.

4.2.2. Static Optimization and the Logical Plan Structure

Logically, a relational database is a set of relations, denoted by R1,Ra, ...

R, . Physically, each relation R; has one or more copies, denoted by R;1,R;2
. Rj;. Each copy is stored at a site. When a user query references relation R;,
the database management system will perform operations on one or more copies
of R;. In order to distinguish a relation in the abstract sense from its physically
stored copies, the term logical relation is used to refer to the relation in the
abstract sense, and the physically stored copies are referred o as physical rela-
tions. By ignoring storage site issues during static planning, optimization is

actually performed using the logical relations referenced by a query.

One issue related to using logical relations has to do with the access paths
that are associated with each physical copy of a logical relation. So far, all
copies of a relation have been assumed to be identical and to have the same
access paths available. These access paths are used during optimization. This
assumption is reasonable for locally distributed databases, where relations will
most likely have identical copies. However, if different access paths are avail-
able for different copies of a relation, the most favorable access path available
will be used for static optimization purposes. Later on, when the dynamic allo-
cation phase considers which copy of each relation to use, the cost of building
any missing access paths can be considered as their various copies are exam-

ined.

The overall objective of Algorithm LBQP is to minimize the total processing
cost, including CPU, 1/0, and communications costs. Since static planning is
performed by viewing a locally distributed database as a centralized one, the

objective in static planning is thus to minimize the local processing cost

108

components (the CPU and 170 costs). An access path selector such as that of
System R [Seli79] could be used to gencrate the logical plan. The System R
optimizer works as follows: First, all possible pairs of relations with common
join column attributes are considered. For each of these two-way joins, the join
method and access paths with the minimum processing cost are retained. Join
methods and access paths are then found for joining a third relation with the
results of each possible two-way joins. Al every processing step, then, a kth
relation is joined with the results of joining the previous k-1 relations. After all
of thesc plans have been obtained, the one with the minimum processing cost is

chosen as the final processing plan.
The output of the static planning phase of Algorithm LBQP is a logical plan
that specifies the following information in the form of a processing graph:
(1) The join order for all joins in the query.
(2) The local join method for each join.
(3) The outer and inner relation for each join.
(4) The access paths and predicates that will be used in accessing each relation.

(5) The information needed by the dynamic allocation phase, including the
storage sites of each relation, the estimated CPU cost and 1/0 cost for
accessing each relation, and the estimated sizes of the intermediate and
result relations. (In cases where the access paths for different physical
copies of a relation are not identical, the costs of building the required

access path must also be recorded.)

The processing graph for a logical plan is a tree. The leaves of the tree are

relation nodes and the internal nodes are operation nodes. The structure of

109

operation_node = record
operation : {select, project, NL_join, SM_join, ...};
outer..relation : pointer;
inner_relation : pointer;
result_size : integer;
result_site : integer;
end;

relation_node = record
relation_name : string;
feasible_assignmentset : set of site;
access_path : (index_type, attr, op, value);
access_predicate : {(aur, op, value) ...}
io_time : time;
cpu—_time : time;
data_len_join : integer;
data_len_semijoin : integer;

end;

Figure 4.3: Structure of the nodes in the processing graph

these nodes is shown in Figure 4.3. An operation node holds the information
about an operation, including the type of operation, its operands and an estimate
of the size of the result relation. The join methods specified in an operation
node are local join methods since the system is viewed as a centralized system in
the static planning phase. In the refining phase, these operations will be further
specified as being either semijoin-based or join-based if the source relations are
at different sites. The designation of the outer and inner relations is done in the
static planning phase; for monadic operations, the inner field is simply set to

nil. Finally the result_size field indicates the estimated size for the intermediate

110

result relation of the operation (used later for estimating the subsequent com-
munications cost).

A relation node holds the information about a relation on which an opera-
tion is o be performed. This includes the name of the relation, its storage
site(s), information about the access path used by the operation, and its process-
ing cost. The access path information includes the type of access path, the index
attribute specification(if any), and the remaining conjunctive predicate to be
applied 1o accessed tuples (if any). In the case where different physical copies
have different access paths, the cost of building the required access path would
also be included in the relation node. The processing cost for a relation is
estimated during static planning and expressed as a cpu_time and an io_time.
The fields data_len_join and data_len_semijoin contain the data (in bytes) that
would be transferred in distributed join and semijoin operations, which are used

later in the refining phase of LBQP (discussed in Section 4.4).

For the example query and database shown in Figure 4.4, the processing

graph for the static plan would have the form shown in Figure 4.5.

4.3. THE DYNAMIC ALLOCATION PHASE OF ALGORITHM LBQP

The output of the static planning phase is a logical plan that references
logical relations. The function of the dynamic allocation phase of Algorithm
LBQP is to map these logical relations to their physically stored copies. In this
phase, which takes place at runtime, a query is viewed as a sequence of query
units. The dynamic query unit allocation algorithm developed in this section is
applied to the sequence, and processing sites are determined for each of the

query units in the sequence.

(a) A sample university database and some statistics:

. - Key- Tuple
Relation Cardinality Cardinality | Length
DEPT (DID, DNAME, CHAIRMAN) 50 DID-50 62
STUDENT(SID, SNAME, MAJOR) 40K SID-40K 42
COURSE (CNO, CNAME, OFFERED_BY) 2K CNO-2K 34
, SID-35K
ENROLLED (SID, CNO, GRADE) 150K CNO-1.5K 16

(b) Access paths available:

Relation Clustered Index | Non-Clustered Indexes
DEPT DID —
STUDENT SID . MAJOR
COURSE CNO OFFERED_BY
ENROLLED SID CNO

(c) An example query written in QUEL:

"for all students who major in Computer Sciences, print their ID numbers
and names, the name of the courses they are enrolled in, and their grades
in these courses”
range of D is DEPT
range of S is STUDENT
range of C is COURSE
range of E is ENROLLED
retrieve (S.51D, S.SNAME, C.CNAME, E.GRADE)
where D.DNAME = "Computer Sciences”
and S.MAJOR = D.DID
and E.SID = S.SID
and E.CNO = C.CNO

(d) The distribution of the relations:

Site Sy Site S» Site S3 Site §4
DEPT DEPT STUDENT COURSE
COURSE | STUDENT | ENROLLED | ENROLLED

Figure 4.4: An example query for a distributed university database.

NL-join
I *~—
©
©
©
NL-join COIIRSE
— | +— {S1.54}
4 Index Scan
o C.CNO =
E.ENO
<
NL-join ENRQIIED °
e M {§3.54} °
. Index Scan
° E.SID =
S.S1D
©
DEPT STUDENT °
{1S1.82} 152,53} °
Seq. Scan Index Scan
D.DNAME = S.MAJOR =
"Comp Sci” D.DID
(-]]
(-] o
[+ [}

Figure 4.5: Processing graph for the query in example 4.4.

This section first discusses the criteria for dynamic query unit allocation.
BNQ-based and BNQRD-based query unit allocation algorithms are then
developed. The plans generated by these heuristic algorithms are compared with
those of an exhaustive search algorithm to study the optimality of the heuristic

algorithms. The execution time of these algorithms is also analyzed.

4.3.1. Load Unbalance Factor

Since the main goal of dynamic allocation is to achiceve a load balanced
systemn, a quantitative description of the "balancedness” of a system is needed.
For this purpose, the load unbalance factor proposed by Livny [Livn83] is

extended in this section.

Recall that in algorithm BNQ, the load of a site 5j is expressed as the

number of query units currently at that site. That is,
LDBNQ(Sj) = NQ(SJ)

Under this definition of load, Livny’s load unbalance factor, UBF, can be
expressed as the maximum value of the load differences between the n sites as

follows:

UBFBNQ—_—lSrP XSH‘LDBNQ(S_]) - LDBNQ(SI()I

However, given that query units have constraints as to where they can be exe-
cuted (i.e., only at sites holding the necessary data), this measurement is not
sufficient to serve as the load unbalance measurement of the system here. For
example, if the possible execution sites for every query unit of a query happen to
exclude the sites with the initial maximum and minimum load in the system, the
UBF defined above will remain constant regardless of the assignments of query
units to sites. Using the concept of variance, the unbalance factor can instead

be defined as the variance of the load distribution in the system. That is,

I 5

l(LDBNQ(Sj)_-Z*D“BNQ)Z

UBFBNQ = n

114

ﬁl(NQ(sj)— NQ)2
Nk

n

where NQ(sj) is the number of queries at site s; and NQ is the average

number of query units per site after all query units are allocated.

The BNQRD algorithm classifies query units into two classes, 1/O-bound
and CPU-bound. The load of a site s; is then expressed as the number of 1/0-

bound and CPU-bound query units at s;:
LDBNQRD(Sj) - { NQ[()(SJ'), NQCPLJ(Sj)}

where NQ,, and NQpy are the number of 1/0 bound query units and the
number of CPU bound query units respectively. Load balancing in algorithm
BNQRD is performed on a per-class basis, so the unbalance factor for

BNQRD-based allocation can thus be defined as:

(NQolsj) — NQ o) + (NQ crylsj) — NQ cpy)?)

n

UBFgnorp = A

n
=1

The last dynamic query allocation algorithm studied in Chapter 2 was the
LERT algorithm. As indicated by the simulation results, both BNQRD and
LERT outperform the BNQ algorithm. The simulation results also showed that
BNQRD performs as well as LERT, except in a few cases where the result frac-
tion, i.e., the result’s communications cost is relatively large. However,
BNQRD requires less information about the query units and is simpler than
LERT, so this study concentrates on a BNQRD-based dynamic query unit allo-

cation algorithm.

4.3.2. Query Units in the Logical Plan

From the viewpoint of dynamic allocation, a query is simply a linear
sequence of processes. Each process requires a certain amount of service from
the system’s resources, and adjacent processes may communicate with each
other. The query plan can thus be viewed as a list of query units for use in the
dynamic allocation phase, where a query unit is defined as the maximum pro-
cessing unit that only references one relation in the processing graph (a relation
node in the graph). Typical examples of a query unit are: accessing tuples
from the outer relation in a join, or fetching maiching tuples from the inner
relation given the outer relation tuples and then merging these tuples to produce
the result relation. (In general, a query unit may be an arbitrarily complex sin-

gle relation subquery, similar to a one-variable query in INGRES [Wong76].)

The logical plan obtained in the static planning phase, which is an input to
this second phase, contains all the information about the query units needed by
the dynamic allocation phase. The estimated CPU and 1/0 time will be used to
determine whether a query unit is 1/O-bound or CPU-bound in the BNQRD-
based allocation algorithm. In Algorithm LBQP, a query unit is always assigned
to a site where a physical copy of the relation referenced by the query unit is
available. The storage sites of the relation referenced by the query unit form the
feasible assignment set for the query unit. In the BNQ- and BNQRD-based
allocation algorithms, the communications cost between two query units is con-
sidered to be either O if the two adjacent query units are allocated 1o the same
site, or 1 if these two query units are allocated to different sites. Therefore, the
result size information in the processing graph is not used in this phase (but it

will be used in the refining phase).

116

The originating site and result site of a query are also part of the input of
the dynamic allocation phase. To account for the communications cost of send-
ing a description of the query 1o a site other than its originating site, a "dummy”
query unit is used to represent the query initiation. Its feasible assignment set
contains only one site, the query’s originating site. There is no processing cost
associated with this query unit. However, if the processing site of the first query
unit is not the same as the originating site, the communications cost will count
towards the total communications cost. Similarly, another "dummy” query unit
with zero processing cost is used to represent the result site of the query in order
to account for the communications cost of sending the results back to the result

site.

4.3.3. The Query Unit Allocation Problem

Based on the concept of query units and the definition of the unbalance fac-
tor, the query unit allocation problem in the dynamic allocation phase can be

stated as follows.
The information given is:

(1) A locally distributed relational database with n sites, {s1,..., 5, };

(2) A user query Q expressed as a sequence of query units, Q =

{91, ---» gm |, which is 10 be processed in a pipelined manner.

(3) A feasible assignment set S§; = {s;;, . .. ,s;} for each unit g;, I1=i=m,
specifying where copies of the relation referenced by ¢; are stored.

(4) The communications cost C; between each pair of query units g; and ¢g; +

assuming that ¢; and g;41 execute at different sites. (If ¢; and g;4 are

117

allocated to the same site, C; will end up being 0.) For 0 < i < m, Cj is
the transmission cost for intermediate results. Cq represents the cost of ini-
tialing a query at a site other than its originating site, and Gy, is the cost of

sending the result of the query to the specified result site.

(5) The inital load at each site s;, 1 = j = n, expressed as LDgno(sj) for

BNQ-based allocation or LD gyogp (s;) for BNQRD-based allocation.
The problem is to find an optimal allocation planT OPT such that:

(1) The unbalance factor under this plan, UBFOPT, is minimized, i.e.

UBFO”T'—"LnEigUBFa, where a is an allocation plan, and A is the set of all

possible allocation plans.

. . m . . e
(2) The total communications cost, Ceomm = ‘EOC,-, 1s minimized.
12

Here, minimizing the communications cost is considered as one of the
objectives since the logical plan obtained in the static planning phase was optim-
ized with regard to the total local processing cost (including 1/0 cost and CPU
cost) only. However, since local processing costs, and therefore load balancing,
play a more important role than communications cost with regard to the perfor-
mance of a locally distributed database system, the optimal allocation plan will be
considered to be the one with the minimum total communications cost among

those plans with the (same) minimum UBF value.

This allocation problem has several unique and important features when
compared with the previous research work on task allocation discussed in Sec-

tion 1.2. First, the main objective here is load balancing, and the

"The term ‘plan’ here and in entire Section 4.2 simply refers 10 an allocation plan of query
units to processing sites, unless otherwise specified.

118

communications cost is considered 10 be a secondary consideration. Most other
task allocation algorithms, cven those claiming to consider load balancing, have
other primary objective functions such as inter-process communications cosl
[Chu80] [Ma82]. Second, the load balancing requirement is quantitatively
defined via the load unbalance factor UBF, and it is hence as computable as
other objective functions. Third, the initial system load is taken into account,

and allocation is performed right before the exccution of the query.

Since the objective of load balancing is quantitatively well-defined, the
dvnamic query unit allocation problem, with its objectives of minimizing the
unbalance factor of the system and then the communications cost, can be for-
malized (see Appendix A). However, there are several difficulties involved in
trying to apply the non-heuristic solution methods reviewed in Section 1.2.
Aside from computational complexity when the number of sites becomes large, a
difficulty in trying to use an integer programming approach is that the two objec-
tive functions, minimizing the unbalance factor and the communications cost,
are in conflict. They therefore cannot simply be added together and treated as a
single function. The branch-and-bound search method cannot be used in this
case either, as the main evaluation function, the unbalance factor UBF, cannot
be computed during the expansion of the search tree, as assigning a query unit
to a site may either increase or decrease the UBF. Thus, the unbalance factor of
an allocation plan is computable only after all query units have been assigned to
sites. That is, all possible allocation plans would end up being generated, as in

exhaustive search methods.

Perhaps a more important consideration is that the dynamic allocation phase

is performed at runtime, so it should introduce as little overhead as possible.

119

Heuristic methods requiring less computational effort and providing near-
optimality are therefore preferable. In the following scctions, heuristic algo-

rithms for solving the dynamic query unit allocation problem are presented.

4.3.4. The Basic BNQ-Based Algorithm

Since the BNQ-based allocation algorithm is the simplest one, it will be
described first. Figure 4.6 gives the algorithm. The input of the algorithm
includes a feasible assignment set for each query unit and an initial load vector.
This vector specifies the number of existing processes (i.e., query units) at each
site when the query are to be allocated. The originating site and result site of the

query are also given as input.

As shown in figure 4.6, query units are allocated one by one without back-
tracking or reassignment during allocation. Therefore, the order in which the
query units are allocated to sites is a critical factor affecting the optimality of the
resulting plan. The concept of the degree of freedom of a query unit is intro-
duced to control the allocation order. Two such metrics are used by the algo-
rithm, and their computation is shown in figure 4.7. The first is the "static”
degree of freedom, given by the number of sites where a query unit can be allo-
cated (i.e., the cardinality of its feasible assignment set). If the static freedom of
a query unit is one, there is no freedom at all — that is, the query unit must be
allocated to the only possible site. If the static freedom is greater than one, there
is more than one candidate site. A query unit with a higher static degree of
freedom will be relatively more flexible than one with a lower static degree of

freedom due to more site choices.

