Design of Pipelined Memory Systems
for
Decoupled Architectures

by

Koujuch Liou

Computer Sciences Technical Report #617
October 1985

DESIGN OF PIPELINED MEMORY SYSTEMS
FOR

DECOUPLED ARCHITECTURES

by

Koujuch Liou

Computer Sciences Department
University of Wisconsin-Madison
Madison, Wisconsin 53706

Qctober 1985

ABSTRACT

Design of memory systems for decoupled architectures is the theme of
this dissertation. The decoupled architecture uses hardware queues to
architecturally decouple memory request generation from algorithmic
computation. This results in an implementation that has two separate
instruction streams that communicate via hardware queues. Thus,
performance is improved through parallelism and efficient memory
referencing.

Techniques for increasing memory bandwidth and algorithms for
servicing memory requests are incorporated into the memory system designs
within these two constraints: (1) the operands placed in the hardware queue
must be in the correct order, and (2) the needed operands are the only
operands that can be placed in the hardware queue.

Techniques such as pipelining, interleaving, servicing requests out of
arrival order, and cache memory are investigated. Two strategies for servicing
memory requests are studied: (1) to service requests according to their
priorities, and (2) to minimize the total request service time. For the first
strategy, the priority of each request type is derived from the characteristics of
memory reference and possible bottleneck during decoupled computations.
The second strategy results in a request scheduling policy, Free-Module-
Request-First, that is proven to be able to minimize the total request service

time.

A sequence control scheme must be used with the Free-Module-Request-
First scheduling policy in order to deliver the memory outputs to the
hardware queue in the correct order. This sequence control scheme is also
used to track cache hits and misses, so that a data cache can be implemented
in the memory system without difficulty.

The designed data cache can not only support flexible fetch and
replacement cache algorithms, it can also detect memory access hazards and
short-circuit the Read-After-Write requests. Therefore, the penalty of memory
access hazards can be greatly reduced.

The combination of the designed data cache and the pipelined
interleaved memory system using Free-Module-Request-First scheduling
policy results in a high-performance memory system, that is capable of
servicing memory requests nearly no conflict delay under the particular

workload defined in the trace files.

ii

ACKNOWLEDGEMENT

Professor James R. Goodman has been an exceptional advisor to guide my
graduate career with patience and wisdom. His enthusiasm to share his
knowledge with me, to think seriously about my research, and to read carefully
my revisions have made the final form of my thesis tighter and neater than it
would have been. The constructive comments and valuable conversations of Pro-
fessors Andrew R. Pleszkun and Mary K. Vernon did much to clarify many
points in this thesis; I am indebted to them and to Professors Charles N. Fischer

and Charles R. Kime for their efforts with my thesis.

Special thanks must also be given to the members of the PIPE research
group for their assistance in the simulation study, and to the colleagues in the
Academic Computing Center for their support during my graduate study. Also, 1
would like to thank Michael Caligiuri for his time in reading and correcting my

manuscripts. Their friendship has made my stay in Madison a pleasant time.

Words are not adequate to express my deep gratefulness to my parents, my
parents-in-law and my wife for their love and support. Especially my wife, Gloria,
her thoughtfulness, patience and encouragement have turned many distressful

moments to joyful memories.

iii

TABLE OF CONTENTS

CHAPTER 1: Introductioncoeiiiiiriiiiiimiinieineiiiaieneees — 1
1.1. The PIPE ArchiteCtUrecooiiiiiiiiiiiiiiiiiiieiiiiiiininees -3
1.2. Constraints On The Memory SYStemcooiiiiiiiiiiiiiiiiiiiianinns o -8
1.3. Design Issues of the Memory System ..., — 8

CHAPTER 2: A Survey of High Performance Memory System Designs

... 11
2.1. Theory of Interleaved Memory Systemc.ooiviiiiiiiiiiiins — 12
2.1.1. Memory Models without Conflict Queuescooiinnn. 14
2.1.2. Memory Models with Conflict Queuescoooiiiiiiiiin, - 16
2.2. Methods to Reduce Memory Access Conflictsocoviiniiis 18
2.3. Memory Access Hazard and Its Resolution Schemes — 23
2.3.1. The Storage System of the IBM SYSTEM/360 Model 91 — 24
2.3.2. Resolution of Access Hazards in the IBM SYSTEM/370 Model

168 .o s 32
2.3.3. Resolution of Access Hazards in the CSPI MAP-200 —38
2.4. Summary and DiSCUSSIONciiiiiniiiiniiiiiiiii it — 41
CHAPTER 3: An Analysis of Memory Reference Characteristics in

Decoupled Computationsc.ooeiiiiiniiiiiniriiieeaieaeenieae, 45
3.1. Request Types and Potential Deadlock in Request Scheduling — 46

iv

3.2. Some Observed Characteristics and Their Implications 50

3.2.1. Simultaneous Memory Input Arrivalscccoei. —50
3.2.1.1. Problem With More Than One Arrival Per Clock 51
3.2.1.2. Possible SOIUONS ...viuviririiireneeeeieieeeieeeeieneneanneeee 51
3.2.1.3. Simulation Resultscccooviirriiirieiiiiiiieiiiiiieiiieene. 54
3.2.1.4. CONCIUSIONS ...onvneeireieeteeeie et ettt eeeeiiieneeneneene =09
3.2.2. Flow Control Problemsccciiiiiiiiiiiiiiiiiiiiiiiiiiii s — 60
3.2.3. Shared Variablesc.ooviiiiiiiiiii — 63
3.2.3.1. Problems Resulting from Shared Variables 64
3.2.3.2. Solutions for the Shared Variable Problem —66
3.2.3.2.1. Detecting Read-After-Write Hazard and Bypassing Store

| D 217 PP -—66
3.2.3.2.2. Short-Circuiting Read-After-Write Request — 66
3.2.3.3. Analysis of Delay Due to Read-After-Write Access Hazards -—67
3.2.4. Simulation Resultscoioiiiimiiiiii s — 68
3.3. Summary and DisCuSSionoooiiiiiiiiiiiiiiii —19
CHAPTER 4: Request Scheduling and Memory System Design — 381
4.1. Memory Request Scheduling Strategiesc.cooooiiiiiinnnn. — 81
4.1.1. Request Scheduling For a Single Request Type 82
4.1.1.1. Theorem of Free-Module-Request-First Scheduling Policy —9
4.1.2. Request Scheduling Among Request Typesoooiiiennt. — 93

v

4.1.2.1. Considerations of Separating Load and Store Requests 94

4.1.2.2. Priority of Instruction Fetch and Load Address Requests —95
4.1.2.3. Three Steady-State Models in Decoupled Comnputation — 96
4.1.2.3.1. Access Processor is the Bottleneck ... — 97
4.1.2.3.2. Execute Processor is the Bottleneck ... —-98
4.1.2.3.3. Memory Controller is the Bottleneckoin. —98
4.2. Pipelined Memory System Designcoooiiiiiin, 99
4.2.1. Basic Model of A Memory Controllercccoiiiiiiiien. —99
4.2.1.1. Primary Functions of Memory Controller —101
4.2.1.2. Organization of Memory Operation Status Table 103

4.2.2. VLSI Implications and Constraints on Memory System Design

... —-105
4.2.3. Memory System Design Considerationsooooeenenn. —106
4.2.4. Implementation of Free-Module-Request-First Policy —107
4.2.4.1. Distributed Sequence Control for the Free-Module-Request-

First POIICY . eonviiiiii ettt —112
4.2.4.2. Distributed Sequence Number Assignment at Input Stage —113
4.2.4.3. Distributed Store Address/Data Pairing at Issue Stage — 115
4.2.4.4. Distributed Output Sequence Control at Output Stage —115
4.2.4.4.1. Interleaving the Memory Output Bus for Avoiding Delays

... —117

4.2.4.4.2. Handshake Signals to Allow Continuous Output Flow —118

4.2.4.4.3. State Transition Diagram of Qutput Sequence Control 127
4.2.4.4.4. Output Sequence Control Between Instruction and Data

|2 o] 111U R —131
4.3. Summary and DisCussioncocoviiiiiiiiiiiiniieeeeaeee. 134
CHAPTER 5: Simulation and Evaluation of Memory Models —137
5.1. The Simulation Modelcooiiiiiiiiiiiiiii e 137

5.2. Selection of Application Programs for Trace-Driven Simulations

... — 140
5.3. Assumptions and Parameters of Simulation Models 141
5.4. A Method for Performance Evaluationcooeviiiiiiiiiian, 143
5.5. Performance Evaluation of Memory Modelsoiis — 145
5.5.1. Evaluation of Memory Models with Read-After-Write Hazards

... —-148
5.5.2. Evaluation of Memory Models without Read-After-Write Ha-

vZ1 ¢ NP PP 152
5.6. Summary and DisCussionc.coiiiiiiiiiiiiiii s — 155
CHAPTER 6: The Design of a Data Cache ..., 158
6.1. Limitations of Data Cache in the Decoupled Architecture — 158
6.2. Organization of the Memory Controller with Data Cache —160
6.2.1. Organization of the Data Cache ..., —162

vii

6.2.2. Selected Data Cache Algorithms ... —163

6.2.2.1. Servicing a Read Requestcooiiiiiiiiiiiin — 168
6.2.2.1.1. Variations of Servicing Read Requestsoiiiannn. —171
6.2.2.2. Servicing a Write Request ... —171

6.2.3. Access Hazard Resolution and Read-After-Write Short-

CITCUITIIE Lottt et a e 174

6.2.4. First-Come-First-Serve Memory Model with Distributed Data

7.1 1 LIRS PURPTPPITS PP PP 176
6.3. Performance Evaluation of the Data Cache ...t 178
6.4. Summary and DiSCUSSIONcccoiviiiiiiiiiiiiiiiiiiii 184
CHAPTER 7: Summary and Conclusionsc..ocoiiiiiiin.e. —186
7.1, SUIMIMATY ottt ettt e e et e ettt et e ateaane e aaases 186
7.2, CONCIUSIONS ..ttt ittt et iaae e e st eeetiatetaaaaiesaaaan 188
7.3, ContriDULIONS ..iuueitiiiit e a e e 190
7.4. Further Research Plansoooiiiiiiiiiiiii e —192
REFERENCES ... ittt e es it e ettt e inaaans 193
Appendix I: The First 13 Lawrence Livermore Loopsc.ccoevenns —-198
Appendix 11: A Decoupled Code of LLL LOOP 2coooviiiiiiiiiinenenns —206

Appendix III: Simulation Results of the First 12 LLL Loops with

Read-After-Write Access Hazardsoooviiiiiiiriineriiieiiieiinieenens — 207
Appendix 1V: Simulation Results of LLL Loops 4, 5, 6 and 11 without

viii

Read-After-Write Access Hazardsoviiiiiiiiiniii i 220

Appendix V: Simulation Results of Three Input Multiplexing Schemes

... 225
Appendix VI: Simulation Results of Memory Model with FMRF/Data

G e e 243
Appendix VII: Simulation Results of RRF, AP-First, and EP-First Poli-

Lo T e 247

LIST OF FIGURES

1.1. Block Diagram of a PIPE Architectureocooiiiiin, 5

2.1. Buffer Allocation and Function Separation within the IBM SYS-

TEM/360 Model 91 ... — 26

2.2. Block Diagram of the Main Storage Control Element of IBM SYS-

TEM/360 Model 91 ... e 28

2.3. Block Diagram of the Processor Storage Control Function of 1BM

SYSTEM/370 Model 168o 33

2.4. Storage Addressing Flow within the PSCF of IBM SYSTEM/370

MoOdEl 168 oot e e 35
2.5. Block Diagram of MAP-200 Organizationccoeviiiiiannnn. 39

3.1. Performance comparison of memory models in handling Read-

After-Write hazards in LLL13 simulationsoovviiiiiiiiiinrinennns. 72

3.2. Simulation Results of LLL13 with FMRF/Data Cache Policy of

DI erent Cathe SIZES ovnrtnette ettt re e ae e aaenasenanaanaens 71

4.1. A Queueing Model for Servicing Requests of the Same Type with

MUltiple SEIVEIS ...uiiiiiiiiiiit i 84
4.2. Hlustration of Free-Module-Request-First Scheduling Policy 86

4.3. Comparison of First-Come-First-Serve and Free-Module-Request-

First Scheduling Policies when Memory Cycle is 6 CPU Cycles -89

4.4. Comparison of First-Come-First-Serve and Free-Module-Request-

First Scheduling Policies when Memory Cycle is 4 CPU Cycles 91
4.5. Basic Model of the Pipelined Memory Systemcoooeeiinnsns 100
4.6. Memory Pipeline Stages and Their Functionscoooeeeen 102

4.7. Organization of the PIPE Architecture with FMRF Memory Con-

Tene) 11 A P —108

4.8. Pipeline Organization of the Memory Controller Using Free-

Module-Request-First Scheduling Policyoocoeiiiiiiiiinennens 109

4.9. Block Diagram of the Module Controller Using Free-Module-

Request-First Scheduling Policyoooiiiiiiiiniees — 110

4.10. Input Stage Algorithm of Free-Module-Request-First Scheduling

4.12. Output Stage Algorithm of Free-Module-Request-First Schedul-

INE POHCY +.vevnciteiieiire e 122

4.13. The Timing Diagram of Memory Output Sequence of Example

T S R R 126

4.14. State Transition Diagram of Output Sequence Control for Free-

Module-Request-First Scheduling Policycoooviiiniiiinnenen 128

5.1. Closed-Loop Simulation Model of PIPE Architecture 139

5.2. Performance Comparison of Memory Models When There Are

Read-After-Write Hazardsoovvirnre e e e 150

5.3. Performance Comparison of Memory Models When There Are No

Read-After-Write HAzardsveeeeeeeeeeeeeeeieeeeeeieeeeeee —.154
6.1. Block Diagram of a Module Controller with Data Cache —161
6.2. State Transition Diagram of a Data Cache Entry — 164

6.3. Address Space of the Data Cache in the Memory System Using

Free-Module-Request-First Scheduling Policyo - _166

6.4. Bit Assignment Scheme for Data Cache Placement/Replacement

AlgOTININ L. —168
6.5. Algorithm for Servicing a Read Requestooooiiiii, — 169
6.6. Algorithm for Servicing a Store Address Request 172
6.7. Algorithm for Pairing Store Address/Dataciiiiienn, —173

6.8. Performance Comparison of Memory Models with and without

| D7 7 R O Vo) 1 13- — 182

CHAPTER 1

INTRODUCTION

Several different systems using the technique of decoupled computation have
been recently designed [CoSt81, SmilJ82, Ples82, SPKG83]. The CSPI MAP-200
array processor [CoSt81], the Decoupled Access/Execute (DAE) architecture
[Smi)82, Smil84], the Structured Memory Access (SMA) architecture [Ples82,
PIDa83], and the PIPE (Parallel Instructions and Pipelined Execution) architec-
ture [SPKG83, GHLP85] all share the same design concept: memory request
generation is architecturally decoupled from algorithmic computations, resulting
in improved performance through parallelism and efficient memory referencing.
For example, Weiss and Smith [WeSm84] demonstrated that by decoupling data
access from execution, it was possible to implement a computer architecture with
minimal design complexity and to provide much of the performance improvement
offered by complex issuing methods, such as issuing instructions out of order or
issuing multiple instructions simultaneously. Decoupling also allows considerable
memory access delay to be overlapped with other operations. The SMA machine

of Pleszkun [Ples82, P1Da83] reduced addressing overhead by providing special

access mechanisms in the memory access processor to generate references effi-
ciently for blocks of instructions and several data types. Pleszkun’s results showed
that the SMA machine reduced the number of memory references to between 1/5

and 2/5 of those required by a conventional VAX computer.

Unlike the von Neumann architecture which consists of one central process-
ing unit (CPU), the decoupled architecture consists of two processors: the Access
Processor and the Execute Processor. Likewise, a single task in the von Neumann
architecture is ncw separated into two subtasks: the access task and the execute
task. Both Access and Execute processors cooperate in executing these two sub-
tasks in parallel and communicate via hardware queues. The Access Processor
calculates all memory addresses and makes all memory data references for the
Execute Processor. Fetched operands are placed in an input queue of the Execute
Processor. The Execute Processor carries out the algorithmic operations required
on a given operand stream. The results computed by the Execute Processor will
be paired with thé addresses calculated by the Access Processor, and then stored
into main memory. The Access Processor can overlap memory transactions by
sending more requests than the memory system can immediately satisfy, and the
memory, in turn, may provide more data than the Execute Processor can immedi-

ately utilize.

In order for decoupled computation to proceed smoothly, the memory system
should be able to service memory requests efficiently and provide operands in
order and before they are needed by the Execute Processor. Therefore, the suc-
cessful implementation of a memory system is key to the improved performance

obtained through decoupled computation.

The design of the memory system for a decoupled architecture is the topic of
this dissertation. The goal of this research is to design a memory system that can
service memory requests efficiently in order to sustain the improved performance
through decoupled computation. Techniques to increase the performance of
memory systems will be investigated, such as pipelining, interleaving, multiple-
words-fetched-per-request, servicing requests out of arrival order, and cache
memory. Request scheduling policies will be derived from two strategies: (1) to
service requests according to their priorities, and (2) to minimize the total request
service time. Then, memory systems with the derived request scheduling policies
and the performance improvement features will be designed and evaluated

through trace-driven simulations.

A general understanding of the features and performance levels of a decou-
pled architecture is important to this research. Because the PIPE architecture has
all the necessary features for performing decoupled computations, a look at the
PIPE architecture can show us clearly how the decoupled computation is per-
formed, and how memory transactions are overlapped. The limitations and prob-
lems in the memory system will be listed along with general strategies and
approaches to address them. Details of the proposed memory system will then fol-

low in the remaining chapters of the thesis.

1.1. The PIPE Architecture

The PIPE architecture (Parallel Instructions and Pipelined Execution)
[SPRG83, GHLP85] is a pipelined, decoupled architecture designed in the VLSI

environment. It uses identical processors for the Access and Execute processors

that communicate via hardware queues (Figure 1.1). PIPE uses a simple instruc-
tion set with the goal of issuing one instruction per CPU cycle in each of the pro-

cessors. Bach processor issues memory requests to fetch its own instruction

stream, and is capable of fetching its own operandsl. Each processor has regis-
ters and hardware queues to store information and a program counter to track its

progress. In addition, there is an instruction cache on each processor chip.

Decoupled computation allows the PIPE architecture to explore a new level
of parallelism, which is lower than the multiprogramming environment, without
precluding traditional multiprogramming. This new level of parallelism permits
some code scheduling to be performed dynamically (at run-time), and reduces the

burden of static code scheduling done by the compiler.

There are three considerations that guide the design of the PIPE architec-
ture: (1) the von Neumann bottleneck [Back78], (2) the Flynn limit [Flyn66],
and (3) efficient code generation by a compiler. The von Neumann bottleneck
refers to the communication path between the processing unit and the main
storage unit. This path is a potential bottleneck because instruction fetch and
instruction execution contend for its available bandwidth. The Flynn limit is the
observation first stated in [Flyn66] that at most one instruction can pass through
the instruction fetch/decode path per clock period. Code scheduling is required to
order the instruction codes for a pipelined architecture, so that the amount of
overlapped operations on the pipeline stages can be maximized. Thus, PIPE is
designed with three important features: (a) the prepare-to-branch/exit [Scho71]

program control scheme, (b) memory Load/Store operation through hardware

This capability is not used in the Execute Processor.

MAIN MEMORY
i i
MEMORY ¥
CONTROLLER LMAR @
Address In Data In : _i Data Out
et rortomoenees :
| — . .
§ K- - A '
E * l i
{ SDQ SAQT LAQT TLAQ TSAQ | SDQ
| Load Address/ Address’ | Load
i Data Data Data i Data
+iBus Bus Bus +is Bus
| A I
Instruction Instruction
Cache Lpo| ou TNJTQJVLDQ Cache
I-Decode I-Decode
and ALU ALU |&— and
Issue Logic Issue Logic
, .
I il :
! ‘ |
! Register Register %
} File File |
| -to-
E—to-A',‘k] ABto Eﬁ\ :
BQ | Lo Qi
L———______BramchSignall _____ _____ L __ J

ACCESS PROCESSOR

EXECUTE PROCESSOR

Figure 1.1 Block Diagram of a PIPE Architecture

queues, and (c) instruction cache. These features combine to reduce the severity
of the von Neumann bottleneck. While features (a) and (b) provide flexibility in
compiler code generation, they also result in simple pipeline interlock circuitry,
increasing the possibility of issuing one instruction per CPU cycle. For the Flynn
limit, PIPE uses two processors to execute two instruction streams simultane-
ously, so that the number of instructions passing through the instruction

fetch/decode paths can be greater than one per clock period.

As shown in Figure 1.1, there are several queues in the PIPE architecture;
each is implemented in the hardware. The Branch Queue (BQ) is used to pass
control information (i.e., branch decisions) between the Access Processor and the
Execute Processor. Memory requests are temporarily stored in the Ouiput Queue
(OUTQ) and are later sent to the memory system as soon as the memory system
is prepared to accept the requests. The Load Data Queue (LDQ) stores the
operands fetched from the memory. The Load Address Queue (LAQ) stores the
load address requests that fetch operands for the corresponding LDQ of a proces-
sor. The Store Data Queue (SDQ), and the Store Address Queue (SAQ) in the

memory system store the store address and the store datum, respectively.

The load operation of the PIPE architecture places a load request into the
OUTQ, this load request is then sent to the memory system to fetch the datum
from the target address into the LDQ. Another operation retrieves the datum
from the LDQ when the datum is needed. The load instruction that starts the load
operation is considered to be completed once the load request is placed into the
OUTQ. The store operation of the PIPE architecture consists of a store address

operation and a store data operation. The store address operation puts an address

into the SAQ, and the store data operation puts a datum into the SDQ. When
both the SAQ and the SDQ are not empty, the address and the datum from the
heads of both queues are paired and sent to the memory as a store operation. The
load/store scheme of the PIPE architecture provide the compiler flexibility to
schedule other instructions between the separated load data and retrieve data
operations or the separated store address and store data operations, so that the
effective delays among the instructions with data dependencies can be reduced.
In addition, the separation dissociates the completion of a load/store instruction
from the completion of its corresponding memory operation. Therefore, it is pos-
sible for the compiler to generate efficient codes which will utilize the computing

resource effectively and achieve the issue rate of one instruction per CPU cycle.

The load request of a processor that fetches and delivers data to the LDQ of
the other processor is called an alternative load request. An alternative store
request consists of two operations issued by two different processors: (1) an alter-
native store address operation to put an address into the SAQ of one processor,
and (2) an alternative store data operation to put a datum into the SDQ of the
other processor. Subsequently, the address and the datum from the SAQ and the

SDQ of different processors will be paired in the memory.

In order to increase the memory bandwidth and to facilitate the flow of
memory requests through the von Neumann bottleneck, each PIPE processor has
two uni-directional buses. One is dedicated to memory input for sending addresses
and data to the memory system, and the other is dedicated to memory output for
receiving data from the memory system.- Tags are-used to distinguish between the

different types of items appearing on the bus. All the data paths are uni-

directional so that memory requests and fetched data can be overlapped.

1.2. Constraints on the Memory System

While the use of hardware queues contributes several advantages to a decou-
pled architecture, it also places constraints on the memory system. The con-
straints are: (1) the data must be placed in the queue in the correct order based on
the program algorithm, and (2) the required data is the only data allowed in the
queue. Three techniques t0 increase memory bandwidth will be investigated:
cache memory [SmiA82], multiple-words-feiched-per-request, and servicing
. memory request out-of-order [BoGr67]. Each of these techniques must work
with a bookkeeping scheme, whose responsibility is to reorder the fetched data

while complying with the constraints.

1.3. Design Issues of the Memory System

Design techniques are employed to construct an efficient memory system
within the constraints stated above. Three issues related to the use of queues to
buffer memory requests and fetched data in the design of the memory system are

described below. Each issue is accompanied by a possible design alternative.

(1) Multiple memory requests can be simultaneously waiting for service in the
memory system. An efficient request scheduling algorithm may be needed to
maximize the throughput and/or meet the urgency of memory requests.

(2) If the load address and the store address requests are stored in separate
queues, the load and store request can be serviced out of arrival order. Thus,
memory access hazards -- Read-After-Write, Write-After-Read, and Write-
After-Write hazards -- must be checked before a load or a store request is
serviced. When fetch and store requests are accessing the same memory
location, the memory system may detect a Read-After-Write or Write-After-

Read access hazard before the store datum arrives. If a Read-After-Write
access hazard is detected, the memory system should short-circuit the store
datum to the fetch request, so that a memory fetch cycle can be avoided.
The impact of access hazard on the performance of memory system will be
investigated, as well as the performance improvement through short-
circuiting Read-After-Write data.

(3) Each PIPE processor has two buses dedicated to input and output, respec-
tively. The memory system can be designed to receive two inputs per clock
period, one from each processor, or one input per clock period. The perfor-
mance difference for these two alternatives will be investigated. If the perfor-
mance difference is substantial, alternative multiplexing schemes for receiv-
ing one input per clock must also be studied.

The memory controller can be considered as another processor in a decou-
pled architecture. lIts responsibility is to service requests efficiently and to provide
operands before they are needed, so that decoupled computation can proceed
smoothly without excessive memory wait time. During decoupled computation, it
is possible that the Execute Processor falls behind the Access Processor. Itis also
possible that the memory controller cannot meet the demand from both Access
and Execute processors. If the Execute Processor is running behind and becomes
the bottleneck of decoupled computation, the memory controller should service
the request of the slower processor first. Thus, it will reduce the memory delay
for the slower processor and speed up the progress of decoupled computation. If
the memory controller cannot meet the demand of requests from the processors,
the memory controller should service requests as fast as it can and minimize its
effects as the bottleneck of decoupled computation. Thus, the memory request
. scheduling policy can be designed with two strategies: (1) to service requests

according to their priorities, or (2) to minimize the total request service time.

10

Since there are different ways to organize the queue space, to store memory
requests, to schedule memory requests, to design multiplexing schemes, and to
implement bookkeeping schemes, this research will study alternative schemes to
address each issue. These schemes will each be evaluated, and their tradeoffs

analyzed. A selection of the most efficient scheme is then proposed.

A review of the previous work related to the performance of interleaved
memory models, memory access conflicts and access hazards, memory system
designs of decoupled and non-decoupled architectures, will be discussed in the
next chapter. After a study of memory reference characteristics for decoupled
computation- is presented in chapter 3, several request scheduling policies will be
proposed. The design and the simulation of the pipelined, interleaved memory
systems for these scheduling policies will be presented in chapters 4 and 5,
respectively. Chapter 6 will discuss the design of a data cache to further enhance

the performance of the memory system.

CHAPTER 2

A Survey of High Performance Memory System Designs

The memory system is a major bottleneck of a von Neumann architecture
[Back78]. Matching the memory bandwidth with the speed of the central process-

ing unit has long been an important factor in the design of computing systems.

Latency is the time it takes for a processor to fetch information from the main
memory. When the memory system receives a request, three steps are required
to complete the service. First, the address of the request is decoded; then, the
addressed memory location is selected. Finally, the read or write of a word at this
location will take place. The total fixed time to carry out these three steps is
called a memory bank busy time. A memory module can only accept one request
per rriemory bank busy time. If there are parallel memory modules in the
memory system and the stream of memory references are staggered to enough dif-
ferent memory modules, the apparent memory throughput can be much higher

than the reciprocal of memory bank busy time.

Memory access conflicts and access hazards are two important factors that

prevent the interleaved memory system from achieving its maximum bandwidth.

11

12

A memory access conflict occurs when a memory request is accessing a busy
memory module, or when two or more memory requests attempt to access the
same memory module in the same clock period. When an access conflict occurs,
one of the memory requests can be stored in conflict buffers and processed in the
next memory cycle. A memory access hazard exists when more than one
memory request references the same memory location, and an incorrect sequence
of memory operations can result in using wrong data or storing wrong informa-
tion into memory. There are three kinds of access hazards: the Read-After-Write
(RAW) hazard, the Write-Afier-Read (WAR) hazard and the Write-After-Write
(WAW) hazard. Techniques for reducing memory access conflicts and resolving

access hazards will be discussed in the following sections.

A discussion of the characteristics and the theory of interleaved memory sys-
tems is necessary for designing a high performance interleaved memory system.
This is followed by examples of methods used to reduce memory access conflicts

and resolve memory access hazards in current memory systems.

2.1. Theory of Interleaved Memory System

Consider an interleaved memory system with m memory modules of n
memory words per module and in which each memory module performs opera-
tions independently. The memory word is the unit of a memory operation, and
not necessarily the same width as the CPU word. Interleaving techniques can

_increase memory bandwidth, allowing the use of slow, inexpensive main memory
to-match the speed of the processing unit, and providing a large memory at low

cost.

13

In a conventional memory system, each memory module contains n consecu-
tive memory words and the word at address i is in module i div n. The amount of
memory in the system can be increased by simply adding more memory modules.
When a memory module malfunctions, a contiguous block of memory is inacces-
sible; the rest of memory can still be accessed. Because instructions are stored in
adjacent memory words, the likelihood that a segment of program code is stored
in one memory module would be high. In such a case, memory conflicts are fre-
quent and the latency for instruction fetches will be as long as the memory bank
busy time. However, this memory organization can be used for some systems

. where reliability, reconfigurability, or cost is the main concern.

In the interleaved memory system, the consecutive n memory addresses are
located across the m memory modules -- the word at address i is in module i mod
m. This low-order interleaving scheme can eliminate most memory conflicts,
resulting in latency close to the access time (the time required by a memory
module to provide the stored information). This technique is used in many high
performance computer systems, such as the IBM 360/91 [AnSp67, BoGr67], the
CDC6600 [Thor70], and the CRAY-1 [Russ78]. The low-order interleaving

scheme is assumed throughout the rest of the dissertation.

Since the first appearance of interleaved memory systems in STRETCH
[Kuck78] and ILLIAC II [UIlI57], memory models [Hell67, BuCo70, CoBu71,
Ravi72, Bhan75 and ChKL77] with different assumptions have been introduced to
evaluate .the performance of interleaved memory systems. The effective memory
“bandwidth, which is defined to be the average number of memory accesses per

memory cycle, is used to measure the performance in each memory model.

14

Chang and others [ChKL77] established models to study the data dependency of
the address streams and the performance of interleaved memory models with con-
flict queues. Their results indicate that the performance of a properly designed
memory system can be a linear function. Hellerman’s model [Heli67], on the

other hand, established a square root function of the number of memory modules.

2.1.1. Memory Models without Conflict Queues

Hellerman’s model considers memory tequests as a stream of addresses in
the range of 1 through m, where m is the number of memory modules. His
assumptions are that-no-queuing of requests are permitted on busy modules, and
that there is no data dependency between successive memory references.
Addresses are examined in order until the first duplicate memory module number
is found. These first & requests to distinct addresses are then processed in paral-
lel. He shows that the probability of encountering a string of exactly & distinct
integers with the (k + 1)st a repetition of one of the k others is

k (m— 1!

Pk) =
() mk (m — k)!

The average length of address sequences, which is the effective bandwidth, is the

sum of the products of the probabilities and &:

"k PR
1

Banawidth =

»
IR/l

k

When 1= m =< 45, Hellerman found a good numerical approximation of the

above equation to be m0-3%, or approximate ¥ m . The error is no more than 4.3

15

percent. This means that the effective memory bandwidth of an interleaved
memory system is a square root function of the interleaving factor. Knuth and Rao
[KnRa75] also show in a closed form that the effective bandwidth of Hellerman’s

model is

. M 1 1w oy -1
Band = (M 2 (g g
andwidth = (5) 3 T (2) Oo(m ")

This confirms that Hellerman’s bandwidth is asymptotic to v m .

