Performance Analysis of Multiprocessor
Cache Consistency Protocols
Using Generalized Timed Petri Nets

by

Mary K. Vernon
Mark A. Holliday
Computer Sciences Technical Report #618

November 1985

Performance Analysis of Multiprocessor Cache Consistency Protocols
Using Generalized Timed Petri Nets *

Mary K. Vernon and Mark A. Holliday

Computer Sciences Department
University of Wisconsin — Madison
Madison, WI 53706

Abstract

We use an exact analytical technique, based on Generalized Timed Petri Nets (GTPNs), to
study the performance of shared bus cache consistency protocols for multiprocessors. We develop
a general framework within which the key characteristics of the Write-Once protocol and four
enhancements that have been combined in various ways in the literature can be identified and
evaluated. We then quantitatively assess the performance gains for each of the four enhancements.
We consider three levels of data sharing in our workload models. One of the enhancements sub-
stantially improves system performance in all cases. Two enhancements are shown to have neglibile
effect over the range of workloads analyzed. The fourth enhancement shows a small improvement
for low levels of sharing, but shows more substantial improvement as sharing is increased, if we
assume a “good access pattern”. The effects of two architectural parameters, the blocksize and the
main memory cycle time are also considered.

This research was partially supported by the National Science Foundation under grants DCR-
8402680 and DCR-8451405, and by grants from IBM and Cray Research, Inc.

' 1986
¥ W Hag 17

Section 1. Introduction

Simulation is the traditional technique for performance evaluation when a detailed charac-
terization of the system is needed. We, however, have recently developed a technique [HOLS85a,
HOL85b] which can be used to obtain exact analytical results far more quickly, if the state space
is not too large. In our technique, we model the system using a version of Petri Nets that we
call Generalized Timed Petri Nets (GTPNs). The GTPN differs from the Generalized Stochastic
Petri Net (GSPN) models [NAT80, MOLS82, AJM84, MOLS8S] in that transition firing durations
are deterministic rather than stochastic. However, the GTPN can be viewed as a stochastic process
because a probability distribution is defined over the possible next states. We find the state space
of the Markov Chain associated with a GTPN model and derive performance measures, automat-
ically. We have shown that deterministic firing durations are useful for modeling memory access
times in multiprocessors [HOL85b]. Geometric holding times can also be represented in the GTPN,
for example to model memory interrequest times. The comparison of cache consistency protocols

in this paper further illustrates the utility of our technique.

MIMD multiprocessors with multiple independent memory modules and a single stage multi-
bus interconnection network form an important class of architectures. To minimize contention for
the shared global memory modules and the buses, the processors are usually assumed to also have
local memories. If the local memories are used as caches, the problem of maintaining consistency
among the caches immediately arises [SMI82]. Two classes of dynamic cache consistency protocols
have developed. The first class allows a general interconnection network but requires that a global
directory be maintained by the shared memory modules. The second class requires that the inter-
connection network be a shared bus, but cache consistency is maintained in a distributed manner
by the caches. We are interested in comparing the performance of protocols in this second class:

the shared bus cache consistency protocols.

Several shared bus cache consistency protocols have recently been proposed [GOO83, MCC84,
PAP84, RUDS84, KAT85|. The Write-Once protocol, designed for the Multibus, was the first proto-
col to appear. Other proposals since then have suggested modifications to the Write-Once protocol

1

which may improve system performance. Several of the proposals contain some analysis of the
expected performance gains for the proposed protocol. However, it is not clear which of the mod-
ifications within a protocol are primarily responsible for the performance improvement. In some
cases, the proposed modification requires a more complex (i.e. more expensive) bus or cache con-
troller. A study is needed to determine how much increase in performance can be expected for each
proposed modification. Archibald and Baer’s simulation study [ARC85] is the most comprehensive
performance comparison of the published protocols to date. In particular, they provide a uniform
description of the protocols and they identify the important differences between the protocols. We
propose in this paper a more precise model of the protocols which improves the relevance of the
performance comparison. Furthermore, instead of modeling the protocols proposed in the literature
exactly, we isolate four key enhancements to Write-Once which have been combined in various ways

in these protocols. We then study the performance gains for each of the four enhancements.

In section 2 we describe our assumptions about the general characteristics of the multiprocessor.
In section 3 we describe a Basic protocol similar to Write-Once, four enhancements to the Basic
protocol, and how these enhancements are combined in protocols proposed in the literature. In
section 4 we describe our GTPN models of the Basic and enhanced protocols. In section 5 we

present our results, and in section 6 we summarize our work.
Section 2. Multiprocessor Characteristics

Figure 2.1 illustrates the multiprocessor configuration. Each processor has one local cache. A
single shared bus connects the caches and the main memory. A processor is directly connected only
with its local cache. Each local cache is directly connected to its own processor and, through the

shared bus, with main memory and all the other caches.

The cycle times of the processors, caches, and the bus are the same and define the basic time
unit. The main memory cycle time is four of these basic time units. Below the term cycle refers to

the basic time unit.

Processor 1 Processor 2] Processor n
| I Crreeneessasoeee |

Cache 1 Cache 2 Cac-he n

Module 1 Module 2 | T Module m

Figure 2.1, The Multiprocessor Configuration

Section 2.1. Operation of the Memory and Bus

The cache memories and main memory are divided into words which are organized into blocks.
A cache entry is a physical location within cache memory that consists of: 1) the cache’s copy of a
memory block, and 2) a state. The number of words in a block is the blocksize. The main memory

is divided into blocksize modules interleaved on the low-order address bits.