120

Algorithm BNQ_Load_Balanced_Allocation

input : num_qus : integer, (* number of query units *)
num_sites : integer, (* number of processing sites *)
originating_site, resulLsite : site;
initial_load : array [1..num_sites] of integer;
feasible_assignment_sets : array [1..num_qus] of set of site;

output: allocation_site : array [0..num_qus+ 1] of site;
var qu_no : integer; (* the id of a query unit *)

(* DegreeOfFreedom(qu_no) computes static and dynamic freedom of query
unit qu_no;
Update (site_no) updates the current load vector and the freedom for
query units because a query unit is assigned (o sile site_no;
NextQueryUnit returns the qu_no of the next query unit to be allocated,
which is the query unit with the smallest static degree of freedom
(or NIL if there are no more query units to be allocated); *)

begin
allocation_site[0] : = originating_site;
allocation_site[num_qus + 1] : = resultsite;
for qu_no : = 1 to num_qus do

DegreeOfFreedom(qu_no);

end;
qu-no := NextQueryUnit,
repeat

allocation_site[qu_no] : = SelectSite(qu_no);
U pdate(allocation_site[qu_no]);
qu-no : = NextQueryUnit;
until qu_no = NIL;
end.

Figure 4.6: BNQ-based heuristic allocation algorithm.

procedure DegreeOfFreedomiqu_no : integer);

var
sile_no : integer;
begin
static_freedom[qu_no} : = 0;
dynamic_freedom[qu_no] : = 0;
for site_no := | to num_sites do
if s in feasible_assignment_sets{qu_no] then begin
static_freedom[qu_no] : = static_freedom{qu_no]+1;
dynamic_freedom[qu_no] : = dynamic_freedom[qu_no]
+ current_load|site_no));
end;
end;
end;

Figure 4.7: Procedure computing freedom.

The other kind of freedom has a more "dynamic” flavor. The dynamic
freedom of a query unit is the sum of the current load of the sites in its feasible
assignment set. (The current load of a site is the sum of its initial load and the
number of query units which have been assigned to it thus far.) When two
query units have the same static freedom value, the query unit whose feasible

assignment sites are more heavily loaded will usually have fewer choices.

One heuristic used to reduce the amount of computation required for allo-
cation is that sites with a current load larger than the average load after alloca-
tion are considered to be full. Such sites will not be assigned further query
units (except if such a site is the only site in the feasible assignment set for a
query unit). Whenever a site is full, either due to the iniual load or to the
assignment of a new query unit to the site, it is deleted from the feasible assign-

ment set of all query units. Note that this changes their static and dynamic

degrees of freedom, so these must be updated throughout the allocation process.

The query units in a query are allocated one by one in order of their degree
of freedom. That is, query units with fewer site choices are allocated earlier
The degree of static freedom is the primary consideration; query units with the
same degree of static freedom are ordered according to their degree of dynamic
freedom. (Note that these freedom measures are somewhat different — a larger
static freedom value implies more site choices, whereas a larger dynamic free-

dom value implies fewer site choices.)

In order to select a site for a query unit from its feasible assignment set, the
current load and potential load of the candidate sites and the benefit and poten-
tial benefit of possible assignments are evaluated. The current load of a site is
the total number of query units at that site when a query unit is to be allocated,
including both the initial load at that site and any query units already assigned to
it during allocation. The potential load of a siie s; is the load that might be
introduced by those unassigned query units g; that have s; in their feasible
assignment set. The benefit of an assignment of a query unit g; 10 s; is the com-
munications cost savings due to this assignment. If ¢;—1 (or g;41) is already
allocated 1o sj, and g; is allocated to the same site s;, the communications cost
between ¢g;-1 (or gj+1) and g; will become zero. If neither ¢g; 7 or g;4+1 has
been allocated to site s;, then the benefit of the assignment is zero. However, if
sj is in the feasible assignment set of gi—1 (or g;+1), and this query unit has
not been allocated to any site yet, there is still a possibility that the communica-
tions cost between ¢; and ¢g;—1 (or g;+1) could become zero. This would hap-
pen if g; is first assigned to sj, and then g;—) (or g;4+1) is later assigned to the

same site. Compared with assigning g; to a site s; that is not in the feasible

(* This function returns the benefit of allocating qu to site site_no *)
function Benefit(qu : integer; site_no : integer) © integer;
var benefit : integer;
begin
benefit : = 0;
if (allocation_site[qu+ 1] = site_no) then
benefit : = benefit + 1I;
if (allocation_sitefqu—1] = sile_no) then
benefit : = benefit + 1;
Benefit : = benefit;
end:

(* This funcuon returns the potential benefit of allocating
query unit gu to site site_no *¥)
function PotentialBenefit(qu : integer; site_no) : integer;
var pot benefit : integer;
begin
pot_benefit : = 0;
next_qu := qu + 1;
while (next_qu <= num_qus) and UnAssigned(next.qu)
and (site_no in feasible_assignmentset[next_qu]) do begin
poL_benefit : = pot_benefit + 1;
next.qu := nex-qu + 1;
end;
nextqu := qu — I,
while (next_qu >= 1) and UnAssigned(next_qu)
and (site_no in feasible_assignment_set[next_qu]) do begin
pot_benefit : = pot_benefit + 1;
next_qu := nex-qu — I;
end;
PotentialBenefit : = pot_benefit;
end;

Figure 4.8: Functions for computing benefit and potential benefit.

124

assignment set of g;—j or g;+1, then, assigning g; (o s; has the potential of
being beneficial. This possible communications cost savings is defined as the

potential benefit of assigning g; 1o s;.

These four metrics — current load, potential load, benefit and potential
benefit — are used to evaluate the assignment of query unit g; 1o site s;, and a
site 1s selected for g; after comparing the values of these parameters among all
sites in the feasible assignment set of g;. Figure 4.8 shows the functions that

compute the benefit and potential benefit of an assignment of a query unit to a

sile.

Since load balancing is the main objective, the evaluation order for these
four metrics during the allocation process is: minimum current load, maximum
benefit, minimum potential load and maximum potential benefit. First, an
attempt is made to allocate query unit ¢; to the site with the minimum current
load among its feasible assignment sites. 1f more than one site has the same
minimum load, the benefit of assigning ¢; to each site in the set of minimum
load sites is calculated, and the site with the maximum benefit is selected. If the
number of sites providing the maximum benefit is also greater than one, then
the site with the minimum potential load among them is chosen. Finally, the
maximum potential benefit site is considered if there is more than one site with
the same minimum potential load. Figure 4.9 shows the SelectSite function,
illustrating this screening process. It is important to notice that not all four
metrics are calculated for every query unit. For most query units, only one or
two metrics will need to be evaluated. Furthermore, the size of the candidate
site set gets smaller and smaller as each metric is considered in turn. This is

advantageous for minimizing the cost of the site selection process.

function SclectSite(qu_no: integer) : site;
var allocate_site : site;

(* NumMinLoadSites(qu_no) finds the sites with the minimum
load in the feasible assignment set of query unit gu_no, and
return the number of such sites.

NumMaxBenefitSites(qu_no) finds the sites with the maximum
load in the feasible assignment set of query unit qu, and
return the number of such sites.

NumMinPotential LoadSites(qu_no) finds the sites with the
minimum potential load in the feasible assignment set of query
unit qu, and return the number of such sites.

“.)

begin
if NumMinLoadSites(qu_no) = 1
then allocate_site : = min_load_site[qu_no]
else if NumMaxBenefitSites(qu_no) = 1
then allocate_site : =max_benefit_site[qu_no]
else if NumMinPotentiall.oadSites(qu_no) = 1
then allocate_site : = min_potential_load_site{qu_no]
else allocate_site : = any site in {max_potential_benefit_sites};
SelectSite : = allocate_site;
end.

Figure 4.9: Function SelectSite.

Figure 4.10 shows an example input for the BNQ-based dynamic query
unit allocation algorithm. The example query consists of 5 query units, and

there are 8 sites in the system. The algorithm is applied as follows:

i

1.

v,

126

The total inital load 1s 12, so the expected balanced load is

L%jl]=3. Since site sq is full initially, it is deleted from the
feasible assignment sets of g1 and g4.

The static degree of freedom for the query units, including dummy
units gg and qe, is {1, 3, 3, 4, 1, 5, 1}, so gg and g¢ are allocated
to s3 first.

g4 is allocated to sg, the only site in its feasible assignment set.

Both g7 and g3 have the same static degree of freedom value of 3.
The feasible assignment set of g1 is {s2, s5, s7}, with the relevant

part of the current load vector being {1, 2, 1}, and ¢3’s is {52, s4,

An Example Input:

number of query units 5
number of sites in the database 8§

query originating site 53;
query result site 53;
initial load vector 14,1, 1,2,2,0,1, 1};
feasible assignment set
q1 {17 2,5, 7};
q2 {2, 4, 5§,
q3 13,5, 7, 8},
94 i1, 6};
qs5 {3, 4,5, 6, 7};

Figure 4.10 : An example for query allocation.

127

ss}, with relevant part of the current load vector {1, 2, 2!. Thus,

g7 has less dynamic frecdom, so g» is allocated next.

V. g, 1s allocated o site s9, as s3 is the site with the minimum load (of

1) in its feasible assignment set. (This increases s s load by 1.)
vi. g1 is now allocated to site s7 for the same reason as in v.

vil. Since g3 is next in increasing order of static freedom, it is con-
sidered next. Its relevant part of the current load vector and feasible
assignment set are {1, 2, 2, 1} and {s3, ss, 57, sg}, respectively.
The minimum load sites for g3 are {s3, sg}. As for benefits,
benefit(g3,s3) = benefit(gz,sg) = 0. Finally, potential_load(s3) =

2, but potential_load(sg) = 1. g3 is thus allocated to site sg.

viti. Finally, g5 is considered: lts feasible assignment set is {s3, 54, S5,
S, §7}, and its corresponding load vector is {1, 2, 2, 1, 2}. s3 and
se¢ have the same current load of 1, but benefit(gs, s3) = 0 and
benefit(gs, s¢) = 1 (since g4 was already allocated to s¢ in (iii)).

Thus, g5 is allocated to site sg.
ix. The final assignment is:

query unit (0)
execution site (3)

5 (6)
6 6 (3)

b—
[N]
o0 Ly

After assignment, the load vector is {4, 2, 1, 2, 2, 2, 2, 2}. The UBF for
this assignment is 0.61, and its total communications cost is 5. Comparing this
result with the optimal plan, obtiined by the exhaustive search method described
in the next section, il turns out that this is actually an optimal allocation plan

under the definition.

128

4.3.5. A Study of the Optimality of the BNQ-Based Algorithm

The algorithm just described is a greedy algorithm in the sense that query
units are assigned one by one, without looking ahecad or backtracking. How-
ever, the potential load and potential benefit metrics are used to improve its
optimality. Also, the query unit allocation order and the order in which the four
metrics are considered was carefully designed. In order to evaluate the optimal-
ity of this heuristic algorithm, a study of how the query unit allocations obtained
using the algorithm compare to the corresponding optimal allocations was con-
ducted. Figure 4.11 depicts the testing process. A query generator was used to
generate queries with an initial load vector and a feasible assignment set for each
query unit in the queries. Both the exhaustive search program and the BNQ-

based heuristic algorithm were then applied to these queries. (The exhaustive

EXHAUSTIVE
SEARCH
ALGORITHM
UERY _J
Q COMPARISON >
GENERATOR
HEURISTIC
ALGORITHM

Figure 4.11 : Testing the optimality of the heuristic algorithm.

129

scarch method used always finds an optimal plan for a given input.) The heuris-
tic plans were then tested for optimality by comparing them with the optimal
ones. The optimality of the heuristic algorithm can be characterized by the per-
centage of heuristic plans which have the same UBF values and total communi-

cations costs as the optimal plans for some number of tests.

The parameters that controlled the query generator were the number of
query units in the query, the number of sites in the system, a maximum load
parameter and the average number of copies of each relation referenced by the
query. (It is assumed that each query unit references a different relation.) The
maximum load parameter controls the initial unbalance of the system, as the ini-
tial load of each site is assumed to be uniformly distributed between zero and
this maximum value. The average number of copies was used to determine the
size of the feasible assignment set of each query unit. That is, for each query
unit and site, the probability that the relation referenced by the query unit has a
copy at the site is the average number of copies divided by the number of sites in
the system. By changing this parameter, the extent of replication of the database
can be varied from a fully replicated database to a partially or non-replicated

database.

Optimal allocation plans were obtained using an exhaustive search. In
order to obtain the optimal plan for a given query, a search tree was constructed
according to the feasible assignment sets of the query units comprising the
query. Figure 4.12 shows the search tree for the example query of Figure 4.10.
Each level of the tree corresponds 1o the possible allocations of one of the query
units, with each node at a level representing one site in the feasible assignment

set of the query unit. (The dummy query units gg and g¢ are not shown since

130

()
a . 2 &«
o A @ @ e (e
SEOENOROC BN C BN ©
YOS OEOE ORI © N\
05 (89 (9 () () (@ () (19 () () (&9 (&9 (9 (9 (&) ()

Figure 4.12 : A search tree for finding the optimal plan.

each has only one possible allocation site.) This tree is evaluated after all possi-
ble assignment sites have been considered by computing the unbalance factor

and the communications cost along each branch of the tree.

The following tests were conducted in order to investigate the optimality of

the heuristic algorithm for different queries and different system configurations:

(1) In the first group of tests, the number of query units (m) of a query was
varied from 3 to 6. The number of sites in the database (n) was varied from

4 to 12. The maximum load was randomly chosen in the range 4 to 12,

and the average number of copies was set to the half the number of sites.

(2) The second group of tests fixed the number of query units (m) at 5 and the
number of sites (n) at 8. The average number of copies was set to 4 for
this group of tests. The maximum initial load was varied to investigate the
performance of the heuristic algorithm when the initial unbalance factor

was changed.

(3) In the third group of tests, the number of copies was varied. The number
of query units (m) and sites (n) were fixed at 5 and 8, respectively. The
average number of copies was set to 8 (fully replicated), 4 (each relation is
stored at half of the sites) and 2 (only two copies of each relation are

stored).

The test results are summarized in Tables 4.1 to 4.3. In these tables, the
percentage of optimal plans obtained by using the heuristic algorithm is given for
each test. Also, the percentage of plans that are optimal under each of the
objective functions alone is given. (These plans either have the same unbalance
factor as the optimal plan but a larger communications cost, or have the same or
lower communications costs but a larger unbalance factor). The tables indicate
that, in most cases, the heuristic algorithm generated the optimal plan. The per-
centage of optimal plans is at least 75%, and typically higher, for the runs in
Test 1. About 95% of the plans obtained in Test 1 are optimal if only the unbal-
ance factor is considered, which is encouraging since load balancing is the pri-
mary objective. As for the communications costs, more than 80% of the plans

have the same (or lower) values as the optimal plan.

As the number of sites and query units is increased, however, the number

of the optimal plans found by the heuristic algorithm decreases. The explanation

Optimality of the Heuristic Algorithm (Test 1)

total Percentage of the Optimal Plans (%)
m n
runs || optimal plans | optimal on UBF | optimal on CC
4 97 100 97
6 98 100 98
3 8 100 93 98 95
10 99 99 100
12 97 99 98
4 9] 100 9]
6 94 100 94
4 8 100 85 96 88
10 80 97 93
12 94 98 96
4 86 100 86
6 88 99 89
5 8 100 85 98 87
10 80 98 §2
12 79 95 84
4 75 100 75
6 81 97 83
6 8 100 76 63 83
10 70 92 78
12 77 92 84
Table 4.1: Optimality in general (Test 1).
Optimality of the Heuristic Algorithm (Test 2, m=5, n=§)
max. init. || total Percentage of the Optimal Plans (%)
load runs || optimal plans | optimal on UBF | optimal on CC
2 79 98 81
8 100 85 98 87
16 93 100 93
Table 4.2: Optimality versus the iniual load (Test 2).
Optimality of the Heuristic Algorithm (Test 3, m=5,n=§)
avg. num. | total Percentage of the Optimal Plans (%)
copies runs || optima!l plans | opumal on UBF | optimal on CC
2 97 98 99
4 100 85 98 87
8 26 100 26

Table 4.3: Optimality versus the number of copies (Test 3).