In Ravi’s memory model [Ravi72], p memory requests are generated during
each cycle. This model can be considered as a multiprocessor system of p proces-
sors and m memory modules. Ravi derives a formula to compute the average
number of distinct integers in a group of p integers chosen uniformly from the
integers O to m - 1. He takes this value to be the effective bandwidth in the steady

state and is computed as

k

I

3 k!S(p,k)(:';]

Bandwidth =
1 m?

k

R \]

where t = min(m,p), S(p,k) is a Stirling number of the second kind, and k'S(p,k)
is the number of ways to put p distinct requests into k distinct memory modules
with each modules holding at least one request. Ravi’s formula was reduced to a

very simple closed form [ChKL77], that is

1 p
Bandwidth = m [1 — [1 - -—~]]
m

16

It is shown that, given a constant p/m ratio, the effective bandwidth in the steady
state is a linear function of either m or p. The assumption in Ravi’s model that
the conflicting requests are simply ignored and not re-submitted does not

correspond to any real machine.

Another memory model similar to Ravi’s model but of different assumptions
is introduced by Chang [ChKL77] to study the performance of interleaved
memory in multiprocessor systems. Chang’s model assumes that there are p
independent address streams, each uniformly distributed, issued from p proces-
" sors. In any given stream, an address can be accessed only after its predecessor
has been accessed. Those - processors not being serviced will reissue their
addresses in the next cycle. Simulation techniques are used by Chang to find the
steady-state bandwidth of their model. The results show that the effective
bandwidth is linear in p but is 6 to 8 percent worse than Ravi’s result. Chang
believes that the difference is due to the difference in assumptions and the statisti-
cal error in the simulation. Chang’s results are very close to Bhandarkar’s

results [Bhan75], where a similar model is solved with a Markov chain method.

2.1.2. Memory Models with Conflict Queues

Coffman, Burnett, and Snowdon [CoBS71] introduced a memory model with
a conflict queue to buffer conflicting requests. They assumed that the addresses
are not uniformly distributed but are determined by two parameters o and B.
They assumes that the probability of a request accessing the next module in
sequence (modulo m) will be o and the probability of addressing any other

module out of sequence will be B, where B = (1—a)/(m—).

17

The stream of memory requests from the request queue is examined and the
conflicting requests are placed in the conflict queue. For each memory cycle, the
conflict queue are first scanned and then the new requests in the request queue
are scanned. This procedure continues until either the conflict queue is full or all
the memory modules are busy. Because of memory conflicts, memory requests
can be serviced out of their arrival sequence in this model. However, this model
assumes that there are no data dependencies between requests and therefore out-
of-order service is permitted. Their results indicate that handling requests out-
of-order can greatly increase memory bandwidth. For example, if o = 0.25 and
'm = 16, the bandwidth is about 4.5 when no conflict queue is used but jumps to
9.5 if a conflict queue of length 4 is used. Clearly, as the length of the conflict

queue approaches infinity, the bandwidth approaches the interleaving factor m.

A memory model with conflict queues is also introduced by Chang
[ChKL77] to investigate the effect of using queues to improve the memory
bandwidth in a multiprocessor system. There are p processors and m memory
modules in this model, each memory module has a conflict queue. When a
memory module receives more requests than it can queue, then the processors
which submitted the unqueuable requests are blocked and will submit their
request during the next memory cycle. Since it is possible for a processor to have
two or more requests satisfied in one memory cycle (e.g. its current request in
one module plus some previously queued requests in other modules), Chang
assumes that the processors are. capable of accepting more than one returned
result in one memory cycle. Simulation techniques are. used to evaluate this

model. This study indicates that adding queues to the memory system did

18

improve the bandwidth of the system, and the effective bandwidth in the steady
state is a linear function of r, where r = p/m. When r = 1, the simulation
results showed an approximate 5 percent improvement over Ravi’s model if the
memory queue length is 1, and an approximate 10 percent improvement over

Ravi’s model if the queue length is 2.

In summary, the literature review of interleaved memory models suggests

that if a conflict queue is not implemented in an interleaved memory system, (1)

for a single request stream, the effective memory bandwidth approximates a square

root of the interleaving factor; (2) for p request streams and m memory moduies,

_the effective memory bandwidth is a linear function of either p or m, given a con-
stant p/m ratio. If a conflict queue is used with an interleaved memory system

that services a single request stream, the effective memory bandwidth is a linear

function of the interleaving factor.

2.2. Methods to Reduce Memory Access Conflicts

Although interleaved memory systems can reduce the frequency of memory
conflicts and balance the memory speed with the processor speed, the nondeter-
ministic occurrence of memory conflicts can degrade the performance of a
memory system when the request arrival rate is increased. Better memory sys-
tems design requires understanding memory reference patierns and program

behavior.

Memory references may be partitioned into three categories: (1) instruction
fetch, (2) scalar variable access, and (3) array variable access. These three

categories of memory reference types and their characteristic access patterns can

19

influence the approach to the design of interleaved memory systems. The
memory addresses for instruction fetches are sequential until there is a successful
branch. Scalar variables are frequently stored in blocks of memory spaces, but
are referenced unpredictably. Array variables are usually referenced in a regular
sequence. The addresses of these referenced elements can be in contiguous
memory locations, or in locations with the same number of words separating two
consecutively referenced elements. The distance between two consecutive array

element references is called a stride.

Since the instruction stream comprises sequential words, multiple-words-
returned-per-fetch-and/or prefetching techniques may be used to fetch the instruc-
tion words. Many mainframe systems use wide processor-memory buses to fetch
more than one memory word per access, with the expectation that the prefetched
words would be used in following cycles. For example, two 32-bit words are
fetched per memory access in the IBM SYSTEM/360 Model 91 [AnST67,
BoGr67], and the fetched instruction words are stored in an instruction buffer
array. Other computer systems with cache memories use the cache line to be the
unit of memory access such that contiguous memory words are fetched into the
cache memory in each memory feich cycle. Instruction buffer arrays and cache
memories are used not only to match the demand from the processing units, but

also to reduce the number of memory requests, thus reducing memory conflict.

For array variable accesses, many supercomputers such as the CRAY-1
[Russ78], the CDC Star-100 [HiTa72], the CYBER205 [Linc82], and the Bur-
roughs Scientific Processor BSP [KuSt82], use interleaving techniques and vector

instructions to facilitate vector operations. The arrays must be carefully assigned

20

to memory in order that conflict-free memory access is achieved.

The memory system of the CRAY-1 computer is 16-way interleaved. It
prevents memory conflicts except in the case of memory accesses that step
through memory with a multiple of 8-word increment. Vector instructions place
a reservation on whichever functional unit they use, including memory, and on
the input operand registers. Vector elements are brought into the register files
and manipulated within the register files. Once issued, a vector instruction pro-
duces its first result after a delay equal to the functional unit latency. Subsequent
results then continue to be produced at a rate of 1 per clock period. These results
- must be stored in a vector register. A separate instruction is required to store the
final result vector to memory. In order to facilitate the operation flow of a vector
functional unit, the memory system has to be idle before a vector stream is ini-
tiated. The memory system is reserved for the vector operation such that the vec-
tor elements can be accessed without interference by scalar accesses. Conflict-
free memory references can thus be scheduled unless the stride is a multiple of
eight. When a vector memory reference with a stride of a multiple of eight is
detected, speed control is put into effect, and vector elements are referenced at a

reduced but predictable rate.

The CDC Star-100 and the CYBER 205 are memory-to-memory vector
machines. Unlike the CRAY-1 computer, the data in vector form are read from
central memory and sent to the arithmetic units with the results returned to
memory upon completion of the vector operation. These two systems can support
up to three simultaneous vector streams: two load streams and one store stream.

In the CYBER 205, the memory system is 128-way interleaved; it is organized

21

into sixteen sections each of eight banks. The lowest order three bits of a
memory address select the bank number of a section, which is selected by the
next higher four bits. Instead of slouing 1/0 requests around the memory
demands of the vector streams as in the input/output scheme of the STAR-100,
the CYBER 205 designers chose to give 1/O free entry to the central memory. In
order to service two vector load streams, one vector store stream, and an 1/0 data
stream simultaneously, the memory system of the CYBER 205 fetches eight con-
secutive memory words belonging to one vector and stores them in buffers. In the
following clock period, eight consecutive memory words of another vector are
fetched and stored into buffers. In the third clock period, eight buffered results
can be stored into the memory. The fourth clock period is dedicated to 1/0
transfers. Then, the same four operation sequence is repeated. If the vector
accesses are not of stride one, the needed elements must first be gathered from the
buffered consecutive vector words before being used as input operands, and the
results must be scattered into the consecutive memory words in the result buffers
before being stored in the memory. A vector control unit will determine the tim-
ing of memory requests when a vector instruction is initiated, so that there are no

memory conflicts.

The memory system for the Burroughs Scientific Processor was organized
differently from those of the other vector machines. There were two separate
memory units in the BSP system: the control memory and the parallel memory.
The control memory was used to store portions. of the operating system and all user
programs as they were executed. 1t was also used to store data values that were

operands for those instructions executed by the scalar processor unit. The paral-

22

lel memory was used only to hold data arrays for the parallel processor. There
were 16 arithmetic processing units in the parallel processor, and 17 memory

modules in the parallel memory.

The organization of the parallel processor and the parallel memory is the
result of a study of parallel memory by Budnik and Kuck [BuKu71]. They
demonstrated that, in general, accessing rows, columns, and diagonals of a
square array without conflicts is impossible to accomplish if any power of wo

number of memory modules is used.

If the distance between the referenced array elements and the number of
memory modules are relatively prime, however, then all the modules can be
accessed simultaneously without conflict. The data of array elements are then
stored such that there are conflict-free accesses to row, column, and diagonal vec-

tors of length 16.

An input alignment network is needed to arrange the fetched array elements
into proper order in this memory system, and an output alignment network is
used to re-align the array elements before they are stored into the parallel
memory. Also, modulo 17 arithmetic is required to compute the module number
of an array element and the address within the module. For example, the module

number M of A(i,j) is

M = (j*I + i + base) mod 17

where Ithe row dimension of array A(,J) and base is the starting address of array

A(LJ).

23

2.3. Memory Access Hazard and Its Resolution Schemes

Since the ultimate performance of an interleaved memory system is limited
by the memory modules themselves, the memory controller must optimize the
data rate by efficiently scheduling the unserviced requests and controlling the
processor-memory buses. The data rate can be increased by issuing memory
operations for memory requests whenever the required modules become available,
i.e., not in logical order. The memory controller must detect the access hazards
and correctly sequence several stores, or stores and fetches, to the same memory

location.

Compiler techniques can also be used to avoid memory access hazards.
Given certain physical constraints, the compiler can detect the potential access
hazards at compilation time, then schedule the code such that the second memory
request will not be started until the first memory request to the same address is
completed. However, because every store request can create a potential access
hazard, it is not a simple task for the compiler to precisely detect the access
hazards. For example, when a fetch instruction and a store instruction are gen-
erated for two elements of the same array variable that are referenced in an arith-
metic statement, the compiler has to know the indices of these two elements in
order to decide whether or not there is a potential access hazard between them. If
the indices of these two array elements are indexed by two arithmetic expressions
and the results of these two expressions cannot be computed in the compilation
time, then the compiler can only assume that there is a potential access hazard
between these two array elements. -In addition, if the fetch and the store of the

same array variable are initiated from different program statements or each of

24

them are submitted by the code of the same loop segment but at different itera-
tions of the loop during the run-time, the correct detection of access hazard can
become very complex for the compiler. Also, worst-case behavior must always be
assumed. For a cache memory system, this is a serious penalty because the com-
piler decides whether a potential access hazard may occur during the run-time
based on the completion time of the memory request in conflict. Thus, the time
required to fetch information from main memory for a cache miss must be

assumed for each detection of potential access hazard.

Alternatively, hardware control can be used to detect and resolve the memory
access hazards when requests are submitted at run-time. Three computer sys-
tems, the IBM SYSTEM/360 Model 91, the IBM SYSTEM/370 Model 168, and
the CSPI MAP-200 array processor [CoSt81], will be used as examples to discuss
how memory access hazards are resolved in non-decoupled architectures and a

decoupled architecture.

2.3.1. The Storage System of the IBM SYSTEM/360 Model 91

The IBM SYSTEM/360 Model 91 [AnST67, BoGr67] is a high performance
pipelined computer system. In order to achieve a smooth operation flow along the
pipeline stages, the organizational techniques of storage interleaving, arithmetic
execution concurrency, and buffering are utilized. The tasks of the pipeline stages
are performed by three major processing units: the Instruction Unit (I-unit), the
Execution Unit (E-unit), and the Main Storage Control Element (MSCE). The E-
unit is further divided.into two independent units: the fixed point execution unit

and the floating point execution unit. A block diagram of the IBM SYSTEM/360

25

Model 91 is shown in Figure 2.1 with an illustration of buffer allocation and

function separation.

The central control functions for the CPU are performed in the I-unit, which
decodes and sets up instructions for execution by the E-unit. The I-unit accom-
plishes this by scanning each instruction, in the order presented by the program,
and clearing all necessary interlocks for buffer allocations before releasing the
instruction. In addition, when a storage reference is required by the operation,
the issuing mechanism performs the necessary address calculations, initiates the
memory requests, and establishes the routing by which the operand and operation

will .ultimately be merged for execution within the E-unit.

In designing the l-unit, many program situations were examined by the
design group of the IBM SYSTEM/360 Model 91 [BoGr67]. They found that,
while many short instruction sequences are nicely ordered, the trend is toward
frequent branching. In addition, even with sophisticated execution algorithms,
very few programs can actually cause answers to flow from the pipeline stages at
an average rate in excess of one every two cycles. Inter-instruction dependencies,
- storage and other hardware conflicts, and the frequency of operations requiring

multi-cycle execution all combine to prevent this rate from being achieved.

In order for the I-unit to consistently run ahead of the E-unit, the multiple-
words-returned-per-fetch scheme is used in conjunction with instruction fetching.
Additionally, various types of buffers are used to smooth the total instruction flow
by allowing the initiating pipeline stages to proceed despite unpredictable delays
further down the pipeline. Buffers for instruction fetch, operand fetch, operand

store, operation, and address are used among the l-unit, the E-unit and the

26

1 FRAME 1 Instruction |
; Fetch :
| Buffers (8) !
| o |
I \V :
| |
| |
: Branch I
: 7 ‘arget I
| I-UNIT Buffers (2) !
| R | Addres%
: 5 Storage | To
| Address | Conflict {
! : >| Buffers (4) : Storage
: Out : |

To : Store Address |
| :
|] ! > Buffers (3) I STORAGE
! Storage : :
| ;

' !

: \Iy : N Store Data I Data T%
: Buffers (3) ; Storage
8 I IS ML MSCE _ __ |
o o e e e - —— MODULES
! FRAME 2 !
| ; 3]
[¢ ixed Point ,
[. I | l l }%peraﬁon \) : Data
! FIXED Buffers (6) ! <
% &4 POINT : From
I E-UNIT ixed Point L Storage
| < | I ' I %perand | D
o _Buffrs@® |]
[T T T T e e e e e T e e e e e [™
| | FRAME 3 !
| | ¢ loating Point !
I peration }
| | | FLOATING Buffers (8) |
- POINT
[E-UNIT loating Point |
: & perand :
: Buffers (6) |
e e J

Figure 2.1 -- Buffer allocation and function separation within the IBM SYS-
TEM/360 Model 91 from [AnST67].

27

MSCE as illustrated in Figure 2.1. The I-unit will not issue an instruction unless
the required buffers are available. For example, a free operand buffer will be
assigned to an operand fetch request before the request is sent to the MSCE, so
that there is always a buffer available to receive the operand fetched from the

memory.

For each instruction, following the clearing of all interlocks, the decode deci-
sion determines whether or not to issue the instruction to the E-unit and initiate
address generation for memory access, or to retain the instruction for scquencing
within the l-unit. For example, after a storage-to-register (RX) instruction is
decoded, the issuing of the RX instruction to the E-unit and the fetching of the
operand together constitute a controlled splitting operation, where sufficient infor-

mation is forwarded along both paths to effect a proper execution unit merge.

The block diagram of the MSCE is shown in Figure 2.2, where MC is the
maintenance console and PSCE is the Peripheral Storage Control Element. There
are different functional areas within the MSCE. Only those related to memory
access hazard resolution will be discussed. Details about other functions of the

MSCE can be found in [BoGr67].

There are three request queues in the MSCE, each of them associative for
address matching: (1) The store address registers, where three registers hold the
addresses of stores pending availability of store data. (2) The request stack where
a set of four registers holds rejected requests from the processor pending availabil-
ity of the memory module, and thus buffers the processor from storage conflicts.
(3) The accept stack where a set of shift registers hold information on accepted

requests in process. In addition, there are three store data buffers that hold store

MC PSCE CPU

v ¥y

28

MC PSCE CPU MC PSCE CPU CPU MC PSCE

e R M M

v

Storage
Address
Bus
——pi Store
Address
< Registers v
Store
vV e
Address Buffers
> Compare 3
Controls
> Request
e Stack Sink Storage Storage
Address Bus Bus
\lf \L \L \L Return Out In
Bus
Address 3
> Compare
Controls
Address
- —>>
Compare Controls
PSCE
> Accept ——)l
Stack l— MC Ei PSCE
MC
Data Out Gates N Protect N
Memory
> MAIN STORAGE UNITS <
A4 A\ 4
PSCE PSCE

Figure 2.2 -- Block Diagram of MSCE Organization from [BoGré67].

29

data words from all areas of the processor pending availability of the memory

module.

A memory request to the MSCE consists of an address, a return or sink
address (to route the returning data), control bits (to define the operation pre-
cisely), and the data for store operations. When neither memory conflicts nor
access hazards occur (and store data is available for store operation), the memory
request that is transmitted through the storage address bus, can be gated into the
accept stack and serviced immediately. However, when there are memory con-
flicts and/or access hazards, the memory request will be stored in the request
_stack. or the store address registers-depending on whether or not it is a fetch or a
store request. For a store request, the store data is submitted by either the I-unit
or the E-unit, while the store address is generated by the I-unit. Since the I-unit
always decodes and sets up the execution of instructions ahead of the E-unit along
the pipeline stages, the store address of the store operation will arrive at the
MSCE ahead of the store data if the store data is the result of arithmetic operation
produced by the E-unit. In this case, the store address is placed into the store
address register waiting for the store data to arrive. There may also be conflicting
store requests that are waiting for the memory modules to become available.
Thus, the MSCE has to check whether an access hazard exists for each new

request.

During each cycle, the MSCE controls determine the source (the peripheral
storage control element, the maintenance console, or the central processing unit)
that is allowed to make a request. The address of the request is then sent through

the address bus. This address bus is also used to load the address of a store

30

request into a store address register. The store address remains in the store
address register until its data word is generated by the processor. A successful
request is sent to the proper memory module, or to the PSCE if the extended main
storage is requested. If a request is accessing main storage, it is also gated into
the top of the accept stack with its control information. Any rejected processor

request is stored in a position of the request stack for later recycling.

The priority order for the requesting sources used by the MSCE to decide

which should be selected is:

(1) PSCE to (main) storage.

(2) Maintenance console to storage.

(3) Request stack to (main) storage for Multi-Access.
(4) Store address register to storage.

(5) Request stack to storage.

(6) Processor to storage.

When a fetch address passes through the address bus, it is compared with
addresses in the store address registers, the request stack and the accept stack. A
match with a store address register forces rejection of the request and the request
is stored in the request stack. This is because the acceptance of the request would
have caused an out-of-sequence fetch. A Read-After-Write access hazard is
therefore detected and resolved. A match with an address in the accept stack
implies that the desired word is being fetched by a previous request, and can be
obtained when the previous request is completed without selecting a memory
module or waiting for the memory module to become free. This is the Multi-
Access scheme used to obtain data for a fetch following either a fetch or a store to

the same memory address.

31

When a store address is sent to the MSCE, it is gated into a store address
register and will wait for the store data to be available. Once the store address
and the store data are available, the store request is gated to the address bus as
soon as possible. The store address register is made available once again to the
I-unit, which considers a store operation completed once it loads the store address
register. If the accessed memory module is busy or the store address matches with
an address in the request stack, (Write-After-Read or Write-After-Write hazard

detected) the store request is gated into the request stack.

When a request address passes through the address bus, a match with an
address in the request stack causes the request to be tagged for a future Multi-
Access operation, and to be gated into another position of the request stack. The
presence in the request stack of an outstanding request for a particular address
causes the second request to be rejected, thus keeping the two in the proper

sequence.

In summary, hardware interlocks in the form of address comparators
(address bus vs. pending store address registers and pending requests in the
request stack) are used to order stores to the same address, and to detect and re-
order out-of-sequence store/fetch requests to the same address. Hence, memory

access hazards in the IBM SYSTEM/360 Model 91 are detected and resolved.

The storage system of the IBM SYSTEM/360 Model 91 is a high perfor-
mance memory system. However, its hazard detection and resolution scheme
requires centralized interlock control and associative request buffers that can be

“too complex to be partitioned and implemented on VLSI chips.

2.3.2. Resolution of Access Hazards in the IBM SYSTEM/370 Model 168

The memory access hazard resolution scheme in the IBM SYSTEM/370
Model 168 [IBM76] is very different from the SYSTEM/360 Model 91. Instead
of detecting and avoiding out-of-sequence (fetch/store) memory operations before
the operations are started, the IBM SYSTEM/370 Model 168 detects the out-of-
sequence fetch after the data is fetched from the storage system. The out-of-
sequence fetch is ignored, and a fetch request has to be submitted again after the

store is completed.

The 1BM SYSTEM/370 Model 168 is a cache-based architecture. The
high-speed cache permits the central processing unit to work with the 80-ns
cache, rather than with a relative slower 4-way interleaved main storage system.
Similar to the SYSTEM/360 Model 91, the major processing units of SYS-
TEM/370 Model 168 are: the I-unit, the E-unit, and the Processor Storage Con-
trol Function (PSCF). The I-unit fetches, decodes instructions, makes operand
fetch requests and sets up instructions for execution by the E-unit. The PSCF
controls requests for the processor storage from the I-unit, the E-unit, the mainte-
nance console, and the I/O channels. As illustrated in Figure 2.3, the PSCF has
these major sections: priority controls, translator and translation lookaside buffer
(TLB), buffer (caches are called buffers in the IBM systems) invalidation address
stack (BIAS), channel buffers, source/sink, and processor storage controls.
Together, these units provide the following functions:

(1) Determine the priority of I-unit and E-unit requests.

(2) Determine the priority of the CPU and the channel for processor storage
requests.

33

System Channels
Console
‘L Processor Storage Control Function (PSCF)
Maintenance :
Controls : 7| Controls <{—p1 Buffer ;
———3i and l— | Invalidation <(—p1 Channel
—p| Priority &~ | | (BI) Address » Buffers 3
3 Stack :
runtt [|
i | Translator L—; Cache 24
: Memo 5
<— | v E
E-UNIT 5 ‘L ;
TLB Processor Source/
i | (DLAT) L3l Storage Sink
: Controls :
To/From VU« kUSRS
Channels Ly PO :
Storage
: IS)torage ‘Q———) Control '
rotect :
: and E
: ECC Logic ':
| tsu | wsu | wsu | wsu | i
; 0 1 2 3 :
S Processor Storage |
Processing Unit (CPU)

Figure 2.3 -- Block Diagram of the PSCF Organization of IBM SYSTEM/370
Model 168 from [IBM75].

34

(3) Translate logical addresses to physical addresses for CPU requests. Recently
translated addresses are held in the TLB (also called the DLAT), so that the
translation process can be accelerated.

(4) Buffer recently accessed instructions and data in the cache memory. The
CPU gets its information from the cache memory about 90% of the time.

Only those areas related to memory access hazard will be discussed in the follow-

ing paragraphs.

Four address registers are used by the I-unit to make memory requests via
the Processor Address Register (PAR). These are Instruction Address A-register
{1AA), Instruction Address B-register (1AB), Operand Address 1 Register (OA1l),
and Operand Address 2 Register (OA2). The PAR contains the address sent to
the PSCF priority circuits for a storage operation. A word of storage, i.e. 64 bits,
is obtained for each storage fetch request. 1AA and IAB are used to fetch instruc-
tions. One of them fetches the main stream of instructions; the other, which is
used for an execute or a branch instruction, fetches the target stream of instruc-
tions. OA1 and OA2 are used to fetch and/or store operands, and each of them
has its own operand buffer for storing the operand from memory or the operand
to be stored into memory. The OAl and OA2 and their operand buffers can be
controlled by either the I-unit or the E-unit. The storage addressing flow for a
memory request from the CPU and from other request sources is illustrated in
Figure 2.4 with the request lines that feed the PSCF priority resolvers arranged
from top to bottom in that priority order. For the requests from the CPU, the
store requests are given higher priority than the fetch requests, and the priority of
operand fetch is higher than instruction fetch. Table 2.1 lists the priority assign-

ment of requesting sources to the PSCF.

35

From From
Remote Channel
Maintenance CrU Buffer
Controls o ¢
CAR| MRAR Redo LAR BIAS DBAR/
BAR
Trans-
lator
(1 TAR
A Inv Lth
A
i
1 ./
LA | |
v el] " 5\ /
- o J | r
N
A C\ v
1
O PSCF TLB Column
A Adr Lth Decode Decode
W L2
TLB Adr Array
] — i n Fan ™
U ./ N/
2a —
2b —
3 v FAR | ISTAR1| |STAR2
4 TLB Compare
[g— AA Compare
PSCF
6 — AA Replacement —-——] r———-——————
72 =1 priori BAR
b —f rOnY DBAR __>\ /
8a — Resolver
g8b —
8¢ —
8d — SAB
%9a — Channel Request — Register
op — PS
STARI Request —— Priority
STARZ Request = Resolver To
FAR Request —_— Processor
W Storage

Figure 2.4 -- Storage Addressing Flow within the PSCF of the IBM SYS-

TEM/370 Model 168 from [IBM75].

36

Priority Assignment of Storage Requests in IBM SYSTEM/370 Model 168

Priority Function
1 Prefetch Request for Cache Memory
2a Invalidate Latch Request
2b Buffer Invalidation Address Stack (BIAS) Request
3 Buffer Add/Delete
4 Translation Lookaside Buffer (TL.B) Update
5 Translator Request
6 Redo Request
7a CPU Store Request from OA1 Operand Address Buffer
7b CPU Store Request from OA2 Operand Address Buffer
8a CPU Fetch Request from OA2 Operand Address Buffer
8b CPU Fetch Request from OA1 Operand Address Buffer
8c CPU Fetch Request from 1AB Instruction Address Buffer
8d CPU Fetch Request from IAA Instruction Address Buffer
9a Maintenance Console Store Request
9b Maintenance Console Fetch Request

Table 2.1

37

Feich requests are issued from the I-unit and store requests are issued from
the E-unit (in the IBM SYSTEM/360 Model 91, a store datum can be issued
from either the I-unit or the E-unit depending on the instruction format,) with the
I-unit handling the interlocking between requests. The operand address register,
being used as the destination register of a store operation, becomes busy when an
address is loaded by the l-unit. This address register remains busy until the
instruction that issues the store operation is completed and the store request 1s
accepted by the PSCF. Once a store request is made, the E-unit cannot initiate
another store request until it is signaled by the PSCF. Since there are only two
operand address registers (OA1 and OA2), at most two store addresses can exist at
the same time. Instructions are released to and executed by the E-unit according
to the order presented in the program; thus out-of-sequence stores never occur

and Write-After-Write hazards are precluded.

When a fetch instruction follows a store instruction, the fetch request by the
I-unit may precede the store request by the E-unit. To prevent old data from being
used, the I-unit compares the addresses in the source/destination address registers
(OA1 and OA2). If a match occurs, then an out-of-sequence fetch is detected.
This out-of-sequence fetch is ignored and a fetch is re-submitted after the store is

completed. Thus the Read-After-Write hazard is detected and resolved.

For the cache memory of the IBM SYSTEM 370 Model 168 uses write-
through policy and blocks memory requests when a cache miss occurs. Thus, no

access hazards can be introduced by cache operations.

The access hazard detection and resolution scheme of the IBM SYSTEM 370

Model 168 is less complex than that of the IBM SYSTEM 360 Model 91.

38

However, the scheme of the IBM SYSTEM 370 Model 168 is not suitable for a
VLSI decoupled architecture for two reasons: (1) off-chip communication is
required to re-submit the memory request that fetches a wrong operand from
main memory, and (2) it can create ordering problem for storing the fetched

operands correctly into the data queues.

2.3.3. Resolution of Access Hazards in CSPI MAP-200

The MAP-200 [CoSt81] is a peripheral array processor and a decoupled
architecture. There are three major processing units in the MAP-200: the
Addresser (APS), the Arithmetic Processing Unit (APU), and the Memory Transfer
Controller (MTC). As illustrated in Figure 2.5, these three processing units are
connected by the address and data queues: the Read Address FIFO (RAF), the
Write Address FIFO (W AF), the Input Queue (1Q), and the Output Queue (0Q).

The APS computes the load and store addresses and places them into the
RAF and the WAF, respectively. The fetched operands are stored into the 1Q and
used by the APU. When a computed result is to be stored into the memory, it is
placed in the OQ by the APU. As soon as the MTC detects that there is a load
address in the RAF and there is space in the 1Q, a fetch request will be issued to
the memory. Alternatively, a store address in the WAF and data in the OQ will
cause the MTC to issue a memory store operation. Obviously, the instruction that
will send a memory request to the RAF should be blocked when the RAF is full.
The size of the RAF-and the flow control of handling the RAF full condition is
not described in [CoSt81].

Memory
Busses

| N
Program .
Memory | L S RAF || }—-| A
——————— J Yrmmmmm ey d
; d
: rp—3
IR
ADDRESSER » WAF E : Z
(APS) R
1 MEMORY (gt |
System E ;
Flags TRANSFER < »
-1 CONTROLLER , Control
: Interface
i Lines
ARITHMETIC |, §
] 0 € E
PROCESSING :
UNIT 5
(APU)
”””””” 1 ———> 0Q >
Program |
|
Memory | o

Figure 2.5 -- Block Diagram of MAP-200 Organization from [CoSt81].

40

The MAP-200 system is designed to assign fetch requests higher priority
than the store requests, because fetches tend to be needed before stores. Cohler
and Storer investigated the performance using this priority scheme over a wide
range of algorithms. Their results did not produce a situation where giving a
higher priority to the store request than the fetch request would have improved
performance. However, they did find examples where, in giving output (writes)

preference, throughput is improved.

Out-of-sequence memory operations will occur when a fetch request after a
store request is made to the same memory location and the requests are waiting
- for service simultaneously. This is because the fetch request has been given prior-
ity over the store request. An access hazard detection and resolution scheme is
required to prevent the memory requests from being serviced out-of-sequence. A

software solution is chosen by the MAP-200 system to solve the problem.

For this purpose, the APS has an instruction that allows it to wait on the
WAF to become empty. The APS can use this instruction to ensure that a fetch
request will not be issued until the store request in the WAF is transferred to
memory. Thus, whenever there is a potential access hazard, the APS will not
place a fetch request into the RAF until the WAF is empty. However, since every
store creates a potential access hazard, the compiler for the MAP-200 needs to be
efficient in detecting access hazards; otherwise, the load and store operations will
be serialized and the parallelism obtained through decoupled computation will be

reduced.