A block is transferred to or from main memory by a sequence of transfers of one word per bus
cycle. The words in a block are always transferred in the same order, as opposed to transferring
the needed word first for a memory read operation. On a main memory write, the bus is released
as soon as the word(s) are transferred to memory, although the memory module(s) will be busy for
additional cycles to complete the write operation. Thus, memory contention can occur although

there is only one bus.

An arbitrary number of the caches can simultaneously read the information on the bus.
Section 2.2. Operation of the Cache

The cache is used for both instructions and data. When a processor makes a cache request, it
holds until the request is satisfied. A cache request is either a read (CPU-READ) or write (CPU-
WRITE) for a particular word that is in a block that might or rnight not have a valid copy in the
local cache. If the processor’s cache can service the request locally and immediately, then servicing
takes one cycle.

A cache has two independent parts: a bus monitor and a controller. For every bus transaction,

each cache’s bus monitor determines if the referenced block has a valid copy in the local cache. In

3

the case of such a block match, the cache’s bus monitor signals the cache controller.

In a given cycle a cache controller can simultaneously receive a request from its processor and
a signal from its bus monitor requiring action. To avoid a race condition, the controller can service
only one of the requests at a time. The bus monitor request always has priority. Similarly, loading
a block from the bus cannot be done simultaneously with the cpu read or write operation that

initiated a load request.

There are four types of bus transactions: READ, READ-MOD, WRITE, and INVALIDATE.
A READ (READ-MOD) transaction is started by a cache that has a miss on a read (write) from
its processor. A WRITE transaction is due to a cache writing a word to main memory via the bus.
An INVALIDATE transaction is started by a cache that wants to invalidate all the copies other
caches have of a particular block. For all four types of transactions, the main memory address of

the affected block is on the bus’s address lines.

Each bus transaction type has an associated bus control line. There is one other bus control
line, shared. It can be raised by more than one cache simultaneously. A cache raises the shared line

to announce that it has a valid copy of the block involved in the transaction.

The READ and READ-MOD transactions implicitly involve main memory supplying a block.
However, it is possible for any cache to inhibit main memory and to respond instead. Arbitration
schemes determine which cache will respond if more than one can, and which cache gains control

of the bus to initiate a new transaction.
Section 2.3. States of the Cache Entries

Each cache entry has three bits of state information. The first bit indicates if the entry contains
a valid or invalid copy of a main memory block. The state of a valid copy of a block is defined
by two binary attributes: number of copies, and need to wrile back. Number of copies can be
ONLY or NOT-ONLY. ONLY means that the cache knows that it is the only cache with a valid
copy. NOT-ONLY means that the cache does not know that ONLY holds. Other valid copies

might or might not exist. Need to write back is WBACK or NO-WBACK. WBACK means that

on replacement this cache has to write-back to main mémory its copy of the block. The WBACK
bit is a generalization of the traditional “dirty” bit, which indicates that the contents of the block
have been written since the last time the block was written to main memory. In some of the more
sophisticated protocols, multiple valid coples may exist of a “dirty” block, yet only one of these

copies in state WBACK.
Section 3. The Protocols

We define a Basic protocol which does not use the invalidate or shared control lines. We then
describe four enhancements to the Basic protocol. In Section 3.3, we describe how the various

protocols proposed in the literature are related to the Basic protocol and the four enhancements.

The protocols are specified by defining the actions taken by a cache in response to requests from
the bus or local processor. Actions are defined for the type of request, and the state of the relevant
block copy in the local cache memory. Recall that bus transactions have priority over processor
requests. Thus a processor request is blocked when there is a bus transaction that matches a valid
local block copy. Lost cycles due to cache, bus, or memory contention are not mentioned in the

protocol definition.
Section 3.1. The Basic Protocol

The cache takes the following actions in response to bus transactions:
1) READ or READ-MOD

a) No valid copy: Do nothing. If no cache has a valid copy, then main memory supplies the
block in 3 + blocksize cycles.

b) (ONLY or NOT-ONLY, NO-WBACK): One of these caches is chosen to supply the block
and main memory is inhibited. (Note that no other cache can have a copy in state (ONLY,
WBACK)). On the cycle after the bus request, the supplier puts the block on the bus
for blocksize cycles. The block coples in all these caches go to state (NOT-ONLY, NO-
WBACK) or are invalidated for a READ and READ-MOD, respectively.

c) (ONLY, WBACK): At most one cache can be in this block substate. It inhibits main
memory. On the cycle after the bus request, the supplier puts the block on the bus for
blocksize cycles. It then writes the block to main memory for blocksize cycles. The block
copy goes to state (NOT-ONLY, NO-WBACK) or is invalidated for a READ and READ-
MOD, respectively. Note that (NOT-ONLY, WBACK) is impossible in the Basic protocol.

2) WRITE

a)

Any valid copy: Block copy is invalidated.

The following actions are taken in response to processor requests:

1) CPU-READ

a)
b)

Any valid copy (“Read Hit”): Spend 1 cycle locally supplying the processor.

No valid copy (“Read Miss”): In the current cycle put a READ on the bus with the
desired block address. For the blocksize (+3) next cycles the supplier (another cache or
main memory) supplies the block. When the block has been supplied, then if the supplier
was a cache block in state (ONLY, WBACK), then the supplier will use the bus for the
next blocksize cycles for write-back to main memory. When the supplier is finished with the
bus, if a cache entry in state (ONLY, WBACK) had to be replaced, then write it to main
memory in blocksize cycles. When the requester is finished with the bus, then in the next
cycle it supplies the desired word to its processor. Set block copy state to (NOT-ONLY,
NO-WBACK).

