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Abstract

Multivariate B-splines are defined as volume densities of convex polyhedra. Two spe-

cial cases, simplex splines and box splines, give rise to natural generalizations of univariate- -

spline functions. While simplex splines yield smooth piecewise polynomial spaces on fairly
general triangular meshes, box splines correspond to regular triangulations and share many
of the computationally attractive features of tensor products. In this paper, the basic prop-
erties of these new classes of spline functions are discussed as well as their application to

surface approximation.
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MULTIVARIATE SPLINES

Klaus Hollig!

In this paper the construction of multivariate splines on triangular meshes via multivariate
B-splines is described. B-splines in several variables can be defined geometrically, as volume
densities of convex polyhedra. From this general definition smoothness properties and recur-
rence relations are derived. The B-splines corresponding to simplices and parallelepipeds give
rise to natural generalizations of univariate splines. For both cases it is shown how linear
combinations of B-splines have to be selected to yield a smooth spline space which admits
a local representation of polynomials. This yields the standard approximation properties for

piecewise polynomials familiar from univariate theory.

For simplex splines, the underlying mesh can be chosen almost arbitrarily while maximal
smoothness is preserved. While this is a definite advantage over tensor products, new ideas
are still needed to overcome computational difficulties resulting from the fairly complicated
structure of the mesh. Box splines are defined on regular (triangular) meshes. Therefore, many
of the advantages of tensor products and Bezier representations are maintained. In particular,
efficient algorithms based on subdivision techniques have been developed and this has led to

application box spline methods in computer aided design.

1980 Mathematics Subject Classification 41A15
1 Supported by International Business Machines Corporation and National Science Foundation
Grant No. DMS-8351187

Sponsored by the United States Army under contract DAAG29-80-C-0041
1






Multivariate B-Splines

There are several equivalent ways of defining the univariate B-spline B(-|tg,...,tn). Per-

haps the least common approach would be to use a variant of the Hermite-Genocchi formula

/#B(xitg,...,tn)qﬁ(a:) dz = n! / d)(z Av)t,) dA(1)...dX(n) (1)

a(n) =0

or the geometric interpretation of the B-spline due to Curry and Schoenberg,
B(zlto, ... tn) = vol,_1 (T N ({z} x R 1)) /vol.(T). (2)

Here, o(n) := {(M1),...,A(n)) : AM(¥) > 0, D" _,A(v) = 1} is the n-simplex with vertices
eo = (0,...,0), e; = (1,0,...,0), ..., e, = (0,...,0,1) and T is an n-simplex for which the
first component of each vertex coincides with one of the knots ¢,,. Both of the above identities

admit a natural generalization to several variables.

Definition 1 [BH82]. For n > m denote by P: R™ — R™ the canonical projection and
let @ C R™ be a convex polyhedron with affine dimension m + k. The multivariate B-spline

B is the linear functional defined by
<B,g>= [ 6oP 4 Ca(R™) (3)
Q

where the integral is taken with respect to m + k dimensional measure.

If vol,,(PQ) > 0, B can be identified with the bounded function
B(z) == voli (@ N P~ 'z), (4)

i.e. B(z) is the k dimensional volume of the cross section of @ which is projected onto z (cf.

Figure 1).

The equivalence of (3) and (4) follows from Fubini’s Theorem since, if vol,,(PQ) > 0, the

right hand side of (3) can be written as

: d du) = vol S P2
[ (] ewa) [IRCICRIRET

Strictly speaking, the pointwise definition (3) is valid only for almost every z (in the sense
of Lebesgue measure). In the univariate case this difficulty is less apparent since a consistent
definition of B at discontinuities is possible, e.g. all B-splines are assumed to be continuous
from the right. In several variables there does not seem to exist a simple convention which
is compatible with the recurrence relations of Theorem 1 below. However, if B is continuous,

which is the case of practical interest. the problem does not arise.
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< Figure 1 >

The geometric definition (4) is essentially due to de Boor [B76] who considered the special
case when @ is a simplex. The usefulness of the analytical definition (3) for analyzing simplicial
B-splines was discovered by Micchelli [M80] which finally led to the general definition given in
|[BH82].

It is obvious that B is nonnegative (as a functional on Co(R™)) with support equal to
PQ. If vol,, (PQ) > 0, it follows from Theorem 1 below that B is a polynomial of degree < k
on any subset of R™ which is not intersected by the projection of any (m — 1) dimensional
face of Q. Theorem 1 also implies that B is (r — 1) times continuously differentiable where r
is the smallest integer for which an (m + k — 1 — r) dimensional face of T is projected by P

into an (m — 1) dimensional set.