41

2.4. Summary and Discussion

The review of previous research and existing memory systems led to the for-
mulation of the following features to be considered for the proposed memory sys-

tem for the decoupled architecture in this dissertation.

The first important feature is that the memory system must be interleaved, so
that memory bandwidth can be increased to maich the speed of processing units.
Second, the use of conflict queue to buffer conflicting requests can make the
effective bandwidth of the interleaved memory system to be a linear rather than a
square root function of the interleaving factor. However, the use of conflict
queues creates a sequencing problem when the order of data fetched from
memory is not the same as the order of its original arrival (which, of course, is
precisely when the conflict queue is used). Thus, a bookkeeping scheme must be
used to correct this problem. On the other hand, if the memory request are ser-
viced in the arrival order, the operands can be fetched and stored in data queue in
the correct order without re-ordering. In addition, access hazard detection is not
necessary. Thus, the control logic for servicing requests in the arrival order can
be very simple. The performance difference of servicing request in order and out

of order will be investigated in this research.

Third, multiple-words-returned-per-fetch techniques can be used to match
the memory bandwidth with the processor speed. The only shortcoming of
multiple-words-returned-per-fetch scheme is that data can be fetched but not used.
Since the needed data is the only data allowed in the operand queue, the fetched
data must be screened so that only the needed data is placed in the operand queue

(an exception is made for an instruction fetch request, where a complete cache

42

line is fetched).

Memory access hazards must be checked in order to prevent out-of-sequence

fetch/store to the same memory location from occurring. Categorization of the

techniques to detect and resolve memory access hazards in existing memory sys-

tems are as following:

(1

(2)

3)

Prevention: memory requests are scheduled in a way that fetch and store
requests do not exist simultaneously; thus, access hazards will never occur.
The prevention scheme used in the decoupled architecture, MAP-200,
results in a memory model where no conflict queue is used. This memory
model is similar to Hellerman’s model, whose effective memory bandwidth
approximates the square root of the interleaving factor. The prevention
scheme implemented in the Stunt Box [Thorn70] of the CDC 6600 actually
uses a conflict queue of size 4 to buffer only either fetch or store requests at
any moment. No mixed fetch and store requests can exist in the conflict
queue simultaneously. This prevention scheme is the underlying scheme in
the First-Come-First-Serve scheduling policy. This scheduling policy will be

studied in detail.

Detection and prevention: memory requests are serviced as soon as possi-
ble, but access hazards, if detected, must be resolved before a request is ser-
viced. This scheme is used in the storage system of the IBM SYSTEM/360
Model 91, and can be applied to memory system for decoupled architecture.

It will therefore be further investigated in this dissertation.

Detection and abortion: memory requests are serviced as soon as possible

and the address of the fetched data must be compared with the previous

43

pending store request. 1f a match is found, the fetched data is discarded and
a fetch request must be submitted after that store request is completed. This
scheme is used in the storage system of IBM SYSTEM/370 Model 168, and
can create a complex problem which is the correction of the order of the

fetched data within the queue. Thus, it is not further investigated.

Pipelining [RaLi77, CILP81] has proven to be very effective in improving
throughput with a small increase in hardware complexity. During a decoupled
computation, the Access Processor can continuously send memory requests to the
memory system. It is conceivable that the pipeline stages in the memory system
are full most of the time. The interlock controls for the pipelined memory system
can be implemented without much complexity as compared to the interlock con-
trols of the pipelined processing unit. The interlock control of pipelined memory
system only needs to compare memory addresses for checking the availability of a
memory module and detecting memory access hazards. Once the memory
request moves to a pipeline stage, it can be processed there and wait for moving to
next stage. There are no situations that require the pipeline to be flushed and the
operations in progress must be either restarted or discarded. While, it is much
more complex to design a pipelined processing unit that can avoid the necessity of
flushing the operations on the pipeline stages, e.g., the instructions being exe-
cuted are wrong due to an incorrect branch decision made earlier. Thus, pipelin-
ing techniques for improving the performance of the memory system also will be

used in this research.

In the following chapter, the memory reference pattern of decoupled compu-

tation is analyzed. Next, investigation of efficient request scheduling policies, the

44

organization of the memory system pipeline, and the structure of request buffers
between the pipeline stages will be studied in preparation for the memory system
design. The impact of memory access hazards on performance and alternative
access hazard detection/resolution schemes will be measured through simulations.
Finally, a new organization of data cache combined with a memory access hazard

detection scheme will be described, and its performance will be evaluated.

CHAPTER 3

An Analysis of Memory Reference Characteristics
in Decoupled Computations

Understanding of the memory reference characteristics in decoupled compu-
tation is the key to designing a practical memory system that facilitates the flow of
memory requests in a decoupled architecture. In this chapter, the first thirteen
loops of the Lawrence Livermore Laboratories benchmark program [McMa72,
RiSc84], are used to study memory reference patterns and their influence in
decoupled computation. From an analysis of decoupled computation, the desir-
able features and the request scheduling policies for the memory system will be

proposed and evaluated in chapter 5 and 6.

Although the memory system designs are intended for the PIPE architecture,
the discussion is applicable to any architecture where hardware queues are used at
the processor-memory interface. Since the PIPE architecture is implemented in
the VLSI environment, the constraints of a VLSI system, such as the off-chip

communication and the partitioning problems, will be considered.

45

46

3.1. Request Types and Potential Deadlock in Request Scheduling

The Memory Controller of the PIPE architecture can receive six different
types of memory requests: (1) instruction fetch (IFa) request for the Access Pro-
cessor, (2) instruction fetch (IFe) request for the Execute Processor, (3) load
address (LA) request for fetching operands to the Load Data Queue of the Access
Processor, (4) alternative load address (ALA) request for fetching operands to the
Load Data Queue of the Execute Processor, (5) store address (SA) request for
storing data generated by the Access Processor, and (6) alternative store address
(ASA) request for storing data generated by the Execvte Processor. In addition,
there are store data (SD)-from the Access and the Execute processors which are to
be paired with SA and ASA requests, respectively. The IF request provides the
beginning address of an instruction cache line, and the LA and SA request pro-
vide the address of a memory word being accessed. The Memory Controller must
fetch four instruction words from four different memory modules for each IF

request.

Except for the instruction fetch requests, there is a correct order of servicing
requests defined by the order of arrival. The operands fetched for the LA
requests must be delivered to the Load Data Queue of the Access Processor in the
arrival order of LA requests. Similarly, the operands fetched for the ALA requests
must be delivered according to the arrival order of ALA requests. The pairing of
store addresses and store data must also be done according to their arrival order.
For example, the n-th arrival of an ASA request must be paired with the n-th
arrival of SD from the Execute Processor. If there are load and store requests to

the same memory location, the correct order of servicing these load and store

47

requests is the arrival order of these load and store requests. A store operation

occurs logically at the time the store address arrives.

The Memory Controller can either store all six different types of requests in
a single request queue and service the requests in First-Come-First-Serve order,
or store them in different request queues according to their request types and ser-
vice the requests according to a priority of requests. When the load and store
requests are placed in separate queues, it will introduce memory access hazards.
Thus, it requires an access hazard detection and resolution scheme. There are
different ways of storing requests in separate queues, and different ways of assign-
ing priorities to request types. For example, the load requests can be stored in
one queue and the store requests stored in another queue. Then, the Memory
Controller can service requests either using the Read-Request-First scheduling
policy which gives the load request a higher priority than the store request, or
using the Write-Request-First scheduling policy which gives the store request a
higher priority than the store request. Methods of dividing requests into separate
queues and assigning a priority to each request type are discussed in detail in
chapter 4 where strategies of request scheduling are discussed. In the following
paragraphs, the potential deadlocks that can occur due to the organization of
request queues, and the minimum number of request queues required in order to

avoid deadlock are discussed.

There are two types of potential deadlocks if requests are serviced in the
First-Come-First-Serve order: (1) permanent blocking on LA requests, and (2)
permanent blocking on IF requests. Both types of blocking are caused by a SA

request waiting for a store datum that will never arrive.

a8

The first type of deadlock is caused by an incorrect arrival sequence of the
LA requests and the SA requests. For example, in the process of computing A =
B + C, the Memory Controller has to complete two read operations and one write
operation for storing the sum of B and C into A. The SA request for A can be
sent to the Memory Controller in three different orders: Case a: before the LA
requests for B and C, Case b: after the LA requests for B and C, or Case c:
between the LA requests for B and C. The Memory Controller should deliver the
values of B and C to the Load Data Queue, and wait for the store datum of the SA
request of A to arrive. Thus, the order of request arrival of Case a and ¢ will
cause a deadlock if there is only one request queue to store both the LA and the
SA requests. This type of deadlock can be alleviated through two methods: (a)
The compiler generates the access code for the Access Processor such that the
processor submits the LA and the SA requests as in Case b. This method can be
implemented easily by the compiler; however, it can severely limit the amount of
codes that the compiler could have scheduled to improve the speedup of decoupled
computation. (b) There are two separate queues for storing the LA and the SA
requests, respectively; each queue must have associative search capability in order
to detect memory access hazards -- Read-After-Write and Write-After-Read

hazards.

The second type of deadlock may occur when the IF and the LA requests are
stored in the same request queue. For example, in the decoupled computation for
computing these two arithmetic statements A = B + Cand D = A + E, the
Access Processor has the access code to submit requests. The order of such

requests is: ALA request of B, ALA request of C, ASA request of A, ALA

49

request of A, ALA request of E, and ASA request of D. However, the Execute
Processor does not have the execute code to compute B + C and A + E. The
Execute Processor, therefore, submits an 1Fe request to fetch the needed execute
code from main memory. If this 1Fe request arrives at the Memory Controller
later than the ALA request of A, then this IFe request cannot be serviced until the
ALA request of A is serviced. Thus a deadlock has occurred, because a Read-
After-Write hazard exists between the ASA request of A and the ALA request of
A. Since it is impossible to predict the occurrence of instruction cache misses,
and since the IF and LA requests need not be serviced according to the arrival
order of IF and LA requests, a simple solution is to use separate queues for the IF
requests and the LA requests. If self-modifying codes are allowed, the Memory
Controller must detect access hazards between the IF and the SA/ASA requests.
In addition, the existence of self-modifying codes requires the processor to check
whether or not a store request is updating an instruction which is in the instruc-
tion cache. For example, the I-unit must check whether or not a store request is
updating an instruction in the instruction array buffer of the IBM SYSTEM 360
Model 91 [AnST67, BoGr67]. Since there is an instruction cache on each PIPE
processor and the store address requests are issued from the Access Processor, it
can be very complex to design an instruction cache that allows self-modifying
code to exist. Thus, self-modifying codes are not considered in this research, and
access hazard detection for the IF requests will not be considered in the memory

system designs discussed in this dissertation.

In summary, the memory requests must be organized into at least four

request queues: (1) one IF Request Queue for storing 1F requests from both

50

Access and Execute processors, (2) one LA/SA Request Queue for storing load
addresses of LA and ALA requests and store addresses of SA and ASA requests
(assuming that requests are received from the Access Processor in correct
sequence, so that a deadlock will not occur), and (3) & (4) two Store Data (SD)
Queues for storing store data from the Access and the Execute processors, respec-
tively. Further dividing the LA and SA requests into separate queues gives the

compiler much greater flexibility in optimizing memory accesses.

3.2. Some Observed Characteristics and Their Implications

During decoupled computation, two instruction streams are executed by the
Access and the Execute processors simultaneously. If both the Access and the
Execute processors were to make their memory requests independently of each
other, it is likely that two memory requests would arrive at the Memory Controller
at the same time. If there are some variables that are shared by both processors,
continual interaction between processors through the memory system or through
some other means will occur. There are three characteristics that have been
observed during trace-driven simulations. In the following sections, each of these
characteristics is described and its implications on the memory system designs and

trade-offs are discussed.

3.2.1. Simultaneous Memory Input Arrivals

Two memory inputs -- request addresses or store data -- one from each pro-
cessor can arrive in the same clock period. This may occur frequently if the
instruction cache on the Execute Processor has a low hit ratio. Since off-chip

communications are expensive in a VLSI system, the Memory Controller should

51

accept whatever information is received, i.e., retransmission should never be
necessary for the memory transactions (except perhaps because of transmission

errors).

3.2.1.1. Problem With More Than One Arrival Per Clock

In order to receive memory inputs from both processors simultaneously, the
Memory Controller must have two input buses. Each input bus is dedicated to
receive memory inputs from a processor. The Memory Controller must decodc
the received memory inputs, and decide which request queues should store the
memory inputs. If both requests are instruction fetches, these two memory inputs
are for the same request queue. Thus, the hardware queue must be capable of
receiving two entities in the same clock period. Since it is very difficult to design
a hardware queue which is capable of accepting two entities in the same clock
period, an alternative is to process one of the two received memory inputs, place
the other one in a buffer, and service the latter in the subsequent clock periods.
However, two more requests may arrive on the following clock period. Thus, the
control logic for the Memory Controller to simultaneously receive two memory

inputs must be very complex.

3.2.1.2. Possible Solutions

If the memory input arrival rate is restricted to one per clock, a multiplexing
scheme can be used. In this approach, the required input pins for the Memory
Controller can be reduced by half. In addition, only one data path is required to

route the new arrivals, which cannot be processed immediately, to request

52

queues. Thus, restricting arrivals to one per clock can greatly simplify the input

logic of the Memory Controller.

Four multiplexing schemes are proposed and evaluated through trace-driven
simulations: (a) time-division multiplexing, (b) AP-First multiplexing, (c) EP-

First multiplexing, and (d) round-robin multiplexing.

In the time-division multiplexing scheme, clock cycles are divided into two
groups of time slots, even and odd cycles. The Access Processor can only send a
memory transaction out during an even clock cycle, whereas the Execute Proces-
sor can issue a memory transaction only during an odd clock cycle. in this
scheme, the peak bandwidth for each processor is reduced by 50%. Each proces-
sor can check its clock cycle, and decide whether or not it can send a memory
transaction out. Off-chip communication is not needed for the implementation of

time-division multiplexing scheme.

A static priority scheme, which assigns a fixed priority to each processor, is
used to decide the use of the memory input bus for the AP-First or EP-First mul-
tiplexing schemes. The arbitration process can be overlapped with the transmis-
sion of the previous memory transaction. Thus, there is no bandwidth penalty in
this scheme, and no time delay for the lower priority processor, except when con-
flicts occur. Because it requires one clock to send a signal from one processor to
the other processor, and one clock for a processor to decode the received signal,
the higher-priority processor must send an arbitration signal to the other proces-
sor two clocks before it sends a memory transaction to the memory system.
Thus, the allocation of the memory input bus is determined the clock before it is

used. For the AP-First multiplexing, the Execute Processor can issue a memory

53

transaction only when the Access Processor is not sending memory transactions.
The Access Processor has to signal the Execute Processor, in each clock, as to
whether or not a memory transaction is to be sent two clocks following the current
clock cycle. Similarly, in the EP-First multiplexing scheme, the Access Proces-
sor can issue a memory transactions only when the Execute Processor is not send-
ing memory transactions. The Execute Processor also has to signal the Access
Processor in each clock about the use of memory input bus. For both multiplex-
ing schemes, the high-priority processor can request the use of the memory input
bus only if the Memory Controller has buffers to receive the memory transac-

tions.

In the round-robin multiplexing scheme, the assignment of the memory
input bus is determined by the memory transaction which last used the memory
input bus. If both processors were to send memory transactions out during the
same clock cycle, the processor which last used the memory input bus has to
surrender its privilege. As in the static priority multiplexing scheme, the arbitra-
tion process overlaps the transmission of the previous memory transaction in
order to avoid peak bandwidth reduction. In each clock, each processor has to
send an arbitration signal to the other processor as to whether or not it intends to
use the memory input bus two clock periods hence. In the case of a conflict, the
loser uses the third clock period. It requires one clock to send an arbitration sig-
nal, one clock to transmit the signal from one end to the other end, and another
clock for the receiving end to decode the signal. Each processor requires a finite
state machine (FSM) to track: (1) the last use of the memory input bus and (2)

the arbitration signals sent in the last two clocks, so that the processor can deter-

mine whether or not it can use the memory input bus. Because the FSMs on
both processors are always in the same state, and a processor knows whether or
not the other processor intends to use the memory input bus in the next clock
cycle, only one processor will decide to send out a memory transaction. Thus, no

bus contention will ever occur.

The performance of these four input multiplexing schemes, and the perfor-
mance degradation due to the use of input multiplexing will be evaluated through
trace-driven simulations. Several memory models with different request schedul-
ing policies are proposed and discussed in chapter 4. From the proposed memory
models, the two best memory models (evaluated from the simulation results in
chapter 5) will be chosen for evaluating the performance of input multiplexing
schemes. - The simulation models and the techniques of performance measure-

ments are described in details in chapter 5.

3.2.1.3. Simulation Results

A memory model with First-Come-First-Serve/Read-Request-First
(FCFS/RRF) scheduling policy and a memory model with Free-Module-Request-
First/Read-Request-First (FMRF/RRF) scheduling policy were used. The possi-
ble time delay of sending a bus reservation signal was not taken into account dur-
ing the simulations of the static priority multiplexing and the round-robin multi-
plexing schemes. For the simulations of computing the first twelve LLL loops,
the number of occurrences and the percentage of total simulation time that both
the Access and Execute processors simultaneously send memory inputs to the

Memory Controller are summarized in Table 3.1. The performance degradation

55

due to the use of input multiplexing schemes for the FCFS/RRF and FMRF/RRF
memory models are summarized in Table 3.2. The workload of memory input
arrivals and simulation results for each of the first twelve LLL loops are given in
Appendix V. The workload ranges from 0.0% to 64.1% of the time that there are

two memory inputs simultaneously arriving at the Memory Controller.

The results from the two simulations of the memory models using the
FCFS/RRF scheduling policy and the FMRF/RRF scheduling policy were simi-
lar. Both results show that the best-to-worst ranking of the multiplexing schemes
were (1) the round-robin and EP-First schemes, (2) the AP-First scheme and (3)

the time-division scheme.

The performance of the round-robin and EP-First multiplexing schemes
were similar and the performance degradation due to the use of these two multi-
plexing schemes was insignificant. In addition, their results were nearly as good
as and sometimes better than the simulation model when no multiplexing scheme
was used. The simulation results of the 8-way interleaved memory model using
FMRF/RRF scheduling policy show that the use of round-robin or EP-First mul-
tiplexing actually completed the simulation in a shorter time than when no multi-
plexing scheme was used. This is because the store address and the store data
were both available earlier when no multiplexing was used than when multiplex-
ing schemes were used. During LLL loop 10 simulations in the 8-way inter-
leaved model, there were store requests at the end of current loop iteration and
load requests at the beginning of next loop iteration accessing the same memory
module. When no multiplexing scheme was used, the store data for the store

requests of current loop iteration arrived at the memory system before the load

56

Simulation Results of Simultaneous Input Arrivals
Scheduling Interleaving | Simulation Number of Percentage of
Policy Factor Time Occurrence | Simulation Time

4 73,950 2,755 3.7%

8 54,050 4,583 8.5%
FMRF/RRF 16 52,182 5,727 11.0%

32 52,024 5,624 10.8%

64 51,989 5,648 10.9%

4 109,633 1,312 1.2%

8 88,552 3,367 3.8%
FCFS/RRF 16 55,356 5,522 10.0%

32 52,220 5,694 10.9%

64 52,038 5,664 10.9%

Table 3.1 -- The number of occurrence and the percentage of total simulation
time that both the Access and Execute processors simultaneously send memory in-
puts to the Memory Controller.

57

Performance Degradation of Memory Models

Scheduling Multiplexing Interleaving Factor

Policy Scheme 4 8 16 32 64
Time-Division 0.4% 9.2% 12.4% 12.6% | 12.6%
AP-First 0.9% 1.6% 3.0% 3.4% 3.4%
FMRF/RRF
EP-First 0.04% | -0.4% 0.8% 0.6% 0.6%
Round-Robin 0.3% -0.5% 0.4% 0.4% 0.4%
Time-Division 0.5% 0.9% 9.2% 12.3% | 12.6%
AP-First 0.5% 0.0% 5.5% 2.6% 2.7%
FCFS/RRF
EP-First 0.2% 0.05% 0.5% 0.7% 0.5%

Round-Robin 0.5% 0.0% 0.4% 0.5% 0.4%

Table 3.2 -- Comparison of performance degradation due to the restriction of re-
ceiving one request per clock period.

59

time in the EP-First multiplexing simulations. This was because the Execute Pro-
cessor generated the store data at the maximum rate of one every two clocks
(assumed operands are provided before being used); thus, there were time slots

for the Access Processor to use the memory input bus.

3.2.1.4. Conclusions

The processor-to-memory bandwidth is potentially reduced by a maximum of
50% for each processor in the time-division multiplexing scheme. However, the
performance degradation in the memory sysiem is far less than this because the
-processors do not send requests-to the memory system at the rate of one per clock.
Thus, if the processor-to-memory bus is efficiently utilized (as in the round-robin
or EP-First multiplexing schemes), the performance degradation due to the use of

input multiplexing scheme can be insignificant.

Table 3.2 indicates that, in the time-division multiplexing scheme, the per-
formance degradation increases as the interleaving factor increases. This is
because the throughput of a memory system increases as the interleaving factor
increases. When the throughput increases, the memory wait time for processors
decreases and the total processing time of decoupled computation decreases. Con-
sequently, the average request arrival rate increases. Therefore, it is important to
have an efficient multiplexing scheme when the throughput of the memory system
is high. Conversely, the multiplexing scheme will have negligible impact on the

memory system when the throughput is low.

During decoupled computation, the Access Processor must issue ALA

requests for the Execute Processor, and issue an ASA request for each store

58

requests of next loop iteration arrived; thus, the store operations of current loop
iteration were started before the fetch operations of next loop iteration. While,
when the round-robin or the EP-First multiplexing were used, the store data for
the store requests of current loop iteration arrived at the memory system later than
the load requests of next loop iteration; thus, the fetch operations of next loop
iteration were started before the store operations of current loop iteration. The
operands for the Execute Processor were delivered earlier when the round-robin
or the EP-First multiplexing was used than when no multiplexing was used.
Thus, the total simulation time for LLL loop 10 in 8-way interleaved model was
longer for no multiplexing than for the round-robin or EP-First multiplexing (see

Appendix V).

The simulation results in Appendix V indicate that the EP-First multiplexing
was better than the AP-First multiplexing in the LLL loop 10 simulations, and the
AP-First multiplexing was slightly better than the EP-First multiplexing for the
rest of LLL loops simulations. This discrepancy was due to the starvation that
occurred in the Execute Processor if AP-First multiplexing was used in LLL loop
10 simulations. In each iteration of LLL loop 10, the Access Processor sent ten
ALA and ten ASA requests to the memory system, and the Execute Processor sent
ten store data to the memory system. Because the Access Processor sent requests
to the memory system at a rate close to one per clock, it occupied the memory
input bus most of the time. The Execute Processor was not given enough time
slots to send store data out, and filled its output queue. Thus, the Execute Pro-
cessor was blocked frequently in the AP-First multiplexing simulations. Con-

versely, the Execute Processor did not occupy the memory input bus most of the

60

datum generated by the Execute Processor. The number of memory transactions
issued from the Access Processor is always greater than that from the Execute
Processor. The Execute Processor must wait for the operands to arrive before
generating store data, and it will never generate store data at the rate of one per
clock for a sustained period. Thus, starvation will not occur in the Access Pro-
cessor in the EP-First multiplexing scheme. Because the Execute Processor does
not generate store data at the rate of one per clock, and because the round-robin
multiplexing scheme gives equal opportunity to both processors, the performance
of the EP-First and the round-robin multiplexing schemes can be the same. The
decision of selecting one of these two multiplexing schemes will be determined by
the implementation of a PIPE processor. For the round-robin multiplexing
scheme, both the Access and Execute processors must have the same finite state
machine for bus arbitration. While, the bus arbitration logic for the Access and
Execute processors will not be the same for the EP-First multiplexing scheme.
The control logic for the round-robin multiplexing scheme is more complex than
the EP-First multiplexing scheme. The possible delay for sending reservation sig-
nal can occur to both processors for the round-robin multiplexing scheme, but it
will occur only to the Execute Processor for the EP-First multiplexing scheme.
The selection of a multiplexing scheme must trade off these criteria and realize

the best solution in the design of a decoupled architecture.

3.2.2. Flow Control Problems

During decoupled computation, the Access Processor continuously issues

alternative load address requests for the Execute Processor, while the Execute

61

Processor accepts the fetched operands and performs computations on the
operands. If the Execute Processor cannot process the operands as fast as they
arrive, the Load Data Queue in the Execute Processor will fill. Similarly, if the
memory system cannot handle the arriving stream of requests efficiently, the
Memory Controller has to prevent the Access Processor from sending further
requests. Therefore, a flow control protocol is indispensable in regulating the

transactions between the processors and the Memory Controller.

A Start-and-Stop flow control scheme is proposed, and it is used throughout
the trace-driven simulations. In this scheme, a processor sends requests to the
Memory Controller until a Stop signal is received from the Memory Controller,
and it resumes sending requests when a Start signal is received. Similarly, the
Memory Controller delivers fetched operands to the processors according to the
control signals received from the destination processors. It requires three clock
cycle to complete the three steps: (1) the Memory Controller detects a queue full
condition and sends the Stop signal out, (2) the Stop signal passes through the
memory-to-processor bus, and (3) the processor receives and decodes the control
signal. Thus, the Memory Controller must reserve three request buffers for
receiving the possible three requests sent by the processor during these three

clock cycles.

In each clock cycle, each receiving end must send a Start or a Stop signal to
the transmitting end depending on its current state. At the beginning of the flow
control process, the receiving end must have at least four empty buffers. The
receiving end sends a-Start signal:in each clock until an entity is received from the

transmitting end. Then, the receiving end must send a Stop signal to the

62

transmitting end. After a Stop signal is sent to the transmitting end, the receiving
end must send a Start signal to the transmitting end if an entity is removed from
the buffers. Otherwise, the receiving end must send a Stop signal to the transmit-
ting end. Thus, for this Start-and-Stop flow control scheme, a Load Data Queue
size of at least four in the processor and a request queue size of at least four in the

Memory Controller are required to permit continuous operation.

There are two reasons to consider a queue of length greater than four: (1)
continuous flow of requests/operands, and (2) sufficient length to allow non-
deadlocking code scheduling. As the queue length increases, the transactions
between the processors and the memory system can be transmitted smoothly
without unnecessary holdup, and the Access Processor can send more load
address requests to fetch operands before the operands are needed. Thus, the per-
formance can increase as the length of queue increases. However, with a larger
queue size, a longer clock cycle (or more clock cycles) will be needed to complete
a queue remove/insert operation. In addition, the performance gain will not
increase as the length of queue grows beyond a certain length. Thus, it is impor-
tant to optimize the size of Load Data Queue in the processor and the number of

request buffers in the Memory Controller.

Trace-driven simulations [HsPG84, GoYo85] show that the performance
gained through the use of a longer queue in decoupled computation levels off
when the size of the Load Data Queue is about four. Simulations on 4-way and
16-way interleaved memory systems with memory request queue sizes of 4, 8, 16
and 32 were also performed in this study. The results indicate that, except for

LLL loop 10 simulations, the performance difference for request queue sizes of 8,

63

16 and 32 is insignificant. (For the LLL loop 10, twenty load address and ten
store address requests are issued per loop iteration, and there are memory con-
flicts among these requests. The memory request queue can be filled up easily if
the request queue size is less than or equal to 16. Therefore, the longer the
request queues in the memory system, the better performance the memory sys-
tem.) Thus, the queue size for the Load Data Queue on each processor does not
need to be larger than four, and the request queue size on the Memory Controller

does not need to be larger than four for most application programs.

3.2.3. Shared Variables

There are variables that are used for algorithmic computations and also used
for address generation and/or branch decision evaluation in some programs.
These variables, called shared variables, will be shared by the Access and the
Execute processors during decoupled computations. The occurrence of shared
variables depends very much on the programming style and the construction of
the compiler. For example, when the second LLL loop is coded in PASCAL (see
Appendix I), the loop counter increment statement (K := K + 35;) is within the
while-loop body of LLLL2. If the compiler considers this increment statement as
an algorithmic statement and makes the Execute Processor compute this incre-
ment statement, then the loop index K becomes a shared variable. If the while-
loop of LLL2 is coded in a do-loop in FORTRAN, the increment of the loop
-counter will become part of the do statement, and the compiler will not make the
Execute Processor compute the increment of the loop counter any more (since the

increment of the loop counter is only related to branch evaluation). Thus, the

64

loop index K will not be a shared variable. Alternatively, if the PASCAL com-
piler can recognize that the loop counter K is only used for address generation
and branch decision evaluation in LLL2, it will not make the Execute Processor
compute the increment of the loop counter either. Then, the loop index K will

not be a shared variable.

There are programs that cannot avoid having shared variables whenever the
programs are decoupled. For example, the array elements p[1,ip] and pl[2,ip] of
the 13th LLL loop (see LLL13 in Appendix 1) are shared variables. P[1,ip] and
p[2,ip] are used to compute array element addresses of arrays b, ¢, ¥, 2, ¢, f, and
h, and the values of p[1,ip] and p[2,ip] are recomputed from other array elements
during each loop iteration. Thus, pl1,ip] and p[2,ip] are shared variables when-
ever LLL13 is decoupled. The loop unrolling and software pipelining techniques

cannot prevent the p[1,ip] and p[2,ip] from becoming shared variables.

3.2.3.1. Problems Resulting from Shared Variables

When there are shared variables in a decoupled computation, the Access and
the Execute processors may run in a tightly-coupled mode where each processor
must wait for the other processor to compute current values of shared variables.
Thus, the Access Processor cannot run ahead of the Execute Processor and pro-
vide operands for the Execute Processor in advance. If no efficient way to
transfer the values of the shared variables between the Access and the Execute
processors is available, the likelihood of a realizable speedup through decoupled
_computation. will be limited. 1f the performance of decoupled computation is

heavily degraded due to the shared variables, it may actually run faster in a single

65

processor.

In a general decoupled architecture, the value of a shared variable can be
transferred between processors by two methods: (a) from a processor to the other
processor, or (b) first from a processor to memory, then to the other processor.
A processor-to-processor bus is required to implement method (a). Because off-
chip communication pins are limited in a VLSI system, method (a) requires that
some pins of the processor-to-memory bus be assigned to the processor-to-
processor bus if there are no extra pins available. In this case, the processor-
memory bandwidth is reduced, and extra clock cycles are needed for a processor-
memory transmission. If method (b) is used, as in the PIPE architecture, each
transfer of the shared variable value between processors requires the shared vari-
able value to be stored in memory and then fetched from memory. Both the store
and fetch requests are initiated by the Access Processor; thus, a Read-After-Write
access hazard can occur for each transfer of a shared variable value. A Read-
After-Write hazard occurs only if the store and the fetch to the same memory

location exist in the memory system simultaneously.

Because it is difficult to have a processor-to-processor bus for transferring
data between processors in the VLSI-based decoupled architecture, the implemen-
tation of method (a) is not considered in this research. Solutions for the Read-
After-Write access hazard resulting from method (b) are proposed and evaluated
through trace-driven simulations. The solutions, trade-offs, and simulation

results are presented in the following sections.