2) CPU-WRITE

a)

b)

No valid copy: Same as l.a. except for three changes: 1) at the start READ-MOD is
raised, 2) the last cycle of servicing the request is an update in the cache instead of a
processor read, and 3) the new block state is (ONLY, WBACK).

(ONLY, NO-WBACK or WBACK) Spend 1 cycle locally updating the word. Set block
copy to state (ONLY, WBACK).

(NOT-ONLY, NO-WBACK) Spend 1 cycle updating the word locally. Then spend 1 cycle
using the bus to write the word to main memory with the WRITE line raised. This will
be referred to as the broadcast write. Set block copy state to (ONLY, NO-WBACK).

Section 3.2. Enhancements

We consider four independent enhancements. The first three reduce the times blocks or words

are written to main memory towards the minimum of only on replacement. The fourth removes the

restriction that when there is one writer of a block that there are no other readers. Each of these

enhancements is presented below as a change to the Basic protocol. Their qualitative effects on

performance are also assessed. In section 3.2.3 we consider the interactions of the enhancements.

Section 3.2.1. Reduced Memory Writes

The three enhancements that reduce memory writes are:

1) A cache raises the shared line when supplying a block to another cache. If the shared line is
not raised (i.e. memory is the supplier), the receiving cache marks the block as ONLY. In this

6

case, the broadcast write (action 2c above) will be needed in fewer cases.

2) The cache supplier on a READ or READ-MOD request does not write its copy to main memory
even if its copy is in state WBACK.

3) Instead of a broadcast write, the cache raises the invalidate line for one cycle.

Enhancement two implies the some cache’s copy must stay in state WBACK so that the updates
are not lost. On a READ-MOD the supplier is going to invalidate its copy so the requester must be
responsible. On a READ the supplier must be responsible since the requester might be a read-only

cache.

Enhancements one and two clearly improve performance since they decrease bus accesses and/or
memory writes. The effect of enhancement three is less clear. Raising the invalidate line has a lower
cost than a main memory write. On the other hand, if the only write to that block is that one
write to that one word, then using the invalidate line implies that block write-back is needed on
replace?nent. Which approach is better depends on the probability that there is only one write to

the block before replacement.
Section 3.2.2. Readers and Writers

The fourth enhancement allows other valid cache copies while one cache is a writer. We refer to
this as multiple readers/one writer. The Basic protocol invalidates other copies on the first write.
The first write occurs on a READ-MOD, or on a CPU-WRITE to a in-cache copy that has only

been read previously. Thus the changes to the Basic protocol are:

4a) On a READ-MOD, the requester broadcasts the updated word, and all valid copies go to
(NOT-ONLY, NO-WBACK).

4b) On all CPU-WRITEs to NOT-ONLY blocks, the cache broadcasts the updated word and writes
1t to main memory. All other caches with valid copies update them. The state of the block in
all caches remains (NOT-ONLY, NO-WBACK).

Enhancement 4, alone, changes the Basic protocol to a straight “write-through” protocol.
Unless enhancement 4 is combined with enhancement 1, which uses the shared line to notify the
writing cache that it has the only copy of a block, the performance of enhancement 4 is in most cases

lower than the Basic protocol [SMI82]. From now on we only consider enhancement 4 as combined

with enhancement 1. The requester on a READ-MOD only broadcasts the updated word if the
shared line is raised (by the supplier). Each cache then continues to broadcast writes if the shared

line is raised on the previous broadcast write. Otherwise, the writer goes to block state (ONLY,

WBACK).

The advantage of allowing multiple valid copies is that when a cache wants to read or write its
copy that copy is always valid. The disadvantage is that all writes to NOT-ONLY blocks have to
Be broadcast. This slows the writing cache because the bus has to be obtained and main memory
has to be free. The caches with the other copies are also slowed because they may have to block

local CPU requests to update their copies.

Whether the advantage or disadvantage dominates depends on the access pattern. A good
access pattern for multiple readers/writers is when the majority of the caches with valid copies
have high frequencies of accessing their copies and those accesses have a fine temporal granularity
of interleaving. A bad access pattern is when one cache frequently writes its copy and the other

caches very infrequently read or write their copies.

An extension to the fourth enhancement is possible. The idea is to dynamically switch between
the multiple readers/one writer approach and the invalidation approach depending on the quality
of the access pattern. The key is to find a simple, but accurate dynamic measure of access pattern
quality. The measure proposed in the literature [RUDB84] is whether or not two subsequent writes
to the given block are by the same cache. If so, the interleaving of writes is considered not fine

enough to merit the multiple readers /one writer approach.
Section 3.2.3. Combinations of Enhancements

The above enhancements are presented, except as noted, as independent changes to the Basic
protocol. When enhancements are combined, the changes to the Basic protocol are somewhat
different. The most noteworthy difference occurs when the third and fourth enhancements are
combined. Instead of the invalidate line being raised, a write is broadcast but not written to main

memory. Consequently, some cache has to take responsibility for write-back on replacement. We

assume the broadcaster takes responsibility by going to state WBACK. The other caches remain

in state NO-WBACK.
Section 3.3. Protocols in the Literature

Our goal is to develop a general framework within which the key traits of the protocols that
have appeared in the literature can be identified and evaluated. Given that framework, we are able
to quantitatively assess the performance of the Basic Protocol and of the various enhancements to
1t. We do not claim that the protocols in the literature exactly conform to the framework above.
We do, however, feel that the correspondence is close enough to be of interest. Our performance
models are described in the next section. Here we relate the model to the specific protocols in the

literature.