Denote by D, the derivative in the direction &, i.e. (Ded)(z) := > &(v)d,¢(x) where
d, is the derivative with respect to the v-th variable. Moreover, denote by Q; the (m + k — 1)
dimensional faces making up the boundary of @, by 7, the corresponding outward normals

and by B; the B-splines corresponding to the polyhedra @, (cf. Figure 2).



Theorem 1 {BH82]. Assume that vol,(Q) > 0, i.e. that k = n - m.

(i) For any z € R™,
Dp.B = - Z(z - 1;) Bi.

(ii) For all points z = Pz where B and B; are continuous.
kB(z) = > ((b: - 2) - m:)Bi(x)
i
where b; is any point in the hyperplane containing ;.
The assumption that the polyhedron @ is nondegenerate is not essential. If Kk < n — m,

the affine hull of @ can be identified with R™** and the Theorem applies.

< Figure 2 >

A repeated application of the Theorem yields that, for £ € R™, (D¢)"B is a linear
combination of B-splines corresponding to (m + k — r) dimensional faces Q]. For r > k the
supports PQT of of these B-splines (interpreted as linear functionals in the sense of definition
(3)) are contained in hyperplanes. Therefore, B is a polynomial of degree < k on any region

k+1
%

which is not intersected by any of the sets PQ (since all (k + 1)-th order derivatives of B

vanish on such a region).

If vol,, (PQT) > 0, the B-spline corresponding to @I can be identified with a bounded
function. Therefore, if vol,(PQT) > 0 for all z, the derivatives of order 7 of B are bounded

which implies that B is (r — 1) times continuously differentiable.

Proof of Theorem 1. The proof of (i) is immediate:

< DP2B3¢ >= = < BvDPz(p >= “/‘. (DP2¢)(Py)dy
Q
= [((Dase PHdn = - Y [ (-0 )olPu)ay
Q ;Y@
:~—Z(Z-'f]z') < B, ¢ > .
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This uses the fact that, by definition, the derivative DB is the linear functional given by
& — — < B,D¢¢ > and that, by the chain rule,

D.(¢o P) = (Dp.¢)o P

Define (D¢)(z) := (D,¢)(z). The recurrence relation (ii) is a consequence of the identity
DB =kB - (b; n:)B. (5)

With z = Pz it follows from (i) and (5) that

— (D - Dp.)B)(x)

= kB(z) - Z(b n:) Bi( +ZZ n:)B

'l
if B and B, are continuous at .

It remains to prove (5). By definition of D and the chain rule,

(D¢)(Py) = (Dpy¢)(Py) = (Dy(d o P))(y) = (D(é o P))(y)- (6)

Denote by x, the v-th coordinate function, i.e. x,(z) = z(v). Then, integrating by parts and
using definition (3),

-<DB,¢>:—<ixu8 B,¢ >=< B, Za (xv¢) >

vl

—}:/ J(xu9)) o P = m/¢oP+Z/ (xv0,6) o P

:m<B,¢>+/(Dq§)oP
Q

and similarly,

i/@au(xu(qsof’))=n.<B,d>>+/QD(¢op),

By (6), the last integral in the first identity equals the last integral in the second. Therefore,
< DB,¢ >=(n—m) < B,¢ » - Z / 3, (xu(¢o P)).
p=1V @

This proves (5) since, with 7(y) denoting the boundary normal of @ at y,

> [ atnteor) = [ ) wiotruay

oQ

and, for y € @Q;, n(y) = 7, and 7, - y is constant.
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Multivariate splines are, by definition. linear combinations of B-splines. However, it is not
obvious, how the B-splines should be selected to yield good approximation properties of the

resulting spline space. De Boor |[B76] suggested the following geometric construction.

Definition 2. Let Q, C RF be a convex polyhedron and assume that the collection of
convex polyhedra {Q : @ € A} forms a partition of R™ » Q. and that vol,, (PQ) > 0 for all
Q € A. The spline functions corresponding to the partition A are defined by

S(A):={)_ agBg:ag € R} (7)
QEA

where Bo denotes the B-spline corresponding to the polyhedron Q.

Qa« Q o O O

Y

|
i
i
Y
O (S o

< Figure 3 >

It is clear from (4) that the B-splines Bg, @ € A, form a partition of unity, i.e. that
Y Bg(z) = volx(Q.) (8)
Q

for all z where the B-splines are continuous. This implies that the spline spaces S(A) are

dense in continuous functions as the partition A is refined.