133

for this is that larger numbers of sites and query units increase the number of
possible plans, so the probability of sclecting an optimal plan using a greedy
algorithm decreases. 1t is then morce likely that a neuarly optimal plan will be
chosen instead of the true optimum. This is especially clear in the fully repli-
cated case, where the heuristically obtained plans frequently result in higher
communications costs. In this case, a query unit can be allocated to any site in
the system. The exhaustive search method can make use of this flexibility to
decrease the communications cost, but this is much less true for the heuristic
algorithm. On the contrary, having more choices reduced the chances of the
heuristic algorithm generating an optimal plan. Two enhancements are pro-

posed to improve the heuristic algorithm in this respect.

4.3.6. Enhancing the BNQ-Based Algorithm

Two enhancements have been designed to further minimize the communi-
cations cost, and hence to improve the overall optimality of the resulting alloca-
tion of query units to sites. Both enhancements start from the plan obtained
using the basic algorithm. Local adjustments are then made to the plan to

decrease its communications cost while keeping the unbalance factor constant.

Enhancement 1. Enhancement 1 is applied to each query unit individually. If a
query unit g; was assigned to site s;, its feasible assignment set is searched to
find another site s; so that, if g; is assigned to s, the unbalance factor of the
system is not affected but the communications cost decreases. Figure 4.13 shows
an example of this enhancement. After applying the BNQ-base dynamic query
unit allocation algorithm, g3 1is allocated to site s3. In this case, s¢ is in the

feasible assignment set of g3, and the initial load of both sz and s¢ is 0. Apply-

Input :

number of query units 3;
number of sites

query originating site 55,
query result site 55;
iniual load vector £2, 5,0, 4, 5, 0};

feasible assignment set

g1 {1, 3, 4},
g2 {2, 6};
g3 12, 3,5, 6},

allocation sites after applying BNQ-based algorithm:

query unit Oy 1 2 3 (4
allocated site (5) 3 o6 3 (5

allocation sites after applying Enhancement 1:

query unit o 1 2 3 4
allocated site (3) 3 6 {

Figure 4.13: An example of Enhancement 1.

ing Enhancement 1 will reallocate g3 to s¢, which will not affect the unbalance
factor but which will reduce the communications cost. Tables 4.4 10 4.6 are the
results for the three tests with Enhancement 1 applied following the heuristic
algorithm. It can be seen that there is an improvement in terms of the commun-
ications cost. In the partially replicated case, the number of the optimal plans

increased by 2-10%, while in the fully replicated case, the number of optimal

Optimality of the Heuristic Algorithm (Test 1)
L total Percentage of the Optimal Plans (%)
runs || optimal plans | optimal on UBF | optimal on CC

4 98 100 98
6 98 100 98
3 8 100 97 98 99
10 99 99 100
12 98 99 99
4 93 100 93
6 96 100 96
4 g 100 90 96 93
10 95 97 98
12 96 98 98
4 92 100 92
6 94 99 95
5 8 100 88 98 90
10 88 98 90
12 83 95 88
4 84 100 84
6 84 98 86
6 8 100 78 93 85
10 78 92 86
12 79 92 86

Table 4.4: Optimality in general (Test 1, Enhancement 1).

Optimality of the Heuristic Algorithm (Test 2, m=5, n=8§)
max. init. || total Percentage of the Optimal Plans (%)
load runs || optimal plans | optimal on UBF | optimal on CC
2 84 98 86
8 100 88 98 90
16 98 100 98

Table 4.5: Optimality versus the initial load (Test 2, Enhancement 1).

Optimality of the Heuristic Algorithm (Test 3, m=5, n=8)
avg. num. || total Percentage of the Optimal Plans (%)
coples runs | optimal plans | optimal on UBF | optimal on CC
2 98 98 100
4 100 94 98 96
8 43 100 43

Table 4.6: Optimality versus the number of copies (Test 3, Enhancement 1).

plans nearly doubled.

Enhancement 2. Enhancement 1 adjusts the allocation site for each query unit
individually from within its feasible assignment set. Enhancement 2 wkes a more
global view. The main idea of this enhancement is to group as many query units
as possible together at the same site without affecting the UBF. This enhance-
ment looks at each pair of adjacent query units (¢g;,¢9;+1), where g; and g; 1
have been allocated to two different sites s; and sg, and tries to find a third
query unit g;j(j >i+1) which is also allocated at site s;. If sites s; and s; are
in the feasible assignment sets of g;4+1 and g; respectively, then it is possible 0
reverse the choice of sites for g;4+1 and g; without affecting the UBF (since the
number of query units at s; and s; will not change). However, this switch
eliminates the communications cost between g; and g;+1. For each query g;,
1 = i =< m-2, for which g;+1 is at a different site, Enhancement 2 looks for
such a g;. Figure 4.14 shows an example of this enhancement. The allocation
plan for go — g5 before applying Enhancement 2 is {5, 2, 5, 5, 2, 5}. Itis
obvious that reversing the allocation sites for g» and g4 will not change the

UBF value, but this will decrease the overall communications cost.

Tables 4.7 to 4.9 shows the test results repeated with both enhancements
employed. The results show that the optimality of the algorithm is further
improved, and that Enhancement 2 is especially helpful in the fully replicated
case (where the optimal plan is now always found). The optimality of the
heuristic approach proposed here has been shown to be good. While the test
results may vary with different input data, it is expected that the general trends

will remain the same.

Input :
number of query units 4;
number of sites 6;
query originating site 5s;
query result site 55,
initial load vector 14, 1, 4, 5, 1, 3};
feasible assignment set
q1 11,2, 3, 653
g2 {1, 2,5, 6§;
q3 13, 5};
q4 {27 3,5, 6}:
allocation sites after applying BNQ-based algorithm:
query unit O 1 2 3 4)
allocated site 5 2 5 5 2
allocation sites after applying Enhancement 2:
query unit O 1 2 3 4 (5
allocated site (5) 2 2 5 5 (5

Figure 4.14: An example of Enhancement 2.

4.3.7. The Cost of the BNQ-Based Algorithm

Besides the optimality of allocations generated by the heuristic algorithm,
cost is another important concern. As mentioned earlier, dynamic allocation
takes place at runtime, so its cost should be as small as possible. A test was
conducted to measure the CPU time of the algorithm and its enhancements. In
the test, the number of sites was fixed at 8. The number of copies of referenced

relations was varied to simulate both fully replicated and partially replicated

Optimality of the Heuristic Algorithm (Test 1)
‘ | 5 Percentage of the Optimal Plans (%)
total N
m n
runs || optimal plans | optimal on UBF | optimal on CC
4 100 100 100
6 100 100 100
3 8 100 97 98 99
10 99 99 100
12 99 99 100
4 96 100 96
6 98 100 98
4 8 100 93 96 96
10 96 97 99
12 97 98 99
4 94 100 94
6 97 99 98
5 8 100 94 98 96
10 91 98 93
12 88 95 93
4 90 100 90
6 90 98 92
6 8 100 81 93 88
10 81 92 89
12 84 92 92

Table 4.7: Optimality in general (Test 1, Enhancements 1 & 2).

Optimality of the Heuristic Algorithm (Test 2, m=5, n=8§)
max. init. || total Percentage of the Optimal Plans (%)
load runs || optimal plans | optimal on UBF | optimal on CC
2 85 98 87
8 100 94 98 96
16 99 100 99

138

Table 4.8: Optimality versus the initial load (Test 2, Enhancements 1 & 2).

Optimality of the Heuristic Algorithm (Test 3, m=5, n=8)
avg. num. total Percentage of the Optimal Plans (%)
copies runs || optimal plans | optimal on UBF | optimal on CC
2 97 98 99
4 100 94 98 96
8 100 100 100

Table 4.9: Optimality versus the number of copies (Test 3, Enhancements 1 & 2).

139

systems. The test was run on a VAX 11/780, and CPU times were obtained
using functions provided by UNIX. The results are shown in Table 4 10. It can
be seen that the execution times are fairly small. Even with a query consisting

of 5 query units and a fully replicated system with 8 sites, the total CPU time is

less than 40 milliseconds.

Another cost consideration is how execution time increases when the
number of query units and the number of sites is increased. The complexity of

the basic algorithm can be estimated as follows: Before selecting allocation sites

Execution Time of the Basic Allocation Algorithm (in msec)
number of average number of copies
query units 2 4 6 8

3 17.0 21.0 22.2 24.7

4 23.9 26.1 28.4 31.3

5 27.1 33.4 34.6 40.9

Execution Time of Enhancements 1 (in msec)
number of number of multiple copies
query units 2 4 6 8
3 2.1 2.3 2.7 3.0
4 2.2 1.9 3.1 4.6
5 2.0 2.7 3.4 3.7

Execution Time of Enhancements 2 (in msec)
number of number of muliiple copies
query units 2 4 6 8
3 1.2 0.3 0.8 0.7
4 0.7 1.1 0.8 0.7
5 1.0 0.6 1.0 0.8

Table 4.10: The execution time of the allocation algorithm.

140

for the query units, the degree of freedom of each query unit is calculated. The
function NextQueryUnitis then called to find the query unit lo be allocated next,
and SelectSite is called 1o select a processing site for this query unit. After a site
has been selected, the system load vector and the degree of freedom of the
remaining query units are updated. This process is repeated until all query units
have been allocated. Table 4.11 summarizes the complexity of this dynamic
query unit allocation procedure. Since every query unit is processed in this

way, the total complexity of the algorithm is O(max(mn,m? logym)).

Note that, since m is small for most realistic queries, and n is really the
number of sites in the union of the feasible assignment sets for the subqueries
(which may be smaller than the number of sites in the system), this seems quite
acceptable. In order to see how the algorithm’s execution times compare to
those of the exhaustive search, the elapsed time of both algorithms were meas-
ured during the tests presented in the last section. The results are shown in Fig-
ure 4.15. These tests were performed on a VAX 11/750 running UNIX with
just one user on the system. The figures show that the elapsed time of the

heuristic algorithm is indeed basically linear in n when m is fixed, but that the

Complexity of the BNQ-based Allocation Algorithm
Function or Procedure Complexity
DegreeOfFreedom(qu._no) O(n)
NextQueryUnit O(mlogym)
SelectSite(qu_no) O(n)
Update(allocation_site[qu_no]) O(m)
TOTAL O(max(n,mlogpym)

Table 4.11: Complexity analysis per query unit.

141
exhaustive

scarch is not. When the number of queries and sites are small, the heuristic
algorithm has only a small advantage with regard to exccution time. However,
when the number of query units and sites increases, the elapsed time of the
exhaustive search increases dramatically. For example, when m=3 and n=4,
its elapsed time is 52.1 milliseconds. For m=6 and n=12, it becomes 16.2
seconds, or over 300 times longer. In contrast, the execution time of the
heuristic algorithm is basically linear in mn, going from 47.3 milliseconds o0

243 milliseconds for these same values of m and n.

Another observation from figure 4.15 is that the enhancements do increase
the computation time somewhat. Thus, applying the enhancement procedures
should perhaps be optional. In most cases the basic algorithm performs satisfac-
torily and it is not necessary to apply the enhancements. In some cases, such as
in a fully replicated system or when the number of sites is large, either or both

of the enhancement procedures can be applied.

4.3.8. A BNQRD-Based Version of the Algorithm

As indicated in Chapter 2, the information-based BNQRD algorithm will
outperform BNQ. A dynamic query unit allocation algorithm based on BNQRD

can be obtained by extending the BNQ based algorithm that was just presented.

In BNQRD-based query unit allocation, each query unit is classified as
being either 1/0 bound or CPU bound. This information is obtained from the
input of the allocation algorithm (i.e., from the static planner). Since the query
units to be allocated are classified into these two classes (I/0-bound and CPU-

bound), all load-related metrics, including the initial load, the current load, the

G-t Optimal G——® Basic +———+ w/ Enh.1 &0 w/ Enh.1&2

Seconds Seconds
0.3]
0.8
i m=4
0.21 0.6
0.4
0.17
0.27
0 j J ' j A 0 ' ' ' ' '
2 4 6 8 10 12 2 4 6 8 10 12
Number of Sites (n) Number of Sites (n)
Seconds Seconds
3.5] 18]
3.0] 157
m =
2.5 l
12
2.07
9
1.5]
- 6“
1.0
0.5 3
0 T T v T v 0 > . = S
2 4 6 8 10 12 2 4 6 8 10 12

Number of sites (n) Number of sites (n)

Figure 4.15: The elapsed time of the different algorithms.

143

load capacity, and the potential load, are extended to be two dimensional, with
one¢ dimension for 1/O-bound query units and another for CPU-bound query
units. The allocation procedure for a particular query unit is the same as in
BNQ-based allocation, except that whenever the load-related parameters are
referenced, those corresponding to the class of the query unit are used. Since
the type of a query unit does not change the amount of data transferred between
it and other query units, the communication-related parameters (such as benefit
and potential benefit) are exactly the same as in the BNQ-based algorithm. The

algorithm and its related procedures will therefore not be repeated here. Tests

Optimality of the BNQRD Heuristic Algorithm
m| n total Percentage of the Optimal Plans (%)
runs || optimal plans | optimal on UBF | optimal on CC

4 98 99 99
6 99 99 100
3 8 100 97 98 99
10 98 98 100
12 95 96 99
4 97 99 98
6 94 97 97
4 8 100 97 98 99
10 93 93 100
12 91 94 97
4 96 100 96
6 92 92 100
5 8 100 92 95 97
10 91 98 93
12 88 95 93
4 98 100 98
6 93 96 97
6 8 100 93 95 98
10 93 94 99
12 87 90 92 98

Table 4.12: Optimality of BNQRD-based allocation.

144

similar to those described in Section 4.3.5 were conducted to investigate the
optimality of the BNQRD algorithm. Table 4.12 presents the results of the tests.
it can be seen that the BNQRD-based algorithm performs similar to the BNQ-

based algorithm as far as optimalily is concerned.

4.3.9. Summary of the Dynamic Allocation Phase

The dynamic query unit allocation problem was defined in this section.
BNQ-based and BNQRD-based heuristic algorithms were developed to solve this
problem. Tests indicate that the allocations chosen using the heuristic algo-
rithms are quite good, and also that their execution time is much less than that
of exhaustive search methods. After applying the allocation algorithm to the
processing graph, each relation referenced in the graph is bound to a specific
physical site. This site is recorded in a field of the relation node, and the pro-
cessing graph is then passed to the third phase (the refining phase) which selects

a join execution method for each of the distributed joins in the graph.

4.4. THE REFINING PHASE OF ALGORITHM LBOQP

In the global processing plan, a join operation is specified as either a nested
loops join or a sort-merge join. If the two relations of a join are allocaled to two
different sites in the second phase, a choice remains — both the nested loops
join and the sort-merge join can be processed using either a semijoin-based exe-
cution method or a join-based execution method. The function of the refining
phase of Algorithm LBQP is to make this decision for each of the distributed

joins in the processing plan.

4.4.1. Semijoin and Join Methods

The experimental results described in Chapter 3 indicated that pipelined
join and semijoin mcthods have similar performance. It is possible to execute
the distributed joins in a processing plan using only pipelined join methods (i.e.,
the pipelined nested loops and sort-merge join algorithms). However, pipelined
semijoin methods provide an opportunity to further reduce the communications

COStS IN some cases.

Let Ry ><0 Rp be a join in a processing plan, wk ‘s and Ry are allo-
caicd to two different sites S; and Sp. The major diffe. es between the pipe-

lined semijoin-based and join-based methods are as follows:

(1) The result sites in the two cases are different. The result relation ends up at
site Sp for the pipelined join methods and at site S, for the pipelined semi-

join methods.

(2) The communications costs (the amount of data transferred between sites)
are different. For the pipelined semijoin methods (PSNL and PSSM), the
join column values of R, are sent to Sy, and the matching tuples in R are
sent back to §4. For the pipelined join methods (PJNL and PJSM), all of

relation R, is sent to Sp.

The effects of these differences on a processing plan can be illustrated by
an example. Consider a join R; >< R, in a database system with three sites,
S1, §2, and S3. Suppose that the query originates at §| and that the results are
expected at the same site. Finally, assume that the allocation phase decides to
access R, at §1 and Rp at S3. If a pipelined join-based algorithm is used, the

result relation of the join will end up at site 3, and it will have to be transferred

146

back to sitc §y. If the same distributed join is instead processed using a pipe-
lined semijoin-based algorithm, the result relation will end up at site Sy, clim-
inating the extra cost for transferring the result relation to S7. Similarly, if
there is more than one join in a query, it is advantageous if the result site for
one join can be the same as the processing site for the next join in the process-

ing graph. This is the motivation for the refining phase of Algorithm LBQP.