66

3.2.3.2. Solutions for the Shared Variable Problem

Because the Access Processor is responsible for making memory requests for
data accesses, the store address and load address requests for each transfer of a
shared variable value can be sent to the Memory Controller in consecutive clock
cycles. Thus, Read-After-Write access hazards can occur frequently. There are
two methods to reduce the number of memory accesses for shared variable refer-

ences. These two methods are described in the next two sections.

3.2.3.2.1. Detecting Read-After-Write Hazard and Bypassing Store Data

When the Memory Controller detects the Read-After-Write hazard, the
Memory Controller should bypass the store datum to the load address request, and
combine the store and the fetch requests for a shared variable into a single
memory store operation. Thus, the memory fetch cycle for the Read-After-Write
request is avoided, and only one memory store operation is needed for a transfer

of shared variable value between processors.

If the store operation for a shared variable is completed before the load
address request for that shared variable arrives, there will be no Read-After-Write
hazard. Obviously, the Memory Controller cannot bypass the store datum to the
load address request. In this case, store and fetch operations are needed for the

transfer of shared variable between processors.

3.2.3.2.2. Short-Circuiting Read-After-Write Request

In this method, a data cache or write buffers are used to saved the store

datum of a store request in the anticipation that the following load requests will

67

access the same memory location as the store request. Thus, the store datum can
be passed to the load requests if the store datum is still in the data cache or write
buffers. In this way, the memory fetch operation for a shared variable reference
can be avoided. This technique is called short-circuiting the Read-After-Write

request.

In chapter 6, a data cache with the ability to detect Read-After-Write access
hazards and short-circuit Read-After-Write requests will be designed and incor-
porated into the Memory Controller. In the following sections, the impact of
shared variables on the performance of decoupled computation is discussed.
Trace-driven simulations for memory models with data cache or write buffers
were used to evaluate the performance improvement of short-circuiting Read-

After-Write requests for shared variables, and results will be presented.

3.2.3.3. Analysis of Delay Due to Read-After-Write Access Hazards

A fetch request is sent to the memory system to fetch information that will be
needed soon. The purpose of a store request is to store information that will not
be needed until a subsequent fetch request occurs. Thus, the Memory Controller
should service the fetch request before the store request in order to shorten the
total computation time. However, when a Read-After-Write or Write-After-Read
access hazard occurs between a store and a fetch, these two requests must be ser-
viced in the correct order. Otherwise, the fetch request will fetch a wrong datum
from memory. The Memory Controller also must detect and resolve Write-

After-Write access hazards.

68

During decoupled computations, the Access Processor continuously overlaps
memory transactions in order to provide operands before they are needed.-.Thus,
it is likely that more than one fetch request for the same Load Data Queue can
exist simultaneously in the Memory Controller. Because operands are placed in
the Load Data Queue in their request arrival order, a fetch request that has a
Read-After-Write access hazard can delay the service of the fetch requests that
arrive at the memory system later. If the Memory Controller services the non-
blocking requests out of arrival order, then the operands fetched for the requests
that arrive later than the Read-After-Write requests can be ready for delivery ear-
lier than servicing fetch requests in the arrival order. Therefore, the delay of
delivering fetched operands introduced by Read-After-Write hazards can be
minimized, and the performance degradation due to Read- After-Write hazards can
be reduced. This analysis is verified in the simulation results presented in the
next section, where the FMRF/RRF memory model with 8 write buffers can ser-
vice requests out of arrival order and perform better than the AP-First or EP-First

memory models.

3.2.4. Simulation Results

Trace-driven simulations using the trace file generated from the decoupled
code of LLL loop 13 were performed to study the impact of shared variables on
the performance dégradation and evaluate the two proposed solutions: (1) bypass-
ing store data and (2) short-circuiting- Read- After-Write requests. In the decou-
pled code of LLL loop 13, the current values of array elements were saved in

registers for future use whenever it was possible. Thus, only one Read-After-

69

Write access hazard for p[1,ip] and pl[2,ip], respectively, would occur in each

loop iteration. Coincidentally, the load address of h[i2,j2] was the same as the

store address of h[i2,j2] of the previous loop iteration. Therefore, 383 Read-

After-Write access hazards occurred in the 128 loop iterations of each LLL13

trace-driven simulation.

Four memory models with different request scheduling were used to evaluate

the proposed solutions for Read-After-Write access hazards:

(D

(2)

(3)

4)

AP-First gives a higher priority to the load request than the store request.
Within the load or the store requests, the request of the Access Processor is
given a higher priority than the request of the Execute Processor.

EP-First gives a higher priority to the load request than the store request.
Within the load or the store requests, the request of the Execute Processor is
given a higher priority than the request of the Access Processor.

FMRE/RRF with 8 first-in-first-out write buffers per memory module. Each
module has 8 write buffers to save the store address/data belonging to the
module. The 8 write buffers in each module functions as a data cache that
allocates cache entries for writes only and replaces cache entries with FIFO
policy. Before servicing a load address request, the Memory Controller
checks if the address of load address request matches any store address saved
in the write buffer. The store datum is passed to the load address request if a
match occurs; otherwise, the Memory Controller starts a read operation for
the load address request.

FMRF with a data cache per memory module. Each data cache is used to
cache the memory requests accessing a memory module. A cache line con-
sists of M cache words from M data caches, where Mis the interleaving fac-
tor (the organization of data caches within the Memory Controller is
described in details in chapter 6). Two different organizations of data cache
sizes are used to obtain the simulation results presented in this section: (a)
128 cache words per module, and (b) a total of 128 cache words in the
Memory Controller. For-organization (a), the .total number of cache words
in the Memory Controller increases as the interleaving factor increases. For

~organization (b), the number of cache words per module decreases as the

interleaving factor increases.

70

Trace-driven simulations for these four memory models were performed on
interleaving factors from 1 to 64. Simulations for the memory models of AP-First
and EP-First with infinite interleaving factor were also performed. When the
interleaving factor was infinite, each memory location constituted a memory
module; thus, memory conflicts never occurred, and only memory access hazards
prevented the interleaved memory system from achieving its maximum

throughput.

A contention-free memory was defined for the purpose of evaluating the
impact of Read-After-Write access hazards on the performance degradation. In
the contention-free memory, conflicts never occurred and access hazards were
ignored, but it required the same amount of time (10 CPU cycles) as the AP-First
and the EP-First memory models to complete a memory operation. Thus, the
difference of simulation times between the contention-free memory and the AP-
First (or the EP-First) memory model of infinite interleaving factor indicated the
performance degradation due to Read-After-Write access hazards. The simulation

results are shown in Tables 3.3 and and plotted in Figure 3.1.

For the same interleaving factor, the total simulation time for the AP-First
model was shorter than the EP-First model. This result indicated that servicing
the LA request for the Access Processor before the ALA request for the Execute
Processor can let the address computation task proceed faster; thus, the total
simulation time was shorter if the LA request is given a higher priority than the

ALA request.

There were 383 Read-After-Write access hazards in each simulation. These

383 Read-After-Write requests constituted about 20% of the total number of load

71

Total Simulation Times of LL.L13

. Scheduling Policies
Interleaving
FMRF with FMRF with FMRF with
Factor AP-First | EP-First| Data Cache Data Cache Write Buffer
128 Wds/Mod | 128 Wds Total | 8 Buffers/Mod
1 29,139 | 30,536 22,805 22,805 25,988
2 22,586 | 23,162 18,907 20,135 19,580
4 21,057 | 21,601 18,126 19,577 18,247
8 20,316 | 20,840 13,577 19,505 17,547
16 18,681 | 19,197 8,701 20,642 15,810
32 18,477 | 19,009 6,863 20,796 14,971
64 18,405 | 18,925 6,371 21,463 13,825
Infinity 10,837 | 10,847 - - -

Total Simulation Time of LLL13 in the Contention-Free Memory = 9,440

Table 3.3 -- Total simulation times of LLL13 simulations

72

EP-First

AP-First

FMRE/RRF with Write Buffers of 8/Module

FMRF with Total of 128 Data Cache Words

FMRF with Data Cache of 128 Wds/Module

5000 4

No Memory Conflicts

No Memory Conflicts and No Hazards

T T T 1
8 16 32 64
Number of Modules

Figure 3.1 -- Performance comparison of merhory models in handling Read-
After-Write hazards in LLL13 simulations.

73

address requests. The store data were bypassed to all these 383 Read-After-Write

requests in the FMRF/RRF model with 8 write buffers per module. The speedup

of the FMRF/RRF model with write buffers over the AP-First model is shown in

Table 3.4. The speedup was roughly constant for interleaving factors up to 16;

) Simulation Time
Interleaving
FMRF with Speedup
Factor AP-First Write Buffer
8 Buffers/Mod
1 29,139 25,988 1.12
2 22,586 19,580 1.15
4 21,057 18,247 1.15
8 20,316 17,547 1.16
16 18,681 15,810 1.18
32 18,477 14,971 1.23
64 18,405 13,825 1.33

Table 3.4 -- Speedup using write buffers to bypass Read-After-Write data.

74

however, the speedup increases when the interleaving factor was greater than 16.
This indicated that access hazards prevent the AP-First (or EP-First) model from
servicing memory requests even when the needed memory modules were free.
Thus, the performance gain for the AP-First (or EP-First) leveled off when the
interleaving factor was greater than 16. However, the performance gain still
increased for the FMRF/RRF model with write buffers when the interleaving fac-

tor increased from 16 to 64.

The performance difference between the AP-First (or EP-First) model with
infinite interleaving factor and the contention-free memory was about 15%. This
indicated that the performance degradation due to Read-After-Write access hazard

was about 15% for the LLL13 simulations.

The simulation results of the FMRF models with different data cache sizes
illustrate that a data cache of suitable size can effectively short-circuit Read-After-
Write requests. In the simulation model for FMRF with data cache, the Memory
Controller fetched the entire cache line for each read requests. Thus, when the
interleaving factor was 64, 64 words from different modules were fetched (if any
cache misses) into data caches for each load address request. If the data cache
size was small, the data stored in the data cache would be replaced frequently.
Consequently, the Memory Controller used many memory cycle times to feich
data into data caches, but those fetched data may have been replaced before they
were used. As illustrated in the simulation results, the performance of the

memory model of FMRF with 128 cache words per module increased as the inter-

leaving factor increased, and it was even better than the contention-free me:mory1

75

when the interleaving factor was equal or greater than 16. However, the perfor-
mance of the memory model of FMRF with total of 128 cache words decreased
when the interleaving factor increased after 8 (hit ratios decreases as the interleav-

ing factor increases).

In order to find a suitable size of cache in each Module Controller, simula-
tions for the FMRF Memory Controller with different total cache sizes from 128
cache words to 2048 cache words were performed. The simulation results are
shown in Table 3.5 and plotted in Figure 3.2. The relation of the hit ratio and
e number of cache words per module are shown in Table 3.6. Figure 3.2 illus-
trates that-the total simulation time of LLL13 decreased as the total number of
cache words increased. For the cache sizes investigated, it took the least time
when the interleaving factor was 8. Table 3.6 indicates that, for the same total
cache size, the hit ratio was the highest when the interleaving factor was 8 for the
total cache size that was equal to or greater than 512 words. The hit ratio was the
highest when the interleaving factor was 4 for the total cache size that was 128 or
256 words. These results showed that an interleaving factor of 8 was the best
configuration for the data cache organization used in the simulations. It also sug-
gests that a larger cache size would do better for a larger interleaving factor, i.e.,
that 256 words per module is not enough. Further simulation results for the

FMRF memory model with data cache will be presented in chapter 6.

INote the contention-free memory always requires 10 CPU cycles to service a
memory request, while the cache memory réquires 3 CPU cycles ‘on a hit.

76

Simulation Times of LLL13 in FMRF Memory Model with Data Cache
. Total Number of Data Cache Words
Interleaving

Factor 128 256 512 1024 2048
1 22,805 21,765 21,737 19,678 14,618
2 20,135 18,907 18,853 15,665 9,134
4 19,577 18,238 18,126 13,985 7,790
8 19,505 18,105 17,877 13,577 7,180
16 20,642 19,669 19,197 14,798 8,701
32 20,796 20,296 19,470 14,990 8,721
64 21,463 21,243 19,713 15,651 11,255

Table 3.5 -- Total simulation times of LLL13 simulations with different total
cache sizes from 128 to 2048 words in the FMRF Memory Controller.

77

25000 _

o

10000
T
i
m O O 128 Wds
5000 4 o——-— o 1256 Wds
N o 512 Wds
A A 1024 Wds
+——+ 2048 Wds
0 T T T] T |

1 2 4 8 16 32 64
Number of Modules

'Figure 3.2 -- Total simulation times of LLL13 in FMRF memory modules with
total cache sizes from 128 to 2048 words in the Memory Controller.

78

Simulation Results of LLL13

Interleaving Hit Ratio and Number of Cache Words Per Module
Factor
1 24 6% | 1281137.0% | 256(37.2% | 512|/59.7% | 1024(79.5% | 2048
2 27.3% | 64 ||39.8% | 128(40.2% [256|62.2% | 512 ||89.2% | 1024
4 28.1% | 32 140.7% | 64 |41.4% |12866.9% | 256 193.7% | 512
8 27.4%| 16 40.2% | 32 |41.8% | 64 |67.8% | 128 |95.8% | 256

16 20.0%| 8 1125.5% | 16 |28.6% | 32 |57.7% | 64 ||85.2% | 128

32 12.4%| 4 (22.3%| 8 [|27.2%| 16 |56.5% | 32 ||84.6% | 64

64 6.2% | 2 114.6%| 4 |22.6%| 8 |52.1%| 16 ||74.2% | 32

Table 3.6 -- Relation of the hit ratio and the cache words per module of LLL13
simulations in the FMRF memory model with data cache.

79

3.3. Summary and Discussion

The potential deadlock states in request scheduling have been identified. The
instruction fetch requests and the load address requests must be stored in separate
queues in order to avoid deadlock. The memory requests must be organized into
a minimum of four request queues: (1) one IF Request Queue for storing IF
requests from both Access and Execute processors, (2) one LA/SA Request
Queue for storing load addresses of LA and ALA requests and store addresses of
SA and ASA requests (assuming that requests are received from the Access Pro-
cessor in correct sequence, so that deadlock will not occur), and (3) & (4) two
Store Data (SD) Queues for storing store data from the Access and the Execute

processors, respectively.

Three characteristics of memory references in decoupled computations were
observed: (1) two memory inputs can be issued to the memory system in the same
clock period, (2) overflow of hardware queues can be caused by continuous
occurrence of memory requests, and (3) there is a shared variable problem that
leads to Read-After-Write access hazards. Problems resulting from these three
characteristics have been discussed, -and possible solutions were proposed and

evaluated.

The round-robin and the EP-First multiplexing schemes were shown to be
similar from the results of the trace-driven simulations, and they were the best of
the four proposed multiplexing schemes that restrict the memory input arrival rate
to one per clock period. The performance degradation due to the use of these two

multiplexing schemes is negligible.

80

A Start-and-Stop flow control scheme is proposed to regulate the transactions
between the processors and the memory system. By using this scheme, both the
processor and the Memory Controller must reserve three empty buffers before a
Stop signal is sent. After a Stop signal is sent, a Start signal must be sent if a new
empty buffer is made available; otherwise, a Stop signal must be sent. Thus, the
sizes of the Load Data Queue on a processor and the request queue on the
Memory Controller each needs to be at least 4. The simulation studies show that
the size of the Load Data Queue on a processor does not need to be larger than 4,
and the request queue size in the Memory Controller does not need to be greater

than 4.

For the shared variable problem, short-circuiting Read-After-Write requests
has been shown to be effective in reducing the penalty resulting from Read-After-
Write access hazards between shared variable references. In the simulation stu-
dies of LLL13, the FMRF/RRF memory model with eight write buffers in each
memory module can bypass the store data to the Read-After-Write requests, and
improve the performance by more than 15% over the AP-First or EP-First
memory models when the interleaving factor is greater than one. The FMRF
memory model with a data cache in each memory module can short-circuit the
store data to the Read-After-Write requests and improve the performance signifi-
cantly if the total cache size is equal to or larger than 1 K (128 words per module
and the interleaving factor is equal or greater than 8). However, the performance
of the FMRF memory model with data cache in each module can degrade if the
cache size is not large enough (less than 16 words per module in the LLL13

simulations).

CHAPTER 4

Request Scheduling and Memory System Design

The literature review of previous work in memory system design has led to
the conclusion that pipelining, interleaving and buffering conflicting requests can
be used to increase the throughput of the memory system. By using conflict
queues, memory requests will be serviced out of arrival order. Thus, memory
access hazards must be detected and resolved. Determining request priorities and
designing a request scheduling policy with the ability of buffering conflict requests
are the themes of this chapter. Memory systems based on the proposed request
. scheduling policies will be designed, and tradeoffs of the different characteristics

in the design of the memory system will be discussed.

4.1. Memory Request Scheduling Strategies

Scheduling policies are critical to minimizing the total request service time in
-the memory system. Therefore, a basic understanding of the types of scheduling
. policies and the way-each behaves under different memory organizations is neces-

sary. There are two questions to memory request scheduling strategies for servic-

81

82

ing six different types of requests: (1) within single type of memory requests, what
order are the requests to be serviced? and (2) among request types, which

request type is to be serviced next?

In the following sections, a memory module scheduling policy which can
minimize the request service time for requests of a single type is derived,
motivated by example and substantiated by formal proof. Then, strategies of ser-
vicing requests from different types are proposed. Finally, their performance

implications and trade-offs are discussed.

4.1.1. Request Scheduling For a Single Request Type

There are two major categories of scheduling policies possible for requests of
a single type with multiple servers: (1) to service the requests according to arrival
sequence, and (2) to service the requests out of arrival sequence. The data
fetched from the memory in the former type of scheduling policy will be returned
in the same order as their arrival sequence. The data fetched from the memory in
the latter type of scheduling policy must be reordered according to their arrival
sequence before delivery from the memory system. The first category is termed
First-Come-First-Serve (FCFS). An example of the second category, Free-
Module-Request-First (FMRF), will be studied and shown to minimize the request

service time for every request.

The Memory Controller using a First-Come-First-Serve policy services the
oldest request pending in the memory if and only if the needed memory module is
free, and it issues at most one memory operation in each clock period. The

Memory Controller using a Free-Module-Request-First policy consists of M

83

Module Controllers, where M is the number of memory modules. Each Module
Controller is allocated to service the requests accessing a single memory module,
and issues the memory operation for the oldest request for that module whenever
its associated memory module is free. Thus, the Module Controliers can issue
more than one memory operation in the same clock period. All the Module Con-
trollers must coordinate among themselves to deliver memory outputs to destina-

tion queues in the correct sequence (only one per clock, obviously).

The queueing model, in Figure 4.1, illustrates the queueing and servicing
disciplines of the First-Come-First-Serve and Free-Module-Request-First policies.
In Figure 4.1, the requests of the same type are further divided into separate
queues according to the memory module number. In the First-Come-First-Serve
policy, the request at the head of the queue is serviced when the server is free and
it is the oldest request in the set of queues. In the Free-Module-Request-First
policy, the requests at the heads of the queues are serviced as soon as the servers
are free; however, the servers must coordinate among themselves in order to
deliver the results of the serviced requests through the output bus one at a time
-according to-the request arrival order. We assume that it does not require any

additional time to reorder the memory outputs into the request arrival order.

There is an interesting intermediate possibility of servicing requests, that is,
to use a centralized Memory Controller, which issues only one memory operation
per clock period, but out of arrival sequence. The fetched memory outputs are
then assembled by the centralized Memory.Controller and delivered to their desti-
nation queues in the correct order. This request scheduling scheme completes

memory requests in a longer time on the average than the Free-Module-Request-

— >

>

Output Bus

—> -
Requests
of the
same type

—>

>

84

Figure 4.1 -- A queueing model for servicing requests of the same type with mul-

tiple servers.:E

ach server services requests accessing the same memory module.

85

First policy, and is no easier to implement. It will not be further discussed. In
the following examples, the request service sequence of the Free-Module-
Request-First policy is illustrated by comparing its total service time with the

First-Come-First-Serve policy.

Example 4.1 :

Assume that the memory system is 4-way interleaved, the memory bank busy
time is 4 CPU clock cycles, and read requests arrive one per clock period at
module 1, 0, 1, 2, 3 and 2 sequentially. Figure 4.1 illustrates the difference
between the First-Come-First-Serve and the Free-Module-Request-First schedul-

ing policies.

The first and the second requests arrive at module 1 and 0, respectively, and
are serviced immediately. The third request conflicts with the first request at
module 1; thus the third request has to wait until the first request has completed at
time 4. Up to this point, both the First-Come-First-Serve policy and the Free-
Module-Request-First policy provide the same results. But, when the 4th and 5th
- requests arrive at modules 2 and 3, the two scheduling policies differ. The Free-
Module-Request-First policy can service the 4th and 5th requests on the same
clock period that they arrive. The First-Come-First-Serve policy cannot service
the 4th request until the 3rd request is issued, and the 5th request will not be ser-
viced until after the 4th request is serviced. In the case of Free-Module-Request-
-First policy, the 4th request will be completed before the 3rd request, and the 5th
request will be completed on the same clock period as the 3rd request. Since the

outputs have to be sent out in the order of request arrivals, the 4th request output

86

FIRST-COME-FIRST-SERVE POLICY

Arrival 1 0 1 2 3 2
Issue 1 0 . . 1 2 3
Output 1 0 . . 1 2 3 . . 2

FREE-MODULE-REQUEST-FIRST POLICY

5
3 L P4t | | | |
Arrival 1 0 1 2 3 2
Issue 1 0 . 2 1,3 . . 2
Output . . 3 . 1 0 . . 1 2 3 2

Figure 4.2 -- Assume 4-way interleaving and a memory bank busy time of 4 CPU
cycles. Attime 0, 1, 2, 3, 4, and 5, read requests arrive at module 1,0, 1,2, 3
and 2, respectively. 1t takes 13 CPU cycles for the First-Come-First-Serve
scheduling policy to complete service, while the Free-Module-Request-First
scheduling policy needs only 11 CPU cycles.

87

and the 5th request output have to follow the 3rd request output. Thus, total ser-
vice time to process these five memory requests is the same for both scheduling
policies. However, after the 5th request, the Free-Module-Request-First policy
can complete the 6th request earlier than the First-Come-First-Serve policy, if the
module referenced by the 6th request is 2 or 3. In this example, the 6th request,
that arrives at module 2, will be completed at the 11th clock period for the Free-
Module-Request-First policy, and completed at the 13th clock period for the

First-Come-First-Serve policy.

- From Example 4.1, we see that the Free-Module-Request-First policy takes
advantage of free memory modules and’ completes memory requests as soon as
possible. The Free-Module-Request-First policy is superior when memory con-
flicts occur frequently; therefore, it is important to understand the characteristics

of memory interference in the decoupled architecture.

Example 4.2 :

To further illustrate the difference of the Free-Module-Request-First policy
and the First-Come-First-Serve policy under different memory conflict frequen-
cies, examples of memory reference sequences with different memory bank busy

times from a decoupled code of LLL?2 (see Appendix II) are used.

For the following example, assume that there is neither a bus conflict nor an
_instruction cache miss on the Access Processor and that it takes one clock to com-
plete a one-parcel (16-bit) instruction and two clocks for a two-parcel (32-bit)

instruction. The memory arrival sequence of LLL2 can be derived by timing the

88

execution of its access code. With this request arrival sequence, the performance
difference of the First-Come-First-Serve and the Free-Module-Request-First poli-

cies can be evaluated for different memory configurations.

Assume a memory system that is 4-way interleaved. Since there are 1000
elements in the TP, X and Z arrays of LLL2, unless special storage arrangements
are made to prevent these three arrays from storing in consecutive memory loca-
tions, it is likely that their base addresses will be in the same memory module.
Without loss of generality, assume that the array base addresses are in module 3
and the first read request arrives at time 0. For each loop iteration, the progress
of memory read requests with a memory bank busy time of 6 and 4 CPU clock
cycles is illustrated in Figures 4.2 and 4.3, respectively. These two time
diagrams demonstrate that the Free-Module-Request-First scheduling policy can
benefit from frequent memory conflicts and a sufficiently long memory bank busy
time. In the First-Come-First-Serve scheduling policy, more memory conflicts
occur when the memory bank busy time is 6 CPU cycles than when the memory
bank busy time is 4 CPU cycles (the number of memory conflicts is counted as
the number of memory cycles when the Memory Controller cannot service any
pending requests.) The total service time for the Free-Module-Request-First pol-
icy is shorter than that of the First-Come-First-Serve policy when the memory
bank busy time is greater than 4 CPU cycles; however, the total service time is
the same for both policies when the memory bank busy time is 4 CPU cycles or
less. This is because the 3rd request arrives before the 2nd request is serviced if
the memory bank busy time is greater than 4 CPU cycles. Thus, for the First-

Come-First-Serve policy, the 3rd request cannot be serviced when it arrives, and

89

MOD MOD MOD MOD

Time 0 1 2 3 Arrival Issue Output
0 ; 3 3
2 3
4 .
0 i
6 3 3
, 2 0 0
8
10]
12 5 Y 1) 3
4 X 0 0
14 5) 1
2
16)
2
18
A\ 4)) 0
20 p 3 1 1
. X 2
22 3
24
26 — A4 3 . 1
28 8 § 2
g :
30
32
A4 i 2
34 10 3 3
36
38
40 — Y 3

Figure 4.3.A -- Assume 4-way interleaving and a memory bank busy time of 6
CPU cycles. At time O, 2, 5, 7, 10, 12, 15, 17, 20 and 22, read requests arrive
at module 3, 3, 0, 0, 1, 1, 2, 2, 3 and 3, respectively. It takes 40 CPU cycles for
the First-Come-First-Serve scheduling policy to finish.

90

MOD MOD MOD MOD

Time 0 1 2 3 Arrival Issue Output
0 _ — e 1 3 3
2 —— — — 3
4 —] —
0 0
6 S . 3 3
0
8 —
10] 1 1
4 ? . 0 .
12 — ¥ 1 : 3
0
14 — — .
7 2 2
16 —_— . 1

<€

18— e . . 1

20 3 3
22— A2 3

24

DY =t

26 10 3

(VS IR & I

28

30
32 ¥ 3

34 —

36 —

38 —

40

Figure 4.3.B -- Assume 4-way interleaving and a memory bank busy time of 6
CPU cycles. At time 0, 2, 5, 7, 10, 12, 15, 17, 20 and 22, read requests arrive
at module 3, 3, 0, 0, 1, 1, 2, 2, 3 and 3, respectively. It takes 32 CPU cycles for
the Free-Module-Request-First scheduling policy to finish.

91

FIRST-COME-FIRST-SERVE POLICY

T I TN (N e Y o~ I O I O
S N N N O N [S T e e I
B e e A N I N B B = o o
Arrival 3.3..0.0..1.1..2.2..3.3

Issue 3...30...01...12...23...3

Oupui3...30...01...12...23...3

FREE-MODULE-REQUEST-FIRST POLICY

B o e T N I O B = TR

Arrival 3. 3. .0.0. .1.1. .2_.2..3.3
Issue 3...30...01...12...23...3
OQuput3...30...01...12...23...3

Figure 4.4 -- Assume 4-way interleaving and a memory bank busy time of 4 CPU
. cycles. At time 0, 2, 5, 7,.10, 12, 15, 17,-20 and 22, read requests arrive at
module 3, 3, 0, 0, 1, 1, 2, 2, 3 and 3, respectively. It takes same amount of time
for the Free-Module-Request-First and the First-Come-First-Serve scheduling pol-
icies to finish.

92

it delays the starting service time of the later arrivals.

In this example, the beginning addresses of arrays X and Z are located in the
same memory module when the interleaving factor is 4 or 8 (because the 1000
array elements of X and the 1000 array elements of Z are stored in consecutive
memory locations) and not located in the same module when the interleaving fac-

tor is greater than 8. Thus, the number of memory conflicts between the array

references of X and Z decreases when there are more than 8 memory modules’,
and the performance difference of First-Come-First-Serve and Free-Module-

Request-First policies will be insignificant.

4.1.1.1. Theorem of Free-Module-Request-First Scheduling Policy

Theorem 1 : Given a stream of request arrivals and that the memory out-
puts of the read requests have to be delivered in the same sequence as the
their arrivals, the Free-Module-Request-First request scheduling policy al-
ways completes service for each request in the shortest possible time.

Proof : For the queueing model in Figure 4.1, the FMRF scheduling policy starts
the service for the requests in each queue as soon as the needed server is free,
and the operands fetched for the read requests will be ready for delivery as soon
as the server completes the service of the read requests. If the requests in each
queue are not serviced as soon as the needed server is free, then there is an idle
server between. the end of a memory operation and the beginning of the following

memory operation. Due to the delay of memory operations, the operand fetched

d 1A compiler can achieve the same effect by careful alignment of array ad-
Tesses.

93

for each read request can not be ready for delivery at an earlier time than if the

read request is serviced by the FMRF scheduling policy.

Because the operands fetched for the read requests must be delivered in the
arrival order, there is no benefit for a server to service the requests in its request
queue out of arrival order. For the FMRF scheduling policy, the server of a par-
ticular module completes the service for each of its requests at the earliest possible
time. The fetched operands are then ready for delivery at the earliest possible
time. Because it does not require extra clock periods for the servers to reorder
the fetched operands into the arrival order, the FMRF scheduling policy can
deliver the fetched operands at the earliest possible time. Thus, the FMRF
scheduling policy always completes the service for each request in the shortest

possible time.

End of Proof.

4.1.2. Request Scheduling Among Request Types

During decoupled computations, the Memory Controller can receive six dif-
ferent types of requests: (1) instruction fetch (IFa) request for the Access Proces-
sor, (2) instruction fetch (IFe) request for the Execute Processor, (3) load address
(LA) request for fetching operands to the Load Data Queue of the Access Proces-
sor, (4) alternative load address (ALA) request for fetching operands to the Load
Data Queue of the Execute Processor, (5) store address (SA) request for storing
data generated by the Access Processor, and (6) alternative store address (ASA)
request for storing data generated by the Execute Processor. In addition, there

are store data (SD) from the Access and the Execute processors to be paired with

94

SA and ASA requests, respectively.

In chapter 3, it was concluded that the 1F and the LA/ALA requests must be
stored in separate queues in order to avoid deadlock, and that the load and the
store address requests can be stored in the same queue as long as the decoupled
code is correct. The Memory Controller need not check for access hazards
(Read-After-Write, Write-After-Read and Write-After-Write hazards) if the load

and the store address requests are stored in the same LA/SA queue.

4.1.2.1. Considerations of Separating Load and Store Requests

There are three reasons, described below, for dividing an LA/SA Request

Queue into an LA Request Queue and an SA Request Queue.

(1) A store operation can be issued only if the store address and the store datum
are both available. If the head of LA/SA Request Queue is an SA request,
and the store datum for this SA request is not yet available, this SA request
will block the other LA requests from being issued untl its store datum
arrives.

(2) By storing the LA and the SA requests in separaie queues, the Memory Con-
troller can service the LA request before the SA request as long as an access
hazard does not exist; thus, the operands can be delivered to the processors
earlier.

(3) The potential deadlock states (discussed in chapter 3), that can be introduced
by the combination of an inappropriate sequence of load and store with the
use of a single LA/SA Request Queue for the LA requests and the SA
requests will not occur.