The Basic protocol is essentially the Write-Once protocol [GOO83|, except that another cache
will supply the block on a READ or READ-MOD request even if it’s copy is in state NO-WBACK.
The Synapse protocol [FRA84] modifies the Basic protocol by including enhancement 3. The
“ownership-based protocol” [KATS85] builds on the Synapse protocol by adding enhancement 2.
Papamarcos and Patel’s protocol [PAP84] uses enhancements 1 and 3. In addition, their protocol
assumes main memory is updated on the same bus transaction as the cache supply, which should
give similar performance to enhancement 2. The Dragon proposal [MCC84] combines all four
enhancements. Rudolph and Segall’s RWB protocol [RUDB84] uses enhancements 1, 3, and 4,
including the extension to dynamically switch between the invalidation approach and the multiple

readers/one writer approach.
Section 4. The Protocol Models

We have created GTPN models to estimate the performance of the Basic protocol and five
protocols which include combinations of enhancements described in the section 3.2. Enhancement
1 can be implemented easily if the bus contains the additional control line we have called shared
(e.g. if we assume Futurebus rather than Multibus). Thus, we have named the protocol which

includes enhancement 1 only, the Smart Basic protocol. The four additional protocols we have

9

studied are called +(2), +(3), +(4), and +(2,3,4), where the numbers refer to the enhancements
included in addition to Smart Basic. In this section we briefly describe the GTPN models and the
workload parameters. The performance estimates obtained by solving the models are presented in

Section 5.

We assume the reader is familiar with the Petri net notation. The GTPN is a Petri net which
has the following attributes associated with each transition: 1) a deterministic firing duration
which may be marking-dependent, 2) a firing frequency which may be marking-dependent and
which determines the probability that the transition will fire, 3) a special flag used to calculate
next-state probabilities, and 4) a named set of resources which are “in use” when the transition is

firing. For more details on the GTPN and its solution, the reader is referred to [HOL85a).
Section 4.1. The Basic Protocol: Net

The net for the Basic protocol is shown in Figure 4.1. Each token in place P1 represents a
processor that has just completed an instruction cycle. We assume that all processors are stochas-
tically homogeneous (i.e. their memory access behaviors are statistically identical). The tokens in

places P2 and P9 indicate that the bus and memory are available, respectively.

Each processor token acts independently. During each cycle, the processor continues instruction
execution (T1), makes a cache request that can be serviced locally (T3), or makes a cache request
that requires the bus (T2). Requests that are serviced locally may be blocked if the cache is
servicing a bus request from or supplying data to another cache (T6 or T7). CPU requests that
require the bus are either broadcast writes (T9, T13, and T17) or read (i.e. READ or READ-MOD)
requests (T8). Read requests are either supplied by another cache (T11) or by main memory (T16).
If supplied by another cache, the cache supplier will write the block back to main memory if it was
in state WBACK (T18 and T21). After the cache supplier Is through, the requesting cache may
need to write back a replaced block (T22 and T21). Finally, the CPU request is serviced by the

local cache (T5 and T23).

The attributes associated with the transitions in the Basic Protocol model are given in table

10

Tl T2 1
Bus Avail e P3) Remote
Request
T4> T5

T8
Broadcast
Read Request Write Memor
Avail

Cache SupplyTl1l

>p17

4 Memor)
T14 15 SupplyTl1 > bo Memory Busy
R
P
UpdateT18 T19 T20 !
Meg"ndgry .~ Pl4 ' .~ P2
(1) oy () oy
Write : .
MemoryT21" | BackT2 l l'T23 l' Service CPU

Busy ¥ Replaced
P9 P2 P15P17 P1

Figure 4.1. GTPN Model for the Basic Protocol

4.1. The reader is encouraged to check that the durations associated with each transition make
sense for the model description above. For example, transition T8, which represents a LOAD
request on the bus, has a duration of 1 cycle. Transition T10 has a duration of 0 because it is

inhibited by certain net markings which will be discussed below.

The frequency expressions are used with the CntCombs flag to calculate next-state probabilities
in the Markov Chain. The reader is referred to [HOL85a] for more details. For the purposes of the

11

Table 4.1. The Attributes of Basic Protocol Model Transitions

Transition Duration Frequency Cnt Combs | Resources
T1 1.0 1 - ProcReg yes (Spd,PP)
T2 0.0 (PSRWM + PSWHumod) X ProcReq yes 0
T3 0.0 (PSRH + PSWHamod) X ProcReq yes 0
T4 0.0 1.0 no 0
T5 1.0 1 - Freq(T6) - Freq(T7) yes (Spd)
T6 1.0 0.5 X (SRMiss + SWMiss) X T8 yes 0

+ 0.5 % (ShRead + ShWrite) X T13
T7 0.0 1/#processors X (T14|P13|T18) yes 0O
T8 1.0 PSRWM / (PSRWM + PSWHumod) no (bus)
T9 0.0 1 - Freq(T8) no 0
T10 0.0 1 - (T14]P13|T18) no 0
T11 blocksize CSupSR x SRMiss + CSupSW X SWMiss no (bus)
T12 0.0 1 - Freq(T11) no 0
T13 1.0 1.0 no (bus)
T14 0.0 WBCSupSW X SWCSup no 0
T15 0.0 1 - Freq(T14) no 0
T16 3 + blocksize 1.0 no (bus)
T17 1.0 1.0 no 0
T18 blocksize 1.0 no (bus)
T19 0.0 RepP X Priv + RepSW x ShWrite no 0
T20 0.0 1 - Freq(T19) no 0
T21 max(4 - blocksize, 0) 1.0 no 0
T22 blocksize 1.0 no (bus)
T23 1.0 1.0 no (Spd)

present discussion, the frequency expressions define relative probabilities of branches in the net.