One other issue need to be mentioned prior to describing the refining phase
in detail. In the pipelined join-based algorithms, the task of merging tuples is
performed at the inner site. In the pipelined semijoin-based algorithms, how-
ever, merging is done at the outer site. Thus, switching from a join-based algo-
rithm to a semijoin-based one may cause inaccuracies in the CPU time estimates
for the join processes (since it changes which one does the merging work). For
the BNQRD-based query unit dynamic allocation algorithm, however, the
important information about a query unit is the ratio of its I/O tme and CPU
time (which determines its class, 1/0-bound or CPU-bound), and not its exact
processing times. The cost of merging tuples in main memory is expected not 1o

be so large that switching the merge site will change the class of a query unit.

4.4.2. The Refining Procedure

As described above, the refining phase explores the possibility of reducing
the communications cost of a processing plan by using semijoin-based join
methods. During the second phase of the algorithm (dynamic query unit alloca-
tion), the communications cost was taken to be 1 or 0 to distinguish remote pro-
cessing from local processing when the BNQRD-based query unit allocation

algorithm was used. In the refining phase, the communications costs for each

147

distributed join will be estimated using the information about its result size (from

the processing graph) as follows.
Let R, and Rp be two relations 1o be joined. Assume that R, is the outer

and Ry is the inner. The amount of data transferred by the pipelined join

methods is:
data_len_ join(Rg) = num_tuples(Ry)-tuple _len(R,) (4.4.1)
The amount of data transferred by the pipelined semijoin methods is:

data_len_semijoin(Ry) = num_tuples(Ra)-attr_len(R,.A) (4.4.2)

data_len_semijoin(Rp) = tuple_len(Rp)-num_tuples(Rp | Ry) (4.4.3)

Here, num_tuples(Rp | Rg) is the number of inner tples in R, which match
the outer tuples from Ry. This number is determined not only by the semijoin
selectivity of R; ><Rp, but also by the distribution of the join column values of
the outer relation. In particular, duplication in the join column values of the

outer relation will cause some of the inner tuples to be sent more than once.

Communications Cost
Result Site Semijoin (PSSM & PSNL) | Join (PJSM & PJNL)

s =5 data_len_semijoin(Ry) data_len_join(Ry,)

¢ a data_len_semijoin(Rp) + result_size
data_len_semijoin(Ry)

Se = Sp + data_len_semijoin(Rp) data_len_join(Ry)
+ result_size ‘
data_len_semijoin(Rg) data_len_join(Ry)

Se #F 54,5 + data_len_semijoin(Rp)

) + result_size
+ result_size

Table 4.13: Total communications cost.

148

In addition to data transfers between the outer and inner relations, data
transfers are also needed to send the join result to the next processing site (or the
query’s result site). 1f R = R, >< Ry is the result relation of the join, and the
join selectivity of Ry <t Rp is Jgp, the amount of result data to be transferred

can be expressed as:

result_size = Jqp-num_tuples(Ry)-num_tuples(Rp) (4.4.4)

- tuple _len(R)

If the join is part of a large query, the next processing site or the result site (if
this join is the last one in the query), S¢, can be (1) site Sg; or (2) site Sp; or
(3) some site other than S, or §p. Table 4.13 summarizes the communications

costs for these three different cases in terms of equations (4.4.1) - (4.4.4).

Recall that the amount of data to be transferred is computed during the
static planning phase and stored in the relation nodes and operation nodes of the
processing graph. Operation nodes in the processing graph are modified (if
necessary) by updating the operation field to be the selected method and the
result_site field to be the resulting merge processing site. This refining process
is shown in Figure 4.16. The input is the processing graph with the processing
sites of the query units being selected in the dynamic allocation phase. For each
join operation node, the functions OpType(op-node), OuterRel(op_node) and
InnerRel (op_node) return the type of the operation, and the outer and inner rela-
tions associated with the operation node in the processing graph; After refining,
function SetOp(op_node,X) sets the operation_type field in the op_node to be
operation X and function SetResSite(op_node,S) sets the result site field in

op-node to be §.

149

Algorithm Refining;

input : p_graph; (* the processing graph for the query with operation
nodes op._node’s *)

output : p_,graph; (* modified *)

(* NextSite (p_graph, op_node) returns the next query unit’s
assigned processing site;
TotalJoinCC(outer, inner, res_site) and
TotalSemijoinCC(outer, inner, res._site) return the total
communications costs computed as shown in Table 4.13;

var op : op-type;
outer, inner, nextsite : integer;
begin
foreach op_node in p_graph do
op : = OpType(op_node);
outer : = OuterRel(op_node);
inner : = InnerRel(op_node);
next_site : = NextSite(p_graph, op_node);
if (opin {SM, NL}) and (outer < > inner) then
if TotalJoinCC(outer, inner, nextsite) >
TotalSemijoinCC(outer, inner, nextsite) then begin
SetResSite(op_node, outer);
if (op = SM) then SetOp(op_node, PSSM)
else SetOp(op_node, PSNL);
end;
else begin
SetResSite(op-node, inner);
if (op = SM) then SetOp(op-node, PJSM)

else SetOp(op_node, PINL);
end;

)

end;
end;

Figure 4.16: Algorithm Refining.

150

After the join methods have been determined for each join, there may be
two or more conseculive semijoins in the processing graph. For these semi-
joins, processing can be simplified further. Suppose both joins in the query
(Rg|A= B1Rp)[D= C)R; are 1o be processed using semijoin methods. The data
transfer between the three relations is depicted in Figure 4.17 (a). The join
column values R;.A are sent to Rp, and the matching tuples of Ry are sent back
1o Ry. The wples from R, and R, are merged together at the site of R, to form
the result relation Rgp. The join column values of this intermediate result,
Rgp .D, are then sent to R.. The matching tuples of R, are then sent back to

R,, where the final result is accumulated.

This 3-way join can be processed in another way, as shown in Figure 4.17

(b). The matching tuples of R, can be sent directly to R, instead of being sent

Rab >< Rc

(a) (b)
Figure 4.17: The processing of two consecutive semijoins.

151

back to R;. The matching tuples in R, are then selected and sent back 10 Ry
along with the matching Ry tuples. (If the join column of the sccond join,
Rap . D, contains fields of R, that are not in Kp, these fields must be sent to Rp
along with R;.A.) This strategy can also be used if more than two semijoins are

adjacent in the processing graph. The refining phase could also be augmented

to consider such possibilities.

The refining phase completes the global optimization phase for Algorithm
LBQP. The resulting query processing plan defines the order of the joins, the
join methods, the copies of relations to be referenced, and the dawa transfers
needed between different sites. This plan is then distributed to all participating

sites and the query is executed.

4.5. ALGORITHM LBQP: A SUMMARY

This chapter has described a new approach 1o query processing in locally
distributed database systems, Algorithm LBQP. The approach consists of three
phases, the static planning phase, the dynamic allocation phase and the refining

phase. The salient features of this algorithm are as follows:

(1) Queries are initially optimized as though the system were a centralized data-
base system. The main heuristics that led to this decision were (i) the
optimal local join method is unaffected by the physical locations of the rela-
tions; (ii) the optimal choice for the outer and inner relations is unaffected
by the physical locations of the relations; and (iii) the optimal join order for
an n-way join is unaffected by the physical locations of the relations.
Thus, the resulting logical plan can be converted into a good distributed

plan by the dynamic allocation and refining phases.

(2)

(3)

152

Louad balancing is integrated with query processing. The notion of the load
unbalance factor for a system was extended, and the query unit allocation
problem was then defined based on this notion. The objective of this allo-
cation was to minimize the load unbalance factor (the primary goal) as well
as the overall communications cost (the secondary goal). Heuristic algo-
rithms were then developed to solve the problem. Plans produced using
these algorithms were compared with those produced by an exhaustive
search method (which always found the optimal plan). The tests indicated
that, in most cases, optimal allocation plans were found efficiently using the

heuristic algorithms developed in this chapter.

Since the choice between pipelined join methods and semijoin methods pro-
vides a possibility for further reducing the communications costs for distri-
buted joins, both join-based and semijoin-based algorithms are considered
for use in the final processing plan. The semijoin-based methods are used
when they reduce the communications cost caused by transferring inter-

mediate and final results.

The next chapter will examine the extent of performance improvements

achievable using this proposed load-balanced query processing approach.

CHAPTER 5

QUERY PROCESSING WITH LOAD BALANCING: A SIMULATION STUDY

The best way to evaluate the load-balanced query processing algorithm pro-
posed in the last chapter would be to implement it in a prototype of a locally dis-
tributed database system and then benchmark its performance. However, such a
study would exceed the time and space limits of this thesis, and it would also
require the availability of a multiuser prototype system. Instead, a simulation
study was conducted to demonstrate the effectiveness of the dynamic allocation
phase of the algorithm (which distinguishes the proposed algorithm from the
previous research work in this area). The first part of this chapter given a simu-
lation model for a locally distributed database system with partially replicated
data. The details of the experiments and their results are then given in the rest

of the chapter.

5.1. MODELING A DISTRIBUTED DATABASE SYSTEM

A simulation model for a distributed database system with fully replicated
data was developed in Chapter 2 (shown in Figures 2.7 and 2.8). Since each
relation is stored at every site in such a system, a query can be processed at any
site without requesting data from other sites. In a system with partally repli-
cated data, however, a query may reference relations that are not available at the
local site and thus may need to access relations stored at other sites in order to
complete its execution. Furthermore, when a query is processed in a pipelined
fashion for improved performance, its query units may be allocated to different

sites in the system for load balancing purposes; a query unit will then require

153

154

the intermediate results from its predecessor in the pipeline. The DB site model
shown in Figure 2.8 of Chapter 2 thus needs to be modified to accommodate a

more general model of distributed query processing.

5.1.1. The Generalized Model

Figure 5.1 depicts the generalized model used in this chapter. To model
pipelined query execution, the model has to deal with the pipelined flow of data
and the possibility that query units may have to block awaiting the arrival of
data. Thus, in addition to the original queues for the CPU and IO service
centers and for message handling, a blocked queue and a data pool have been
added to the model. The broken lines in the figure illustrate the flow of the
intermediate results generated during query processing. The model of query
generation and local query unit processing is the same as thal described in Sec-
tion 2.3 and will not be repeated here. However, the issues related to modeling

more general queries and their pipelined execution do merit further discussion.

A user query is represented as a sequence of query units in the model,
where each query unit accesses only one relation. The number of query units
in a query is determined when it is initiated, and this can be varied in order to
simulate different kinds of queries. For example, a selection or projection query
consists of a single query unit, whereas a pipelined nested loops join operation
(PJNL) can be modeled as a sequence of two query units. The first query unit in
the join would access the outer relation and pass the results to the second query
unit. The second query unit, after receiving the first page of data from the first
query unit, begins its processing (i.e., fetching inner wples using the incoming

outer tuples).

TERMINALS

/§\
v

data pool

no .
blocked queue / {__—E' |

e . A e e yes 5"” - mm -]
disk queues DISKS data;

job CPU queue
° CPU
o
msg CPU queue no
—3 ou>
out msg queue yes
A e P F——
FROM NETWORK TO NETWORK

Figure 5.1: The generalized DB site model.

156

When a query is initiated by a terminal, the BNQRD-based query unit allo-
cation algorithm is applied to decide the processing site for cach query unit. If a
query unit is allocated to a site other than its originating site (called its home
site), it i1s transferred to 1ts processing site via the communications subnet.
Since all query units in a query are processed in a pipelined fashion, only the
first query unit in the pipeline begins execution right after the query has been
allocated. The other query units will enter the blocked queue and will not begin
executing until the first data page is received from their predecessors in the pipe-
line. For cach data page received, a query unit will cycle through the disk and
CPU service centers several times. Upon finishing this process, the query unit
then checks the data pooiq If the next data page is already in the pool, the query
unit gets the page and continues executing. Otherwise, the query unit will
either block awaiting the arrival of the next input data page, or else it will ter-

minate (if its predecessor has completed).

After each cycle through the disk and CPU servers, a query unit produces a
certain amount of (intermediate) result data. When one page of result data has
accumulated, an outgoing data page is formed. Each data page is identified by
the query unit that produced it and the query unit that will receive it as input. If
the query unit that produced the data is the last one in the pipeline, the data page
is directed back to the terminal at the query unit’s home site. Otherwise, the
page is passed to the next query unit in the pipeline. Depending on the process-
ing site of the next query unit, the data page will either be sent to a remote site
via the communications subnet or placed in the data pool at its local site. When-
ever a data page is added to the data pool, either by a message from another DB

site or by a local query unit, the blocked _queue is checked. If the receiver of

the data page 1s already blocked, it leaves the blocked queue and proceeds to pro-
cess the data.

Two types of messages arc involved in this process. The first type of mes-
sage is a query message, which carries information about query units to other
sites for execution. A query message contains the description of a query unit,
including its predecessor and successor in the pipeline, its execution time, its
home site, etc. If a remotely executed query unit is the last one in the pipeline,
a query message is also used to send a signal to its home site when it completes
its execution. The second type of message is a data message. 1f two consecutive
query units are processed at different sites, data messages are used to transfer
the results from one site to the next. All messages are processed in the same
manner as described in Chapter 2. Both incoming and outgoing messages first
enter the message CPU queue 10 receive a certain amount of CPU service. An
outgoing message then enters the out message queue 10 be served by the com-
munications subnet. If an incoming message is a data message, it is directed to
the data pool. If it is a query message it is routed either to the CPU and disk
service centers for execution or else back to the appropriate terminal if it is a
query completion message. The communications subnet model is the same as

that of Chapter 2.

From this description, it should be clear that this model is well-suited for
simulating the pipelined processing of queries whose processing graphs are
linear sequences of query units (such as the query shown in Figure 4.4 of
Chapter 4). In particular, this model is a reasonably realistic representation of a
sequence of PJNL joins. The simulation of more general queries would require

a model with a more sophisticated flow control mechanism than that employed in

158

this model. However, this relatively simple model will be sufficient 1o demon-
strate the effectiveness of the dvnamic query unit allocation algorithm, which is

the objective of this chapter.

5.1.2. Parameters of the Generalized Model

Table 5.1 lists the system parameters. In addition to the num_sites parame-
ter of Chapter 2, the parameters num_rels and storage_sites are used o specify
the number of relations in the system and the storage sites for each relation. In

this study, it is assumed that all copies of a relation are identical.

The DB site parameters and the communications-related parameters are
basically the same as those of Chapter 2. These parameters are given in Tables

5.2 and 5.3, respectively.

System Parameters
num_sites the number of DB sites in the system
num_rels the number of relations in the system
storage _sites, | the storage sites of relation Ry,l1=k=num_rels

Table 5.1: System parameters.

DB Site Parameters

num_disks | number of disks per site
disk_time mean access time for a disk page
mpl number of terminals per site
think_time | mean terminal think time

Table 5.2: DB site parameters.

Communications-Related Parameters

msg _setup

msg _cpu _rate
trans _rate
query_descrip_size
data _page _size

fixed amount of time needed to establish a connection
CPU time needed for transferring one byte of data
time needed for transferring one byte of data

size of a query message in bytes

size of a data message in bytes

Table

5.3: Communications-related parameters.

Query Parameters

num_qtypes
num_ qus;

qrype _prob;

number of different query types in the system

number of query units for query type i

probability of a query being a type i query
(1< i< num_gtypes)

Qu

ery Unit Parameters for Query Unit j

num_reads;
res_fraction; ;
classio—prob; ;

mean number of reads for query unit j

mean fractional result size for query unit j

probability of query unit j being 1/0 bound
(1=i=num_types; 1= j=num_qus;)

Query Unit Class Parameters

page_cpu_time;,
page_cpu_timecp,

mean per-page CPU demand for 1/0-bound query unit

mean per-page CPU demand for CPU-bound query unit

Table 5.4: Workload parameters.