Proposition 1. Set h := max{diameter(Q) : @ € A} and choose zg € PQ. Then, for

any continous function f,
1S =D flza)(Be/volk(@))lec < w(h)
Q
where || ||oo denotes the Lo, norm on R” and w is the modulus of continuity of f.
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Proof. By (8) and since the B-splines are nonnegative, we have for almost every z

f(2) = 3 1(z0)Ba(2) = | 3 _If(2) - [ (2a)|(Ba(z)/vel(Q.))
< max |f(z) - f(z0),

Bw(:l:)#@

and for all @ for which Bg(z) is nonzero |z — zg| < h.

In this generality, little more can be said about the approximation properties of the
spline spaces S(A). However, a particularly rich theory results if @ is either a simplex or a
parallelepiped. This is due to the fact that in both cases the faces which make up the boundary
of @ are of the same type as @ itself.

Simplex Splines

Historically, the case when @ is a simplex has been considered first. Simplicial B-splines
were defined by de Boor in [B76] generalizing the geometric interpretation of univariate B-
splines due to Curry and Schoenberg. Micchelli [M80] discovered the recurrence relations.
Then, the author [H82] and independently Dahmen and Micchelli [DM82] described an appro-
priate choice for the space S(A) which yields the approximation properties familiar from the
univariate theory. Subsequently many interesting results have been obtained and the reader

is referred to the survey article [DM84,].

Denote by U a collection of vectors {u : v € U} which need not be distinct, by #U the

number of vectors in U counting multiplicities and by [U] the convex hull of the vectors in U.

Definition 1S. Let |U] be a simplex in R™ (#U = n + 1) and denote by V := {v =
Pu :u € U} the projections of the vertices of [U]. The normalized simplicial B-spline My is
defined by

My := By /vollU]. (9)

To justify this definition, one has to show that the right hand side of (9) does only depend
on the projections of the vertices v € V. This follows from Definition (3) by a change of

variables. Let G be an affine mapping of the simplex ¢(n) onto [U]. Then,
vollU] ™! ¢(Py)dy = / ¢>(Z Mr)PGe,) dA(1) ... X(n), (10)
] o(n)

v==0

where Geg,...,Ge, are the vertices of |U].



Theorem 1S 'M80:. Let V be a collection of n + 1 points in R™ which span a proper

convex set.

()&= ,cv Alv)v with 3 i, A(v) = 0, then

DeMy =n ) Av)My,,
|4

where V\v is obtained from V by decreasing the multiplicity of v by one (i.e. by deleting v if

this vector occurs only once in V).

(i) fz =Y, oy A(v)v with 3_ oy A(v) = 1 and My, v € V, are continuous at z, then

n

My (z) = —

Z )\('U)MV\.U.

To derive this Theorem from Theorem 1 let |U] be a simplex in R™ with {v:= Pu:u &
U} = V. Set B := vol[U] My and B, := vol[U\u] My\, and denote the normal of the face
[U\u] by n,. Then, for any b, € [U\ul,

0, otherwise.

(by — ') - 1w = { n vol|[U]/vol[U\u], if w= u'; (1)

u

< Figure 4 >

To prove (i), fix v’ € U and set

2= Y Au= Y AMv)(u-d)

vell uFu'
using that the sum of the weights A(v) is zero. By (11), for u # ',

' ol U
—Z My = ——)\(’U)(U - u ) Ny =N A("");;%K%’

8



and similarly,

vol[U]
vollU\u']’

—z Ny = —n Z Awv)vol[U|/vollU\u' = n Ae")
uzu'

and (i) follows from the normalization of the simplicial B-splines.

To prove (ii) we define z as before and note that
by —z= Y Mv)(by - u).
uel
Again, by (11),

vol|U]

(bor = 2) - = Mu) (bur = ') mar = MW

In view of the remarks following Theorem 1, the simplicial B-spline is a piecewise poly-
nomial of degree < k = n — m which is (r — 1) times continously differentiable where r is the
smallest integer for which (m + k — r) points from the “knot set” V' ly in a hyperplane. Thus,

if the knots are in “general” position, My is (k — 1) times continuously differentiable.

Figure 5 below gives a few examples of knot sets and corresponding meshes for simplicial
B-splines in two variables. While in some cases the structure of the mesh (i.e. the hyperplanes
where derivatives of My are discontinuous) is fairly complicated, this is no disadvantage in

itself since the explicit form of My on each of the subregions is not needed in computations.

C0 - quadratic

C1- quadratic

C1- cubic

< Figure 5 >



Example 1. Let |[W] be a proper simplex in R with vertices {w : w € W} and denote

by p.(z) the barycentric coordinates of = with respect to W, i.e.

If the knot set V consists of the vertices of [W] with multiplicities a(w), w € W, then, up to
a normalizing factor, the simplicial B-spline coincides on |W] with a multivariate (Bernstein)

polynomial, i.e.
n!
My (z) = — H gw(z)a(w)/a(w)!. (12)
m! 1
weW
This is most easily seen by checking that the right side of (12) satisfies the recurrence relation

(ii) of Theorem 18.