The frequency expressions may be marking-dependent. That is, they may contain the names

of places and/or transitions, which evaluate to the marking of the place or transition in a given

state. For example, the frequency of transition T6 evaluates to zero, unless T8 or T13 is firing

(i.e. some other cache has a signal on the bus). Similarly, transition T10 is inhibited if T14 or

T18 is firing or if P13 contains a token (i.e. a cache request is being supplied by another cache).

This should also make sense from the model description above. The probabilities named in the

frequency expressions are derived from basic workload parameters, such as the probability that a

CPU request is a read (R) or write (W) for a private (P) or shared (S) block. The parameters and

the derivation of the frequency expressions are discussed in the next section on the model workload.

12

The resources associated with the net transitions identify performance measures to be calcu-
lated. The long run expected number of usages of each resource is calculated automatically during
analysis of the model. We are interested in three measures: bus utilization (Bus), processing power
(PP), and speedup (Spd). Each of these resources is “in use” when any of the associated tran-
sitions are firing. Bus utilization is straightforward. It is the long run expected fraction of time
that T8, T11, T13, T16, T18, or T22 is firing. Both processing power and our speedup measure
[HOL85b] can be defined as the average fraction of time a processor is productive times the number
of processors (for the homogeneous case). The difference is that processing power only counts the
cycles the processor spends executing (T1) as productive, whereas our speedup includes the one
cycle required for each cache request (T5 and T23). Processing power is most often used in the
performance modeling literature, and is included in our model to show how it is specified. The
speedup measure compares the effective computing power of the multiprocessor with a uniprocessor
that has an infinite cache. We feel that speedup is a better measure of the perceived performance

of memory intensive computations on the multiprocessor.

Two approximations are made in the Basic protocol model. First, the amount of time memory
is held for a block write (T18 and T21, or T22 and T21) is sufficient for the first module to finish the
write operation. The other blocksize-1 modules will still be busy for up to blocksize-1 cycles into the
future. The model is accurate if the next bus access is a load request, but will be slightly inaccurate
if a (one-word) broadcast write occurs to one of the modules that is still busy. Second, the amount
of time memory is held for a broadcast write (T13 and T17) is approximated to be 2 cycles. The
module written to is busy for 4 cycles, but this module may not the the module addressed on the
next memory access. Both approximations are necessary because we are representing blocksize
memory modules with a single token in place P9. We have verified that the model results are not

sensitive to these approximations.
Section 4.2. The Basic Protocol Workload
The performance of the Basic protocol, and the relative improvement in performance for each

of the protocol enhancements, is highly dependent on the amount of data sharing, that occurs

13

dynamically in the workload. For example, if there is no data sharing, then enhancement 1 might
yield some performance improvement over the Basic protocol, but enhancements 2 and 4 will have

no effect. Thus, the workload model and parameter values are important considerations.

In the absence of experimental data for multiprocessor workloads, we have based our model
on the workload model proposed by Dubois and Briggs [DUB82]. They define the workload for an
MIMD machine to be the merge of two memory access streams: one stream for private and shared
read-only blocks, and one stream for shared writeable blocks. We have separated the first 'stream
into two streams, one for private, and one for shared read-only blocks. This allows us to define
more fundamental workload parameters for our more detailed protocol model. Thus, we view the
stream of memory requests in our model to be the merge of three streams, for: 1) private blocks,

2) shared read-only blocks, and 3) shared writeable blocks.

The fundamental parameters for this workload model are shown in Table 4.2. “ProcReq” is
the probability that a processor makes a memory request in a given cycle (see transitions T1-T3
in Table 4.1). We assign interrequest times to be geometrically distributed with mean 2.5. This
is based on the assumption that a large fraction of interrequest times will be in the range of 0-2
cycles, but several instructions which occur occasionally, such as multiply, can be much longer.

Table 4.2. Fundamental Workload Parameters

Parameter

Meaning

Yalue

ProcReq

Processor request

0.286

Priv, ShRead, ShWrite

processor request to a P, SR, SW block

0.99, 0.00, 0.01

0.95, 0.03, 0.02

0.80, 0.15, 0.05

HitP, HitSR, HitSW

hit given P, SR, SW

0.95, 0.95, 0.5

ReadP, ReadSW read given P, SW 0.7, 0.5
AmodPWH, AmodSWH | block copy is already modified given PWH,SWH 0.7, 0.3
CSupSR, CSupSW cache supplier given SR, SW 0.95, 0.5
WBCSupSW cache supplier write back given SW 0.3
RepP, RepSW write back replaced block given P, SW 0.2, 0.5
SmartRepP RepP given Smart Basic 0.3
+2RepSW, +23RepSW RepSW given +(2), +(2,3) 0.6, 0.7
MrwHitSW HitSW given multiple readers/writer 0.95

We consider three levels of data sharing: 1%, 5%, and 20%. The probabilities that a memory

14

request is for private (P), shared read-only (SR), and shared writeable (SW) data are shown for
each of these cases in the table. The 1% sharing case has probabilities such as might occur if
only the operating system shares data. The 20% case has probabilities indicating a tightly-coupled
parallel*computation that frequently accesses shared read-only data, and thus has good potential

for speedup on a multiprocessor. The 5% sharing is an intermediate case.