The workload of the distributed database system is described by three

groups of parameters:

query parameters, query unit parameters and class param-

eters. These parameters are listed in Table 5.4. The query parameters, includ-

Ing num_qtypes, num

of the queries in the

—qus; and gtype_prob;, describe the general characteristics

systern. Queries are classified into query rypes based on

their number of query units. The parameter num_gqrypes is the number of dif-

160

ferent query types in the system. For each query type i, the parameter
num_qus; specifies the number of query units for this query type, and
gtype _prob; is the probability that a query submitied to the system will be a type
i query. For each query unit j of a type i query, the query unil parameters
num_reads; j, res_fraction; j and classj,—prob; j describe its service
demands. The parameter num_reads; ; defines the mean number of cycles
through the CPU and 1/0 service centers for the query unit. For the first query
unit (j = 1), this is the number of pages it reads from the disk. For the other
query units (j > 1), since their execution is dependent on the intermediate
result data from their predecessors, num_reads; ; is the mean number of pro-
cessing cycles (exponentally distributed) corresponding to the receipt of one data
page from the preceding query unit. (This again indicates that the query process-
ing model is most like the pipelined nested loops join method). The parameter
res_fraction; j specifies the fraction of a result data page generated by each
page processed. Finally, query units are still classified into two classes, 1/0
bound and CPU bound, according to their 1/0 and CPU service demands, as in
Chapter 2. The parameter class;,—prob; j is the probability that query unit j
will be 1/0 bound. For each class, the parameter page._cpu_time gives the mean

CPU time (exponentially distributed) required to process a page of data.

£.2. SIMULATION DETAILS

The model described in the last section was implemented using the DENET
simulation language [Livn85] and Modula-2. Since a large amount of CPU time
was required for this study, the simulation was run concurrently using the

remote UNIX facility on several of the DEC/VAX 11/750’s of the Crystal multi-

16l

computer [DeWi84h] This section describes the details of the simulations,
including the algorithms simulated, the parameter settings for the experiments,

and the performance metrics used in this study.

5.2.1. Dynamic Query Unit Allocation Algorithms

The main purpose of this simulation study is to examine the performance of
the dynamic query unit allocation algorithm LBQP of Chapter 4. For com-
parison purpose, three other algorithms, STATIC, RANDOMpE, and
RANDOMp were also implemented. These algorithms select processing sites

for query units as follows.

(1) LBQP. The simulaﬁon results of Chapter 2 indicate that information-based
dynamic allocation performs better than simple BNQ-based algorithm. In
this study, the BNQRD-based version of Algorithm LBQP from chapter 4

will be used 1o choose the processing site for each query unit in a query.

(2) STATIC. This algorithm tries to process a query unit at its local site if pos-
sible. If the relation referenced by a query unit is not available at the local
site, a statically pre-determined site with a copy of the relation is selected as
the processing site. In other words, in a system with partially replicated
data, each relation is assumed to have a predetermined copy that will be
used by query units whose local sites do not have a copy of the relation.
(The term local site refers to either the home site of the query or the pro-
cessing site of its predecessor in the pipeline.) This algorithm was
motivated by existing distributed query processing algorithms that use a

predetermined copy during query optimization [Bern81b].

162

(3) RANDOMf. Algorithm RANDOMFE is only applicable in systems with
fully replicated data. It randomly selects a processing site for an entire
query when the query is initiated, and all of its query units will be pro-
cessed at that site.

(4) RANDOMp. Algorithm RANDOMp is a random site selection scheme for
systems where the data is partially replicated. This query unit allocation
algorithm selects a processing site for a query unit as follows. (1) The first
query unit is processed locally if the relation referenced by the query unit is
locally available. (2) If the referenced relation is available at the site where
the predecessor of a given query unit is processed, the query unit is pro-
cessed at that same site to reduce the communications cost. (3) Otherwise,
a processing site is randomly selected from among the sites where the rela-
tion is stored. RANDOMp selects copies in a manner similar to the copy
identification algorithm proposed by Yu and Chang [YuCh&3] — their algo-
rithm statically selects the processing sites for a query, making the number
of processing sites as small as possible to minimize the communications
cost. RANDOMp is also similar to what system R* would do when all
copies of each relation have identical acceess pathes. Finally, RANDOMp
can also be thought as a variation of a simple random splitting load balanc-
ing algorithm, proposed by Wang and Morris [Wangg&5], which randomly
selects a processing site for a task.

Table 5.5 gives an example that illustrates the differences between the three
query unit allocation algorithms that are intended for partially replicated data.

The system is assumed to consist of 3 sites, §, §2, and §3. Two relations, R

and R, are stored in the system as shown in Table 5.5(a). The predetermined

(a) System Parameters

num_sites 3
num_rels 2
, Ry : {81, 82}
storage _sites .
Ry 1 182, §3)

(b) Processing Sites
Allocation Relation Query’s Originating Site
Algorithm | Referenced S S S3
, Ry S $2 S1
STATI
¢ R, S5 S5 S3
R1 S SH S1 or Sy (random)
RANDOM p R Syor S3 S if Ry is processed at S
2 (random) 2 then $, else §3
R S1 or Sy (based on load)
LBQP
Q R S5 or §3 (based on load)

Table 5.5: Different query unit allocation algorithms.
copies are Ry at site S and Rj at site S». The processing sites selected by the

algorithms for a join query RiP><1R; are listed in Table 5.5(b).

5.2.2. Parameter Settings

The model parameters used in the experiments of this chapter are listed in
Table 5.6. The system consists of 6 sites. There are 3 relations in the database,
so the number of query units in a query varies from 1 to 3. The number of
query types is also varied from 1 to 3. The number of terminals at each site, the
mpl, is 5. Since the maximum number of query units for a query is 3, the
number of actual processes running at a site may reach 15. The num_reads

setting is 20 pages for the first query unit and 5 for the others. With a

164

res_fraction of 0.2, the mean number of result pages for the first query unit is

4: therefore, the total number of reads for t

also 20.

System Paramelters

num_sites
num_rels
storage _sites

6 sites
3 relations
(varied in tests)

DB Site Parameters

num _disks
disk _time

disk _time _dev
mpl

think _time

2 disks

20 msec
+20%

5 terminals
1.0 - 28.0 sec

Communications Costs

msg _setup 250 psec
msg _cpu _rate 2.0 psec/byte
trans_rate 2.0 p.sec/byte
query_descrip _size | 2048 bytes
data_msg _size 4096 bytes
Query Parameters
num_ qrypes 1-3
num..qus 1-3
qtype _prob (varied in tests)
Query Unit Parameters
num_reads 20, 5,5
res_fraction 0.2,0.2,0.2
class_prob 0.5, 0.5, 0.5
Query Unit Class Parameters
1/0 Bound | CPU Bound

page _cpu _time

5 msec 80 msec

Table 5.6: Parameter settings in the simulation.

he second and third query units is

165

In this study, the mean value of page_cpu_time is 4 times the disk_time for
CPU bound query units and 1/4 of the disk_time for 1/0 bound query units.
These values were suggested by experimental results for selection and join
queries. For example, in experiments based on the Wisconsin Database
[Bitg3], a selection that selected 100 tuples from a 10,000 wple relation using a
sequential scan was CPU bound; its CPU time was 79% of the total processing
tume. The same selection using a non-clustered index was 1/0 bound, and its

disk time was 71% of the total processing time.

The settings for the remaining parameters are similar to those used in the
simulation study described in Chapter 2. As in that chapter, the think_time

parameter is varied to obtain different system loads in each experiment.

5.2.3. Performance Metrics

The mean waiting time of a query was the main performance metric of
interest in the study of Chapter 2. This was defined as the difference between the
mean response time and the service time of a query. In order to compare a pair
of allocation algorithms L7 and Lj, the mean waiting time improvement factor,

WIF (L1 L3), was introduced in Section 2.4.2.

In this study, a query can consist of more than one query unit, and these
query units may be processed concurrently by different DB sites. Because of
this parallelism, the mean response time of a query could actually be less than
the sum of the service times for its query units. Furthermore, in addition to
waiting for resources, a query unit may block during execution to wait for data

to arrive from its predecessor. That is, the mean waiting time of a query, W,

can be thought of as consisting of two parts here:

166

W = WR‘}'WD

WR is the time spent by the query units waiting for the desired resources, and
Wp is the waiting time that would be caused by the absence of intermediate
results if the query were executed alone in the system. From a load balancing
viewpoint, WR is obviously more interesting, as WD is determined by the nature

of the query and the choice of query allocation algorithm does not affect it.

In order to measure the waiting time improvement provided by a query unit
allocation algorithm in this environment, the best-case average response time of
a query mix is first obtained by simulation. If all query units of a query are exe-
cuted concurrently at different sites in "single-user mode”, none of the query
units will ever wait for resources, so the waiting time of the query will simply be
WD. This response time, denoted as Ry, (where "su” means in "single user
mode”), will be the lowest mean response time which can be reached. The

mean wailing time improvement factor in this simulation can thus be defined as:

R —
WIF(Ly,Lg) = Hﬁ- (5.2.1)

R4 and Rp here are the query’s response times when allocation algorithms Ly

and Lp are used, respectively.

Throughput is another important performance metric, and dynamic query
allocation algorithms may improve the throughput of a system as well. The
notion of a throughput improvement factor, TIF(L4,Lp), can be similarly

defined 1o measure this improvement:

Ty — T
TIF(Ly,Lg) = m—”i—TE—E— (5.2.2)

167

T4 and Tp are the system’s throughput when allocation algorithm L4 and Lg

arc used, respectively.

For the experiments presented here, both the throughput of the system and
the response times of completed queries were measured. The response time Ry,
was obtained by running separate simulations. WIF(L,STATIC) and

TIF(L,STATIC) will be computed from these results.

5.3. EXPERIMENTS AND RESULTS

Three experiments were performed to investigate the performance of the
four query unit allocation algorithms LBQP, RANDOMfg, RANDOMp, and
STATIC. In Experiment 1, a single fixed query type is used to investigate the
performance of the algorithms in systems with different numbers of copies of the
relations. In Experiment 2, the workload is a mixture of queries comprised of
different numbers of query units. Lastly, Experiment 3 attempts to illustrate the
effectiveness of dynamic load balancing in a system with different (static) loads

at the various DB sites.

5.3.1. Experiment 1: Varying Data Replication

The query used in this experiment consists of three query units. The first
query unit is CPU bound and the other two are 1/0O bound. The query
corresponds to a 3-way join (RaP><Rp)P><R.: Query unit 1 is a sequential
scan of the outer relation R, (CPU bound). The result is pipelined to query
unit 2, which uses the incoming tuples to fetch inner tuples from R, through a
non-clustered index (I/O bound). The resulting tuples are sent to-query unit 3
which performs the join with R, (again 1/0 bound). The service demands of

the three query units are listed in Table 5.7. The other parameters used are

168

those listed in Table 5.6.

The relations in the system and their storage sites are listed in Table 5.8.
Four tests were performed in Experiment 1, each with a different level of data
replication. In Test 1, all three relations were replicated at every site (Case 1 in
Table 5.8). Test 2 had 4 copies of each relation, and Test 3 had 2 copies of
each relation (Case 2 and 3 in Table 5.8). In Test 4, the most heavily used
relation (Ry) was fully replicated in the system and the other two relations each

had only two copies (Case 4 in Table 5.8).

Test Query for Experiment 1
of Query Units 3
Query Unit 1 2 3
referenced relation | R; R> R;
num_reads 20 pages | 5 pages | 5 pages
res_fraction 0.2 0.2 0.2
page _cpu_time 80 msec | S msec 5 msec

Table 5.7: The test query for Experiment 1.

Relations and Their Storage Sites
Site Case 1 Case 2 Case 3 | Case 4
S {R1,R2,R3} | {RT,R3} | {R{} | {R1}
S {RlaRZvR.'i} {R17R3} {Rl} {Rl}
53 {R1,R2,R3} | {R1,R3} | {R3} {R1.R3 |
54 {R1,R2,R3} | {R1L,R2} | {R2] {R1,R2}
§5 {RlvRZ’R:i}’ {RZ’RT’;} {R;} {RI»R.?}
S5 {R1,R2,R3} | {Ra,R3} | {R;3} iR1,R3}
(Relations with *’s are the preassigned copies)

Table 5.8: Relations and their storage sites.

169

Figure 5.2 presents the results of Test 1, where all three relations are fully
replicated. The mean response time (Figure 5.2 (a)), the waiting time improve-
ment factor WIF(LBQP,STATIC) (Figure 5.2 (b)), the throughput of the system
(Figure 5.2 (c)), and the throughput improvement factor TIF(LBQP,STATIC)
are given as functions of think time. Since the data is fully replicated and the
workloads are the same at every site, all sites in the system have the same CPU

and disk utilizations. The CPU utilization is given in Table 5.9 for reference.

The first observation from Figure 5.2 is that the load-balanced query unit
allocation algorithm (LBQP) leads to a significant decrease in waiting time with
respect to the STATIC algorithm. The response time of the query approaches
Rs, as the system load decreases. Greater WIF values are obtained when the
system 1is less heavily loaded. When the think_time is greater than 16 seconds
(corresponding to a CPU utilization of less than 0.5 at every site), the waiting
lime improvement factor is greater than 50%, but as the system becomes more
heavily loaded, the improvement becomes smaller. With 4 seconds of
think_time (where the CPU utilization is about 0.92), LBQP actually performs
slightly worse than STATIC. This is explainable since the result fraction is rela-
tively large (0.2) in the current parameter settings. A large intermediate result
(an average of 4 pages per query unit) is generated and transferred if the query
units are dynamically allocated. Another observation from this test is that, in a
system with fully replicated data and a uniform workload, randomly selecting
processing sites is unlikely to be profitable. The response time for RANDOM g
is always larger than that of STATIC. (WIF(RANDOMFg,STATIC) is less than 0
and is not shown in the figure). This is because a randomly selected remote site

is likely to be as heavily loaded as the local site, and transferring the query units

170

&——> LBQP o¢—-— RANDOM_ &---8 STATIC
. secoonds 100" A
\ (a) Response time 907 (b) WIF(X, STATIC)

\ 801

707
60
507
40
307
207
107

0
1] -107 /

0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28
think time (sec) think time (sec)

| SR VOIS 7 I - AT B > - B =

queries/sec
3] (c) Throughput 1% (d) TIF(X,STATIC)

60 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28
think time (sec) think time (sec)

Figure 5.2: Results of Experiment 1, Test 1.

CPU Utilization in Experiment 1, Test |
Think Time 4 6 8 12 16 22 28
CPU Utlization | 0.92 | 0.82 | 0.73 | 0.59 | 0.50 | 0.38 | 0.31]

Table 5.9: CPU utilization in Experiment 1, Test 1.

and result data only increases the communications cost.

As for the system throughput, RANDOMF is again worse than STATIC.
With algorithm LBQP, the throughput of the system is increased by a few per-
cent, with TIF(LBQP,STATIC) increasing a little as the sysiem load decreases.
It reaches a maximum and then decreases along with the decrease in the system
load. This can be explained as follows: If the system is lightly loaded, its
throughput is limited by the think time (i.e., by the query arrival rate). No
matter how fast queries can be processed using LBQP allocation, no significant
improvement in throughput is possible. When the system is heavily loaded, the
throughput is determined by the queuing time of the queries. At this end of the
spectrum, however, LBQP does not effectively decrease the response time, so
the throughput improvement factor is again small. The maximum improvement
in throughput is therefore obtained under a medium load, as shown in Figure

5.2(d).

Tests 2 and 3 of Experiment 1 studied the performance of the query unit
allocation algorithms in cases where the relations are partially replicated. Each
relation has 4 copies in test 2, and in test 3 the number of copies decreases to 2.

Figures 5.3 and 5.4 show the results of these two tests.

Several observations can be made from these results. First, the response

time for the STATIC algorithm increases rapidly when the number of copies is

172

127

10°

s4——= | BQP

seconds

(a) Response time

0 4

8§ 12 16 20 24 28
think time (sec)

1 queries/sec

(¢) Throughput

0 4

8 12 16 20 24 28
think time (sec)

¢—- =< RANDOMp

80]
707

607

407
307
207

107

8-~--0 STATIC

< [] & = [o -]
s s 1 5

%
(b WIF(X,STATIC)
—o.
~o
0 4 8§ 12 16 20 24 28
think time (sec)
1 %
(d) TIF(X,STATIC)
0 4 § 12 16 20 24 28

think time (sec)

Figure 5.3: Results of Experiment 1, Test 2.