In principle, simplex splines can be defined by (7) with @, := (k) and Bg := vol|[U|My.
However, without further restrictions, the simplicial B-splines My, |[U] € A, need not be
linearly independent. Nevertheless, their linear span does contain all polynomials of degree

< k which is the minimal requirement for good local approximation properties.

Theorem 2S [DM82, H82]. For £ € R™ define the mapping
(z,y) = Ge(z,y) = (z,(1+ €-2)y) : R™ x o(k) = R™ x RE.
If all B-splines My are continous at z, then
(1+&-2)f = > cv(€)My(a) (13)
[Ulea
where
ey (&) == (k!/n!) sign(U) det||GU]||

with det||G¢U|| denoting the determinant of the (n + 1) x (n -+ 1) matrix with columns

{Gfu} , e U,

and szgn(U) € {—1,+1} chosen so that ¢y (0) is positive.

Identity (13) is the multivariate analogue of Marsden’s identity for univariate splines. As
in the univariate case, this identity is the basis for the construction of dual linear functionals
and local approximation schemes [DM82, H82|. In two variables the identity is due to Goodman

and Lee [GL81] who also obtained a more explicit formula for the B-spline coefficients.
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Proof. For fixed z both sides of (13) are polynomials in £ and we may therefore assume
that ||€]] is small. Small perturbations of the vertices do not change the combinatorial structure
of a triangulation. Moreover, G maps the hyperplanes which form the boundary of R™ x ¢

onto hyperplanes. Therefore, for fixed r and small &, the simplices
GeU) = [{Geuru e U}
form a partition of (1 := G¢(R™ x o(k)) in a neighborhood of z. This implies that (cf. Figure
6)
(z,(1+ €-2)a(k)) = (z,R*) 0 | ] [GeU].

zeP[U]
Computing the volume on both sides of this identity it follows from (4) and (9) that
1 -
H(1+§-$)k = Y vol(|GeU) N P 'a)
z€P|U]
Zvo]n[GéU]M\/(z)
which yields the Theorem.

[U] —_—

S

< Figure 6 >

A drawback of definition (7) is that the spline space Sps(A) is defined via a triangulation
in n dimensions while the B-splines depend only on the knots in R™. In [H82] a method
for constructing (simplicial) spline spaces from a triangulation of R™ was described. This
construction is a generalization of the process of “pulling apart” knots, i.e. of obtaining

smooth splines as a perturbation of piecewise polynomials without smoothness constraints.

Denote by
[Wi} = ]'w,v(o), Ceey wz(m)], 1= 1,
the simplices of a triangulation A,, of R™ with vertices W := {...,w_1,wo,wy,...}. More-

over, assume that the vertices are consistently ordered, i.e. if

i(v) = (V). o(p) =1"(u'), withv < pandi,i' €1,
11



then

with
a(v) € {i(0),...,4(m)} for some ¢ € I

14
Bv) € {0,.... k) (14)

and

a(v) <alv+1), B(v) < B(v+1)

where one of the inequalities is strict.

As is indicated in Figure 7 below, the index sets ~ corresponding to a simplex [W;] can

be identified with the ordered sequences of length n +1 = m + k + 1 from the set

{wi(o),...,wi(m)} X {0,...,]9}.

o T up—— O-mmm- o) o
|
i
|
1 ° ©
|
[}
:
0 ' o o
1(0) i(1) i(m)
< Figure 7 >
Definition 2S [H82]. Let F' be a mapping from {...,-1,0,1....} x {0,...,k} to R™

and denote by F(v) the collection of vectors { F(«(0),5(0)),..., F(a(n),B(n))}. Assume that
the union of the sets [F(7)] covers R™, that the range of F has no limit point and that each

z € R™ in contained in at most finitely many of the sets |F()]. Then, the spline space S(F,T)
is defined as the linear span of the B-splines Mp(,), y€ T.

12



Note. that the mapping F' can be chosen almost arbitrarily, i.e. in analogy with the
univariate situation there is almost no restriction on the placement of the “knots™ F(~). How-
ever, there is no canonical choice for F which yields maximal smoothness or a well conditioned
B-spline basis. This must still be viewed as one of the major drawbacks of simplicial spline
spaces. However, on the other hand, for “almost all” choices of F, the space S(F,T') consists
of piecewise polynomials of smoothness k — 1 and degree k which is, in general fairly difficult

to achieve with other constructions.