The parameters for private blocks were chosen according to data reported from extensive
uniprocessor cache simulations by Smith [SMI85a]. This includes the hit ratio (HitP), read ratio
(ReadP), and Smart Basic probability of write back on replacement (SmartRepP). The RepP
parameter for the Basic protocol is somewhat lower because private data is written through to
memory on the first write. The hit ratio for SR blocks is assumed to be the same as for P blocks, as
in the Dubois and Briggs model. Hit ratio and read ratio for SW data were chosen to be pessimistic

estimates which should show maximum performances differences among the different protocols.

The probabilities that another cache will supply blocks on a miss for SR or SW data, are set
equal to the hit ratios. This assumes a high temporal degree of sharing. The remaining workload

parameters for SW data were also chosen to be conservative.

The derivation of probabilities used in the frequency expressions of Table 4.1, from the funda-
mental workload parameters, is given in Table 4.3. For example, a memory request can be served
by the local cache (transition T3) if it is a read hit for a private or shared block (PSRH), or if it
is a write hit for an already modified block (PSWHamod), as derived in Table 4.3. The interested
reader should be able to follow the remaining derivations. Note, in general, “H” stands for hit,
“M” stands for miss, and “umod” stands for unmodified in the tables. “SRMiss” should be read

as “Shared Read given Miss”.
Section 4.3. The Other Protocols

The Smart Basic protocol requires no change in the net, but requires three changes in the
transition frequencies. A write-hit to an unmodified private block no longer needs the bus, since

the cache will always know it has the only copy of a private block. Thus, the PWHumod term

15

Table 4.3. Intermediate Workload Values

Probability Derivation
PWH Priv X (1-ReadP) x HitP
SWH ShWrite X (1-ReadSW) x HitSW
PSRH Priv X ReadP x HitP + ShRead X HitSR + ShWrite X ReadSW X HitSW
PSRWM Priv X (1 - HitP) + ShRead X (1 - HitSR) + ShWrite X (1 - HitSW)
PSWHamod AmodPWH X PWH + AmodSWH X SWH
PSWHumod (1 - AModPWH) X PWH + (1 - AModSWH) X SWH
Denom ShRead X (1 - HitSR) + ShWrite X (1 - HitSW) + Priv X (1 - HitP)
SRMiss (ShRead X (1 - HitSR)) / Denom
SWMiss (ShWrite X (1 - HitSW)) / Denom
SWCSup (ShWrite X (1 - HitSW)) / (ShWrite x (1 - HitSW) + ShRead X (1 - HitSR))

moves from transition T2 to transition T3. This will increase the probability that a private block
has to be written back on replacement (RepP becomes SmartRepP for T19). Furthermore, the
second term in the frequency expression for T6 changes to 0.5 x T13, since all broadcast writes are
to shared blocks. These changes are also made for the remaining protocols. Note that a write-hit to
an unmodified shared block (SWHumod) will also not require the bus if the cache has the only copy
of the shared block. The probability of this is difficult to estimate, so we choose the conservative

approach of assuming the probability is negligible.

Protocol +(2) requires one change in the net, and a further change in the transition frequencies.
The column headed by transition T14 is removed and RepSW increases to +RepSW (T19), since

the cache supplier does not write back.

The +(3) protocol also requires a change in the net. The place P9 is removed as an input and
the column headed by P12 is removed as the output of transition T13, since the invalidation signal
does not require a main memory write. Also, +RepSW is used instead of RepSW, since blocks
are only written back on replacement. Note that we estimate that the effect of enhancement 3 on

RepSW is comparable to the effect of enhancement 2.

Enhancement 4 requires a change in one firing duration, and several changes to the transition
frequencies. A requester must broadcast the updated word if a cache supplies the block for a
READ-MOD request. Thus, the firing duration of T15 becomes 1.0. Since all write hits to shared

16

blocks are broadcast, SWHamod moves from T3 to T2, and SWH replaces SWHumod in transition

T8. Second, HitSW is increased to MrwHitSW, because the shared blocks remain valid.

The +(2,3,4) protocol requires all of the above changes, and uses the ++RepSW parameter

instead of RepSW because both 2 and 3 are incorporated.
Section 5. Protocol Performance

The goal of our experiments is to compare the performance of the five protocols (Basic, Smart
Basic, +(2), +(3), +(4), and +(2,3,4)), given reasonable values for architectural and workload
parameters. Two architectural parameters considered are the blocksize and the main memory cycle
time. Both are four in our initial experiments. The performance measure primarily used is speedup,

as defined in Section 4.1.
Section 5.1. Effect of Enhancements

Figure 5.1. shows the results of our initial experiments. The curves start below one on the
y-axis because we have analyzed the uniprocessor with cache misses (but with frequency 0 for T8,
T7, and T11). The bottom dashed, dotted, and solid curves are for the Basic protocol. The next
set of curves are the speedup for the Smart Basic protocol. The curve for Smart Basic with 20%
sharing is almost hidden by the curve for Basic with 1% sharing. The curves for the +(2) and +(3)
protocols are nearly identical to the Smart Basic protocol. The speedup for +(2) is at most 2.5%
greater than Smart Basic. The speedup for +(3) is at most 0.1% less than Smart Basic. For the
sake of readability, these curves are not shown in the figure. The top three curves are the speedup
for the +(4) protocol. Again, the +(2,3,4) protocol curves are barely, if at all, discernable from the
+(4) protocol, and thus are also not drawn. Note that we obtained the processing power estimate
(not shown) for the +(2,3) protocol, with 5% sharing and 9 processors, which was calculated to be
4.1. This value agrees well with Papamarcos and Patel’s results [PAP84] for a block transfer time

of 4 and similar workload.