4——4 | BQP ¢~ —© RANDOM, B~~"0 STATIC

1007
901
801
707
607
50°
40
307
207
107

0

507

%

(b) WIF(X,STATIC)

4 8§ 12 16 20 24 28
think time (sec)

%
(d) TIF(X,STATIC)

_seconds
G--g
\\&(a) Response time
207
16
127
81
4] Rsu
0 4 8 12 16 20 24 28
think time (sec)
2.07 queries/sec
(¢) Throughput
1.57
1.0]
0.5]
0.0 ! v ! T Y T 9
0 4 8 12 16 20 24 28

think time (sec)

4 8 12 16 20 24 28
think time (sec)

Figure 5.4: Results of Experiment 1, Test 3.

174

decreased, especially with a short think_time. This is caused by competition for
accessing the preassigned copies. It 1s cxactly this resource contention problem
that the load-balanced query processing algorithm is designed to alleviate. It is
evident that LBQP causes the response time to decrease significantly in both
tests, and also that the waiting time improvement factor increases with a decrease
in the system load. In Test 2, when the average CPU utilization of the four
most heavily loaded sites 1s 0.85 (at a think time of 8 seconds),
WIF(LBQP,STATIC) is greater than 30% . When the think time is increased 1o
14 seconds (where the average CPU utilization is 0.68), the value of
WIF(LBQP,STATIC) increases to 60% . The improvement in Test 3 is similar.
The rate of this increase is a little higher with 4 copies per relation, as more
copies provide more opportunities to allocate a query unit to a lightly loaded site.
However, in both cases the lowest response time reached by LBQP is still higher

than that of the fully replicated case (Test 1).

Another observation is that RANDOMp performs better than STATIC in
Tests 2 and 3 because the partally replicated data makes the system unevenly
loaded; randomly picking processing sites helps to equalize the system load. In
the case where each relation has just two copies (Test 3), the performance of
RANDOMp is close to that of LBQP. This is because RANDOMp has a 50

percent chance (statistically) of making the right selection from the perspective

of load balancing in this case.

In both tests, a greater improvement in system throughput is observed than
that of Test 1. In Test 2, the maximum TIF(LBQP,STATIC) is 16.55%, and in
Test 3, it is as high as 35%. This clearly shows that the dynamic query unit

allocation algorithm effectively eliminates resource contention at heavily loaded

175

sites, so both the response time for queries and the throughput of the system are

significantly improved.

It can be seen from the parameter settings that the first query unit is likely
to be the bottleneck in the execution of the overall query in these tests — the
service time of the first query unit is two thirds of the total processing time for
the query. In Test 4 of Experiment 1, only relation R (which is referenced by
the first query unit) was replicated at every site, and the other relations each had
just two copies (Case 4 in Table 5.8). Figure 5.5 presents the results of this
test. Figure 5.5 (b) shows that LBQP provides a significant improvement in
waiting time, and Figure 5.5 (a) indicates that fully replicating R} improves the
response time dramatically for both the STATIC and LBQP algorithms. Figure
5.6 shows the response times obtained in Tests 1 and 4 together, clearly showing
this point. The response time of the query in the partially replicated case is
close 1o that of the fully replicated case when the LBQP algorithm is used to

allocate the query units.

5.3.2. Experiment 2: Mix of Query Types

In Experiment I, the workload used in the tests consisted of a single query
type. Experiment 2 investigates the performance of LBQP for more general
workloads. The workload used in this experiment is a mix of queries with dif-
ferent numbers of query units. The parameter settings for Experiment 2 are
shown in Table 5.10. A newly generated query will consist of 1, 2 or 3 query
units (with probabilities 0.5, 0.3 and 0.2, respectively). For each query unit,
the probability of it being 1/0 bound is 0.5, and otherwise it will be CPU bound.

The service demands for 1/0 bound and CPU bound query units are the same as

176

b——=a | BQP ©— — RANDOMjp EB—-—8 STATIC

seconds 1007 %
101 (a) Response time (b) WIF(X,STATIC)
907
8] 807
707
6] 607
507
47 407
307
2] 201 / \9\0/»\‘\9
————
101 °
0 L) T Y T L] L 1 O '’ Ll ¥ ¥ T 12 u
0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28
think time (sec) think time (sec)
37 queries/sec 201 %
(c) Throughput (d) TIF(X,STATIC)
157
27
107
57
1
0
0 . " Y r . . v 5 v . r . v . .
0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28
think time (sec) think time (sec)

Figure 5.5: Results of Experiment 1, Test 4.

107 seconds
Partially Replicated
91 g—1f RANDOMp
&—=a LBQP
8] Fully Replicated
G --49 RANDOM ¢
71
&--4 1BQP
6
51
4
31 Rsu
21
1
0 Y T U T T T 1
0 4 8§ 12 16 20 24 28

think time (sec)

Figure 5.6: Comparison between Tests 1 and 4 response times.

178

Query Parameters
num_qtypes 3
Query Type 1 2 3
num._qus 1 (Ry) 2 (R1><Ry) | 3 (R1P><RIP><R3)
qtype _prob 0.5 0.3 0.2
Query Unit Parameters
Query Unit 1 2 3
num_reads 20 pages S pages S pages
res_fraction 0.2 0.2 0.2
classi,—prob 0.5 0.5 0.5
Class Parameters
Class 1/0 Bound CPU Bound
page_cpu_time | 5 msec 80 msec

Table 5.10: The workload for Experiment 2.

in Experiment 1.

Two tests were performed in this experiment, one with fully replicated data
(Case 1 in Table 5.8) and the other with partially replicated data with 4 copies of
each relation (Case 2 in Table 5.8). Figures 5.7 and 5.8 present the results
obtained in these two tests. Again, the dynamic query unit allocation algorithm
(LBQP) provides a significant improvement in response time. Similarly, the
throughput improvement factors in these two tests follow the same trends as in
Experiment 1. In the fully replicated case, the throughput improvement factor is
small. In the partially replicated case, however, throughput as well as response
time is improved by dynamic query unit allocation. When the think_time is 6
seconds, LBQP increases the throughput by 22% and decreases the waiting time
by 65%. When the think_time is increased to 14 seconds, the decrease in wait-

ing time is 75% with a 7% throughput increase.

179

&——b 1 BQP
_seconds
%
\,
\ (a) Response time

4 %
31
2
11
0

2 4 6 8 10 12 14 16 18
think time (sec)
571 queries/sec

(c) Throughput

2 4 6 § 10 12 14 16 18
think time (sec)

@— - RANDOMF

90]
801
707
601
50

-10

-10]

-157

-20

8---0 STATIC

%%

(b) WIF(X,STATIC)

2 4 6 8 10 12 14 16 18
think time (sec)

1 %

/ (d) TIF(X,STATIC)

/
®

2 4 6 8 10 12 14 16 18
think time (sec)

Figure 5.7: Results of Experiment 2, Test 1.

180

6——=& | BQP

seconds
7l =
\

(a) Response time

0 T Y Y T) T ¥ T 1
0 2 4 6 8 10 12 14 16 18
think time (sec)

5 queries/sec
(c) Throughput
4
3
51
1

0 2 4 6 8 10 12 14 16 18

think time (sec)

@—-—® RANDOMp

907
807
707
60°
507
407
307
207

107

8---0 STATIC

%
(b) WIF(X,STATIC)

y —

s 3

L3

0 T T e ———y
0 2 4 6 8 10 12 14 16 18

307
257
207
15]

10’

0 2 4 6 8 10 12 14 16 18

think time (sec)

(d) TIF(X,STATIC)

g

think time (sec)

Figure 5.8: Results of Experiment 2, Test 2.

181

The results of Test 2 can be better understood by looking at the system’s
utilization. Figures 5.9 (a) and (b) show the CPU utilization for the 6 sites in
the system for think_time values of 6 and 14 scconds. If the STATIC query
allocation algorithm is used, the two sites that have the preassigned copies of

i

relations Ry and R are the most heavily loaded sites’. With a short think_time,
queries are queued at these sites leading to long response times and low
throughput. Dynamic query allocation not only helps to equalize the CPU load
among the sites in the system, but it also increases the system-wide CPU utiliza-
tion: In this case, the average CPU utilization over the 6 sites used for process-
ing queries (excluding the CPU time consumed by messages) increases from
0.558 to §.695. This is about a 25% increase over the STATIC allocation algo-
rithm. Figure 5.9 (b) also shows equalization of the CPU utilizations of the

sites, but the system-wide average utilization only increases from 0.383 to

0.392, or about 2%, in the long think_time case.

5.3.3. Experiment 3: Non-Uniform Query Arrival Rates

In Experiments I and 2, every site in the systern had the same (statistical)
workload. Experiment 3 investigates the behavior of the dynamic query unit
allocation algorithm when the sites have different query arrival rates. The work-
load in this experiment is the same as that of Experiment 1, except that the mpl
parameter (the number of terminals) is set to 1 at three of the sites (sites Sy,
S3, and §5) in order to obtain non-uniform arrival rates for queries. The rela-
tions in this experiment are fully replicated (Case 1 in Table 5.8). The results

of Experiment 3 are illustrated in Figure 5.10, including the response time,

"Most queries have only one or two query units, and therefore access only R 1, and possible
R>.

b—=a 1 BQP
97
100 1007
807 80°
60 607
407 407
207 207
think time = 6 seconds
0 j))) ! 0
0 2 3 4 5 6

DB site

¢ ~0 RANDOMpPp B-——8 STATIC

%
(b)
A
Iy
Iy
Iy
/ \
7 ,
N/ B
e A ! 2
o N
th
think time = 14 seconds
0 1 2 3 4 5 6

Figure 5.9: CPU utilization (Experiment 2, Test 2).

(c) Throughput

10]

4——=b [BQP ©— —° RANDOM; E-~8 STATIC
<9\5@«:01}ds 1007 %
o (a) Response Time (b) WIF(X,STATIC)
h\‘ 807
AN
\\b‘
607
407
207 s 2
& o/
S ~e—o0~
0 ol
4/A
220 0"
T T T ¥) —40 Y L Y .l
4 8 12 16 20 0 4 8 12 16 20
think time (sec) think time (sec)
queries/sec 201 %

(d) TIF(X,STATIC)

. . 10
12 16
think time (sec)

20 0

12 16 20
think time (sec)

Figure 5.10: Results of Experiment 3.

184

throughput, and their improvements due to dynamic query unit allocation. These
figures show the same trends as in previous tests with partially replicated data.
The effects of a non-uniform workload on the system’s load distribution are
similar to those of partially replicated data. RANDOM g performs a little betier
here than it did in Test 1 of Experiment 1 (where there was fully replicated data
and a uniform workload), with slight improvements in its WIF and TIF being
observed when the system is lightly loaded. LBQP performs much better, as
shown by both the WIF(LBQP, STATIC) and TIF(LBQP, STATIC) melrics.
With a think_time of 1 second (where the system-wide average CPU utilization is
about 0.86), WIF(LBQP, STATIC) exceeds 25%, and TIF(LBQP, STATIC) is
greater than 15%. When the system load increases, the waiting time improve-
ment increases rapidly and the throughput improvement decreases somewhat.
When the think_time is 8 seconds, the value of TIF is still a little over 13%,
while the WIF exceeds 70% . It is clear that algorithm LBQP improves the per-

formance of the system significantly here.

5.4. SUMMARY

This chapter described a simulation model for a distributed database system
with partial data replication. In this model, a query was represented as a
sequence of query units that executed concurrently in a pipelined fashion. The
parameters used to represent the workload and the performance metrics used to

study the performance of the load-balanced query allocation algorithm (LBQP)

were discussed.

Three simulation experiments were performed to investigate the perfor-

mance of Algorithm LBQP. Three other algorithms, STATIC, RANDOMp,

185

and RANDOM[E, each of which can be viewed as the site selection method used
by one or more existing query allocation algorithms, were studied as reference
points. A number of conclusions were drawn from the results of the experi-
ments. First, Algorithm LBQP indeed improves performance, decreasing the
response time for queries and increasing the throughput of the system. This
performance improvement was observed in a variety of cases with different levels
of data replication, different query mixes, and non-uniform query arrival rates.
(The throughput improvement in cases with fully replicated data and a uniform
workload was not as large as in other cases). Second, both partial data replica-
tion and non-uniform workloads cause queries to queue up at cerlain sites, caus-
ing the performance of the system to degrade. The dynamic query unit alloca-
ton algorithm performed very well in these cases, as indicated by both its wait-
ing time improvement factor and its throughput improvement factor. Finally,
the RANDOMF algorithm did not perform as well as STATIC in cases with
fully replicated data. With partially replicated data, however, the RANDOM p
algorithm (which randomly selects processing sites) performed better than the

STATIC algorithm but worse than LBQP.

CHAPTER 6

CONCLUSIONS

6.1. SUMMARY OF RESULTS

Most all of the distributed query processing techniques proposed in the
literature have been based on the static characteristics of a distributed database
system. "Optimal” processing plans are obtained without considering the
dynamic characteristics of the system such as its load. This thesis proposed a
new approach to distributed query processing in locally distributed database sys-
tems: load-balanced query processiﬁg (LBQP). This approach is novel in that it
integrates distributed query processing with load balancing. The processing plan
for a query is first optimized to minimize the total processing time. Processing
sites are then selected in such a way that the system load is balanced, leading to
better performance as compared with previous static distributed query processing

methods.

Chapter 2 of this thesis presented a simulation model for distributed data-
base systems with fully replicated data, and it also presented three basic dynamic
query allocation algorithms: BNQ (”Balance the Number of Queries”),
BNQRD ("Balance the Number of Queries by Resource Demands”) and LERT
("Least Estimated Response Time"). Each of these algorithms was studied using
the simulation model, and the results that were obtained clearly showed the
potential of dynamic query allocation. Even in systems with homogeneous sites
and workloads, it was found that a significant decrease in the mean waiting time

for queries can be obtained when queries are allocated to sites based on load

186

187

information. Among the three dynamic query allocation algorithms, the results
indicated that algorithms which use information about query resource demands
(c.g., BNQRD and LERT) lead to better performance than a simple load balanc-
ing approach that does not use such information (e.g., BNQ). Lastly, in addi-
tion to decreasing the mean waiting time for queries, it was found that dynamic
allocation also makes the system treat queries with differing resource demands

more fairly.

Chapter 3 presented an empirical performance study of distributed join
methods. In this study, a testbed was built using a locally distributed computer
system, the Crystal multicomputer. Eight distributed join methods, which were
combinations of sequential or pipelined join methods, methods using the semi-
join or the full join operator, and the nested loops join algorithm or the sort-
merge join algorithm, were implemented on the testbed. The results obtained
suggest that pipelined query processing methods, based either on the full join
operator or on the semijoin operator, are the best methods for processing distri-
buted joins. Nested loops join methods (using a join column index) performed
better than their sort-merge counterparts in most of the tests. Sort-merge join
methods won only when the relations to be joined were very large, when the
savings due to the merge scan compensated for the sorting costs. The results
also indicated that communications cost is not a dominant factor with respect to

the performance of join algorithms in a local network.

Based on these results and on other related research work, Chapter 4
presented a new approach to query processing, the load-balanced query process-
ing algorithm LBQP. This algorithm generates a query processing plan in three

phases. The first phase is the static planning phase. A logical plan that

188

minimizes total processing cost in the static sense is generated in this phase. In
the sccond phase, the dynamic allocation phase, a dvnamic query unit query
allocation algorithm is applied to the logical plan to select the processing site
(i.e., physical copy) for each relation referenced by the query. Finally, the
refining phase chooses between join and semijoin methods for the distributed

joins in the plan. The distinguishing features of this approach are:

(1) A query in a locally distributed database system is statically optimized in the
same way as in a centralized database system. The storage sites of the rela-
tions referenced by the query are ignored during optimization, and a good

distributed plan is still obtained in the end.

(2) The load unbalance factor is used as a quantitative measure of the "unbal-
ancedness” of a distributed database system. Heuristic methods are used to
allocate a sequence of query units to sites in such a way that the unbalance
factor of the system is minimized. Communications costs are also minim-
ized to the extent possible without adversely affecting the unbalance factor.
It was shown that the proposed algorithms usually generate the optimal allo-

cation plan, and that they do so within a reasonable amount of time.

(3) Both the semijoin operator and the full join operator are used in processing
plans. This provides more opportunities to reduce the communications cost

while selecting the right processing site for load balancing purposes.