In Chapter 3, it was concluded that by giving a higher priority to the LA
request than the SA request, the total processing time of decoupled computation
can be shorter than servicing the LA and SA requests in order of arrival. If LA

requests are to be serviced before SA requests, the Memory Controller must

95

check for Read-After-Write access hazards before a LA request can be serviced.
It was also concluded that the short-circuiting technique to bypass a store datum to
the Read-After-Write request is effective in reducing the total request service time.
Because short-circuiting Read-After-Write data can generate memory outputs for
a Load Data Queue in an order that is different from their original request arrival
sequence, the Memory Controller must assemble the memory outputs into the

correct sequence before delivering them.

Alternatively, if the Memory Controller blocks the service of a LA request
when an access hazard is detected and services the LA request when the hazard is
resolved, then memory outputs will be generated in the correct order and the
Memory Controller can deliver memory outputs whenever the processor is ready
to receive them. Therefore, the control logic for the Memory Controller can be

simpler.

Thus, it is concluded that handling loads before stores improves perfor-
mance, while aggravating the hazard detection problem. In order to evaluate the
trade-offs, the performance difference of handling loads and stores in order and
handling loads before stores is evaluated through trace-driven simulations in
chapter 5. A data cache with the ability to detect/resolve access hazards is

designed in chapter 6, and its performance is evaluated.

4.1.2.2. Priority of Instruction Fetch and Load Address Requests

In the-PIPE architecture, the instruction cache lines are fetched on demand.
- Thus, IF requests are sent to the Memory Controller only when the instruction

words are needed. Each IF request fetches four parcels from four consecutive

96

memory locations in four different memory modules. When there are IF and LA
requests waiting for service simultaneously, the Memory Controller has to decide
whether the request from the IF Request Queue or the LA Request Queue should
be serviced first. The IF request is serviced before the LA request for two rea-

sons:

(1) The IF request queue is usually empty because an instruction cache miss
does not occur frequently, and it can never be longer than 2 (for the PIPE
architecture).

(2) A PIPE processor does only limited prefetching of instructions, never fetches
instruction cache lines that will not be used. Thus, the instruction issue
Jogic likely will cease in only a few clock periods when a cache miss occurs.
On the other hand, the operands being fetched probably will not be required
for a longer time if reasonable code scheduling has been performed.

Thus, the IF request is more urgent than the LA request.

4.1.2.3. Three Steady-State Models in Decoupled Computation

In the previous sections, we established the priorities between the LA and the
SA requests, and between the IF and the LA requests. The LA requests are
further divided into the LA requests for the Access Processor and the ALA
requests for the Execute Processor, sO that the Memory Controller can select the
next service for the load address request of a processor whose requests are con-
sidered to be more urgent than those of the other processor. The priority of the
LA and the ALA requests can be determined based on these three steady-state

situations:

(1). The Access Processor is not able to run ahead and is the bottleneck of decou-
pled computation, i.e. the LA request queue is empty.

97

(2) The Execute Processor has a full Load Data Queue and is the bottleneck of
decoupled computation.

(3) The Memory Controller is not able to meet the demand of requests and is the
bottleneck of decoupled computation, i.e. the LA and/or SA request queues
are full.

4.1.2.3.1. Access Processor is the Bottleneck

The workload of address generation is heavier than that of algorithmic com-
putation when the Access Processor is the bottleneck of decoupled computation.
In this situation, the LA reguest should be given a higher priority than the ALA
request. Thus, the memory wait time for the Access Processor can be reduced,

and consequently the total processing time can be reduced.

The Load Data Queue of the Execute Processor will be empty most of the
time, because the Access Processor is not able to run ahead, and because the
Memory Controller services the LA request before the ALA request. The ALA
request queue in the Memory Controller may become full when LA requests are
always serviced before ALA requests. When the ALA request queue is full, the
flow control scheme will stop the Access Processor from sending further requests
until the ALA request queue is not full. The Memory Controller will service
ALA requests either when the ALA request queue is full or when there is no LA
request. The Execute Processor can continue its processing when operands

arrive, and it will not be blocked all the time.

In conclusion; the Memory Controller should service the LA request before
- the ALA .request if the Access Processor is the bottleneck. Flow control can

prevent the Memory Controller from servicing the LA request all the time without

98

servicing the ALA request queue. Therefore, the Execute Processor will not be

blocked.

The workload of algorithmic computation is heavier than that of address gen-
eration when the Execute Processor is the bottleneck of decoupled computation.
In this situation, the Load Data Queue of the Execute Processor will be full most

of the time. It does not make any difference whether the LA request is serviced

first or the ALA request is serviced first? as long as the Load Data Queue of the
Execute Processor is never empty. Thus, a higher priority can be given to the LA

request than to the ALA request.

4.1.2.3.3. Memory Controller is the Bottleneck

When the Memory Controller cannot service memory requests efficiently,
one or both of load request queues on the Memory Controller may be full most of
the time, and neither of the Load Data Queues on the Access and Execute proces-
sors will be full. The decoupled computation works best if the Access Processor
is able to race ahead of the Execute Processor. As long as the Memory Controller
is the bottleneck, the order in which the LA or ALA requests are serviced is
unimportant. However, servicing the ALA request first is likely to result in a full
LA request queue and an empty ALA request queue because the Access Processor

- may -not be able to issue load requests. “The only reason for servicing ALA

2In fact, ALA requests will not be serviced if the Load Data Queue of the Ex-
ecute Processor is full.

99

requests first is that a shared variable may block the Access Processor. At this

point, the LA request queue will drain.

If load requests are always serviced before store requests, the store request
queue may become full. When the store request queue is full, the flow control
will stop the processor to send more requests; thus, load requests will be com-
pletely serviced and then store request will be serviced. In addition, if the desti-
nation data queue of load requests is full, the service for load requests will be

deferred. Then, store requests will be serviced.

Thus, from previous analysis, it is concluded that the load request should be
serviced before the store request, and the LA request should be serviced before

the ALA request.

4.2. Pipelined Memory System Design

The basic model of our pipelined memory system and its pipeline stages will
be described and a detailed design of the Memory Controller using Free-Module-

Request-First policy will be illustrated.

4.2.1. Basic Model of A Memory Controller

The block diagram of a basic pipelined memory system model is illustrated in
Figure 4.5. The major sections of the basic pipelined memory system are the
input logic, the issue logic, the output logic, the Memory Operation Status Table,
and the memory modules. All but the last of these sections are in a centralized
Memory Controller for the First-Come-First-Serve memory system, while they

are distributed among the Module Controllers for the Free-Module-Request-First

MAIN

MEMORY

MODULES

Input
Buffers
—>
Address
Data
From
Processors
INPUT
LOGIC
v
\l/SDQap 4;SDer \l¢SAQ \lfLAQ \lylFQ
N v v v K%
v
M
ISSUE —> A >
LOGIC) M
B
) -
Memory
Operation
Status
Table
Output
OUTPUT Queue
LOGIC
Data V|
To Controls
Processors
<

 Figure 4.5 -- Basic-Model of the Pipelined Memory System

100

101

memory system. The organization of a Module Controller for the Free-Module-
Request-First memory system is similar to the Memory Controller for the First-
Come-First-Serve memory system. Detailed design of a Module Controller and
algorithms for distributed sequence control between Module Controllers for Free-
Module-Request-First policy are described after the primary functions of the

Memory Controller are illustrated.

4.2.1.1. Primary Functions of a Memory Controller

The pipeline organization of the Memory Controller is shown in Figure 4.6,
where the ‘steps to service a request are listed along with the pipeline stages. -
Some of these steps are needed only for Free-Module-Request-First policy, e.g.,
the sequence number assignment, and are further described in the later part of

this chapter.

The general operation of the memory pipeline begins with the input received
from the processors and stored in the input buffers. The input logic removes an
entity (request address or data) from the input buffer, decodes the entity, then
transfers the entity to the request queue along with descriptive information about
the entity. Each of the LAQ and SAQ must have the capability to detect access
hazards before a memory request is selected for service. (An efficient access
hazard detection and resolution scheme will be presented in chapter 6.) The issue
logic selects a request from the request queue according to the availability of a
- .memory module; and then issues the memory operation. The Memory Operation
Status (MOS) Table: contains- the information- about the status of memory

modules, and the activity of every memory operation in progress. The issue logic

102

Address/Data
from Processors

Decode Module No

INPUT Decode Request Type

STAGE Assign Sequence No

. Check Request Queue

ISSUE Check Memory Operation Status Table

Add to Request Queue

STAGE Issue Memory Operation

Update Memory Operation Status Table

! ‘ Match Store Address/Store Data

Check for Next Output
OUTPUT Reserve Qutput Data Path
STAGE Route Output to Qutput Bus or Buffer
Monitor Sequence No Increment Signal
Fetched Data

to Processors

Figure 4.6 -- Memory Pipeline Stages and Their Functions

103

must store information about a memory operation into the MOS Table whenever a
memory operation is started. The output logic checks the MOS Table for infor-
mation about a completing memory operation, so that the data fetched from the
memory can be delivered to the correct destination. The output queue holds
memory outputs if the Load Data Queues in the processors are full. The output
queue also assembles the out-of-order data if the Free-Module-Request-First

scheduling policy is used.

4.2.1.2. Organization of Memory Operation Status Table

The Memory Operation Status Table contains the availability status of each
memory module as well as progress information for every memory operation.
The scheduling policy used by the Memory Controller will determine the content
of the progress information. Basically, the MOS Table consists of M groups of N
registers, where M is the number of memory modules and N is the number of
registers needed to store the availability status of a module and the progress infor-

mation of a memory operation. The main registers are:

(1) BUSY register (B): a (C+ 1)-bit shift register contains the availability status
of a memory module and the progress status of a memory operation in the
module, where C is the memory bank busy time.

(2) Destination register (DST): a 1-bit register contains the 1D of the processor
that will receive the data fetched from memory.

(3) Read/Write register (R/W): a 1-bit register indicates whether the memory
operation in progress is a read or write operation.

(4) Request type register (I/D): a 1-bit register indicates. whether it is an instruc-
tion fetch or data fetch operation if a read operation is in progress.

104

Other registers are included depending on the design of the memory system.
For example, a sequence number register (SEQ NO) is used to store the sequence
number of a fetch request serviced in the Free-Module-Request-First scheduling

policy, and registers that contain information specific to a data cache.

All bits of the B register of a memory module are set to zeros when the
memory module is free. When a memory operation is started in a memory
module, the Memory Controller stores information in the corresponding group of
registers in the MOS Table: (1) all C-+1 bits of the B shift register are set to 1,
(2) the descriptive information of this memory operation is stored into their
respective registers. As the-memory operation proceeds, the contents of the i-th
bit of the B register is shifted to the (i+ 1)-th bit, zero is stored into the bit 0 of
the B shift register, and the content of the C-th bit of the B register is lost. The B
register is a reservation table [BrDa77]. It is used by the Memory Controller to
check whether or not the module is busy, and it is also used by the Memory Con-
troller to determine when a memory operation will be completed. Thus, the
Memory Controller uses the contents of the B register to plan activities for the
memory operation before the operation is completed. The Memory Controller
uses the contents of the DST, R/W, and 1/D registers to determine the destination
of the information fetched by the current memory operation (if it is a read opera-
tion).

Since the Memory Controller knows whether or not the memory operation is
‘completing, ‘whether or ‘not the Load Data Queues on the processors are full
(from the flow control message received from the processors), and whether or not

there are any outputs in the output queue ready to be delivered, it can correctly

105

reserve a data path for the completing memory operation. The data path which
routes the fetched data into the output queue will be reserved when: (a) there is a
data item in the output queue which has to be delivered before the completing
memory output, or (b) the Load Data Queue on the processor which will receive
the completed memory output is full. Otherwise, the Memory Controller reserves
the data path which routes the completing memory output to the output bus, and
delivers the memory output to the final destination without delay (but in the

correct sequence).

4.2.2. VLSI Implications and Constraints on Memory System Design

The number of available pins limits the number and the bandwidth of off-
chip communication paths in a VLSI system. The larger the number of commun-
ication paths, the smaller the average communication bandwidth per path. The
design process must trade off these two conflicting criteria and realize a solution
which best meets the needs of decoupled computation. In order to reduce the
traffic across the processor-memory paths, the Memory Controller should receive
whatever information is sent from the processors, and the processors should only

request the Memory Controller to fetch needed information.

The high density and low replication costs of VLSI circuits allows complex
control logic to be implemented on a VLSI chip, and then be produced in large
quantity at low cost. This feature favors the design of a distributed Memory Con-
_ troller, whose control functions are: distributed among the Module Controllers.
_ Each. .Module Controller controls the memory operation activities within a

memory module. Since the procedure of servicing requests in each memory

106

module is the same for all memory modules, a single design of a Module Con-
troller chip can be used to build a distributed Memory Controller for the entire
memory system. In addition, the amount of data cache implemented on the
Module Controller chip is limited by the available resource of a chip. Thus, the
total amount of data cache implemented in the memory system is larger for a dis-

tributed Memory Controller than for a centralized Memory Controller.

4.2.3. Memory System Design Considerations

There are several considerations which will guide the design of the Memory

_ Controller for the decoupled architecture in the VLSI environment:

(1) The control circuitry and the organization of request queues should be kept
as simple as possible.

(2) The communication bandwidth between the Memory Controller and the pro-
cessors should be appropriate for decoupled computation.

(3) The structure and organization of request queues should be suitable for the
Memory Controller to efficiently select the next request to service and to
avoid deadlock within the Memory Controller.

(4) Increased bandwidth should be emphasized whenever latency and memory
bandwidth considerations conflict. This consideration is the result of previ-
ous findings that decoupling allows the memory system {o be optimized for
bandwidth rather than access time [WeSm84, GHLP85].

In chapter 3, it was concluded that the round-robin or EP-First multiplexing
schemes can efficiently utilize the processor-to-memory data path in a decoupled
computation. Also, analysis indicated that the size of the request queue must be at
Jeast four in order to have a smooth flow of flow. control, and simulation showed
that it need not be larger than eight. _In the following sections, the partitioning of

the Memory Controller into the Module Controllers for the Free-Module-

107

Request-First scheduling policy, and the sequence control scheme for the correct
delivery of memory outputs are described. In order to evaluate the memory sys-
tem design using trace-driven techniques on a closed-loop model that consists of
the PIPE processor simulators and the memory system simulator, some of the
design features for the memory system will be specific to the PIPE architecture.

The features specific to the PIPE architecture are not important.

4.2.4. Implementation of Free-Module-Request-First Policy

In order to implement the Free-Module-Request-First scheduling policy, the
memory operation of an-outstanding request in each memory module must be
started as soon as the memory module becomes free. Therefore, the control
functions of the Memory Controller of an m-way interleaved memory system
using the Free-Module-Request-First scheduling policy must be distributed among
m Module Controllers. Also, the MOS Table is distributed such that each
Module Controller has its own group of N registers to track the memory operation
status within its module. The organization of the PIPE architecture with a 4-way
interleaved Memory Controller using the Free-Module-Request-First scheduling
policy is illustrated in Figure 4.7, and the multiple pipeline organization for the
Memory Controller is illustrated in Figure 4.8. A block diagram for the Module

Controller is illustrated in Figure 4.9.

Each Module Controller has request buffers to store the requests accessing
‘the. memory module controlled by the Module Controller. The request buffers
within_a Module Controller are organized into several request queues according to

request types. The Module Controller selects a request from its request queues,

108

Memory Memory Memory Memory

Module Module Module Module
0 i 2 3
1 T 7 T 1 T 71
v MEMORY vy | CONTROLLERY, v

Module Module Module Module

Controller Controller Controller Controller
0 1 2 3

1
3 15[3
Address/Data Bus
4 4

—
N N2

Load Data Bus)

N/ 7

Instruction Instruction
Cache LD Ql OU'& /FUTQ\L LDO Cache

v v

I-Decode I-Decode
and L—» ALU ALU |&— and
Issue Logic Issue Logic
T
|
i L T
| |
| Register Register :
1 . .
A i File File A :
E"tO-A | : A‘tO"E i |
BQ | leom—mmmpmmo e BQ ., :
o BramchSigmal|l V. J
ACCESS PROCESSOR EXECUTE PROCESSOR

Figure 4.7 -- Organization diagram of the PIPE architecture with a 4-way inter-
leaved Memory Controller using Free-Module-Request-First scheduling policy.

109

Address/Data from Processors

Memory Input (Address/Data) Bus

Issue
Stage

Issue
Stage

||

Memory Output (Load Data) Bus

Load Data to Processors

eline organization of a 4-way interleaved Memory Controller us-
-First scheduling policy.

Figure 4.8 -- Pip
ing Free-Module-Request

MEMORY

MODULE

Address
Data IN-Seq Reg
From
Processors
INPUT
LOGIC
Request
Buffer ‘L
\ySDQap \LSDer \L«SAQ \l/LAQ \LIFQ
N W Y v v
v
M
> A
ISSUE R
LOGIC M
? B <>
v 71 -
Memory
Operation
Status
Table
L ACKe[T e Controls
To Al ' AcKo| OUTPUT
Module {5 peeee P>
Controliers LOGIC Output
A Queue
Load SEQe SEQo
Data
To &— A 4
Processors

110

Figure 4.9 -- Block diagram of a Module Controller using the Free-Module-
Request-First scheduling policy.

111

and services the selected request as soon as the module is free. The output stages
of all Module Controllers must cooperate in order to deliver memory outputs to

the processors in the correct sequence.

In the following discussion, the term Memory Controller refers to the con-
troller of the entire memory system, and the term Module Controller refers to the

controller of a memory module.

In order to deliver memory outputs in the correct order, sequence numbers
are assigned to read requests. The memory outputs of read requests are delivered
according to their assigned sequence numbers. Eacli sequence number is unique
among requests of the same type that are waiting or being serviced in the Memory
Controller. Since a write operation does not generate memory outputs, it is not

necessary to assign a sequence number o a write request.

When an IF request is broadcast to all Module Controllers, each Module
Controller checks whether it has one of the four instruction words requested by
the IF request (an IF request fetches a 4-word instruction cache line). The
Module Controller that has one of the requested instruction words, generates an
instruction word fetch request for itself to fetch the corresponding instruction
word from its module. Within a single IF request, the Module Controller com-
putes a sequence number from the ordering of the instruction word that is to be
fetched by the Module Controller, and assigns the sequence number to the
instruction word fetch request. Thus, the four instruction words fetched from
four. different Module Controllers can be delivered to the processor in the correct
sequence. (Note this is always the same order.) From previous discussions, the

instruction words fetched for an IF request are given higher priority than the

112

operands fetched for the LA requests.

A sequence control scheme which uses the sequence numbers to track the
order of request arrival, allows the Module Controllers to issue memory opera-
tions out of arrival order, and then deliver the memory outputs in the arrival order
(according to the sequence numbers). This sequence control scheme also allows a
data cache to be implemented in the Module Controller. Because an operand can
be fetched from the data cache (cache hit) in a shorter time than from the main
memory module (cache miss), the operands generated from cache hits and misses
will not be in the same order as the original arrival order. The sequence control
scheme can be used to assemble the operands fetched from cache hits and misses
into the correct order. Thus, the reordering required by a data cache can be
implemented on the Module Controller almost for free. The sequence control
scheme is described in the following sections, and the detailed design of a data

cache in the Module Controller is presented in chapter 6.

4.2.4.1. Distributed Sequence Control for the Free-Module-Request-First
Policy

Before a memory request is stored in the request queue, the sequence number
assignment logic tags the memory request with a sequence number. The task of
sequence number assignment and memory output control must be synchronized
among all Module Controllers. In order to simplify the discussion of the
- sequence-control scheme, the sequence control for load address requests will be
described first. Then, the sequence control for both the IF and the load address

requests will be discussed.

113

If the LA and ALA requests are treated as two different types of load address
requests, it will require separate sets of sequence numbers for the LA and the
ALA requests, respectively. This approach will complicate the design of distri-
buted sequence control. In addition, the Access Processor makes most of the
memory requests for the Execute Processor and very few requests for itself. Thus,
the LA and ALA requests will be considered as the same type of load address

requests in the sequence control.

As illustrated in Figure 4.8, a common memory input bus is used for broad-
casting memory requests to all Module Controllers at the input stage. At every
output stage, a-Module Controller has to coordinate with other Module Controll-
ers to determine the use of the memory output bus for delivering memory outputs.
Each Module Controller (Figure 4.9) uses its input sequence number register
(IN-SEQ) to track the input sequence number for the next LA request received
from the input bus. Its output sequence number registers (SEQe and SEQo) are
used to track the output sequence number of the last memory output delivered (by

itself or another Module Controller) through the output bus.

4.2.4.2. Distributed Sequence Number Assignment at Input Stage

When the Module Controller receives a LA request from the input bus, it
checks whether the received request is accessing a memory location within the
module (see Figure 4.10). 1f so, the LA request is tagged with the input
.. sequence number from.the IN-SEQ register. - Otherwise, if the received request is
..not.accessing the-receiving module, -the received LA request is discarded. In

either case, the IN-SEQ register is incremented by one. Since the LA request is

114

REQUEST ARRIVES

Read Request
?

Store No
Address?

Yes

Y A4 A4 A4
Assign IN-SEQ[M]

. Place Place
to Request Seq No Discard Store Store
Store Request in Request Address Data

Read Queue in SAQ in SDQ

l J
l

IN-SEQ[M] = IN-SEQ[M] + 1

Figure 4.10 -- Input stage algorithm of memory system using Free-Module-
Request-First scheduling policy.

115

broadcast to all the Module Controllers in the same clock period, the increments
of all the IN-SEQ registers in all Module Controllers occur in the same clock

period.

4.2.4.3. Distributed Store Address/Data Pairing at Issue Stage

When the Module Controller receives a store address that does not access
itself, the Module Controller can either keep the store address or discard it. The
decision depends on the method used to match the store address and the store
data. If the Module Controller does not keep the store address, a counter must be
used to indicate the number of store data that should be discarded between two
correct pairings of store address and store data. This approach will require the
Module Controller to maintain N+1 counters when there are N pending store
addresses accessing itself. Alternatively, if the Module Controller stores all store
addresses into the SA Queue (as in Figure 4.10), then the matching of store
address and store data can be accomplished without maintaining a counter. The
second approach is easier for the implementation and is used in the simulation
model. The matching of the store address and the store datum is done by the

issue stage and is described in Figure 4.11.

4.2.4.4. Distributed Output Sequence Control at Output Stage

During each clock period, the output logic of a Module Controller checks the
‘MOS Table to determine if a memory operation is completing. The MOS Table
provides the.information .of the type of operation that is completing and the

number of clock periods left (from the BUSY shift register) before the operation

116

(READ-FIRST)
MEMORY MODULE FREE

Read Queue No
EMPTY?

Both
SAQ/SDQ
Not EMPTY

Yes

v

Update Status Table

Is Store Request
For MEZ

Start Read Operation

Update Status Table Discard Store
Address & Datum

Start Store Operation

\L Y. Y A4

Figure 4.11 -- Issue stage algorithm of memory system using Free-Module-
Request-First/Read-Request-First scheduling policy.

117

has completed. This status information allows the output logic (1). to compare the
sequence number of the completing read operation with the next output sequence
number and (2) to decide whether the fetched datum is to be sent directly out of
the memory system or stored into the output queue. Since the read request within
each Module Controller is serviced in the first-in-first-out order, the entry at the
head of the output queue, if any, is the next waiting entry to be sent out of the
Module Controller; otherwise, the output of the completing read operation is sent
out. Therefore, each Module Controller can determine the next sequence
number of a read request to be sent out of its module, and therefore bids for its
turn to use the memory output bus. . Because the sequence numbers are unique
and the memory outputs are to be sent out in a pre-determined order, only one
Module Controller can have the privilege of using the memory output bus in each
clock period. Thus, bus collisions will never occur in this distributed arbitration

method.

In the following discussions, the memory output of sequence number N will

be called memory output N.

4.2.4.4.1. Interleaving the Memory Output Bus for Avoiding Delays

A Module Controller can deliver memory output N+1 only if it knows that
memory output N has been delivered. When a Module Controller sends memory
output N to the memory output bus, it has to notify other Module Controllers that
. memory output N has been delivered, so that the Module Controller that has
. memory-output N+1 can send memory-output N+1 out. Since it takes one clock

to transmit a signal from one Module Controller to any other Module Controller,

118

the Module Controller that has memory output N+ will not know that memory
output N has been delivered until 2 clocks after memory output N is sent. There-
fore, memory outputs will be sent through the memory output bus at the rate of

one per o clock periods.

In order to send memory outputs at the rate of one per clock period, memory
outputs are divided into two groups of even sequence numbers and odd sequence
numbers. The Module Controller that sends memory output 2n out, must notify
other Module Controllers that memory output 2n has been delivered; thus, the
Module Controller that has memory output 2n+2 can send memory output 2n+2
out two clock periods after the memory output 2n is sent. Therefore, the memory
outputs of sequence numbers 2n, 2n+2, 2n+4, ... are delivered through the
memory output bus at the rate of one per two clock periods. Similarly, the
memory outputs of sequence numbers 2n+1, 2n+3, 2n+5, ... can be delivered
through the memory output bus at the rate of one per two clock periods. By inter-
leaving the use of the memory output bus between the memory outputs of even
sequence numbers and the memory outputs of odd sequence numbers, memory
outputs of sequence numbers 2n, 2n+1, 2n+2, 2n+3, 2n+4, 2n+5, ... can be
delivered through the same memory output bus at the rate of one per clock
period. Care must be taken to assure that strict ordering is maintained. This is

described in the following section.

'4.2.4.4.2. Handshake Signals to Allow Continuous Output Flow

The idea of the-output sequence control algorithm is that only the next o

memory. outputs can participate in bidding for the use of the output bus. In other

119

words, memory output n can send a bidding signal for the use of the output bus
only if memory outputs n-2 and rn-3 have already sent bidding signals. Thus, for
the mermory outputs of even sequence numbers, memory output 2n can send its
bidding signal if memory output 2(n-1) has already sent its bidding signal. The
Module Controller cannot actually send memory output 2n until it has seen the
bidding signal for memory output 2n-1. Similarly, for the memory outputs of odd
sequence numbers, memory output 2n+1 can send its bidding signal if memory
output 2(n-I1)+1 has already sent its bidding signal. The Module Controller can-
not actually send memory output 2r+1 until it has seen the bidding signal for

memory output 2n.

Ideally, a Module Controller could first send a bidding signal for each
memory output, and then send the memory output through the memory output
bus in the following clock period. Because two Module Controllers that have the
next two memory outputs can send the bidding signals in the same clock period,
both Module Controllers could send the next two memory outputs simultaneously
in the following clock period if these two Module Controllers do not coordinate
with each other. Thus, a restriction of sending memory outputs for the even and
odd sequence numbers is needed in order to avoid bus contention between the

even and odd memory outputs and assure correct ordering of operands.

In order to monitor the progress of memory outputs and participate in bid-

ding for the use of the output bus, each Module Controller needs two different

- - output sequence number registers: SEQe and SEQo, to track the next even and

odd output sequence numbers, respectively. The least significant bit of a

-sequence number is not stored in the SEQe or SEQo registers, i.e., (2n div 2) is

120

stored in SEQe if the next output sequence number for the the even group is 2n,
and ((2n+1) div 2) is stored in SEQo if the next output sequence number for the

odd group is 2n+1.

Let SegNo be the sequence number of a memory output waiting to be sent
out of a Module Controller, and Seq = (SegNo div 2). Let the boolean variables

AckEven and AckOdd be the values of the following two boolean expressions:

I

AckEven
and

[(SEQo = Seq — 1) or (SEQo = Seq) or (SEQo = Seq + 1)]I3,

AckOdd = [(SEQe = Seq) or (SEQe = Seq + 1) or (SEQe = Seq + 2)]t.

These two boolean variables are used to decide which two memory outputs are
allowed to bid for the use of the output bus, and they ensure that only the next two
memory outputs can participate in the bidding for the use of the output bus. An
even SegNo is one of the next two memory outputs if its computed AckEven value
is true. Similarly, an odd SegNo is one of the next two memory outputs if its com-
puted AckOdd value is true. The Module Controller can send a bidding signal for
an even SegNo, only if (Seq = SEQe) and AckEven is true. Similarly, the Module
Controller can send a bidding signal for an odd SegNo only if (Seq = SEQo) and
AckOdd is true. Then, in the subsequent clock periods, the memory output of
even SegNo can be sent out if its bidding signal has been sent (SEQe = Seq + 1)
and Condition E: [(SEQo = Seq) or (SEQo = Seq + D]t is true. Similarly, the
memory output of an odd SegNo can be sent out only if its bidding signal has been

sent (SEQo = Seq + 1) and Condition O: [(SEQe = Seq + 1) or (SEQe = Seq +

tUsing modulo S arithmetic, where S is the maximum sequence number
determined in the implementation of sequence control scheme.

121

2)]T is true. For an even SeqNo, Condition E is true if the bidding signal of
(SegNo - I) has been received. For an odd SegNo, Condition O is true if the bid-
ding signal of (SeqNo - I) has been received. Condition E and Condition O are
used to ensure that the even memory output and the odd memory output will not

be sent out in the same clock period. Thus, bus contention can never occur.

Two sequence control signals are needed to implement the distributed output
sequence control: ACKe and ACKo. The sequence control signals, ACKe and
ACKo, are used to bid for the use of the memory output bus and synchronize the
increment of SEQe and SEQo registers, respectively. The sequence control signal
is-always sent at least one clock before the corresponding memory output is sent.
It may be much earlier, if the sequence control signal for the previous memory
output (in the sequence number ordering) is delayed. But the two sequence con-
trol signals, ACKe and ACKo, uniquely define the time slot when each memory
output is sent. The algorithms of output sequence control for the even and odd

sequence numbers are described in Figure 4.12.A and 4.12.B, respectively.

At the beginning of each clock period, the Module Controller checks in
.parallel for the occurrence of three events:
(1) the arrival of an ACKe signal,
(2) the arrival of an ACKo signal, and
(3) a memory output will soon be ready to be sent out.
The SEQe and the SEQo registers are incremented by one if (1) and (2) occur,
respectively. If there is a memory:output ready to be sent out and the memory
~ output is one-of the next two memory.outputs, the Module Controller has to bid

for its turn to use the memory output bus; otherwise, the Module Controller does

122

N/

W/

Seq = SEQo = SEQo + 1

SEQe = SEQe + 1 SeqNo div 2
J,l L l\L

(SEQe = Seq) and (SEQe = Seq + 1) and
NO {(SEQo = Seq) or _ NO
(SEQo = Seq - 1) or [(SEQo = Seq) or
(SEQo = Seq + 1)] (SEQo = Seq + 1)]
? ?
YES YES
Send ACKe Send SegNo out

Figure 4.12.A -- Output sequence control for sending a memory output of even
sequence number. SeqNo is sequence number of the memory output to be sent

out.

Y/

SeqNo
is ODD

\l/

123

> Y

SEQe = SEQe + 1

Seq =
SegNo div 2

SEQo = SEQo + 1

v

v

!
!

(SEQo = Seq) and

l

(SEQo = Seq + 1) and

NO [(SEQe = Seq) or . _ NO
(SEQe = Seq + 1) or [(SEQe = Seq + 1) or
(SEQe = Seq + 2)] (SEQe = Seq + 2)]
? ?
YES YES
Y Y
Send ACKo Send SegNo out
A4 Y Y A4

Figure 4.12.B -- Output sequence control for sending a memory output of odd se-
. -quence number. -SeqNo is sequence number-of the memory output to be sent

out.

124

nothing for the memory output in the current clock period.