Example 2. Let W be a partition of R, i.e. the “simplices” [W;] are the intervals
|wi, w;+1]. Define F by
Fle, ) := to(ki1)-p

where {...,t_1,%0,t1,...} is an increasing sequence of knots. Since m = 1 the index sets y are

of the simple form

v = ((6,0), (5, 1), .., (5,9), (i + 1,5),- .., (6 + 1, k)

where 0 < 5 < k and 1 is any integer. Thus F(7) consists of the k + 2 consecutive knots

Li(k+1)—js bilk+1)—j+15 -+ o> L(i+1)(k+1)—j

and therefore S(F,T') is the standard space of univariate splines. However, Definition 2S is

more general since the sequence of knots does not have to be monotone increasing.

Example 3. For the particular choice

F, (Oz,ﬂ) = Wea, 7= (aaﬂ) erl, (15)

S(F,,T') consists of all piecewise polynomials of degree < k with respect to the triangulation
Ap,. This can be seen as follows. For F, defined by (15), the B-splines which correspond
to different index sets ¢ via (14) have disjoint support. Therefore, restricted to a simplex

[Wi(0), - -+ » Wi(m)] of Apy, the spline space S(F,T) reduces to the linear span of Mp () where

F(’Y) = (wa(o),...,wa(n)) with Oz(I/) € {i(O),. .. ,i(m)},

i.e. the linear span of B-splines with multiple knots. From Figure 7 it is clear that all
combinations of multiplicities occur and by Example 1 the corresponding B-splines coincide
with the Bernstein polynomials.

2

A small perturbation of the mapping F. can be interpreted as “pulling apart” multiple
knots, i.e. as deforming the space of (nonsmooth) piecewise polynomials into a space of smooth
splines. However, Definition 2S allows arbitrary perturbations as long as the combinatorial

relationship between the knot sets is preserved.

13



Theorem 3 [H82]. With

U= {(F(a(0),8(0)).e5(0)):-- -+ (Fla(n),B(n)).epn))}
and [U] € A replaced by v € I, Theorem 28 remains valid for the spline space S(F,T).

The proof of this result is based on the fact that the Fourier transform of the identity
(13) is an entire function of the knots. Therefore, if the identity holds for small perturbations

of the knots, it remains valid globally.

Under additional assumptions on F', the linear independence of the B-splines Mp(.), v
€ I' can be established. Moreover, the standard error estimates are valid for simplex splines.
The practical implementation of algorithms for computing with simplex splines still seems to
be the major unsolved problem. However, one might think that, similarly as for box splines,

new algorithms based on subdivision techniques can be developed.

Box Splines

The other natural choice for @ in Definitions (3,4) is a parallelepiped which leads to
the definition of box splines. These splines have been introduced by de Boor and DeVore in
[BD83] and their basic properties were studied in [BH82/3]. Box splines can be viewed as
generalizations of univariate cardinal splines. A variety of results on interpolation operators
[BHRS85], combinatorial problems [DM85] and smooth piecewise polynomials on regular meshes
[BH83; 2| have been obtained. Moreover, efficient algorithms for manipulating box spline

surfaces have been developed [B683, CLR84, DM84,, P83/84] which is the basis for for applying

box spline techniques to computer aided design.

Definition 1B [BD82, BH82/3]. Denote by |U| a parallelepiped in R™ which is spanned
by the vectors {u:u € U}, i.e.

U= {> " AMu)u:0< A(u) < 1}

vel

and #U = n. The corresponding normalized B-spline is defined as
Ny := Bjy/vol|U] (16)

where V := {v:= Pu:u e U}.
As for the simplicial B-spline, the right hand side of (16) does only depend on the projec-
tions of the vectors in U and

< Ny, ¢ >=vollU|™’ ¢(Py)dy = / ¢(Z Mv)v)dA. (17)

o, LR TR
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By the remarks following Theorem 1. Ny is a piecewise polynomial of degree k =n —m
which is (r — 1) times continuously differentiable where 7 is the smallest integer for which
(m + k — r — 1) of the vectors in V do not span R™. In contrast to the simplicial B-spline
the mesh for Ny is quite regular. It consists of translates of hyperplanes which are spanned
by (m — 1) linearly independent vectors in V. Figure 8 below shows a few examples of meshes

for bivariate box splines.

(0 -linear

C! - quadratic

C? - quartic

< Figure 8 >

Example 4. (i) If m =1 and v =1 for all v € V, Ny is the forward cardinal B-spline
B(-]0,...,k + 1). To see this let |U| be a parallelepiped with v = Pu = 1 for all v € U and
consider the standard triangulation of |U| into n! simplices [U¥] with equal volume. For all

simplices [U*] the projections of the vertices are the integers 0,1,...,k -+ 1. Therefore,

Biui=Y_ By = (D _vollU"]) Myo1,...k+1y = vollU[ B({0,... .k + 1),

14

(i) If V consists of the unit vectors e,..., e, with multiplicities a(1),..., a(m) respectively,

then Ny coincides with the tensor product B-spline with equally spaced knots,

This could be verified directly from (17), but is more easily seen from formula (19) below for

the Fourier transform of Ny .
15



(iii) For m = 2 and V = {(1,0),(1,1),(0,1)}. Ny is the standard linear finite element. Adding
the vector (1,—1) to V, one obtains the quadratic element which has been independently
derived by Zwart [273], Powell and Sabin |PS77|. Further examples can be found in the work
of Frederickson |[F71].