The dynamic query unit allocation phase is the essence of the load-balanced
query processing approach. In order 1o demonstrate the effectiveness of the pro-
posed dynamic query unit allocation algorithm, Chapter 5 presented a general-
ized simulation model for queries whose processing plans consist of linear

sequences of query units to be processed in a pipelined fashion. Simulation

189

results indicate that the dvnamic query unit allocation algorithm can both
increase the svstem throughput and decrease the response time for queries in
systems with either fully or parually replicated data. The decrease in response
times, measured using the mean waiting time improvement factor, is greater
when the system is not heavily loaded. (In all of the tests, the mean waiting
time improvement factor was at least 50% when the average CPU utilization was
less than 0.50.) In systems with partially replicated data or non-uniform query
arrival rates, the improvements were even more significant. While the
throughput increase was small in cases with fully replicated data and uniform
workloads, the maximum throughput improvement factor was actually in the
range of 10-30% (along with a significant mean waiting time improvement fac-

tor) in the cases with partial replication or non-uniform query arrival rates.

6.2. FUTURE RESEARCH DIRECTIONS

There are several issues related to load balancing that were not addressed in
this thesis. First, this study has focused solely on the issue of how site load
information can be used and the extent to which performance can be improved
through its use. The problem of how to maintain this information was not
addressed. Second, a problem with sender-initiated load balancing schemes is
that a number of query units could be assigned to a lightly loaded (or idle) site
simultaneously by more than one site, thus overloading the site [Livn&3]
[Eage85]. This problem was also not addressed here. An important topic for
future research is the design of an information policy and a control policy that
will not overburden either the sites or the communications subnetwork, and yet
will provide the sites with information that is sufficiently current so that the per-

formance improvements provided in this study are not lost. Approperiate low-

190

level network support, as offered by ATON design [Livn85a], could be helpful
here.

Another obvious area for future work would be to implement the load-
balanced query processing approach, including the static planning, dynamic
allocation and refining phases, in a real (or testbed) locally distributed database
system. Evaluating the complete approach using simulation methods would
require a very detailed simulation model, including a more general model of
query structures and processing sequences. Even if such a model were
developed, important implementation details (such as the overheads due to the

dynamic allocation algorithm or to maintaining Joad information) would probably

be quite difficult to model convincingly.

There are several possible research directions related to the
proposed load balanced query processing approach. First, a detailed com-
parison between the plans generated by algorithm LBQP and by existing query
processing algorithms such as that of System R* would be helpful to further
validate the heuristics used in the static planing phase (i.e., to investigate the
static optimality of the plans generated by LBQP). Second, logical plans in
LBQP must be linear sequences of query units, and communications are res-
tricted to being between adjacent query units. It would be worthwhile extending
the dynamic query unit algorithms for use on more general query plans. These
algorithms could then also be applied to solving more general task allocation
problems for distributed computing systems. Third, algorithm LBQP was
developed for use in local area networks, so it would be interesting to see how it
might be extended for use in systems with geographically distributed data (and

what performance improvements might be obtained by doing so).

191]

Another possible generalization of the dynamic query allocation algorithms
would be to extend them so that another resource, buffer space, is considered.
Buffer space is a valuable resource that will certainly affect the performance of a
query processing plan. At a heavily loaded site, not only do long queues form at
the CPU and I/0 service centers, causing performance to degrade, but also less
buffer space is likely to be available for each query. Therefore, it may be
important to consider the buffer space requirements of query processing plans

and the buffer space available at candidate processing sites.

Since this thesis has considered only read-only queries, another topic for
future work would be to investigate how updates will affect the load-balanced
query processing algorithm. It is unlikely that updates will necessitate changes
in the proposed algorithm, at least for systems which read-lock one copy and
write-lock all copies of replicated data items (like System R* [Ceri84]). In such
systems, the overhead for locking and updating replicated data is the same for all
copies of an item. What will change when updates are considered, however, is
the degree to which increasing the number of copies can help to improve perfor-
mance for a given workioad — the gains due to load balancing and to local
accessibility of data have to be traded off against increased update costs for the
data. Finally, it would be interesting to see how the proposed load-balanced
query processing algorithm could be put to use in environments where high
availability is an issue. Since LBQP dynamically maps a compiled query to its
execution sites at runtime, considering a set of candidate sites for each query
unit, LBQP would simply need to be informed of the available sites in order to

execute a query in a partially operational system.

[Alon84]

[Aper83]

[Bern79]

[Bern8la]

[Bern81b]

[Bitt83]

[Blac82]

REFERENCES

R. Alonso, Query optimization in distributed database manage-
ment systems through load balancing, talk presented at the

University of Wisconsin-Madison, April 1984,

P. M. G. Apers, A. R. Hevner and S. B. Yao, Optimization algo-
rithms for distributed queries, IEEE Transactions on Software

Engineering, SE-9,1, (January 1983), 57-68.

P. A. Bernstein and N. Goodman, Full reducers for relational
queries using multi-attribute semi- joins, Proceedings of the 1979

NBS Symposium on Computer Networks, December 1979.

P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve and J. B.
Rothnie, Query processing in a system for distributed databases
(SDD-1), ACM Transactions Database Systems, 6, 4 (December
1981), 602-625.

P. A. Bernstein and D. W. Chiu, Using semijoins to solve rela-

tional queries, Journal of the ACM, 28, 1 (January 1981), 25-40.

D. Biton, D. J. DeWitt and C. Turbyfill, Benchmarking database
systems: a systematic approach, Proceedings of the 9th Interna-

tional Conference on Very Large Data Bases, October 1983,

P. A. Black and W. S. Luk, A new heuristic approach for gen-

erating semi-join programs for distributed query processing, IEEE

COMPASAC, 1982.

192

[Blas76]

[Blas77]

[Bokh79]

[Brya81]

[Care85]

[Ceri84]

[Chang2]

[Cher83]

[Chiu80]

193

M. W. Blasgen and K. P. Eswaran, On the evaluation of queries
in a rclational data base system, IBM Research Rep. RJI1745,
April 1976.

M. W. Blasgen and K. P. Eswaran, Storage and access in rela-

tional data bases, IBM Systems Journal, 1977, 363-377.

S. H. Bokhari, Dual processor scheduling with dynamic reassign-
ment, IEEE Transactions on Software Engineering, SE-5, 4 (July
1979), 341-349.

R. Bryant and R. Finkel, A stable distributed scheduling algo-
rithm, Proceedings of the 2nd International Conference on Distri-

buted Computing Systems, April 1981 , 314-323.

M. J. Carey, M. Livny and H. Lu, Dynamic task allocation in a
distributed database system, Proceedings of the 5th International

Conference on Distributed Computing Systems, May 1985.

S. Ceri and G. Pelagatti, Distributed Databases: Principles and

Systems, McGraw-Hill Publishing Co., 1984.

J. M. Chang, Query processing in a fragmented database environ-

ment, Technical Report, Bell Laboratories, 1982.

D. R. Cheriton and W. Zwaenepoel, The distributed V kernel and
its performance for diskless workstations, Proceedings of the 10th

Symposium on Operating Systems Principles, 1983, 129-140.

D. M. Chiu and Y. C. Ho, A methodology for interpreting tree
queries into optimal semi-join expressions, Proceedings of the

ACM-SIGMOD International Conference on Management of Data,

[Choug5]

[Chow79]

[Chu80]

[DBES2]

[Dani82]

[DeWi84a]

[DeWig4b)

194

May 1980.

H. T. Chou, D. J. DeWitt, R. H. Katz and A. C. Klug, Design
and implementation of the Wisconsin storage system, Software

Practice and Experience 15, 10 (October 1985).

Y. C. Chow and W. H. Kohler, Models for dynamic load balanc-
ing in a heterogeneous multiple processor system, IEEE Transac-

tions on Computers, May 1979, 354-361.

W. W. Chu, L. J. Holloway, M. T. Lan and K. Efe, Task alloca-
tion in distributed data processing, IEEE Transactions en Comput-

ers, C-29, 11 (November 1980), 57-69.

Special Issue on Query Optimization, Database Engineering, S, 3

(September 1982).

D. Daniels, P. Selinger, L. M. Haas, B. G. Lindsay, C. Mohan,
A. Walker and P. Wilms, An introduction to distributed query
compilation in R¥, Proceedings of the Second International

Conference on Distributed Databases ,Berlin, September 1982.

D. J. DeWitd, R. H. Katz, L. D. Shapiro, M. Stonebraker and D.
Wood, Implementation techniques for main memory database sys-
tems, Proceedings of the ACM-SIGMOD International Conference

on Management of Data, June 1984,

D. J. DeWitt, R. Finkel and M. Solomon, The Crystal multicom-
puter: design and implementation experience, Computer Science
Technical Report #553, Computer Sciences Department, Univer-

sity of Wisconsin-Madison, September 1984.

[Eagc84]

[Eage85]

[ElIDe 78]

[Epst78]

[Epst80a]

[Epst80b]

[Ferr85]

[Good79]

195

D. L. Eager, E. D. Lazowska and J. Zahorjan, Dynamic load
sharing in homogeneous distributed systems, Technical Report

84-10-1, University of Washington, October 1984.

D. L. Eager, E. D. Lazowska and J. Zahorjan, A comparison of
receiver-initiated and sender-initiated dynamic load sharing,

Technical Report 85-04-1, University of Washington , April 1985.

O. 1. El-Dessouki, Program partitioning and load balancing in
network computers, Ph.D. Dissertation, Iflinois Institute of Tech-

nology, December 1978.

R. Epstein, M. Stonebraker and E. Wong, Distributed query pro-
cessing in a relational database system, Proceedings of the ACM-
SIGMOD International Conference on Management of Data, June
1978, 169-180.

R. Epstein and M. Stonebraker, Analysis of distributed database
processing strategies, Proceedings of the 6th International Confer-

ence on Very Large Data Bases, October 1980, 82-101.

R. Epstein, Query processing in a distributed data base environ-
ment, Ph.D. Dissertation, University of California, Berkeley,

1980.

D. Ferrari, A study of load indices for load balancing schemes,

University of California, Berkeley, 1985.

N. Goodman, P. A. Bernstein, E. Wong, C. L. Reeve and J. J.

B. Rothine, Query processing in SDD-1, Technical Report,
CCA-79-06, October 1979.

[Goud&1]

[Gyly76]

[Hamm80]

[Hevn79]

[Hevn80]

[Kamb82]

[Kers82]

196

M. G. Gouda and U. Dayal, Optimal semijoin schedules for query
processing in local distributed database sysiems, Proceedings of
the ACM-SIGMOD International Conference on Management of
Data, April 1981, 164-175.

V. B. Gylys and J. A. Edqards, Optimal partitioning of workload
for distributed systems, Digest of Papers, COMPCON Fall 1976,
September 1976, 353-357.

M. M. Hammer and D. W. Shipman, Reliability mechanism for
SDD-1: A system for distributed databases, ACM Transactions on

Database Systems, 5, 4 (December 1980), 431-466.

A. R. Hevner and S. B. Yao, Query processing in distributed
database systems, IEEE Transactions on Software Engineering,

SE-5, 3 (May 1979), 177-187.

A. R. Hevner, The optimization of query processing in distributed
database systems, Ph.D. Dissertation, Department of Computer

Science, Purdue University, Lafavette, Indiana., 1980.

Y. Kambayashi, M. Yoshikawa and S. Yajima, Query processing
for distributed databases using generalized semi-joins, Proceedings
of the ACM- SIGMOD International Conference on Management of
Data, June 1982, 151-160.

L. Kerschberg, P. D. Ting and S. B. Yao, Query optimization in
star computer networks, ACM Transactions on Database Systems,

7, 4 (December 1982), 678-711.

[Liu82]

[Livn82]

[Livn83]

[Livn85]

[Livn85a]

[Lohm85]

[Ma82]

[McCo81]

197

A. C. Liu and S. K. Chang, Site sclecuon in distributed query
processing, Proceedings of the 3rd International Conference on
Distributed Computing Systems, Miami/Ft. Lauderdale, Florida,

October 1982, 7-12.

M. Livny and M. Melman, Load balancing in homogeneous
broadcast distributed systems, Proceedings of ACM Computer Net-

work Performance Symposium, April 1982, 47-55.

M. Livny, The study of load balancing algorithms for decentral-
ized distributed processing systems, Ph.D. Dissertation,

Weizmann Institute of Science, August 1983.

M. Livny, DENET — a Modula-2 based simulation language,

University of Wisconsin-Madison, (in preparation).

M. Livny and U. Manber, Distributed computation via active mes-
sages, IEEE Transactions on Computers, C-34, 12, (December

1985), 1185-1190.

G. M. Lohman, C. Mohan, L. M. Haas, D. Daniels, B. G.
Lindsay, P. G. Selinger and P. F. Wilms, Query processing in
R* , in Query Processing in Database Systems, W. Kim, et. al.

(editors), Springer-Verlag Berlin/Heidelberg, 1985, 31-47.

P. R. Ma, E. Y. S. Lee and M. Tsuchiya, A task allocation model
for distributed computing systems, IEEE Transactions on Comput-

ers, C-31, 1, January 1982.

R. McCord, Sizing and data distribution for a distributed database

machine, Proceedings of the ACM-SIGMOD International Confer-

[Melm84]

[Ni81)

[Ni8la]

[Ni82]

[Page83]

[Pete83]

[Powe83]

[Pric79]

[Pric84]

198

ence on Management of Data, May 108].

M. Melman and M. Livny, The DISS methodology of distributed

system simulation, Sirmulation, April, 1984.

L. M. N1 and K. Hwang, Optimal load balancing strategies for a
multiple processor system, IEEE Conference on Parallel Process-

ing, 1981, 352-357.

L. M. Ni and K. Abani, Nonpreemptive load balancing in a class
of local area networks, Proceedings of the 1981 Computer Net-

working Symposium, December 1981, 113-118.

L. M. Ni, A distributed load balancing algorithm for point-to-
point local computer networks, Proceedings of COMPCON, Fall
1982, 116-123.

T. W. J. Page, Distributed query processing in local network
databases, Masters Thesis, University of California, Los Angeles,

1983.

J. L. Peterson and A. Silberschatz, Operating System Concepts,

Addison-Wesley Publishing Company, 1983.

M. Powell and B. Miller, Process migration in DEMOS/MP,
Proceedings of the 9th ACM Symposium on Operating Systems
Principles, 1983, 110-119.

C. C. Price, A nonlinear multiprocessor scheduling problem,

Ph.D. Dissertation, Texas A & M University, May 1979,

C. C. Price and S. Krishnaprasad, Software allocation models for

distributed computing systems, Proceedings of the 4th

[Rao79)

[Reis80]

[Sacc82]

[Seli79]

[Seli80]

[Smit75]

[Ston77a)

199

International Conference on Distributed Computing Systems, San

Francisco, California, May 1984, 40-48.

G. S. Rao, H. S. Stone and T. 1. Hu, Assignment of tasks in a
distributed processor systems with limited memory, IEEE Transac-

tions on Computers, C-28, 4, April 1979.

M. Reiser, S. S. Lavenberg, Mean-value analysis of closed mul-
tichain queuing networks, Journal of the ACM, 27, 2 (June
1982), 313-322.

G. M. Sacco and S. B. Yao, Query optimization in distributed
database systems , in Advances in Computers, vol. 21 , New

York, Academic Press, 1982.

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie
and T. G. Price, Access path selection in a relational database
management system, Proceedings of the ACM-SIGMOD Interna-

tional Conference on Management of Data, June 1979, 23-34.

P. G. Selinger and M. Adiba, Access path selection in distributed
Database management systems, Proceedings of the First Interna-

tional Conference on Distributed Data Bases, Aberdeen, 1980.

J. M. Smith and P. Y. T. Chang, Optimizing the performance of
a relational algebra database interface, Communications the ACM,

18, 10 (October 1975), 568-579.

H. S. Stone, Multiprocessor scheduling with the aid of network
flow algorithms, IEEE Transactions on Sofiware Engineering,

SE-3, 1 (January 1977), 85-93.

[Ston77b]

[Ston 78]

[Wang85]

[Wong77]

[Wong80]

[Yao79]

[YuCh83]

200

H. S. Stone, Program assignment in three-processor systems and
tricutset partitioning of graphs, Technical Report No. ECE-CS-
77-7, Department of Electrical Enginecring, University of Mas-

sachusetts at Amherst, 1977,

H. S. Stone, Critical load factors in two processor distributed sys-
tems, IEEE Transactions on Software Engineering, SE-4, 3 (May
1978), 254-258.