Suppose the Module Controller is bidding for its turn to send an even
memory output. As described in Figure 4.12.A, the Module Controller has to
send an ACKe out. Then, on a subsequent clock period, the content of SEQe is
incremented by one (it takes one clock period for a Module Controller to detect
that a bidding signal was sent by itself, while it takes two clock periods for a
Module Controller to detect that a bidding signal was sent by another Module
Controlier,) and the Module Controller can send the even memory output through
the output bus when Condition E is true. Similarly, if the Module Controller is
bidding for its turn to-send-an odd memory output, it has to follow the procedures
described in Figure 4.12.B. The events and procedures described in Figures
4.12.A and 4.12.B are checked and performed once in every clock period.
Because only one Module Controller can send an ACKe signal in any clock
period, the increments of all SEQe registers among all Module Controllers are

synchronized. Similarly, the increments of SEQo register are synchronized.

The memory output sequence control can be further explained by the follow-

ing example.

Example 4.3 :

The memory system is 4-way interleaved. At clock 10, the memory outputs
of sequence numbers O and 1 have been delivered, and memory output 3 is ready
_ to.be delivered; memory output 2 is being fetched from module 1 and it will not
be ready until clock 12, while memory outputs 4, 5 and 6 are ready before clock

10. The memory output 3 is in the output queue of module 2, the memory

125

outputs 4 and 5 are in the output queue of module 3, and the memory output 6 is
in the output queue of module 0. Since the last memory output seen by all
Module Controller is sequence number 1, the next two memory outputs are
sequence numbers 2 and 3. The timing diagram which describes the sequence of
delivering memory outputs is illustrated in Figure 4.13. In Figure 4.13, the sym-
bol ACK3 indicates that the ACKo signal of memory output 3 is sent, and the
symbol OUTS3 indicates that the memory output 3 is sent. Other symbols can be
explained similarly. The two numbers of the pairs in Figure 4.13 indicate the
contents of registers SEQe and SEQo in each Module Controller. Initially, it is

(1,1) in every Module Controller.

The sequence of memory output operations of the Module Controller for

module 2 is as follows:

Clock 10: Sends the ACKo for memory output 3.
Clock 11 : Increments SEQo by 1.
Clock 12 : Does nothing because Condition O is not true.

Clock 13 : Receives the ACKe of memory output 2, increments SEQe by 1, Con-
dition O is true, sends out memory output 3.

Clock 14 : Does nothing.

Clock 15 : Receives the ACKe of memory output 4, increments SEQe by 1.
Clock 16 : Receives the ACKo of memory output 5, increments SEQo by 1.
Clock 17 : Receives the ACKe of memory output 6, increments SEQe by 1.

The sequence of memory output operations of the Module Controller for
module 3 is as follows:
Clock 10: Does nothing.

Clock 11 : Does nothing.
Clock 12 : Receives the ACKo of memory output 3, increments SEQo by 1,

Figure 4.13 --

--.delivery at clock -10, and memory ou
two numbers of the pairs are the current va

Module
0

Module Controller.

Module

Module

Module

(3,2)

126

The timing diagram of sending memory outputs 2, 3, 4, 5, and 6
through the memory output bus.

Memory outputs 3, 4, 5 and 6 are ready for

tput 2-will not be ready until clock 12. The
lues of SEQe and SEQo in each

127

- Clock 13 : Receives the ACKe of memory output 2, increments SEQe by 1, sends
the ACKe for memory output 4. (In this clock period, both the ACKe
and ACKo for memory outputs 4 and 5, respectively, can be sent
according to the algorithm. If the Module Controller for module 3
sent the ACKe and ACKo in this clock period, it could detect both sig-
nals and send memory outputs 4 and 5 simultaneously in clock 14.
Thus, it is necessary to restrict that a Module Controller can only
send either an ACKe or an ACKo according to the order of memory
outputs in a clock period. Therefore, the ACKo of memory output 5
cannot be sent in this clock period.)

Clock 14 : Increments SEQe by 1, sends out memory output 4, sends the ACKo
for memory output 5.

Clock 15 : Increments SEQo by 1, sends out memory output 5.
Clock 16 : Does nothing.
Clock 17 : Receives the ACKe of memory output 6, increments SEQe by 1.

The memory output sequences in the other Module Controllers can be
explained similarly. At clock 17, the contents of SEQe and SEQo in all Module
Controllers are (4,3). The (4,3) indicates that next memory output is for

sequence number 7, and memory outputs 7 and 8 can bid for the use of the out-

put bus.

4.2.4.4.3. State Transition Diagram of Output Sequence Control

The state transition diagram which describes the action of merging memory
outputs through the output bus is shown in Figure 4.14. An input-
symbol/output-symbol notation is associated with each transition arrow to indicate
the occurrence of actions between each state transition. The input-symbol indi-
cates the memory output that comes to bid for the output bus, and the output-

- symbol indicates the:-type of signal sent out. The occurrence of output actions is a

function of the present state, and the occurrence of input actions determines the

128

0/0UTe
| /
E/OUTo Y
©ack, N2 (0,7 €7 LGS, Eack,)
E/ACKo \
/OUTe, O/ACKe E/
O/ ACKo -/OUTo, OUTE
OUTo ACKe g
JOUTe _/OUT
E/OUTe,AC
(Eack, 2 (Oack,
Oack) (Eack,0) (Oack,E) Eack)
0O/0UTo,ACKe
/ACKe Nyp— /IACK
-JACK fACKo,
ACKD 0/0UTo ACKe
€,0ack) | &0 (O.E) (O,Back
E/- i
E/ ©,0ack)) | PO O,E/- /
ACK e CKe
"IACKo /) -IACK ¥
©,0) EMPTY (.E)
ol- ODD E/-
-/0OUTo -QUTe
o- E/-

Figure 4.14 -- State transition diagram of memory output sequence control for
Free-Module-Request-First scheduling policy.

129

next state where the transition is made. For example, the output signal ACKe will
be sent out if the present state is (E, 7), while the input action determines whether
the next state is (Eack,?) or (Eack,0). If an odd memory output (O) comes to bid
for the use of the memory output bus, then the next state will be (Eack,O); other-
wise, the next state will be (Eack,?). The ’-’ input symbol indicates that no input
or output action occurs. The meanings of the input symbols, the output symbols,

and the state symbols are described in the following paragraphs.

In the following discussion, the next two memory outputs that can bid for the
use of the output bus are termed the first output and the second output, respec-
. tively.- For example, at clock 10 of Example 4.3, the first output is memory output

2, and the second output is memory output 3.
The input symbols are:

O : a memory output of odd sequence number comes to bid for the output bus.
E : a memory output of even sequence number comes to bid for the output bus.

The output symbols are:

ACKo : the ACKo signal is sent either for an odd memory output.
ACKe : the ACKe signal is sent either for an even memory output.
OUTo : the memory output of odd sequence number is sent.
OUTe : the memory output of even sequence number is sent.

The state symbols are:

Empty-Even : the next two memory outputs are not yet ready and the first output

is even.
. Empty-Odd : = the next two memory outputs .are not yet ready and the first output
is odd.
(E,O) : the next two memory outputs are ready, the first output is even

and the second output is odd.

(0,B) :
(2,0 :
(?,E) :
(0,7 :
(E,? :
(?,Eack) :
(?,0ack) :
(Eack,?) -
(Oack,?) :
(Eack,0) :
(Oack,E) :
(E,Oack) :
(O,Eack) :
(Eack,Oack) -

(Oack,Eack) :

130

the next two memory outputs are ready, the first output is odd and
the second output is even.

the first output is even but not yet ready, and the second output is
odd and ready.

the first output is odd but not yet ready, and the second output is
even and ready.

the first output is odd and ready, and the second output is even but
not yet ready.

the first output is even and ready, and the second output is odd but
not yet ready.

the ACKe of the even second output is sent and the odd first output
is not yet ready.

the ACKo of the odd second output is sent and the even first output
is not yet ready.

the ACKe of the even first output is sent and the odd second output
is not yet ready.

the ACKo of the odd first output is sent and the even second output
is not yet ready.

the ACKe of the even first output is sent and the odd second output
is ready.

the ACKo of the odd first output is sent and the even second output
is ready.

the even first output is ready and the ACKo of the odd second out-
putis sent.

the odd first output is ready and the ACKe of the even second out-
putis sent.

the ACKe and the ACKo for both the even first output and the odd
second output are sent.

the ACKo and the ACKe for both the odd first output and the even
second output are sent.

Since the first sequence number is 0, the output sequence control starts from

the Empty-Even state and transfers to three different states: (E,?), (?,0), and

(E,0), depending on the three possible combinations of input symbols. It returns

131

and stops at the Empty-Even or the Empty-Odd state when there are no more

memory outputs to be delivered, and the next memory output is even or odd,

respectively. For example, the state transition sequence for Example 4.3 can be

explained as follows:

Assume that (1) memory outputs 0 and 1 are delivered before clock 8, (2)

memory outputs 4, 5, and 6 are ready before clock 10, (3) memory output 3 is

ready at clock 10, and (4) memory output 2 is ready at clock 11.

Clock 8 :
Clock 9 :

Clock 10:

Clock 11 :
Clock 12 :

Clock 13 :

Clock 14 :

Clock 15 :

Clock 16 :

4.2.4.4.4.

Fetches

at Empty-Even state.

memory output 3 comes to bid for the output bus, moves to state
(2,0).

ACKo is sent for memory -output 3, memory output 2 comes to bid for
the output bus, moves to state (E,Oack).

ACKe is sent for memory output 2, moves to state (Eack,Oack).

memory output of 2 is sent, memory output 4 comes to bid for the
output bus, moves to state (Oack,E).

memory output of 3 is sent, ACKe of memory output 4 is sent,
memory output 5 comes to bid for the output bus, moves to state
(Eack,0).

memory output of 4 is sent, ACKo of memory output 5 is sent,
memory output 6 comes to bid for the output bus, moves to state
(Oack,E).

memory output of 5 is sent, ACKe of memory output 6 is sent, no new
memory output is ready, moves to state (Eack,?).

memory output of 6 is sent, no new memory output is ready, moves to
state Empty-Odd.

_ Output Sequence Control Between Instruction and Data

132

The sequence control scheme for the instruction fetch request requires
another set of input sequence number registers (IN-SEQD), output sequence
number registers (SEQie and SEQio) and output control signals (ACKie and
ACKio) for sending the fetched instructions. The method of synchronizing the
increment of instruction sequence numbers among all Module Controllers is the

same as the method described in previous sections.

When an IF request is broadcast to all Module Controllers, only four
Module Controllers (those having the four requested instruction words) will fetch
the instruction words. A Module Controller can be servicing a LA request when
it receives the IF request; thus, all the four Module Controllers may not fetch the
four instruction words for an IF request at the same time. The Module Controll-
ers must coordinate among themselves in order to deliver the instruction words in

sequence.

Each Module Controller can be in one of these two states: instruction output
state or data output state. The Module Controller can send a fetched instruction
only if it is in the instruction ouput state, and can send a fetched datum if it is in
_ the data output state. - Initially, every Module Controller is in the data output state.
The Module Controller changes to the instruction output state when either itself or
another Module Controller is about to send a fetched instruction, and then
changes back to the data output state when no more fetched instructions are to be

delivered.

-2 A Preempt signal line, which is an-OR-line, is used to indicate whether the
Module Controller should be in the instruction ouput state (when the Preempt line

is high) or in the data output state (when the Preempt line is low). Thus, the

133

Preempt signal line is high as long as one Module Controller raises it, and it is

low when all Module Controllers drop it.

The Module Controller must raise the Preempt signal line when it is prepar-
ing to deliver an instruction, and it must drop the Preempt signal line when it is
not sending any instruction words. When the Module Controller detects a high
Preempt signal line, all processes sending fetched data must be stopped until the
Preempt signal line is dropped. Thus, all Module Controllers can change to the

instruction output state after the Preempt signal line is raised.

After the Preempt signal line is raised, the instruction ACKie or ACKio signal
(depending on ‘whether or not it is of even sequence number or odd sequence
number) is sent in the next clock. Then, the fetched instruction is sent according
to the output sequence control algorithm described earlier. Because of the one
clock bus delay time, the Preempt signal line must be raised two clocks before the
instruction fetch operation is completed. Thus, the fetched instruction can be
delivered without delay. Also, by raising the Preempt signal line two clocks before
an instruction fetch is delivered, it allows all Module Controllers to change from
. the instruction output state to the data output state before an instruction fetch is sent
through the output bus. Thus, simultaneous delivering of fetched instruction and
data from different Module Controllers will not occur, and bus collisions between

the instruction and the data fetches are avoid.

The Module Controller can compare the value of the next input sequence
--number- of instruction fetches (from the content of the :IN-SEQi register) and the
=value-of the next output- sequence -number of the fetched instructions (from the

contents of SEQie and SEQio registers) to determine if all the instruction fetches

134

have been delivered. If the values of these two sequence numbers are the same,
then there are no outstanding instruction fetch requests to be completed, and the
Module Controller should drop the Preempt signal line. After all the Module Con-
trollers have dropped the Preempt signal line, the Module Controllers change to

the data output state simultaneously.

This output control mechanism can cause the delivery of fetched data to be
delayed by one clock (the bus delay for the last Module Controller to drop the
Preempt signal line) for each occurrence of a preemption. Except when the last
instruction fetch and the next output of data fetch are located in the same Module
Controller, the Module Controller knows that the last instruction fetch has been
sent. Thus, the next output of data fetch can be sent in the following cycle without

delay.

4.3. Summary and Discussion

The memory request scheduling strategy must answer two questions: (1)
among all free memory modules, which modules are to be scheduled for memory
operations? (2) among request types within a memory module, which request is
to be serviced next? Addressing the first question, the Free-Module-Request-First
scheduling policy was proven to minimize the total service time for the requests to
the same queue. Addressing the second question, the alternatives of dividing
request types were proposed and the priority of request types were established
_analytically. 1t was concluded that:the instruction fetch request and the load data
~ request must be stored in separate queuesin order to-avoid deadlock. This, how- -

ever, aggravates the memory access hazard problem with which chapter 6 will

135

deal. The order of priority for request types should be: (1) the instruction fetch
request, (2) the load address request, and (3) the store address request. If the
First-Come-First-Serve policy is used, then the load address requests can be
divided into the LA request for the Access Processor and the ALA request for the
Execute Processor. The LA request for the Access Processor should be given a
higher priority than the ALA request for the Execute Processor. If the Free-
Module-Request-First policy is used, the LA and ALA requests will be considered

as the same type of load address requests.

By storing the load data and the store address requests ir separate queues,
the Memory Controller must check for memory access hazards before a memory

request can be serviced.

A pipelined memory system for the First-Come-First-Serve and the Free-
Module-Request-First scheduling policies has been outlined. Memory outputs
fetched by the Memory Controller using First-Come-First-Serve are serviced in
the same order as their original request arrival. Thus, operands can be delivered
to the processors without resequencing. The use of Free-Module-Request-First
policy requires a sequence control scheme for delivering memory outputs in their
original arrival sequence. This sequence control scheme can be used to track
cache hits and misses. Thus, the sequence control required by a data cache can
be implemented on the Memory Controller almost for free. The data cache with
the ability to detect access hazard and short-circuit Read-After-Write data is

.designed and evaluated in chapter 6.

In- the-next chapter, -the. performance difference between the First-Come-

First-Serve and the Free-Module-Request-First scheduling policies and the

136

performance improvement of storing load address and store address requests in
separate queues are evaluated through trace-driven simulations. The memory
access hazard detection and resolution scheme using an associative search tech-

nique is assumed in the simulation models investigated in chapter 5.

CHAPTER 5

Simulation and Evaluation of Memory Models

Trace-driven- simulations in a closed-loop model of the PIPE architecture are
used to investigate the scheduling policies and the design features considered in
previous chapters and to evaluate the performance of different memory system
models. The trace files, generated from the selected benchmark programs, must
produce heavy workloads on the memory system in order to evaluate the perfor-
mance of memory models under heavy workloads. The impact of memory access
hazards on the performance of the memory system of a decoupled architecture is

important and is a main concern for the remainder of the dissertation.

5.1. The Simulation Model

The timing determinants which are critical in the accurate measurement of
the performance of a memory model are: (1) the memory request arrival rate and
(2)-the operand consumption rate. - The characteristics of a memory reference pat-
tern,- such as.memory.-access hazards,. can .also influence the simulation results.

All these factors can only be modeled precisely in a closed-loop simulation model.

137

138

The closed-loop model in Figure 5.1 consists of the PIPE processor simula-
tors! and memory system simulator. The trace file that is fed into the closed-loop

model is generated by object code executed by the PIPE architecture interpreterz.
Because the interpreter has no notion of time and the timing measurements of the
interlock control of CPU pipeline stages, instruction cache misses, completion of
memory requests, etc., the trace file will not reflect these characteristics. Instead,
the trace file contains a scenario of instructions issued and the memory reference

sequences of a program execution.

The interplay between the request arrival rate and the operand consumption
rate will determine the results obtained from different scheduling policies. The
closed-loop model assumes that, on average, the arrival rate is equal to the service
rate. If the request arrival rate is high and the operand consumption rate is also
high, the probability of more than one request waiting for service will be high.
Conversely, if the request arrival rate is high, but the operand consumption rate is
low, the flow control scheme will frequently stop the processors from sending
requests to the memory system. Thus, the overall request arrival rate will be
reduced.- Obviously, if the request arrival rate is low, the Memory Controller will
be frequently idle and the performance difference among scheduling policies will
be minimal. Therefore, the greater the number of requests waiting for service

simultaneously, the more distinctive the performance of each scheduling policy.

The frequency of occurrence of access hazards depends on the number of

pending memory requests; the more pending memory “requests the higher

1A software tool developed by Mr. Jian-Tu Hsieh.

2A functional interpreter for the PIPE architecture developed by Mr. P.B.
Schechter.

139

Branch

Signals
PIPE y > PIPE
PROCESSOR PROCESSOR
SIMULATOR SIMULATOR

< e
Address/Data Data Address/Data
AA

MEMORY

SYSTEM

SIMULATOR

Figure 5.1 Closed-Loop Simulation Model of PIPE Architecture

probability of access hazards. Because the processor speed is more affected by
the memory bandwidth than by the latency [WeSm84], access hazards are more
likely to occur with slower memory service times. Since the occurrence of a
memory access hazard depends on whether or not the fetch and store to the same
location pending simultaneously, it is necessary to use a closed-loop model to
- simulate the computation steps —with. precise- timing of the memory access

sequence. - Thus, the impact of memory access hazards can be evaluated.

140

5.2. Selection of Application Programs for Trace-Driven Simulations

There are two considerations in selecting application programs for generating

trace files:

(1) The decoupled code should allow the Access Processor to run ahead of the
Execute Processor, such that continual memory requests can arrive at the
Memory Controller.

(2) For the purpose of examining the Read-After-Write and Write-After-Read
problems, the trace files should create realistic memory access hazards dur-
ing decoupled computation.

The first twelve loops of benchmark programs from the Lawrence Livermore
National Laboratories [McMa72, RiSc84] (LLL loops), were used in the simula-
tion study. A listing of these twelve LLL loops translated into Pascal programs is
in Appendix 1. For the purpose of evaluating the performance of memory models
under heavy workloads and studying the impact of memory access hazards on the
performance of memory models, the decoupled codes for these twelve LLL loops
were hand-optimized in order to generate trace files that satisfy the above con-

siderations.

Since floating point arithmetic operations have not been defined in the PIPE
architecture, the LLL loops selected for simulation study are modified to contain
no floating point operations. The existence of floating point operations will only
increase the computation time of the Execute Processor. It may increase the
occurrence of access hazards, but will not change the memory access patterns
issued from the Access Processor. Since the instruction execution speed of the
Execute Processor can be controlled by the PIPE processor simulator, access

hazards that would have been created by the floating point operation can be simu-

141

lated by increasing the instruction execution time of the Execute Processor.
Thus, the nonexistence of floating point operation is not a major concern in the

simulation study.

By effective utilization of the Prepare-To-Branch and the load/store memory
access schemes of the PIPE architecture, most decoupled codes for these twelve
LLL loops can be generated such that the Access Processor can run ahead of the

Execute Processor and overflow one of the request buffers.

In order to evaluate the impact of memory access hazards, two sets of trace

files are created from the first 12 LLL loops: (1) files containing access hazards>
and (2) files containing no access hazards. These two sets of trace files are used

to compare the performance of memory models when there are access hazards

and when there are no access hazards. There are two types of potential Read-
After-Write access hazards: (a) among the array references within a loop and (b)
among the array references between loop iterations. Both types of access hazards
can be removed by saving the needed operands in the registers until the operands
are no longer used. For the trace files of set (1), the potential access hazards of
type (a) are removed, but type (b) remains, reflecting state-of-the-art compiler

techniques.

5.3. Assumptions and Parameters of Simulation Models

The unit of simulation time is the CPU cycle, and various interleaving fac-

‘tors from from 4 to 64 are used. Itis assumed that the memory bank busy time is

3There are potential Read-After-Write access hazards in LLL loops 4, 5, 6
and 11.

142

10 CPU cycles. Thus, at the issue stage of the Memory Controller, it requires 10
CPU cycles to complete a memory operation, and the memory operations can be
started at the rate of one per 10 CPU cycles per memory module. Also, at least
one CPU cycle is required at the input stage. The delay at the output stage varies.
For the First-Come-First-Serve scheduling policy, the fetched operand is delivered
to its Load Data Queue if the queue is not full. Otherwise, the fetched operand is
stored in the output queue and remains there until its Load Data Queue is ready
to receive the operand. For the Free-Module-Request-First scheduling policy, the
fetched operand for a completing read operation is sent out of the memory system
to its destination queue if the Load Data Queue is not full and the sequence
number of the fetched operand is the same as the next output sequence number.
Otherwise, the fetched operand is held in the output stage until it can be
dispatched from the memory system. Thus, the minimum service time for a

memory request is 11 CPU cycles.

It is assumed that it takes one CPU cycle to send a request to the Memory
Controller, and one CPU cycle to deliver a fetched operand to the processor. The
transmission time on the input and the output buses are the same regardless of the
interleaving factors. Thus, the processors and the Memory Controller can send
flow control signals to each other in one CPU cycle. However, it takes one CPU

cycle to send it, and one more {0 recognize it.

A Startand-Stop flow control scheme is used throughout the simulations.
The. PIPE processor sends requests to the Memory Controller until a Stop control
signal is received from the Memory Controller and resumes sending requests

when a Start control signal is received. Similarly, the Memory Controller has to

143

deliver fetched operands to the processors according to the control signals received

from the destination processors.

In order to correctly measure the performance of request scheduling policies,
the simulation models will use a queue size that is large enough so that perfor-
mance degradation due to insufficient queue spaces can be avoided. Therefore,
the performance evaluation will not be biased. From chapter 3, we know that the
performance of decoupled computation will not increase after the queue size is
larger than eight. Therefore, it is assumed here that the size of Load Data Queue
on the PIPE processors is eight, and the request queue size on the Memory Con-

troller is 32, such that the probability of request queues become full is low.

In order to make a fair comparison of priority scheduling policies, it is
assumed that the PIPE processor has an instruction cache size that is large
enough to contain the entire loop body of every Lawrence Livermore Loop (actu-
ally, the hand-optimized decoupled codes of each of the twelve LLL loops can be
stored into the 128-byte instruction cache of a PIPE processor.) Thus, simulation
results will not be skewed by the nondeterministic instruction cache misses. A

cache miss is assumed only. the first time that any cache line is referenced.

5.4. A Method for Performance Evaluation

A contention-free memory system is used as the basis for evaluating the per-
formance of different memory models. In the contention-free memory system,
~each address constitutes. a separate interleaved memory-module, so that memory
.. conflicts occur only if the requests are-accessing the same memory location (i.e.

an Read-After-Read access). The pipeline organization of the contention-free

144

memory system is the same as the pipeline organization of the memory models
defined in chapter 4. There are two input buses to receive memory transactions
from the Access Processor and the Execute Processor, respectively, so that the
contention-free memory system can receive one input from each processor in the
same clock cycle. Each memory request will take a fixed time (10 CPU cycles) to
be completed, and the time used on each pipeline stage is the same as the parame-
ters defined in the previous section. Only one memory request can occur per
CPU cycle, and only one operand needs to be returned; thus, only one memory

output bus is needed.

It is assumed that the contention-free memory system can resolve access
hazards instantly. In other words, if a hazard is detected because the write
address is waiting for the write data to arrive, the read request can be processed
ahead of the write address request before the write datum arrives. In addition, a
write request can be processed immediately after its write datumn arrives. If there
are two read requests to the same memory location, these two requests can be ser-
viced in consecutive clock periods. Based on these assumptions, memory con-
flicts will never occur and there is no penalty for access hazards in the
contention-free memory system. Consequently, the memory requests can be ser-
viced at the rate of their arrival. Although this assumption allows incorrect
sequencing of memory operations, it can be used as a scale for measuring the
performance of different memory models under the workload defined by the trace
files, and used as an index to evaluate the performance degradation due to
memory access hazards. The performance of a memory model will be normalized

by the following equation:

145

Total Simulation Time of Contention— Free Memory System
Total Simulation Time of the Memory System being Measured

Performance =

The simulation time is measured by executing the trace file in the closed-loop
model. The memory system of the closed-loop model is either a contention-free
memory system or a memory model for which a request scheduling policy is to be

evaluated.

5.5. Performance Evaluation of Memory Models

In chapter 4, it was shown that the Free-Module-Request-First scheduling
policy can minimize the total service time for requests to the same queue. Also, it
was concluded that the performance of a memory system can be improved if the
load address and the store address requests within a module are stored in separate

request queues.

The goals of this simulation study are: (1) to quantify the performance
improvement of the Free-Module-Request-First scheduling policy over the First-
Come-First-Serve scheduling policy, (2) to evaluate the performance improvement
obtained through separating load data and store address requests, and (3) to evalu-
ate the performance degradation of a memory model due to Read-After-Write
access hazards. If the performance improvement of (2) is insignificant, load and
store requests can be stored in a single request queue; thus, access hazard detec-
tion would not be needed. It will be shown that the performance degradation of
(3) is -significant, so a short-circuiting technique is considered, and the speedup

-through short-circuiting Read-After-Write requests will then be evaluated.

146

Memory models with four request scheduling policies are studied:

(1) FCFS/1Q scheduling policy: First-Come-First-Serve, one Load/Store
Address Queue (LA/SA Queue) is used to store all the load address and the
store address requests.

(2) FCFS/RRF scheduling policy: First-Come-First-Serve/Read-Request-First,
the LA/SA Queue is divided into the Load Address Queue (LAQ) and the
Store Address Queue (SAQ); requests from the LAQ are given higher prior-
ity than the requests in the SAQ.

(3) FMRF/1Q scheduling policy: Free-Module-Request-First, each Module
Controller has one LA/SA Queue for storing load address and store address
requests that are accessing the memory module.

(4) FMRF/RRF scheduling policy: the combination of the Free-Module-
Request-First policy and the Read-Request-First policy, the LA/SA Queue
within each Module Controller is divided into an LAQ and an SAQ; requests
from the LAQ are given higher priority than the requests from the SAQ.

For the FCFS/RRF scheduling policy and the FMRF/RRF scheduling policy, the
store address requests are serviced only when the LAQ is empty or the Load Data
Queue on the processor is full. For the trace files of the first LLL loops, the
Access Processor does not issue LA requests for itself. Thus, the LA and ALA
requests are considered as the same type of load address request in the FCFS/RRF
and FMRF/RRF scheduling policies.

For easy implementation in matching the store address/datum, two Store
Data Queues (SDQ) are used to hold the store data from the Access Processor and
the Execute Processor, respectively. Thus, a SA request can find its store datum
correctly from its corresponding SDQ. For the FCFS/1Q and the FCFS/RRF
scheduling policies, there is one pair of SDQs for the entire Memory Controller.
For the FMRF/1Q and the FMRF/RRF scheduling policies, every Module Con-

troller has a pair of SDQs to store all the store data received. The store data will

147

be paired with the addresses in the SAQ and a decision will be made as to whether

or not they belong to the receiving module.

Since the requests are placed in the queues according to the order of their
arrival (so that they are serviced in arrival sequence) the control logic for the
FCFS/1Q policy is very simple. Access hazard checking is not necessary in the
request selected for the next service. In addition, the memory outputs are in the
same order as their original arrival sequence. Thus, the FCFS policy does not

require sequence control.

Hazard detection and correct sequencing of memory operations should be
done when load and store requests are stored into the LAQ and the SAQ, respec-
tively. The presence of request queues with fully associative search capability for
detecting memory access hazards is assumed. Whenever an access hazard is
detected, memory operations are issued according to their arrival sequence. In

this way the performance degradation due to access hazards can be evaluated.

In order to measure precisely the performance of a request scheduling pol-

icy, the performance difference resulting from the input multiplexing schemes®

have to be minimized. The same input buses as in the contention-free memory
system are used, and it is assumed that the memory system can receive one input
from each processor in each CPU cycle. Different interleaving factors are used

in simulations to study the performance degradation due to memory conflicts.

“In chapter 3, the simulation results showed that the performance degradation
due to the use of an efficient multiplexing scheme, such as the round-robin or
EP-First multiplexing scheme, is insignificant.

148

5.5.1. Evaluation of Memory Models with Read-After-Write Hazards

The simulation results using the set of trace files with Read-After-Write
hazards are in Table 5.1 and 5.2, and the performance of the four request
scheduling policies are plotted in Figure 5.2. The results showed that the

FMRF/RRF scheduling policy offered the best performance. The performance of

Total Simulation Times of Memory Models

with RAW Hazards in the Trace Files

Interleaving Factors

Scheduling
Policy 4 8 16 32 64
FMRF/RRF 106,793 95,293 92,900 92,458 92,282

FMRF/1Q 144,969 128,438 111,769 109,283 108,565

FCFS/RRF 148,678 128,525 96,793 93,397 93,084

FCFS/1Q 180,370 157,988 116,138 111,666 110,777

Table 5.1 -- Total simulation time of the first 12 Lawrence Livermore Laboratory
loops on four memory models. The set of trace files that have Read-After-Write
- access hazards are used in the simulations.

149

Performance of Memory Models

Measured with RAW Hazards in the Trace

Files

Scheduling Interleaving Factors
Policy 4 8 16 32 64
FMRF/RRF 0.541 0.606 0.622 0.625 0.626
FMRF/1Q 0.398 0.450 0.517 0.528 0.532
FCFS/RRF 0.388 0.449 0.597 0.618 0.620
FCFS/1Q 0.320 0.365 0.497 0.517 0.521

Table 5.2 -- Performance of the memory models using the first 12 Lawrence
Livermore Laboratory loops. The set of trace files that have Read-After-Write ac-
cess hazards are used in the simulations.

150

1.000 -
0.900
0.800 -
p 0.700 -
€
T = B =
0.600 - -
f §-a
o /’ %
s A T T TS
r 0.500 - S ET I .
o "x
m //‘/E;,/ J
a =7 ’
0.400 - = o
n &
X
C
o
€ 0.300 -
0.200 - g———rm0 FMRF/RRF
0-----< FCFS/RRF
0.100 - +—-—-—+ FMRF/1Q
SR x FCFS/1Q
0.000 T T T T T i
1 2 4 8 16 32 64

Number of Modules

Figure 5.2 -- Performance comparison of memory models using the set of trace
files where Read-After-Write hazards exist.