Theorem 1B [BH82/3]. Let V be a collection of n vectors which span R™.

(i) If € =),y Alv)v, then

DSNV = Z ’\(v)(NV\v - NV\U(' - U))
v

(ii) If z = Y,y A(v)v and the B-splines Ny\,, v € V, are continuous at z, then

Ny (2) = —— ST () Ny (2) + (1 = A()) Mooz — v).

n-—m

The recurrence relation (i) has a particularly simple form if ¢ = v for some v € V. Then,

D,Ny = VvNV\v,

where (V,f)(z) := f(z)—f(z—v) is the backward difference operator. With Dw := [[,,cw Du
and Vi =[], cw Dw, this yields

Dw Ny = VWNV\W.

In particular,

Dy Ny = Vvé,

where 6 denotes point evaluation at 0, i.e. < 6,¢ >:= ¢(0). Therefore,

Nv Dv ¢ = (Av¢)(0), (18)

RH:

which gives an integral representation for the forward difference operator Ay in terms of the
B-spline Ny.

16



The derivation of the recurrence relations is almost identical with the proof of Theorem
1S. Let |U| be a parallelepiped in R™ for which V = {v:= Pu:u € U} and apply Theorem 1
with Q :=]U| and B := vol|U! Ny. The boundary faces of |U| consist of the parallelepipeds
|U\u| and their translates u+]U\u| with normals n, and —n, respectively. The corresponding

B-splines are Bjin\,; = vollU\u| Ny, and By = vollU\u| Ny, (- — v) (cf. Figure 9).

1U[
u+]Uul

< Figure 9 >

To prove (i), set z = Y A(v)u. Then, since the vectors u, u # ', span the boundary

uwell
face |U\u'[,
—Z My = — Z/\(U)U'W r= = A e = A(v')—XM—
“ - * ¢ vol|U\w'|

and the assertion follows from the normalization of the B-spline.

To prove (ii), define z as before and choose the points b, in the boundary faces |U\u[ and

u+|U\u[ as 0 and u respectively. Then,

(0—2)-nu= )\(v)%’
and
(u —-Z)- b’nu) ::(1 ~‘A(U))u- t’nu) ::(1 _ A(”));gﬁ%g{%I.

Setting ¢(z) = exp (—1y - z) in (17), one sees that the Fourier transform of Ny is

- 1 —exp(—1y-v)
o . 19
Ny (y) H o (19)
veEV
From this it follows that
Ny v = Ny = Ny (20)

where f = g(z) := [ f(z — y)g(y)dy denotes the convolution of f and g. In particular, if V'

consists out of a single vector £,

1
Nvye(z) = / Ny (z — X€) dA. (20")
0
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This identity provides an alternative definition for Ny via repeated “averaging” in direction

of the vectors v € V.

Definition 2B [BD83, BH82/3]. Assume that the vectors in V' have integer coordinates
and that V contains the unit vectors €1,...,€e,. The space of box splines corresponding to V

is defined as

S(V):={) a;Ny(--j):a; €R} (21)

]’GZ"'

where Z denotes the integers.

Definition 2B is a special case of Definition 1 with @, := [0,1]® ™ and the partition A
consisting of translates of the parallelepiped which is spanned by the vectors (e1,0),. .., (em,0)
and (Vm41,€m+1)y---, (Un,€n) where V.= {ey,...,€m,Vmi1,--.,0n}. The assumption that V
contains the unit vectors is no loss of generality since this can always be achieved by a change
of variables. However, for the proof of Theorem 2B below it is essential that all vectors v are
chosen from a common lattice which, again by a change of variables, can assumed to be the

lattice of vectors with integer coefficients.

Theorem 2B [BH82/3]. Denote by < W > the linear span of the vectors {w : w € W}
and define

A={WcCV:<V\W># R™.

Then,

TNS(V) = ﬂ ker Dw, (22)
WeA

where 7 denotes the space of polynomials.