Y. T. Wang and R. J. T. Morris, Load sharing in distributed sys-
tems, IEEE Transactions on Computers, C-34, 3 (March 1985),
204-217.

E. Wong, Retrieving dispersed data from SDD-1: a system for dis-
tributed database, Proceedings of the 2nd Berkeley Workshop on

Distributed Data Management and Computer Networks, May

1977, 217-235.

E. Wong, Dynamic rematerialization: Processing distributed
queries using redundant data, Proceedings of the 5th Berkeley
Workshop on Distributed Data Management and Computer Net-
works, 1980.

S. B. Yao, Optimization of query evaluation algorithms, ACM

Transactions on Database Systems, 4, 2 (June 1979), 133-155.

C. T. Yu and C. C. Chang, On the design of a query processing
strategy in a distributed database environment, Proceedings of the
ACM-SIGMOD International Conference on Management of Data,
1983, 30-39.

[Yug&4]

[Yu85]

201

C. T. Yu and C. C. Chang, Distributed query processing, Com-
puting Surveys, 16, 4 (December 1984), 399-433,

C. T. Yu, C. C. Chang, M. Templeton, D. Brill and E. Lund,
Query processing in a fragmented relational distributed system:
Mermaid, IEEE Transactions on Software Engineering, SE-11, 8
(August 1985).

APPENDIX A

FORMAL MODELS FOR DYNAMIC QUERY UNIT ALLOCATION

With the definition of the unbalance factor of a system, the load-balanced
dynamic query allocation problem defined in Section 4.3.3 can be formulated as
a formal model. This appendix first presents a BNQ-based dynamic query unit
allocation model. 1t is then extended to BNQRD-based dynamic query unit

allocation.

A.1. Model for BNQ-Based Dynamic Query Unit Allocation

Let m be the number of query units of the query to be allocated, and let n
be the number of sites in a locally distributed database system. The initial load
at site s; is N; (the number of query units) for 1 = j = n. Lel variable X;; be
1 when query unit g; is assigned to site s;, and otherwise be 0, where
l=i=m, | = j= n. According to the definition of the BNQ-based load
unbalanced factor (See Section 4.3.1), the UBF of the system can be expressed
as:

((Nj + iglxij)“ﬁ)2

n

™M

UBF = 41=1

where N is the average number of processes at each site after the query is
allocated, which is:
n
Nj + m
2

N= 1=
n

Since:

202

203

i%1

_ Jél((NJ — N2+ 2+(Nj = N»- 3 Xij + (5 Xij)?)

B jél(Nj - NP+ 2‘jzl((Nj = N3 Xij) * jél(ingij)‘?

= j‘S:ZI(NJ _ N)Q + 2j§:‘1(NJ 3 Xij) - zﬁjglzglxij + jél(iglxij)z
] jél(NJ - NP 2jé1(NJ,Z1X”) 2N-m + Jél(lg1xij)2

and the first and the third terms are constants, the objective of minimizing the
UBF is then to minimize:

n m n m
2 < (N; X::) + X)2
1;1(J 240 jgl(i;l ij) (A.D

The total communications cost assuming that each pair of query units g;

and g; 41 is executed at different sites will be
!

C;. The pairs of query units

M3

0
g; and g;.+1 which are allocated at the same site cause no communications cost,
and therefore the total communications cost of an allocation plan can be

expressed as:

m
3G Xij X (i+1)) (A.2)

g G- 'élz

0

The constraints of the query unit allocation problem are:

(1) A query unit is only allocated to one site. That is:

204

(2) A query unit can only be allocated to the sites that are in its feasible

assignment set. That is:

0, 1 for i, j where s; is in the

feasible assignment set of g;

Xij = 1 (A.4)

0 otherwise (Il=i=ml=j=n)

Thus, the BNQ~based allocation problem is to find the solutions for X;; which

minimize (A.1) and (A.2) subject to the constraints (A.3) and (A.4).

A.2. Model for BNQRD-Based Allocation

In BNQRD-based query unit allocation, each query unit is classified as
being either 1/O-bound or CPU-bound. BNQRD-based load balancing takes
place among the same type of query units. Let X;; be 1 if g; is an 1/0-bound
query and it is allocated to site s;, and otherwise be 0. Let ¥;j be 1 if g; is a
CPU-bound query and it is allocated to site s;, and otherwise be 0. The
BNQRD-based unbalance factor has two components, one related to 1/0-bound
query units and the other related to CPU-bound query units. The objective of
minimizing the unbalance factor can be decomposed into three objectives of
minimizing these two components. For each component, the method used in
deriving the objective function for BNQ-based allocation (i.e., A.1) described in
the last section can be used. The objective function of minimizing the BNQRD-
based unbalance factor can thus be expressed as:

2.§ (‘NI()_,'.g
Jj=1 i

n m
X::) + X..2
2 1]) j;l(izl lj)

4 oy noomy 0 -
* 2JZI(NC”“H§*1Y‘J) * jZI(iZ}YU) (A.3)

where Ny, and Nepy, are the number of 1/0-bound query units and the

number of CPU-bound query units at site s; before the query is allocated,

respectively.

Since any two adjacent query unit, g; and g;4+1 (whether 1/0O-bound or
CPU-bound) will eliminate some communications cost, the total communications

cost can be expressed as:

‘O(Ci “(Xij + Yij) o X+t Ya+eng) (A.6)

M =
M3

m

\ (‘ —
iZ0 1T 2
The constraints in this case are:

(1) Each query unit can only be assigned to one site. That is

1, if gjis VO-bound

§ Xij = forlsi<m (A.7)
J=1 0 otherwise
and
" 1, if giis CPU—bounc
S Y= for1 = i< mA.8)
=1 0 otherwise

(2) Each query unit can only be allocated to the sites that are in its feasible

assignment set:

0.1 [lori, jwhereg;is I/O-bound and
X, = | ’ sj is in the feasible assignment set of g; (A.9)
0 otherwise (l=i=m,1=j=n)

0, 1
Yij = 1
0

206

for i, j where g; is CPU~—bound and

sj is in the feasible assignment set of g (A.10)

otherwise (l=i=m,1=j=n)

The BNQ-based dynamic query unit allocation problem is to find the solutions

for X;; and Y;; which minimize (A.5) and (A.6) subject to the constraints (A.7)

and (A.8).

It should be pointed out that the discussion in this appendix is only to

illustrate that the dynamic query unit allocation problems can indeed be

formulated as integer programming problems. Issues such as using the

minimum number of variables to reduce the problem size are not considered

here.

APPENDIX B

SIMULATION RESULTS OF CHAPTER 2

In the simulations described in Chapter 2, the main metric measured was

the mean waiting time of queries. This appendix presents these results with

their confidence intervals obtained at the 95% confidence level.

Mean Waiting Time versus think_time
. . Allocation Algorithm
think _time ;
LOCAL BNQ BNQRD LERT
4.00 1.6653 1.6698 1.4843 1.5148
+0.0382 | £0.0422 | =0.0410 | +=0.0404
6.00 0.9591 0.7872 0.6755 0.6662
’ +0.0295 | =£0.0277 | £0.0222 | =£0.0271
2 00 0.6000 0.4092 0.3776 0.3668
’ +0.0185 | £0.0122 | =0.0129 | =0.0101
10.00 0.4356 0.2675 0.2413 0.2379
’ +0.0124 | =£0.0083 | =0.0072 | =0.0067
12.00 0.3475 0.1855 0.1697 0.1630
+0.0077 | =0.0039 | +0.0044 | +=0.0036
14.00 0.2811 0.1356 0.1208 0.1246
+0.0060 | =0.0033 | *£0.0028 | +0.0028
16.00 0.2313 0.1060 0.0990 0.0954
+0.0052 | £0.0024 | =0.0025 | =0.0024
18.00 0.1996 0.0840 0.0776 0.0753
+0.0047 | =0.0021 | £0.0018 | =0.0022

Table B.1: Chapter 2: Mean Waiting Time vs. think_time

207

Mean Waiting Time versus think_time

Allocation Algorithm

LOCAL BNQ | BNORD | LERT
5 0.0601 0.0152 | 0.0148 | 0.0156
: +0.0018 | =0.0005 | £0.0004 | =0.0004
0 0.1507 | 0.0603 | 0.0572 | 0.0580

+0.0038 | £0.0018 | +0.0015 | =0.0018
s 0.2707 | 0.1410 | 0.1299 | 0.1294
? || £0.0061 | =0.0037 | £0.0031 | =0.0030
20 0.4356 | 0.2675 | 0.2413 | 0.2379

+0.0124 | =0.0083 | £0.0072 | =0.0067
o 0.6606 | 0.4406 | 0.3976 | 0.3952
° | £0.0149 | £0.0114 | +£0.0093 | =0.0106
20 0.9612 0.7187 0.6596 | 0.6232
' +0.0259 | =0.0240 | +£0.0201 | =0.0180
5 1.3783 1.2106 1.0301 1.0244
27| +0.0365 | =0.0431 | £0.0357 | £0.0349
40 1.9577 1.8848 1.7033 1.5494

+0.0450 | =0.0634 | £0.0561 | =0.0388
45 2.7475 | 2.9407 | 2.576l 2.6114
> | 20.0647 | £0.0749 | =0.0836 | +0.0709

Table B.2: Chapter 2: Mean Waiting Time vs. mp!

208

Mean Waiting Time versus think _time

Allocation Algorithm

nume_sites
LOCAL BNQ BNQRD LERT
) 0.4350 0.3472 0.3244 0.3313
+0.0099 | £0.0086 | =£0.0074 | *=0.0085
4 0.4345 0.2876 0.2597 0.2595
+0.0101 +0.0069 | £0.0068 | *=0.0066
6 0.4356 0.2675 0.2413 0.2379
+0.0124 +0.0083 | =£0.0072 | =0.0067
g 0.4418 0.2522 0.2306 0.2269
+(0.0095 +0.0066 | £0.0055 | =0.0054
10 0.4478 0.2506 0.2193 0.2144
+0.0091 +0.0059 | £0.0051 | =0.0047
12 » 0.4418 0.2479 0.2199 0.2154
*0.0084 +0.0048 | =0.0047 | +0.0043
14 0.4378 0.2435 0.2131 0.2135
*+0.0084 *=0.0046 | +0.0041 +0.0040

Table B.3: Chapter 2: Mean Waiting Time vs. num_sites

209

Mean Waiting Time versus think_time

class;,_prob

Allocation Algorithm

LOCAL BNQ BNQRD LERT
0.2 0.8596 0.5470 0.5196 0.5307
) +0.0211 | £0.0156 | =0.0145 | =0.0176
0.3 0.6652 0.4229 0.3859 0.3843
a +0.0159 | =0.0136 | £0.0108 | =0.0113
0.4 0.5443 0.3259 0.2977 0.3007
) +0.0129 | £0.0089 | =0.0069 | =0.0080
0.5 0.4356 0.2675 0.2413 0.2379
+0.0124 | +£0.0083 | =0.0072 | £0.0067
0.6 0.3697 0.2210 0.1961 0.1913
+0.0086 | £0.0055 | =0.0045 | *0.0045
0.7 ﬂ 0.3315 0.1796 0.1665 0.1606
) +0.0023 | =£0.0046 | =£0.0045 | £0.0034

Table B.4: Chapter 2: Mean Waiting Time vs. class;,_prob

210

Mean Waiting Time
Estimation Error Mean
(%) Waiting Time
1 - .0058
20 - 6,006
50 6,005
0 6,005
v | S
0 | o
5 6,007

Table B.5: Chapter 2: Mean Waiting Time vs. estimation error.

211

APPENDIX C

SIMULATION RESULTS OF CHAPTER 5

In the simulations described in Chapter 5, the main metric measured was
the mean response time of queries. This appendix presents these results with

their confidence intervals obtained at the 95% confidence level.

Fully Replicated Case (Expt. 1, Test 1)
. . Mean Response Time

think_time | s3397C | LBQP | RANDOME
40 6.7386 7.1209 9.4899
) +0.2041 | *+0.2623 +0.4003
80 5.1497 4.9445 7.2437
' +0.2707 +0.3117 +0.4109
12.0 4.4656 3.8217 5.6299
’ +0.2057 | #+0.1695 +0.3068
16.0 4.2842 3.5854 4.7978
: +0.1781 +0.1500 +0.1903
220 3.8597 3.1107 42321
’ +0.1573 +0.0912 +0.,2195
28.0 3.6976 3.0932 3.9427
) +0.1521 +0.1293 +0.1651

Table C.1: Chapter 5, Experiment 1, Test 1.

212

Partially Replicated Case (Expt. 1, Test 2)

Mean Response Time

think _time |~ e3 1 LBOP | RANDOMR
7 0 1T.3396 | 11.1704 10,7460
: +0.3737 | +0.4076 +0.4378
- 90673 | 7.7476 8.2205
: +0.3571 | +0.3822 +0.489)
140 7.5206 | 4.6288 5.7520
: +0.4437 | +0.2400 +0.3769
5.0 66118 | 3.0213 5.0247
: +0.4194 | +0.1719 +0.2036
40 57023 | 3.5203 45756
: +0.2322 | +0.1498 +0.216]
30 49018 | 3.3131 42037
: +0.3616 | +0.1155 +0.1831

Table C.2: Chapter 5, Experiment 1, Test 2.

213

Partially Replicated Case 2 (Expt, 1, Test 3)

Mean Response Time

think —time | “STATIC | _LBOP | RANDOMR
p 23.0405 | 21.2330 31.5755
£0.7207 | +0.6368 £ 0.3444

s 226615 | 16,7008 178391
+0.6605 | +0.8677 +0.7444

5 212390 | 13.2754 14 8280
£0.8454 | +0.8220 +0.7981

" 196102 | 9.9189 11.3907
+0.8879 | +0.5737 +0.0502

- 17,7289 | 7 3422 9.0395
+12021 | +0.5032 +0.5603

) 151060 | 5.7157 73711
£0.8855 | +0.3573 +0.4813

- 13.4276 | 49459 6.1401
+0.8519 | +0.243] +0.3962

Table C.3: Chapter 5, Experiment 1, Test 3.

214

Partiallv Replicated Case 3 (Expt. 1, Test 4)

think _time

Mean Response Time

STATIC LBOP | RANDOMp

4 8.8340 7.6707 8.1832
+0.3557 | *+0.2270 +0.3432

6 8.2374 6.1862 7.0149
+0.5978 | +0.3122 +0.3050

8 7.2378 5.2651 6.2027
*+0.4657 | +0.2587 +0.3836

12 5.8048 4.2391 5.3105
+0.3487 | *+0.1639 +0.2159

18 4.8491 3.6541 4.4598
+0.2071 | +0.1416 +0.1871

99 4.3868 3.4449 4.2118
+0.2015 | *+0.1263 +0.2166

24 4.0508 3.3506 3.9057
+0.2052 | *0.1471 +0.2675

28 3.9102 3.1799 3.7816
+0.1312 +0.1111

+0.1708

Table C.4: Chapter 5, Experiment 1, Test 4.

215

Fully Replicated Case (Expt. 2, Test 1)

Mean Response Time

think_time | Ag7C LBOP | RANDOMpE
p 33408 | 34835 4.9231
+0.1615 | +0.2047 +0.3264

; 29487 | 28015 3.0547
+01621 | +0.1815 +0.2875

: 26017 | 2.2342 3.3880
+0.1557 | +0.1374 +0.2389

0 24144 | 2.0897 3.0390
+0.1349 | +0.0916 +0.1800

5 23549 | 2.0137 28435
+0.1300 | +0.0929 +0.2118

3 22491 | 18117 23356
+0.0820 | +0.0898 +0.0828

Table C.5: Chapter 5, Experiment 2, Test 1.

Partially Replicated Case 1 (Expt. 2, Test 2)

Mean Response Time

think _time | —sA77C LBOP | RANDOME
5 6.8016 | 4.0528 6.2053
+0.3744 | +0.3235 +0.3643

; 47375 | 2.7576 3.8398
+0.3256 | +0.1487 +0.2568

0 35379 | 21538 29706
+0.3221 | +0.1028 +0.1517

2 31184 | 2.0657 25800
+0.2240 | +0.1162 +0.1613

3 25179 | 1.9165 22542
+0.1586 | +0.0792 +0.1323

Table C.6: Chapter 5, Experiment 2, Test 2.

216