151

FCFS/RRF scheduling policy approximated the performance of FMRF/RRF pol-
icy when the interleaving factor was larger than 32 where memory conflicts did
not occur frequently. When the interleaving factor was small and there were fre-
quent memory conflicts, the Free-Module-Request-First scheduling policy could
reduce the penalty of memory conflicts and utilize the memory modules more effi-
ciently than the First-Come-First-Serve policy. When the interleaving factor was
large, the RRF policies performed better than the 1Q policies. This indicated
that the load address and the store address requests should be separated into dif-

ferent queues when the number of memory conflicts was small.

However, the maximum performance of the FCFS/RRF or the FMRF/RRF
request scheduling policies was only about 60% of the contention-free memory
system. This implies that memory access hazards significantly affect perfor-

mance.

Further analysis of the trace-driven simulation results suggested that the
Read-After-Write hazard among the memory requests within the trace files was
the main factor that reduced the performance of every request scheduling policy.
Since the memory .access hazard was ignored in the contention-free memory sys-
tem, the requests with access hazards had to be removed from the trace files® so

that the comparison of these four request scheduling policies could be evaluated

fairly.

>The decoupled codes of LLL loops 4, 5, 6 and 11 were modified to save the
__store datum of the store request, that created a Read-After-Write hazard previous-
ly, for the load request accessing the same location as the store request. Then,
the store request-was issued after its store datum was used by the load request.
The modified decoupled codes were used to generate a new set of trace files, so
that Read-After-Write access hazards will not occur during the simulations.

152

5.5.2. Evaluation of Memory Models without Read-After-Write Hazards

The results of trace-driven simulations using the set of trace files in which
Read-After-Write hazards were eliminated are shown in Table 5.3 and 5.4 and
plotied in Figure 5.3. As shown in Figure 5.3, the performance difference

among scheduling policies was greater and the differentiation was clearer when

Total Simulation Times of Memory Models
without RAW Hazards in the Trace Files
Scheduling Interleaving Factors
Policy 4 8 16 32 64

FMRF/RRF 73,950 54,050 52,182 52,024 51,989
FCFS/RRF 109,633 88,552 55,356 52,220 52,038
FMRF/1Q 113,590 98,419 80,799 78,678 78,124
FCFS/1Q 147,691 126,591 86,300 82,186 81,482

Table 5.3 -- Total simulation time of the first 12 Lawrence Livermore Laboratory
loops on four-memory models. The set of trace files that do not have Read-After-
Write access hazards are used in the simulations.

153

Performance of Memory Models
Measured without RAW Hazards in the Trace Files
Scheduling Interleaving Factors
Policy 4 8 16 32 64

FMRF/RRF 0.703 0.961 0.996 0.999 0.999
FCFS/RRF 0.474 0.587 0.939 0.995 0.998
FMRF/1Q 0.457 0.528 0.643 0.660 0.665
FCFS/1Q 0.352 0.410 0.602 0.632 0.638

Table 5.4 -- Performance of the memory models using the first 12 Lawrence
Livermore Laboratory loops. The set of trace files that do not have Read-After-
Write access hazards are used in the simulations.

154

1.000 -
0.900
0.800 -
P 0.700 -
c
" 0.600
;0
(o]
. 0.500 _
m
2 0.400 - A
c &
e 0.300 -
OO0 FEMRE/RRF
0.200 -
o_.__. © FECFS/RRF
0.100 - X X FMRF/1Q
B A FCFS/1Q
0.000 0 I T ' ‘ !
1 2 4 8 16 32 64

Number of Modules

Figure 5.3 -- Performance comparison of memory models using the set of trace
files where-no Read-After-Write hazards exist.

155

the memory access hazards are removed. The following observations are sug-

gested by the results of this simulation:

(1)

()

(3)

When both the load address and the store address requests are placed into the
single LA/SA Queue, as in the FCFS/1Q policy and the FMRF/1Q policy,
the store address requests will block the load address requests from being
issued. Performance peaks at about 65% performance of a contention-free
memory system. When the load address and the store address requests are
stored in the LAQ and the SAQ, respectively, the performance of FCFS/RRF
and FMRF/RRF policies can approximate the performance of the
contention-free memory system when the interleaving factor is equal or
greater than 32. Thus, the performance of a memory system can increase
about 50% if the load address and the store address requests are stored in
separate queues.

The FCFS/RRF policy can achieve a similar level of performance as the
FMRF/RRF policy when the interleaving factor is 32 or greater, because the
number of memory conflicts is small.

Neither the FCFS/RRF policy nor the FMRF/1Q policy will perform well
individually. The combination of these two policies into the FMRF/RRF pol-
icy can achieve much better result than either of them alone. Take for
instance the cases where the interleaving factor is 8, the FCFS/RRF policy
or the FMRF/1Q policy can achieve only 58.7% and 52.8% of the perfor-
mance of contention-free memory system, respectively. But, the FMRF/RRF
policy can achieve 96% performance of the contention-free memory system.

5.6. Summary and Discussion

For the trace files generated from the first LLL loops, the simulation results

indicate that:

(1)

The Free-Module-Request-First policy can significantly outperform the
First-Come-First-Serve policy for servicing requests to the same queue when
the interleaving factor is :less.than the memory bank busy time (10 CPU
cycles). When the interleaving factor is equal to or greater than 32, memory
conflicts do not occur frequently. Thus, the performance of the FMRF and
the FCFS policies are almost the same.

156

(2) The separation of the load and the store requests can substantially improve
the performance of memory system.

(3) Memory access conflicts can reduce the performance by almost 40% for the
memory model using the FMRF/RRF policy under the workload of the first
12 LLL loops.

During the simulations of LLL loops 2, 3, 5 and 6 in the memory models
with interleaving factors of 4 or 8, the array elements of the array variables with
the same index are located at the same memory module. Thus, memory conflicts
occurs frequently. If the compiler is able to detect that the array references can
create frequent memory conflicts in an interleaved memory system, it should
assign the array variables with different base addresses so that the number of
memory conflicts in the run-time can be reduced. Then, the performance differ-

ence of the FMRF and the FCFS scheduling policies can be further reduced.

The Memory Controller with the FMRF/RRF scheduling policy has the abil-
ity to service the memory requests at their arrival rate if the access hazards are not
considered. When the access hazards are taken into account, the FMRF/RRF
policy can only achieve 62% performance of the contention-free memory system.
If Read-After-Write access hazards resulting from the array references within the
loop are considered, the performance of the memory model using the FMRF/RRF
policy can decrease further. These results show that the memory access hazard is
a bottleneck for computing the Lawrence Livermore Laboratory Loops in the

decoupled architecture.

If the. distributed control logic.for the FMRF scheduling policy is more com-
.. plex than. the. centralized . control logic for the FCFS-scheduling policy in the

implementation, it is possible that the probability of failure for the memory system

157

with the FMRF scheduling policy is higher than that for the memory system with
the FCFS scheduling policy. The issue of fault tolerance for a memory system is

not investigated in this research.

In order to make the FMRF/RRF scheduling policy practical, its implemen-
tation should be able to handle memory access hazards efficiently. Since the
sequence control scheme of Free-Module-Request-First policy can be used to
track cache hits and misses, a data cache with the ability to detect access hazards
and the ability to short-circuit Read-After-Write requests is designed and evaluated

in the next chapter.

CHAPTER 6

The Design of a Data Cache

Cache memories have been successfully implemented to store frequently
referenced instructions and data in order to meet the demand of memory requests
from a processor. Caches permit a processor to retrieve the information from the
cache memory in a much shorter time interval compared to the main memory.
Thus, a well-designed cache memory organization can enhance the performance
of a high-speed computing system. A modification to a data cache will be shown
to provide the ability for detecting and resolving memory access hazards, and its

performance will be evaluated in this chapter.

6.1. Limitations of a Data Cache in the Decoupled Architecture

In decoupled computation, operand addresses are computed by the Access

Processor. The Execute Processor is aware that these operands are in the Load

.. Data Queue, but it is unaware of. their memory addresses. If the Execute Proces-

sor were allowed to fetch operands from a cache memory, the operand addresses

would have to be provided by the execute code so that the Execute Processor could

158

159

use the addresses to fetch operands from the data cache.

Each PIPE processor has only one Load Data Queue for storing the operands
fetched from memory. The order of operands placed into the Load Data Queue is
critical for correct computation. If a data cache were implemented on each PIPE
processor, the operands could be either fetched from the data cache (cache hit) or
fetched from the main memory (cache miss). Since it requires a longer time
interval to fetch data from the main memory than from the data cache, the PIPE
processor would have to track the cache hits and misses in crder to place the
fetched operands into the Load Data Queue in the correct order. Also, the cache
~ consistency problem [CeFe78] will be another difficult design issue when both the

Access and Execute processors have their own data caches.

In addition, the speedup of cache hits following a cache miss cannot be real-
ized. This is due to the fact that the operand not in the data cache must be fetched
from the main memory. The operands fetched by those cache hits cannot be
placed in the hardware queue until the operand for the cache miss is enqueued.

Thus, a high hit ratio is an important factor for the design of a data cache for a

decoupled architecture!.

Due to these difficulties, the cache memory for the PIPE architecture is
organized into an instruction cache for each processor and a data cache for each

memory module. An instruction cache is located on each PIPE processor chip,

and the data cache? is placed in the memory system. When the data cache is part

of the memory system, the operands supplied by the cache must still be

INote that the bursty nature of cache misses is advantageous here.

2Actually instructions may also be contained in the data cache.

160

transmitted to the processor chip, and the data cache cannot be used to reduce the
processor-memory traffic [Good83]. However, this single data cache avoids the
cache coherence problem (except for instructions) and provides a simple imple-

mentation of a data cache for the decoupled architecture.

The Memory Controller with the Free-Module-Request-First scheduling pol-
icy can service memory requests out of arrival order, and then coalesce the
fetched operands into their original order when they are delivered. Thus, a data
cache can be implemented in the Memory Controller. The Free-Module-
Request-First Memory Controller can assume the responsibility of bookkeeping
for. the cache hits. and misses without -additional cost. A specially designed data
cache in the Memory Controller not only provides flexible fetching schemes, it
also detects memory access hazards and provides a short-circuit to reduce the

penalty of access hazards.

In the following sections, the detailed design of this data cache in the Free-

Module-Request-First Memory Controller will be discussed.

6.2. Organization of the Memory Controller with Data Cache

Because the address space of each memory module does not overlap with
other modules, and because each Module Controller fetches its operands indepen-

dently, the data cache will be partitioned among the modules.

A block diagram of the Module Controller with data cache is illustrated in
~Figure 6.1. The pipeline stages of the Module Controller are segmented into the
input stage, the issue stage and the output stage. The functions of the input and

the output stages are the same as the basic Module Controller using Free-

161

Address/ Load
Data Data
Bus Bus
A
To All
Module
A DATA CACHE MODULE Controllers
ACKe ACKo
SEQe SEQo | §
N Seq No i :
:) Data Cache Memory

NPUT | | s | | COMTTOEC | S| Operation]| o} OUTPUT|

Logic Status Logic

SDQ ISSUE Logic Table :

Request I | : T

Buffer Output Queue

.............. E k:."\ :.(:J
\L 4/ ANV 4» ">
Request Queue »

MAR MBR
|
v)

A MAIN MEMORY MODULE

Figure 6.1 -- Block Diagram of the Module Controller with Data Cache

162

Module-Request-First scheduling policy. The issue stage has additional control
logic (the data cache control logic) for accessing the data cache. The sequence
number registers: IN-Seq, SEQo, and SEQe, and the control signals: ACKe and

ACKo are the same as described in chapter 4.

A memory request, either load address or store address request, is placed in
the Request Queue when it is received. Similarly, a store datum is placed in the
Store Data Queue when it is received. The request at the head of the Request
Queue will be removed and processed by the issue stage if the request can be ser-
viced. In addition, the store address request is placed in the Store Address Queue,
and is paired with the store data in the Store Data Queue. Detailed algorithms

used by the issue stage will be discussed in later sections.

6.2.1. Organization of the Data Cache

Each Module Controller has its own data cache to store the contents of the
memory locations that are referenced by the requests accessing the module. The
line size of a data cache in each Module Controller is the same as the memory

word size.

A single data cache entry consists of three parts: the tag, the address, and the
data. The tag indicates the stats of a cache entry, and can take the form of one
of four states: Empty, Valid, Pending and Dirty. The Empty entry does not have
valid information in the address and in the data parts. The Valid entry contains
the address- of a memory location and the current value stored in that memory
location. The Pending entry contains only a memory address and does not have

valid data in the data part. The Dirty entry contains the address of a memory

163

Jocation and the current value of that memory location, but this value is not stored
in that memory location, i.e., the memory location is stale. A Pending entry can
belong to a pending-write Tequest or a pending-read request. A pending-write
request is a write request whose store address has arrived and has been stored in
the data cache without associated data. Thus, it is waiting for the store data to
arrive. A pending-read request is a read request being serviced, and its address
has been stored in the data cache. Hence, it is waiting for the data to be fetched
from the memory module. The state transition diagram of a data cache entry is

illustrated in Figure 6.2, and the transition actions are explained in Table 6.1.

By insisting that a Pending entry not be replaced until its corresponding
datum has been stored into the data part, a memory access hazard is detected if
the memory request is mapped into a Pending entry. This feature allows the data
cache to detect memory access hazards. Thus, the request queues need not be
associative for detecting access hazards and can be simpler. In addition, the data
cache provides a short-circuit for the Read-After-Write requests. Detailed discus-
sion of this feature and its performance improvement to the memory system are

described in section 6.2.3.

6.2.2. Selected Data Cache Algorithms

The address space of the entire data cache organization is illustrated in Fig-
ure 6.3, where a 4-way interleaved memory system is assumed. A logical cache
- line.is defined:which consists of-the words of contiguous-memory addresses across
all. data cache- modules. Each word of a logical cache line is controlled by a

Module Controller independently. Thus, the contents of a logical cache line may

RA or SA

01 SA or RA (Miss) 11
PENDING »\ VALID
DF
RA or SA
(Blocked)

RA
SA
- SD

DF

RA (Hit)

Read Address
Store Address
Store Data

Data Fetched into Cache

-Figure 6.2 -- State transition diagram of a data cache entry.

RA (Hit)

165

Current Next
State {Inpuf Comment State] Action
00 RA |Read address arrives 0 1 [|Start read/U pdate address
SA |[Store address arrives 0 1 |Update address

Empty | SD |Store data/addr arrives 0 0 [ERROR
DF |Data fetched from memory 0 0 ERROR

01 RA [Read address arrives 0 1 [Try again next cycle
SA [Store address arrives 0 1 [Try again next cycle
IPending| SD |Store data/addr arrives 1 0 if MATCH, update data;
0 1 [otherwise, ERROR.
DF |Data fetched from memory] 1 1 {If MATCH, update data;
0 1 |otherwise, ERROR.

11 RA [Read address arrives 1 1{HIT, read cache.

1 M1SS, read memory/replace cache.
Valid | SA |Store address arrives 0 1 |Update address
SD [Store data/addr arrives 11

11

DF |Data fetched from memory] -

ERROR
ERROR

10 RA [Read address arrives 1 O [HIT, read cache.
0 1 MISS, write back/read memory.
Dirty | SA |Store address arrives 0 1 [HIT, Update address.

0 1 |MISS, write back/update address.
SD |Store data/addr arrives 1 0 [ERROR
DF |Data fetched from memory| 1 0 ERROR

Table 6.1 -- State transition table for a data cache entry. The MATCH means
that the address of a-memory request is-the same as the address stored in a Pend-
ing entry, and the ERROR action should never occur.

ADDRESS

Cache Word Number

Module 0 Module 1 Module 2 Module 3
0 1 2 3
A)) Logical |) Cache | ...). . Line
N-4
N N+1 N+2 N+3
N+4

166

Figure 6.3 -- Address space of the data cache in 4-way interleaved memory system.

167

not be contiguous memory addresses. This feature allows different cache algo-
rithms, and results in the definition of a cache line which is unlike that of the
conventional cache memory. The study of different caching algorithms derivable
from this feature is beyond the scope of this research. Only those selected for the
implementation of memory access hazard detection and resolution scheme are dis-

cussed.

There are alternative ways to select the cache fetch algorithm, the placement
algorithm, the replacement algorithm and the write-through or the write-back pol-
icies [Smitl182]. Simple implementation is the main consideration in selecting the
cache algorithms for evaluating the performance of the data cache. Although the
selected algorithms may not represent the optimal solution for the data cache
organization being studied, they can be used to evaluate the effectiveness of the
solution to memory access hazards. The cache algorithms used for simulation

study are:

(1) Logical cache lines are fetched on demand, and prefetching for adjacent logi-
cal cache lines is not attempted. However, the memory words of a logical
cache line, which is referenced by a load address request, are prefetched by

. other non-busy modules if a cache miss occurs. Thus, the memory words of
the same logical cache line may be fetched into the data caches in all
modules simultaneously.

(2) A direct-mapped algorithm using the bit selection scheme, as shown in Fig-
ure 6.4, is used for both the placement and replacement algorithms. Thus,
the operand fetched for a load address request will not replace a Pending
entry.

(3) The write-back policy is used for three reasons: (a) cache consistency is not
. a problem in this cache organization, (b) fetch-on-write is not necessary
because each cache word of a logical cache line can be placed and replaced
independently, and (c) write-back policy results in fewer memory operations
than write-through policy [Smith82]. Thus, the data part of a Dirty entry
must be stored into the main memory when it is replaced by the cache

168

replacement algorithm.

6.2.2.1. Servicing a Read Request

Based on the module number of a read request address, the Module Con-
troller can determine whether or not the request is legitimate to itself. 1f the
module number of a received request address is not the same as the module
number of the Module Controller, then it is an illegitimate request. The algo-

rithm for servicing a read request is illustrated in Figure 6.5.

When a cache hit occurs for a legitimate request, the data is retrieved from
the data cache and passed on to the output stage with its sequence number for
delivery. When a cache miss occurs for a legitimate read request, the issue logic
must start a read operation to feich the needed data into the data cache. The
fetiched data is also passed to the output stage with its sequence number for
delivery to its final destination. The cache entry to be replaced by the legitimate

read request must be marked as a Pending entry before the read operation is

MEMORY ADDRESS
15 9 3 2 0
Cache Word No. Module No.
Figure 6.4 -- Bit assignment for selecting a cache

placement/replacement word from the data cache of a module. As-
- sumes 128-word data cache per module and 8-way interleaving.

Read Address

v

Get Target

Address

?

Select word
to replace

)

169

Discard
Prefetch
Request

il

!

Discard
R::;e Prefetch
ot Request
) |
Y No ~ PENDING
?
No Yes
\Y/ y
- Write]r361:§ l;e uest
back d
¥ . v v
Set PENDING
Fetch word into cache
Set VALID Check Store

Address/Data Pairing

Figure 6.5 -- Algorithm for servicing a read request. The read request is checked

whether or not it is legitimate

sidered as a prefetch request, because it is fetch

needed when the read request arrives.

The read request for an illegitimate request is con-
ing a memory word that is not

170

started, and then changed to a Valid entry when the fetched data is stored into the

cache entry.

For an illegitimate read request, the issue logic has to obtain the address of
the memory word that belongs to the same logical cache line as the memory word
requested by the illegitimate read request. This word address can be obtained
from the higher order bits, that indicates the word location within a module, of
the illegitimate read request address. (For example, in Figure 6.4, bits 3-15 indi-
cate the word location of a memory word within a module; the issue logic has to
obtain the word address from bits 3-15 of an illegitimate read request address, and
use the obtained word address to access the memory word within its module.) The
issue logic then checks whether the data of the accessed word address is in the
data cache. If it is in the data cache, this illegitimate read request is discarded and
its service is completed. If the data of the computed address is not in data cache
and the data cache entry selected for replacement is a Pending entry, this illegiti-
mate read request is discarded and its service is completed. Otherwise, the entry
selected for cache replacement is marked as a Pending and a prefetch for the com-
~ puted address is- started if the module is free. When the prefeiching operation is
started, the Memory Operation Status Table for this fetch is flagged as a prefetch-
ing operation, so that the fetched data is stored into data cache without being
routed to the output stage. Once the prefetched data is stored into the cache, the

cache entry is changed from Pending to Valid.

171

6.2.2.1.1. Variations of Servicing Read Requests

There are three alternative memory words that the Module Controller can
fetch when the Module Controller receives an illegitimate read request: (1) the
memory word on the addressed cache line, (2) the memory word on the cache
line that is before the addressed cache line, or (3) the memory word on the cache
line that is after the addressed cache line. If method 1 is used, the data cache
operates the same way as the conventional cache where the unit of cache fetch is
the cache line. When either method 2 or 3 is used, the number of words fetched
is the same as the number of words within a cache line. But the fetched words
may not all belong to the same cache line. Method 1 is used in the simulation

study of this research, and methods 2 and 3 are not investigated.

6.2.2.2. Servicing a Write Request

From the performance of the FMRF memory model discussed in the previ-
ous chapter, we know that store address requests should not remain at the head of
the queue and wait for the store data to arrive. Instead, the store address request
is moved to the Store Address Queue where it will Wai.t for store data if it has not
yet arrived. Meanwhile, the address of the store request is stored into the selected
cache entry, and this store address request becomes a pending-write request. The
algorithms for servicing a store address request and maiching the store address

and store data are illustrated in Figure 6.6 and 6.7, respectively.

When a store datum arrives at the Module -Controller, it is placed into the
Store Data Queue regardless of whether or not it belongs to a store address

request accessing the receiving module. It is likely that a store datum can arrive

Store Address

Y

. Figure 6.6 -- Algorithm for servicing a store address request.

Yes HIT No Move to SAQ
9
Select word to replace
No ~PENDING> Y&
v
No Yes
Write v
back Block Store Request
Check Store
¥ Address/Data Pairing
Set PENDING
Store address to cache
Move to SAQ

172

173

Store Address/Data

Yes Discard Store

Address/Data

Store data to cache
Set DIRTY

ERROR

Figure 6.7 -- Algorithm for pairing store address and store data.

at the Module Controller earlier than its store address request. The store datum
at the head of the Store Data Queue cannot be processed until there is a store
address in the Store Address Queue. Similarly, the store address at the head of
the Store Address Queue cannot be processed until there is a store datum in the

Store Data Queue. The store datum reaching the head of the the Store Data

174

Queue will be paired with the store address at the head of the Store Address
Queue. If this store address is not located at the memory module of the Module
Controller, this store address/datum pair is discarded. Otherwise, the service for
the store address/datum pair is started. The store address is used to locate the
Pending entry in the data cache. Once the datum is stored into the data cache, the
Pending entry will be converted to a Dirty entry that has the current data value of

the store address.

Since the store address request always becomes a pending-write request when
it is moved from the Request Queue to the Store Address Queve and since Pend-
_ing entries are never purged, the paired store address and store datum will always

find its pending-write entry in the data cache.

6.2.3. Access Hazard Resolution and Read-After-Write Short-Circuiting

Since multiple requests to a particular memory location are stored in the
Request Queue in the order of arrival, they will be serviced in the arrival
sequence. Thus, the correct sequence of memory operations is ensured. When
the issue logic checks whether the next request can be processed, one of three
situations can occur: (1) it is a cache hit, (2) it is a cache miss, or (3) it is

mapped into a Pending entry.

Suppose that the next request is a read request. The issue logic fetches the
data from the data cache if it is a cache hit. A memory read operaﬁdn will be
issued if itis a cache miss, and the data cache operation in the Module Controller
. is blocked until the memory read operation is completed. When the next request

is mapped to a Pending entry of a pending-write request, a Read-After-Write

175

access hazard occurs if the store address of the pending-write request is the same
as the next read request. Otherwise, a memory access hazard does not occur. In
either of these two situations, the next request has to wait at the head of the

Request Queue until the Pending entry changes o a Dirty entry.

If the next request is a store address request and is mapped to a Pending entry
of a pending-write request, a potential Write-After-Write access hazard is
detecied. The Write-After-Write hazard is resolved in the same way as the Read-
After-Write access hazard by enforcing the store address request to remain at the

head of the Request Queue (The first write need not be done, however).

The Write-After-Read hazard can occur if a store address of the next request
is the same as the address of the read operation in progress, and it can be resolved
in two ways. First, the Module Controller stops servicing requests when a cache
miss occurs, so that Write-After-Read hazards never occur. This scheme is used
in the simulation study. Second, the cache entry for the read request being ser-
viced is always marked as a Pending entry and this Pending entry cannot be

purged. Thus, the Write-After-Read hazard is resolved.

In this data cache design, the Read-After-Write request must be blocked at
the head of Request Queue until the store data of the pending-write request is
stored into the data cache. The Read-After-Write request is then guaranteed a
cache hit, and the store data can be short-circuited to the Read-After-Write

requests. Thus, the penalty of the Read-After-Write hazard can be reduced.

176

6.2.4. First-Come-First-Serve Memory Model with Distributed Data

Cache

A centralized control First-Come-First-Serve memory system with distributed
data cache can be implemented with one FCFS Memory Controller and M Module
Controllers, where M is the interleaving factor. In this memory model, the
Memory Operation Status Table is located at the FCFS Memory Controller, and
the data cache and cache control tables are distributed among the Module Con-
trollers. There is no distributed sequence control scheme among the Module
Controllers. Therefore, the FCFS Memory Controller must service memory
requests of the same type in the arrival order, so that the fetched operands can be

delivered when they are fetched by the Module Controllers.

The FCFS Memory Controller services a memory request by broadcasting
the request to all Module Controllers. All the Module Controllers will fetch the
memory words of the logical cache line addressed by the received request. Thus,
the memory words of the same logical cache line are fetched into the data caches
of the Module Controller simultaneously. The fetched memory word for the

received request will also be delivered to the processor.

The Module Controller must send a signal to the FCFS Memory Controller
to indicate whether a cache hit or miss has occurred for the received memory
request. A cache miss requires the Module Controller to fetch the needed infor-
mation from main memory. Therefore, when a cache miss occurs, the FCFS
Memory must stop sending requests to the Module Controllers until the needed
information is fetched from main memory. Otherwise, the operands fetched for

the cache hits following a cache miss will be delivered in the wrong order.

177

It requires (1) one clock period to send a request to the Module Controller,
(1) one clock period for a Module Controller to look up the cache control table
and decide whether it is a cache hit or miss, and (3) one clock period to send a
signal to the FCFS Memory Controller about the cache hit or miss information.
The FCFS Memory Controller can continuously send three requests to the
Module Controllers before the FCFS Memory Controller knows that a cache miss
has occurred. Because there is no sequence control scheme among the Module
Controllers, the Module Controller cannot accept new requests when it is fetching
information from main memory. Thus, the FCFS Memory Controller must keep
a copy of each request sent to the Module Controllers until the FCFS Memory
Controller knows that a hit or miss for that request has occurred. The submitted
requests following the request of a cache miss must be resubmitted to the Module
Controllers when the Module Controller is ready to receive new requests. In
addition, the Module Controller must notify the FCFS Memory Controller when a
memory write operation is required for a replaced dirty cache entry. Thus, the
FCFS Module Controller can determine when the Module Controllers are ready

to receive new requests.

The memory system using a FCFS Memory Controller and distributed data
cache among the Module Controllers can also use the data cache to detect
memory access hazards and short-circuit Read-After-Write requests. However, its
implementation requires more off-chip communication and is more difficult than
_ the distributed memory system using the FMRF . policy with a data cache on each
Module Controller. The. performance of both memory systems will be evaluated

through trace-driven simulation in the following section.

178

6.3. Performance Evaluation of the Data Cache

The goal of the trace-driven simulations is to evaluate the effectiveness of
memory access hazard resolution and the performance improvement of the
memory model with the data cache. The set of trace files of the first 12 Lawrence
Livermore Loops that have Read-After-Write hazards (loops 4, 5, 6 and 11) is
used. In order to have a fair comparison between the contention-free memory
model and the memory models with data cache, the memory bank busy time of
the contention-free memory model should be the same as the cache cycle time
(three CPU cycles). Therefore, in the following discussion, the performance of a

memory model will be normalized with the total simulation time of the

contention-free memory model with memory bank busy time of three CPU cycles3.

In the simulations, it is first assumed that the data cache of each Module
Controller is the same size, i.e., 128 words of direct-mapped cache per module.
The memory model with a larger interleaving factor will have a larger data cache
than the memory model with a smaller interleaving factor. In later sections, simu-
lations of an 8-way interleaved memory model with a data cache of different sizes

per module are performed for investigating suitable cache sizes.

The simulation results in Tables 6.2 and 6.3, and Figure 6.8 show the per-
formance comparisons of the memory model using the data cache and the other
memory models. The results indicated that the data cache did improve the
memory system significantly. In fact, it improved performance for the FMRF

memory system from 60% to 94% and for the FCFS memory system from 44 %

3The performance of the contention-free memory model is nearly the same for
3 and 10-CPU-cycle memory bank busy times.

179

to 75% of the performance of the contention-free memory system when the inter-
Jeaving factor was 8. When the interleaving factor was greater than or equal to
32, the performance of the FMRF memory system with data cache was about
98% of the contention-free memory system, and the performance of the FCFS
memory system with data cache was about 86% of the contention-free memory
system. For the simulations of loops 4, 5, 6 and 11, where many Read-After-
Write requests exist, the average performance using a data cache was 2.5 times

that of the memory model without data cache (see Appendix HI).

In order to determine the appropriate data cache size, simulations with dif-
ferent data cache sizes, from 1 to 256 words per module, were performed for the
8-way interleaved FMRF memory model. The result of simulations is in Table
6.4. The table shows that by merely incorporating a data cache in the memory
model, even if there is only one cache word on each Module Controller, the

enhanced model was better than when there was no data cache.

The performance of memory models with 2 or 4 cache words per module
were slightly worse than the memory model that had only one cache word in each
module. These results were due to the cache fetch and replacement algorithms
used in the simulations. In the input stage, a prefetch was discarded if the
address of prefetch request was mapped into a Pending entry. When the cache
size was 1, all the addresses of memory requests were mapped into the same
cache entry (since there is only one entry); thus most of the prefetches were dis-
carded. When the cache size was 2 or 4, it-was likely that the first few prefetches
were mapped to separate entries and memory read operations were issued to pre-

fetch the memory words into the data cache; but, the subsequent read requests

180

Total Simulation Times of Memory Models

Interleaving Factors

Scheduling

Policy 4 8 16 32 64
FMRF with 73,896 60,823 59,044 58,088 58,028
Data Cache
FCFS with 102,287 76,062 68,261 66,375 65,635
Data Cache
FMRF/RRF 106,793 95,293 92,900 92,458 92,282

FCFS/RRF 148,678 128,525

96,793 93,397 93,084

FMRF/1Q 144,969 128,438

111,769 109,283 108,565

FCFS/1Q 180,370 157,988

116,138 111,666 110,777

Total Simulation Times of Contention-Free Memory Models

Memory Bank Busy Time

Total Simulation Time

3 CPU Cycles

56,874

10 CPU Cycles

57,741

Table 6.2 -- Simulation results of memory models with a cache cycle time of 3
CPU cycles and a memory bank busy time of 10 CPU cycles. Simulation results
for.two types of contention-free memory models: of memory bank busy times of 3
CPU cycles and 10 CPU cycles, respectively, are listed at the bottom of the table.
.The first 12 LLL trace files that have RAW hazards were used.