Example 5. (i) As was pointed out in Example 4 (ii) for the tensor product B-spline, V
consists of the unit vectors. Assume that each unit vector occurs with multiplicity o, then A
contains the sets

W, ={e,...,e,}, v=1,...,m,
\——V——/
a times
and any other set in A contains one of these sets as subset. Therefore, by (22), a polynomial

pis in S(V) if and only if it is annihilated by
DW./ = 83, v = 1,. e, M.

(ii) If the vectors in V are in “general” position, then all sets in W € A satisfies #W > k. Thus,
by (22), all polynomials of degree < k are in S(V). This is, e.g., the case for the quadratic
B-spline of Example 4 (iii).

18



Proof of Theorem 2B. Let
pi= Z a;Ny(-—j)ennS(V).
jeZm

By the remark following Theorem 1B,

Dup =) aj(Nyyo(- = 5) = Nyiu(- =5 =) = Y (a; = ;=) Nyyo (- = ),

where it was used that v has integer coefficients. Repeating this argument,

Dwp=> (Vwa);Nv\w(-— 7). (23)

For W € A, the B-splines Ny \v (- — 7) have support on a set of measure zero which implies

that the polynomial Dy p vanishes identically, i.e. lies in the kernel of Dy .

For the converse statement we first prove that
L:= ﬂ ker Dw C . (24)
WeA
Fix e R™. If V' ¢ A, then £ can be written as linear combination of the vectors in V\V,
= Z a(w)w.
weVA\V!
Therefore,

(De)"Dvi = (D)™™ ' > a(w) Dy

Iterating this identity, replacing (DE)T'DV,: by a linear combination of (D )T'“IDV,,Uw,, w' €

£
S

VAV" one arrives at

(D) =( > aVYD) " #'Dy)+( > a(V)Dy)) (25)

VieA, #V'<r vicv. viga

#Vicr
with certain coefficients a(V').

This proves (24) since, for 7 > #V, the second sum on the right hand side of (25) is empty

and the derivatives in the first sum vanish on functionsin L.

To complete the proof of the Theorem we show by induction on r that
m. VL C S(V)

where 7, denotes the space of polynomials of degree < r. For the induction step, we prove
that
pem, ML implies g:=p- Zp(j)Nv(- —j)€m,_1 N L.

J
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By (23),
Dw(p )= (Vwn)(5)Nv( - J).

j
If W € A, then Dwp = 0 and by (18) also (Vwp)(j) = (Awp)(s') = 0. which shows that
p—q¢& L.
By (25) and since g € I (i.e. Dyrg =0 for V' € A),

(De)'g= > a(V)(Dvip = (Vvp) () Now: (- = 7))

VIV, viga 37
#V iz=r

Since p is a polynomial of degree < r, Dy/p = Vy.p, and since

22 Nvavi (- = 7) = 1t follows
that (D¢)7q = 0.

From Theorem 2B one can derive error estimates for approximation by box splines. More-
over, the result in useful for studying approximation order for piecewise polynomials on regular

triangulations. For this and further results, the reader is referred to the work by de Boor and

the author |[BH82/3, BH83, »] and Dahmen and Micchelli [DM84,, DM85,].

Surface Approximation

As pointed out in section 3, box splines are natural generalizations of tensor product
splines. The underlying triangular meshes yield more flexibility in the choice of degree and
smoothness while some of the attractive computational features of tensor products are main-
tained. In this section a simple approximation scheme is described and shape preserving

properties of box spline expansions are discussed.

Denote by N& the (bivariate) B-spline corresponding to a grid of meshsize h and, slightly

changing the notation of the previous section, assume that N& is centered at 0, i.e
Nl (z) .= Ny (z/h - &) (26)
where &y = Zvev v/2 is the center of the B-spline Ny defined in (16). Moreover, denote by

N! the piecewise linear B-spline corresponding to the directions V, := {(1,0), (0,1),(1,1)}.

In the following it is always assumed that V contains V,. This excludes tensor product
splines and certain degenerate cases where the translates of the B-splines Ny are not linearly

independent and therefore is no significant loss of generality.
Define the approximation scheme
[ = Sif= ) JURNE(- = gh). (27)

i=2°
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which is a generalization of Schoenberg’s univariate variation diminishing spline approximant.
In particular, if V = V,, then S”f is the piecewise linear interpolant to f with respect to the

triangulation of R? which is generated by the three directions (1,0), (0,1) and (1,1).

Proposition 2. The method (27) is second order accurate. i.e.

f(z) = (S¥1)(2) = O(h?) (28)

for any smooth function f.

Proof. The piecewise linear interpolant Shf is second order accurate. Therefore, arguing
by induction, it is sufficient to show that the estimate (28) remains valid if a vector w is added

to the set of vectors V. From (20') and (26) one sees that

1/2
Nfuu(e) = W (NE« NE)() o= [ Nz — Mhw)d (29)
~1/2
which implies
Stuwl =h'NE<SkS. (30)

Write the left hand side of (28) in the form
(/= B7INg = f)(2) + (7N (F = 53 1)) (a).