Clearly, adding enhancement one substantially improves system performance. Enhancements

two and three have negligible effect when added to Smart Basic. In fact, for the workload param-

17

£lemnaaan

||||||||||||

ey

LT T TR

[

Lt R HERRRE T
: : :

m m m

iy A s jmmememmmenenes peseemsenenos -
: + : :

:

: Q

: .

. 8- At Attt -
H 4] :

m M

: g

B R
[k vy -

:

:

:

.. u
: .
Licnmennmmnnew divcmmmmmnnn——— becacncmcancen devcnmmrmeennn (R T, . S B T P T e e
: : : : : >
[Aececccmansaan R Aemmmccc v R T R -
¥ ¥ 1 ¥ 1]
~ 0 [Ts] < o (o) - =]
IO VY 3O

10

Processors

(dotted), and 20% (dashed) Sharing

5%

¥

Figure 5.1. Comparison of Protocols for 1% (solid)

eters used, the effect of enhancement 3 is very slightly negative. Enhancement 4 shows a small

improvement over Smart Basic for our workload with 1% sharing, but shows more substantial

and 20%.

improvement as sharing is increased to 5%

dotted, and dashed lines indicates that the amount of sharing

3y

The spread between the solid

has a significant effect on the performance of the Basic, Smart Basic, +(2), and +(3) protocols.

This is reasonable because the number of broadcast writes and the average hit rate are proportional

and inversely proportional, respectively, to the amount of sharing in these protocols. In contrast,

18

the amount of sharing has little influence when enhancement 4 is included. This is because the hit

rate for shared data was assumed to be high for enhancement 4.

The effectiveness of enhancement 4 in Figure 5.1 is suspect because our model assumed a good
access pattern for multiple readers/one writer (see section 3.2.2). To model a bad access pattern we
reran +(4) at 20% sharing without increasing the hit rate. The results were very slightly lower than
the +(3) and the Smart Basic results, because there are more broadcast writes. Thus, enhancement
4 ‘helps significantly (especially at large amounts of sharing) when there is a good access pattern
and has negligible effect when there is a bad access pattern. It appears that dynamically switching

between this and the invalidation approach (enhancement 3) offers no advantages.

The curves terminate at ten processors because of limitations on the size of the state space.
Nonetheless, none of these curves will rise much further because of bus saturation. The bus uti-
lizations at ten processors for Basic vary from 89% to 94%. For Smart Basic, +(2), and +(3), they
vary from 96% to 98%. For +(4) and +(2,3,4) they vary from 90% to 94%. Note that we find ap-
proximately equal bus utilizations with ten processors for the Basic and +(2,3) protocols. However,
at 4 processors the bus is only 50% utilized for the +(2,3) protocol, and we find approximately a
10% increase in bus utilization for the Basic protocol. This agrees with the results in [KAT85] for
8 kilobyte cache size. In section 5.3 we show that the assumed hit rates in our initial workload are

primarily responsible for the bus saturation at 9-10 processors.
Section 5.2. Effect of Blocksize

Figure 5.2 shows our experiments which varied the blocksize. The experiments in Figure 5.1
assumed a blocksize of four words. Blocksizes of one and eight are considered here, for the Smart
Basic protocol. The one word blocksize case requires a change in the protocol. In this case, there 1s
no need to load a block on a write miss, since whatever value is loaded is completely overwritten.
However, the other caches still must be notified. Thus, a write miss can be implemented as a
broadcast write. The net does not have to be changed. The write miss probability (PSWM),

however, is moved from transition T8 to transition T9.

19

BB Dov Tut‘/cyde zr
: ‘*”"° 95 % hlt/cyc!e 2i

1 ' """""" H H ?95% Tuf}'cycie 4'
4 v y ¥ Y ¥ A\l T il 0 : ¥ T T t t t
1 2 3 4 5 6 7 8 9 10 12345678910
Processors Processors
Figure 5.2. Varying Block Size Figure 5.3. Effect of Hit Ratio and Main Memory -

Cycle Time
The key effect of changing blocksize on the workload is on the hit rate. Based on Alan Smith’s

results for an 8 kilobyte cache [SMI85b], we reduce HitP and HitSR from 95% to 90% for a blocksize
of one, and increase these values to 97% for a blocksize of eight. HitSW is reduced to 40% for
blocksize one, and increased to 55% for blocksize eight, compared with 50% for blocksize four.
Other parameters, such as AmodPWH, AmodSWH, WBCSupSW, RepP, and RepSW, were also

suitably modified.

Blocksize of one, with the protocol appropriately modified, performs best in these experiments.
However, we have not modeled the substantial disadvantage of a larger number of memory accesses
during task switching for this blocksize. A study which includes task switching in the workload

would be worthwhile.
Section 5.3. Effect of Hit Rate and Memory Speed
Figure 5.1 indicates that at most ten or so processors should be put on a single bus. These

results are likely to be very conservative because we have chosen many of our parameter values very

20

conservatively. Two parameter changes seem especially worthwhile to consider. The first change
increases the hit rate for private and SR blocks from 95% to 99%. The second change assumes a
faster main memory. In particular, we investigate a shared memory cycle time of two instead of
four. Note that main memory accesses still require a minimum of 4-5 cycles, due to acquiring the
bus and memory, transmitting the bus request, and servicing the CPU when the request is satisfied.

The resulting four curves are shown in Figure 5.3 for the Smart Basic protocol at 20% sharing.