The second term is of order h? since convolution by h™IN! does not increase the maximum

norm. The first term equals
1/2
/ LU = 7z Aw))ar
—-1/2

Adding 0 = [!/7,

O(h?).

(Dwf)(z)AhdA to this expression, it follows that this term is also of order

Obviously, S{} is a positive operator, i.e., if f is nonnegative, then so is S&f. Moreover,

S{,‘ preserves monotonicity and convexity which is made more precise below
Proposition 8 [DM85,, G85].
(i) I, for some £ € R2, Dfs’f”f is nonnegative, then so is DgS{}f.
(ii) If S*f is convex, then so is Skf.
The piecewise linear spline S*f is called the “control polygon” of the box spline S{ f. It
interpolates the B-spline coefficients at the points j € Z%. The Proposition states that the

box spline has roughly the same “shape” as its control polygon which is a desirable feature for

design purposes.
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The Proof of Proposition 3 is quite simple: It follows from the identity (30) and the

observation that convolution with a positive kernel preserves monotonicity and convexity.

E.g., for the proof of (ii) assume by induction that S{ f is convex. Then,forz = Y. o(v)z,
with 3~ e(r) = 1 and o(v) > 0,

(Stad)@) = [ (SENY elv)m) - Abw)ix

v

< [(SEN e - Mbw)dr = Y (Shuud) ).

In principle, box splines can be evaluated via the recurrence relation of Theorem 1B (ii).
However, for approximate evaluation as is required, e.g. for rendering techniques, algorithms
based on subdivision techniques are considerably faster. For box splines such algorithms
have been developed independently by Bohm [B583], Cohen, Lyche and Riesenfeld [CLR84],
Dahmen and Micchelli [DM84,] and Prautsch [P83/84]. The idea can be described as follows.

A box spline Ej a® (7)N%(- - jh) can be rewritten as a linear combination of the B-splines

N"}/z(- — Jh/2) corresponding to a refined grid, i.e.

h . h/2 .
Zav JNE (2~ jh) =Y ay/* (5 + Ev) Ny (2 — (5 + Ev)h/2), (31)
7
where &y 1= ) .y v/2. The shift by £y is necessary only if v ¢ Z? since then the mesh for
N‘},L/z is not a refinement of the mesh corresponding to Ni*. The subdivision process can be
repeated and, as has been shown in [D85|, the sequence of control polygons converges to the

h/2

box spline at a quadratic rate. The coefficients a;/ “ in (31) can be computed via the following

Algorithm.
(i) Define
h/z Zav )Ny (ih/2 — jh), 1€ Z°.
(ii) Set V' :=V,.

(iii) if V! =V stop

else choose w € V\V' and define

a2, (54 Ev + w/2) = (ah (7 + &) + ab (G + €v + w))/2 for j € Z2,

(iv) Set V' := V' Uw and go to step (iii).

Example 6. As was first observed by Bohm |B683], the algorithm takes on a particularly

simple form if

V=V.u.. UV,
O
r times
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i.e. if V contains the vectors (1,0), (0,1) and (1.1) with equal multiplicity r. In this case three

applications of step (iii) of the Algorithm can be combined which results in

R/2 . 1
av/'uv (]) =

[
|
— (D

1 1
2 1 a(l,,() ]€Z~
1 0

where the weights in the square matrix are applied centered at the (double) index 7.

Derivation of the Algorithm. For V = V,, the new coefficients are obtained by linear
interpolation since the control polygon interpolates the B-spline coefficients. This explains
step (i) of the algorithm. Now, one has to show that (31) remains valid if a vector w is added
to the set V and the coefficients a}‘;/jw are computed via step (iii). Convolve both sides of (31)
with h~!N. Then, by (29), on the left hand side N¥ is replaced by N{ . For the right

hand side one obtains

1/2
R (NP« NM) (z) = Nz — Ahw)dA
~1/2

= (1/2) 1 NEE (2 = M(h/2)w)d)

- (1/2)(/O - [1...)
= (1/2)(Ny G (2 = hw/4) + Ny, (o + o /4).
Therefore, using that y := = — (§ + &v)(k/2) — (R/2)(w/2) = = — (7 + &vuw)(h/2), the right
hand side of (31) equals

Zav (7+&v) (1/2) (Nph(e — (G + Evow)h/2) + (Ny, (2 = (5 + Eviw)h/2+ hw/2))

-Z (1/2) (al/*(5) + /(5 + w)) Nylb(o — (7 + Evow)h/2)

which establishes the formula for the coefficients.
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