Though both changes are significant, the hit rate increase is clearly more important. This is
also demonstrated when bus utilization is considered. At nine processors the bus utilization for the
original model is 96%. The utilization for the model with main memory cycle time of two and 95%
hit rate is 90%. The utilization for the model with main memory cycle time of two and 99% hit
rate is 53%. Thus, the faster memory probably only allows one or two more processors. The higher
hit rate should allow several more processors, perhaps six or eight, to be added. Recall that this
is for the 20% sharing level. Further increases in the number of processors that can be supported

can be expected for the reduced sharing workloads.
Section 6. Conclusion

We have used an exact analytic technique, based on Generalized Timed Petri Nets, to derive
performance estimates for shared bus cache consistency protocols. Using the GTPN model, we
were able to specify constant delays and instantaneous events for detailed bus and memory activity,
which must be represented to evaluate these protocols. The GTPN can be solved for steady-state
performance estimates with these parameters, in contrast to previous stochastic Petri net models.
Performance estimates were obtained automatically using Markov Chain techniques.

We evaluated four enhancements to the Write-Once protocol which have appeared in the liter-
ature. The workload in these studies was based on the model used by Dubois and Briggs [DUB82],
but included separate specification of private and shared read-only data access behavior. We con-
sidered three levels of data sharing in our workloads. Parameter values for private data were based

on uniprocessor cache simulations. The results we obtained for combined enhancements agree well

21

with estimates for particular protocols previously published [KAT85,PAP84|.

One enhancement, which makes use of the shared bus line, always improves system performance.
A second enhancement, allowing multiple readers when one cache is a writer for a data block,
improves performance if there is a medium to high level of data sharing, and a “good access pattern”.
This enhancement does not decrease performance appreciably in other workloads we studied. The
remaining two proposed enhancements showed no significant performance improvement for any of

the workloads.

The GTPN model is concise and precise, and can be used to derive estimates for additional
workload parameters of interest to system designers, or as experimental data for multiprocessors
becomes available. Future research plans also include investigating approximate techniques for

solving GTPN models with larger state spaces.
Acknowledgements

We would like to thank Jim Goodman and Andrew Pleszkun for many useful discussions and
the use of their VAX /750 throughout our experiments, and Jim Archibald and Jean-Loup Baer for

an early copy of their cache coherency protocol simulation results.

References
[AJM84] Ajmone Marsan, M., G. Balbo, and G. Conte, “A Class of Generalized Stochastic Petri
Nets”, ACM Trans. on Computer Systems, Vol. 2, May 1984, pp. 93-122.

[ARC85] Archibald, J., and J.-L. Baer, “An Evaluation of Cache Coherence Solutions in Shared-
Bus Multiprocessors,” Technical Report 85-10-05, Dept. of Comp. Sci., Univ. of Wash-
ington, October 1985,

[DUB82| Dubois, M., and F. A. Briggs, “Effects of Cache Coherency in Multiprocessors”, IEEE
Trans. on Computers, Vol. C-31, November 1982, pp. 1083-1099.

[FRA84] S.J. Frank, “Tightly Coupled Multiprocessor System Speeds Memory Access Times,”
Electronics, Vol. 57, no. 1, January 1984, pp. 164-169.

[GOO83] Goodman, J.R., “Using Cache Memory to Reduce Processor-Memory Traffic,” in Proc.
of 10th Int. Symp. on Computer Architecture, June 1983, pp. 124-131.

[HOL85a] Holliday, M. A., and M. K. Vernon, “A Generalized Timed Petri Net Model for Perfor-
mance Analysis,” Proc. Int’l. Workshop on Timed Petri Nets, Torino, Italy, July 1985.

[HOL85b| Holliday, M. A., and M. K. Vernon, “Exact Performance Estimates for Multiprocessor
Memory and Bus Interference”, Technical Report #594, Comp. Sci. Dept., UW-Madison,
May 1985.

[KAT85] Katz, R., S. Eggers, D.A. Wood, C. Perkins, and R.G. Sheldon, “Implementing a Cache
Consistency Protocol,” Proc. of 12th Int. Symp. on Computer Architecture, June 1985,

22

IMCC84|
[MOL82]
[MOL85]
[NATSO]

[PAPS4

[RUDS84]
(SMI82]
[SMI85a]

[SMI85b)

pp. 276-283.

McCreight, E., “The DRAGON Computer System: An Early Overview,” NATO Ad-
vanced Study Institute on Microarchitecture of VLSI Computers, Urbino, Italy, July 1984.
Molloy, M. K., “Performance Analysis Using Stochastic Petri Nets”, IEEE Trans. on
Computers, Vol. C-31, Sept. 1982, pp. 913-917.

Molloy, M. K., “Discrete-Time Stochastic Petri Nets”, IEEE Trans. on Soft. Engr., Vol.
SE-11, April 1985, pp. 417-423.

Natkin, S., “Reseaux de Petri Stochastiques”, These de Docteur-Ingenieur, CNAM-Paris,
June 1980.
Papamarcos, M., and J. Patel, “A Low Overhead Coherence Solution for Multiprocessors

with Private Cache Memories,” Proc. of 11th Int. Symp. on Computer Architecture, June
1984, pp. 348-354.

Rudolph, L., and Z. Segall, “Dynamic Decentralized Cache Schemes for MIMD Parallel
Processors,” Proc. of 11th Int. Symp. on Computer Architecture, June 1984, pp. 340-347.

Smith, A.J., “Cache Memories,” Computing Surveys, Vol. 14, no. 3, pp. 473-530, Septern-
ber 1982.

Smith, A. J., “Cache Evaluation and the Impact. of Workload Choice”, Proc. of 12th Int.
Symp. on Computer Architecture,, June 1985.

Smith, A. J., “Line (Block) Size Choice for CPU Cache Memories”, Technical Report
CSD 85/239, Computer Science Division, Univ. of Calif. at Berkeley, 1985.

23