181

Performance of Memory Models
Scheduling Interleaving Factors
Policy 4 8 16 32 64
FMRF with 0.770 0.935 0.963 0.979 0.980
Data Cache
FCFS with 0.556 0.748 0.833 0.857 0.867
Data Cache
FMRF/RRF 0.533 0.597 0.612 0.615 0.616
FCFS/RRF 0.383 0.443 0.588 0.609 0.611
FMRF/1Q 0.392 0.443 0.509 0.520 0.524
FCFS/1Q 0.315 0.360 0.490 0.509 0.513
Performance of Contention-Free Memory Model
with Memory Bank Busy Time of 10 CPU Cycles = 0.985

Table 6.3 -- Performance of memory models normalized with the total simulation
time of the contention-free memory model with memory bank busy time of 3 CPU
cycles. The first 12 LLL trace files that have RAW hazards were used.

182

Contention-Free Memory Model

1.000 A
0.900 -
0.800 -
p 0.700 —
e
T
0.600 -
f
0
r 0.500 4
m
2 0.400 -
n
C -
e 0.300 - &
00 FMRF/Data Cache
o———¢0 FCFS/Data Cache
0.200 -
[J—— lo] FMRF/RRF
0.100 - +——+ FCFS/RRF
R X FMRF/1Q
0.000 T A-_' --------- & FCFS/1Q| T 1
1 2 4 8 16 32 64

Number of Modules

Figure 6.8 -- Performance comparison of memory models using the set of trace
files where Read-After-Write hazards exist. The performance of each model is
normalized with the total simulation time of the contention-free model with
memory bank busy time of 3 CPU cycles.

183

Performance & Simulation Time
of 8-Way Interleaved Memory Model with Data Cache
Data Cache Performance Simulation Time
Words per Module
0 0.597 95,293
1 0.736 77,225
2 0.681 83,562
4 0.712 79,920
8 0.773 73,608
16 0.857 66,386
32 0.895 63,568
64 0.906 62,767
128 0.935 60,823
256 0.935 60,797

Table 6.4 -- Comparison of 8-way interleaved memory models with different data
cache sizes. The memory model of cache size 0 is the memory system using
Free-Module-Request-First/Read-Request-First scheduling policy.

184

could be mapped into the entries where the prefetched operands were just stored.
Therefore, there were numerous prefetching operations that used memory cycles,

but the prefeiched operands were replaced before they were used.

As the data cache size increased, the prefetched operands were more likely to
remain in the data cache until called for. Thus, the performance increased as the
cache size increased. For the 8-way interleaved memory system, the performance
improvement was insignificant after the data cache size was greater than 128

words per module.

6.4. Summary and Discussion

A data cache for a decoupled architecture has been designed. By implement-
ing the data cache in the Memory Controller, the sequence control scheme of the
Free-Module-Request-First policy can track the cache hits and misses. Thus, the
control for the data cache can be implemented in the Memory Controller without

additional cost. In addition, the cache coherence problem is avoided.

The cache control logic is also designed to detect memory access hazards and
short-circuit Read-After-Write requests, resulting in dramatic performance
improvements for those trace files exhibiting Read-After-Write hazards. Thus,

the request queues do not need associative search capability.

By implementing the data cache in the memory system with Free-Module-
Request-First scheduling policy, the memory system can approach the perfor-
mance level of the contention-free memory system under the workload of the
Lawrence Livermore Loops used in this study. Since the data cache cycle is three

CPU cycles in the simulation model, simulations for the contention-free memory

185

system with a memory bank busy time of three CPU cycles were performed in
order to obtain a fair comparison between the contention-free memory system and
the FMRF memory system with data cache. The simulation results showed that
the total simulation time is decreased only 1.5% for the contention-free memory
system when the memory bank busy time is changed from ten to three CPU
cycles. Thus, the results prove that the FMRF memory system with data cache is
a high performance memory system, that is able to service requests with

minimum memory conflict delays.

The data cache ran also increase the performance of the FCFS memory sys-
tem from 61% to 87% of the contention-free memory system when the interleaving
factor is equal to or greater than 32. The performance of the FCFS memory sys-
tem with data cache cannot be as good as the FMRF memory system with data
cache due to the fact that the FCFS Memory Controller cannot service a new
request when any of the Module Controllers are accessing main memory. Each
cache replacement for a Dirty entry causes the FCFS Memory Controller to delay
another memory bank busy time (10 CPU cycles). Thus, the delay increases as
the number of memory write operations for Dirty entries increases, and the per-

formance of the FCFS memory system with data cache degrades.

CHAPTER 7

Summary and Conclusions

7.1. Summary

The design of a high performance memory system for a decoupled architec-
ture is the subject of this research. The analysis of memory reference charac-
teristics during decoupled computations was seen to be an appropriate way to iden-
tify the requirements for the memory system. Memory reference characteristics
were identified and strategies for scheduling overlapped memory requests were

proposed and evaluated through trace-driven simulations.

The objective of the memory system design is to minimize the effective
memory delay for decoupled computation through efficient request servicing. The
strategy of request scheduling was designed with two goals: (1) to service memory
requests according to their priorities, and (2) to minimize the total service time of
memory requests. However, memory access hazards are the main factors that

inhibit reaching the objective of the memory system for a decoupled architecture.

186

187

To achieve the first goal, the alternatives of dividing memory requests into
different types were proposed, and the priority for each request type was assigned
analytically. In addition, potential deadlock in request scheduling was identified,

and solutions were proposed.

The achieving of the second goal resulted in much improved memory systern
performance. This contribution is primarily due to the sequence control scheme
of Free-Module-Request-First scheduling policy, which allows requests to be ser-
viced out of arrival order and coalesces the fetched operands into correct order
when they are delivered. A theorem was derived to prove that the Free-Module-
Request-First scheduling policy can indeed minimize the total service time of

requests to a single queue.

The Free-Module-Request-First scheduling policy together with the Read-
Request-First policy produced an acceptable performance improvement when the

memory access hazard was not taken into account.

The embodiment of a specially designed data cache, able to resolve memory
access hazards and to short-circuit Read-After-Write requests, combined with the
Free-Module-Request-First scheduling policy, resulted in a memory model that
can service the memory requests as efficiently as the contention-free memory
model during the trace-driven simulations of the first 12 Lawrence Livermore
Loops. Thus, the performance degradation due to memory conflicts and access

hazards is greatly reduced and resulted in a high performance memory system.

188

7.2. Conclusions

The decoupled architecture uses hardware queues to architecturally decou-
pled memory request generation from algorithmic computation. This results in an
implementation that has two separate instruction streams that communicate via
hardware queues. Thus, performance is improved through parallelism and effi-

cient memory referencing.

Techniques for increasing memory bandwidth such as pipelining, interleav-
ing, servicing request out of arrival order, and cache memory are incorporated in
the proposed memory system within two constraints: (1) the operands placed in
the hardware queue must be in the correct order, and (2) the needed operands are

the only operands that can be placed in the hardware queue.

Three characteristics of memory reference in decoupled computation were
observed and solutions proposed: (1) two memory transactions can be issued to
the memory system in the same clock period, (2) overflow of hardware queues
caused by continuous overlap of memory requests, and (3) the shared variable

problem that leads to Read-After-Write access hazards.

The round-robin and EP-First multiplexing schemes were shown to be the
best of the four investigated multiplexing schemes that restrict the memory tran-
saction arrival rate to one per clock period. The performance of the memory sys-
tem using round-robin or EP-First is almost the same as the memory system
which is capable of receiving one memory transaction from each processor per

clock period.

A Start-and-Stop flow control scheme was proposed to regulate the transac-

tions between the processors and the memory system, and prevent the hardware

189

queues from overflowing. By using this scheme, the receiving end must reserve
three empty buffers before a Swop signal is sent to stop the transmitting end from
sending more memory transactions, and the Start signal is sent for accepting more
arrivals when there are four empty buffers. Simulation studies showed that the
performance gain levels off when the combined total queue length is greater than
eight. Since the size of a Load Data Queue in the processor must be equal to or

greater than four, the minimal queue size provides adequate length.

The technique of short-circuiting Read-After-Write requests was proposed

and shown to be effective in reducing the penalty resulting from shared variables.

The sequence control scheme for the Free-Module-Request-First scheduling
policy can be used to track cache hits and misses. Thus, a data cache with the
ability to detect access hazards and short-circuit Read-After-Write requests almost

for free was designed in the Free-Module-Request-First Memory Controller.

Architecturally, the request buffers of the memory system should be organ-
ized with four different types of queues: (1) Instruction Fetch Queue, (2) Load
Address Queue, (3) Store Address Queue, and (4) Store Data Queue. The
‘instruction fetch request and the load address request must be stored in different
queues in order to avoid deadlocks. The store address request should be separated
from the load address request so that load address requests will not be blocked by
a store address waiting for its store datum. The store data from each of the
Access and the Execute processors must be stored in separate Store Data Queues
- so that matching the store address -and the store datum can be done efficiently.
When memory requests are stored in these four types of queues, deadlock will

never occur unless a processor attempts to submit a request to a full queue or an

190

incorrect sequence of memory access instructions is scheduled in the decoupled

codes.

7.3. Contributions

The memory access conflict and access hazard are two main factors that
prevent an interleaved memory system from achieving its maximum throughput.
The memory system proposed in this research has two important features. Each of
them can reduce the penalties introduced by the access conflicts and access

hazards:

(1) The Free-Module-Request-First scheduling policy issues memory operations
out of arrival order by starting memory operations whenever the needed
memory modules are free. Thus, the delay due to memory conflicts is
minimized.

(2) The specially designed data cache guarantees a cache hit for each Read-
After-Write request. Thus, the memory read operation for each occurrence
of Read-After-Write hazard is avoided, and the total memory service time is
reduced.

Traditionally, each memory read request must be accompanied by a tag
which specifies the source/sink addresses of the read request. Thus, the fetched
operand can be delivered to its destination (usually a register) correctly. The
source/sink tagging scheme allows the memory system fo issue memory opera-
tions out of arrival order (as in the storage system of the IBM System/360 Model
91) and achieve high performance at the cost of complex interlock controls for the
processor-memory interface [AnST67, BoGr67]. In the memory system proposed
for the decoupled architecture, a. sequence control scheme (required by the Free-

Module-Request-First scheduling policy) combined with the use of hardware

191

queues provides an efficient memory access method for the load/store computer
architecture. The sequence control scheme allows the memory system to issue
memory operations out of arrival order and assumes the responsibility of deliver-
ing the operands to the processors in a correct order. Thus, the proposed
memory system can achieve high performance with a much simpler processor-
memory interface than that of the memory system using the source/sink tagging

scheme.

The existing memory access hazard detection/resolution schemes can be clas-
sified into three categories (discussed in chapter 2): (1) the prevention scheme,
(2) the detection and prevention scheme, and (3) the detection and abortion
scheme. The second scheme is the best among these three schemes and is used
in the storage system of the IBM System/360 Model 91. However, the obvious
implementation of scheme 2 requires the memory request queues to have associa-
tive search capability in order to detect hazards. In addition, the memory system
must sequence the fetch and store requests correctly so that the fetch and store to
the same memory location can be serviced in the correct order. For the memory
system proposed in this dissertation, an efficient memory access hazard
detection/resolution scheme (which is a detection and prevention scheme) is
designed and incorporated in the control logic of the data cache without additional
cost. Moreover, the request queues need not have associative search capability.
Thus, the implementation of this new hazard detection/resolution scheme can be

very simple.

192

7.4. Further Research Plans

A memory system with a designed data cache and the Free-Module-Request-
First scheduling policy can be used in multiprocessor systems where a common
memory is shared by the processors. By placing the cache memory in the shared
memory system, the coherence problem is avoided. When the processor does not
have a local memory, the memory arrival rate of the shared memory will increase
as the number of processors increases. Thus, the use of Free-Module-Request-
First scheduling policy may be superior. The implementation of Free-Module-
Request-First scheduling policy in multiprocessor systems should be investigated

and performance measured.

The cache line of the designed data cache is different from the conventional
cache memory. For the conventional cache memory, the cache line is the unit of
transfer between the cache and the main memory. Each word of a cache line in
our cache memory can be allocated and replaced independently. Thus, various
fetch and replacement algorithms and prefetching schemes can be explored. The
kinds of cache algorithms and performance results that obtain from this new

cache organization-should be further examined and reported.

REFERENCES

[AnST67] D. W. Anderson, F. J. Sparacio and R. M. Tomasulo, ‘‘The IBM
System/360 Model 91: Machine Philosophy and Instruction Handling,”’
IBM Journal of Research and Development, pp. 8-24, January 1967.

[Back78] J. Backus, ‘‘Can programming be liberated from the von Neumann
style? A functional style and its algebra of programs,” Communications of
the ACM, Vol. 21, No. 8, pp. 613-641, August 1978.

[Baer80] Jean-Loup Baer, Computer Systems Architecture, Chapter 5, Computer
Science Press, Rockville, Maryland, 1980.

[BaSm76] F. Baskett, and A. J. Smith, ‘‘Interference in Multiprocessor Com-
puter Systems with Interleaved Memory,”” Communications of ACM, Vol.
19, No.6, pp. 327-334, June 1976.

[Bhan75] D. P. Bhandarkar, ‘‘Analysis of Memory Interference in Multiproces-
sors,”” IEEE Trans. on Computers, Vol. C-24, pp. 897-908, September
1975.

[BICP62] L. Bloom, M. Cohen, and S. Porter, ‘“‘Considerations in the Design of
a Computer with High Logic to Memory Speed Ratio,”” Proc. Gigacycle
Computing Systems, AIEE Special Publication 2-136, pp. 53-63, Jan. 29 -
Feb. 2, 1962.

[BoGr67] L. J. Boland, G. D. Grantio, A. V. Marcotte, B. V. Messina, and J.
W. Smith, ““The IBM System 360 Model 91. Storage Systems,”’ IBM
Journal Research & Development, Vol. 11, pp. 54-68, January 1967.

[Bons69] P. Bonseigneur, ‘‘Description of the 7600 Computer System,”’ Com-
puter Group News, pp. 11-15, May 1969.

[BrDa77] F. A. Briggs, and E. S. Davidson, ‘‘Organization of Semiconductor
Memories for Parallel-Pipelined Processors,”” IEEE Trans. on Computers,
Vol. C-26,5, pp. 162-169, February 1977.

[BuCo70] G. J. Burnett, and E. G. Coffman, Jr., ‘“‘A Study of Interleaved
Memory Systems,”’ Proceeding of AFPIS 1970 SJCC, Vol. 36, pp. 467-
474, 1970.

[BuCo73] G. J. Burnett, and E. G. Coffman, Jr., ‘‘A Combinatorial Problem

. Related. to Interleaved Memory Systems,”’ J. Ass. Comput. Mach., Vol. 20,
pp. 39-45, January 1973.

193

194

[BuCo75] G. J. Burnett, and E. G. Coffman, Jr., ‘‘Analysis of Interleaved
Memory Systems Using Blockage Buffers,”” Commun. Ass. Comput.
Mach., Vol. 18, pp. 91-95, Feburary 1975.

[BuKu71] P. P. Budnik, and D. J. Kuck, ““The Organization and Use of Parallel
Memories,”” IEEE Trans. on Computers, Vol. C-20, pp. 1566-1569,
December 1971.

[CeFe78] L. M. Censier, and P. Feautrier, ‘A New Solution to Coherence Prob-
lems in Multicache Systems,”’ IEEE Trans. on Computers, Vol. C-27, No.
12, pp. 1112-1118, December 1978.

[Char81] A. E. Charlesworth, ‘‘An Approach to Scientific Array Processing: The
Architectural Design of the AP-120B/FPS-164 Family,”” IEEE Computer,
Vol. 14, No. 9, pp. 18-27, September 1981.

[ChKL77] D. Chang, D. J. Kuck, and D. H. Lawrie, ‘‘On the Effective
Bandwidth of Parallel Memories,”” IEEE Trans. on Computers, Vol. C-26,
pp. 480-490, May 1977.

[CILP81] D. W. Clark, B. W. Lampson, and K. A. Pier, ‘“The Memory System
of a High-Performance Personal Computer,’’ IEEE Trans. on Computers,
Vol. C-30, No. 10, pp. 715-732, October 1981.

[CoBS71] E. G. Coffman, G. J. Burnett, and R. A. Snowdon, ‘‘On the Perfor-
mance of Interleaved Memories with Multiple Word Bandwidths,’” IEEE
Trans. on Computers, Vol. C-20, pp. 1570-1573, December 1971.

[CoSt81] E. U. Cohler, and J. E. Storer, ‘‘Functionally Parallel Architecture for
Array Processors,”” IEEE Computer, Vol. 14, No. 9, pp. 28-36, IEEE,
September 1981.

[Davi75] E. S. Davidson, et al., ‘‘Effective Control for Pipelined Computers,’’
Proceeding of COMPCON, Spring 1975, pp. 181-184, February 1975.

[Flyn66] M. J. Flynn, ‘‘Very High-Speed Computing Systems,’’ Proceeding of
the IEEE, Vol. 54, No. 12, pp. 1901-1909, December 1966.

[Fost68] C. C. Foster, ‘‘Determination of Priority in Associative Memories,”’
IEEE Trans. on Computers, Vol. C-17, pp. 788-789, August 1968.

[Good83] J. R. Goodman, ‘‘Using Cache Memory to Reduce Processor-Memory
Traffic,”> Proceeding of 10th International Symposium on Computer Archi-
tecure, IEEE, 1983.

[GHLP85] J. R. Goodman, J. T. Hsieh, K. Liou, A. R. Pleszkun, P. B.
Schechter, and H. C. Young ‘‘PIPE: A VLSI Decoupled Architecture,”’

Preceeding of 12th International Symposium on Computer Architecture,
IEEE, June 1985.

195

[GoYo085], J. R. Goodman, and H. C. Young, ‘‘Code Scheduling Methods for
Some Architectural Features in PIPE,’’ Tech. Report #579, Computer Sci-
ences Department, University of Wisconsin-Madison, February 1985.

[Hell67] H. Hellerman, Digital Computer System Principles, pp. 228-229,
McGraw-Hill Inc., 1967.

[HiTa72] R. G. Hintz, and D. P. Tate, ‘‘Control Data STAR-100 Processor
Design,”’ Proc. IEEE COMPCON 1972, pp. 1-4, September 1972.

[HsPG84] J. T. Hsieh, A. R. Pleszkun, and J. R. Goodman, °‘‘Performance
Evaluation of the PIPE Computer Architecture,”” Tech. Report #566,
Computer Sciences Department, University of Waisconsin-Madison,
November 1984.

[IBM75] 1IBM, IBM SYSTEM/370 Model 168 Theory of Operation/Diagrams
Manual, Vol. 1 & 4, IBM, Poughkeepsie, N.Y., 1975.

The Structure of Computers and Computations John Wiley & Sons, Inc., Volume
1, pp. 408, 1978.

[KuRa75] D. E. Knuth, and G. S. Rao, ‘‘Activity in an Interleaved Memory,”’
IEEE Trans. on Computers, Vol. C-24, pp. 943-944, September 1975.

[KuSt82] D. J. Kuck, and R. A. Stokes, ‘‘The Burroughs Scientific Processor
(BSP),”’ IEEE Trans. on Computers, Vol. C-31, No. 5, pp. 363-376, May
1982.

[LaVo82] D. H. Lawrie, and C. R. Vora, ‘‘The Prime Memory System for Array
Access,’’ IEEE Trans. on Computers, Vol. C-31, No. 5, pp. 435-442, May
1982.

[Linc82] N. R. Lincoln, ‘‘Technology and Design Tradeoffs in the Creation of a
Modern Supercomputer,’’ IEEE Trans.-on Computers, Vol. C-31, No. 5,
pp. 349-362, May 1982.

[McMa72] F. H. McMahon, ‘‘Fortran CPU Performance Analysis,’’ Lawrence
Livermore National Laboratories, 1972.

[Mead70] R. M. Meade, ‘‘On Memory System Design,’’ Proceeding of AFPIS
1970 FICC, pp. 33-43, 1970.

[Ples82] A. R. Pleszkun, ‘‘A Structured Memory Access Architecture,”” CSG
Report, vol. No. 10, Coordinated Science Laboratory, University of Illi-
nois, Urbana, Illinois, August 1982.

{PIDa83] A. R. Pleszkun and E. S. Davidson, ‘‘A Structural Memory Access
Architecture,’” 1983 International Conference on Parallel Processing, (Bel-
laire Mich., Aug. 23-26) IEEE, New York, 1983.

196

[RaLi77] C. V. Ramamoorthy, and H. F. Li, ‘‘Pipelined Architecture,”’ Comput-
ing Surveys, Vol. 9, No. 1, pp. 61-102, March 1977.

[RaTW78] C. V. Ramamoorthy, J. L. Turner, and B. W. Wah, ‘‘A Design of a
Cellular Associative Memory for Ordered Retrieval,”” IEEE Trans. on Com-
puters, Vol. C-27, pp. 800-815, September 1978.

[Ravi72] C. V. Ravi, ‘‘On the Bandwidth and Interference in Interleaved
Memory Systems,”” IEEE Trans. on Computers, Vol. 21, pp. 889-901,
August 1972,

[RaWa81] C. V. Ramamoorthy, and B. W. Wah, ‘‘An Optimal Algorithm for
Scheduling Requests on Interleaved Memories for a Pipelined Processor,”’
IEEE Trans. on Computers, Vol. C-30, pp. 787-799, October 1981.

[RiSc84] J. P. Riganati, and P. B. Schneck, ‘‘Supercomputing,’” IEEE Computer,
Vol. 17, No.10, pp. 97-113, October 1984.

[Russ78] R. M. Russell, ‘“The CRAY-1 Computer System,’’ Commumication
ACM, Vol. 21, No. 1, pp. 63-72, ACM, January 1978.

[Ryma82] J. Rymarczyk, ‘‘Coding Guidelines for Pipelined Processors,’’
SIGARCH Computer News, Vol. 10, No. 2, pp. 12-19, ASPLOS, March
1982.

[Schor71] H. Schorr, ‘‘Design Principles for a High-Performance System,’” Sym-
posium on Computers and Automata, pp. 165-173, Polytechnic Institute of
Brooklynn, April 1971.

[Shive82] R. R. Shively, ‘‘Architecture of a Programmable Digital Signal Proces-
sor,”” IEEE Trans. on Computers, Vol. C-31, No. 1, pp. 16-22, January
1982.

[SiBN82] D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Prin-
ciples and Examples, McGraw-Hill, Inc., 1982.

[SmiA82] A. J. Smith, ‘‘Cache Memories,”” Computing Surveys, Vol. 14, No. 3,
pp. 473-530, September 1982.

[SmiJ82] J. E. Smith, ‘‘Decoupled Access/Execute Computer Architectures,’
Proceeding of the 9th Annual Symposium on Computer Architecture, pp.
112-119, 1EEE, May, 1982.

[Smil84] J. E. Smith, ‘‘Decoupled Access/Execute Computer Architectures,’’
- ACM-Trans.. on Computer Systems, Vol. 2, No. 4, pp. 289-308, November
1984.

197

[SPKG83] J. E. Smith, A. R. Pleszkun, R. H. Katz, and J. R. Goodman,
“PIPE: A High Performance VLSI Architecture,”” Technical Report #
512, Computer Sciences Department, University of Wisconsin-Madison,
September 1983.

[Tang76] C. K. Tang, ‘‘Cache System Design in the Tightly Coupled Multipro-
cessor System,”’ AFIPS Proceeding of NCC, Vol. 45, pp. 749-753, 1976.

[Thor70] J. E. Thornton, Design of a Computer: The Control Data 6600, Scott,
Foresman & Company, Glenview, 1lI., 1970.

[Toma67] R. M. Tomasulo, ‘‘An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,”” IBM Journal of Research & Development, Vol. 11, No.
1, pp. 25-33, January 1967.

[UI1157] University of 1llinois at Urbana-Champaign, ‘‘On the Design of a Very
High-Speed Computer,”” Report No. 80, University of 1llinois at Urbana-
Champaign, Digital Computer Lab., October 1957.

[WeSm84] S. Weiss and J. E. Smith, ‘‘Instruction Issue Logic in Pipelined
Supercomputers,”” IEEE Trans. on Computers, Vol. C-33, No. i1, pp.
1013-1022, November 1984.

[Wilk65] M. V. Wilkes, ‘‘Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. Electronic Computers, pp. 270-271, April 1965.

[YePD83] P. C. Yeh, J. H. Patel, and E. S. Davidson, ‘‘Shared Cache for
Multiple-Stream Computer Systems,’’ IEEE Trans. on Computers, Vol. C-
32, No. 1, pp. 38-47, January 1983.

[YoGo84] H. C. Young, and J. R. Goodman, ‘‘A Simulation Study of Architec-
tural Data Queues and Prepare-to-branch Instruction,”’ Preceeding, IEEE
Internaltional Conference on Computer Design, pp. 544-549, October 1984

Appendix 1

The first thirteen loops of the benchmark program from the Lawrence Liver-
more National Laboratories are used to create trace files for the simulation study
conducted in this research. Since the floating point instructions have not been
defined in the PIPE architecture, the variables of these thirteen loops are integer-

ized. A listing of these loops translated in Pascal is shown in this appendix.

The object codes of these thirteen loops are generated in two ways: (1) To
use the PIPE Pascal compiler to compile the Pascal programs and generate the
object codes. (2) To use the PIPE Assembler to translate the PIPE assembler
codes into the object codes. Then, the object codes are executed by the PIPE

interpreter to create trace files.

198

199

LLL1: HYDRO EXCERPT

program LLL1 (input, output);
var

k, g, T, t: integer;

X, y, z : array [1 .. 420] of integer;
begm { LLLl }

for k = 1 to 400 do
x[k] := q + y[k] * (r * z[k+10] + t * z[k+11]);
end. { LLL1 }

LLL2: MLR, INNER PRODUCT

program LLL?2 (input, output);
var
tp, X, z : array [1 .. 1000] of integer;
integer;
begm { LLL2%

whlle (k <= 996) do begin
tp[k] := z[k] * x[k] + z[k+1] * x[k+1] +
z[k+2] * x[k+2] + z[k+3] * x[k+3] +
z[k+4] * x[k+4];
k:=k + 5;
end;
end. { LLL2 }

LLL3: INNER PRODUCT

program LLL3 (input, output);
var k, q :integer;

z, y : array [1..1000] of integer;
begin { LLL3 }

for k = 1 to 1000 do

+ z[k] * ylk];
end. { LLLB%

LLL4: BANDED LINEAR EQUATIONS

program LLL4 (input, output);
var j, 1, Iw: integer;
X : array [1..275] of integer;
y : array [1..870] of integer;
begin { LLL4 }

1:=7;

while (1 <= 107) do begin
w:=1;
j:= 30;

while (j <= 870) do begin

x[1-1] : = x[1-1] - x(wI*y[j];

w:=1lw + 1;
ji=j+5;
end;
x[1-1] : = y[5] * x[I-1];
1:=1+4 50;
end;
end. { LLL4 }

LLL5: TRI-DIAGONAL ELIMINATION, BELOW DIAGONAL

program LLL5 (input, output);
var i ; integer;
X, y, z : array [1..1000] of integer;
begin { LLL5 }
i — 2.

while (i <= 1000) do begin
X 1:=z[i] * (0] - xli-1D);
x[i+1]:= z[i+1] * (y[i+1] - x[i]);

x[i+2] := z[i+2] * (yli+2] - x[i+1]);

ir=1-+ 3;
end;
end. { LLLS }

200

LLL6: TRI-DIAGONAL ELIMINATION, ABOVE DIAGONAL

program LLL6 (input, output);
var 1,] . integer;

X, z . array [1..1001] of integer;
begin { LLL6 }

J: =3

while (j <= 999) do begin
i:=(999+1)-j + 3;
x[i 1:=x[i J-z[i]*x[i+1];
x[i-1] := x[i-1] - z[i-1] * x[1];
x[i-2] := x[i-2] - z[i-2] * x[i-1];
ji=3+ 3

end;

end. { LLL6 }

LLL7: EQUATION OF STATE EXCERPT

program LLL7 (input, output);

var m : integer;
T, t . integer;
u : array [1..126] of integer;

X, Y, z : array [1..120] of integer;
begin { LLL7 }
form := 11to 120 do
x[m]= u[m+3] + r¥(z[m] + r¥y[m]) +
t*(u[m+3] + r*(u[m+2] + rfu[m+1]) +
t*(u[m+6] + r*(u[m+5] + r*u[m-+4])));
end. { LLL7 }

201

202

LLL8: P.D.E. INTEGRATION

program LLL8 (input, output);
var
all, al2, al3, a2l, a22, a23, a31, a32, a33 : integer;
nll, nl2, kx, ky, sig : integer,
ul, u2, u3 : array [1..4,1..22,1..2] of integer;
dul, du2, du3 : array [1..22] of integer;
begin { LLLS }
nil ;= 1;
nl2 := 2;
for kx := 2to 3 do
for ky := 2 to 21 do begin

dul[ky] := ulf[kx,ky+1,nl1] - ul[kx,ky-1,nl1];
du2[kyl : = u2[kx,ky+1,nl1] - u2[kx,ky-1,nl1];
du3[ky] := u3[kx,ky+1,nll] - u3[kx,ky-1,nll];

ull[kx,ky,nl2] := ul[kx,ky,nll] + all*dulfky] +
al2*du2[ky] + al3*du3[ky] +
sig * (ullkx+ 1,ky,nll1] -
2*ulfkx,ky,nll] +
ul[kx-1,ky,nll]);

u2[kx,ky,ni2] : = u2[kx,ky,nl1] + a21*dulfky] +
a22*du2[ky] + a23*du3[ky] +
sig * (u2[kx+1,ky,nl1] -
2*u2[kx,ky,nll] +
u2[kx-1,ky,nll]);

u3[kx,ky,ni2] : = u3[kx,ky,nll] + a31*dulfky] +
a32*du2[ky] + a33*du3[ky] +
sig * (u3[kx+1,ky,nll] -
2*u3[kx,ky,nll] +
u3[kx-1,ky,nll}]);
end;
end. { LLL8 }

LLL9: INTEGRATE PREDICTORS

program LLL9 (input, output); :
var c0, bm22, bm23, bm24, bm25, bm26, bm27, bm28 : integer;
i : integer;
pX : array [13,100] of integer;
begin { LLL9 }
fori:= 1 to 100 do
px[1,i] := bm28*px[13,i] + bm27*px[12,i] + bm26*px[11,i] +
bm25%px[10,i] + bm24*px[9,i] + bm23*px[8,i] +
bm22*px[7,i] + cO*(px[5,i] + px[6,i]) + px[3,i];
end. { LLLO }

LLL10: DIFFERENCE PREDICTORS

program LLL10 (input, output);
var
i : integer;
ar,br,cr: integer;
cx : array [1..5,1..6] of integer;
px : array [1..14,1..6] of integer;
begin { LLL10 }
fori:= 1 to 6 do begin

ar = cx[5,i];
br = ar - px[5,i];
px[5,i] : = ar ;
cr = br - px[6,i] ;
px[6,i] := br ;
ar = Cf - px[7,i] ;
px[7,i]:= cr ;
br 1= ar - px[8,i];
px[8,i] : = ar ;
cr := br - px[9,i] ;
px[9,i] := br ;
ar = Cr - px[10,i];
px[10,i]:= cr ;
br 1= ar - px[11,i];
px[11,i]:= ar ;
cr := br - px[12,i];
px[12,i]:= br ;
px[14,i]: = cr - px[13,i];
px[13,i]:= cr ;
end;

end. { LLL10 }

203

LLL11: FIRST SUM.

program LLL11 (input, output);
var Kk : integer;
x, y :array [1..1000] of integer;
begin { LLL11 }
for k := 2 to 1000 do
x[k] := x[k-1] + y[k];
end. { LLL11 }

LLL12: FIRST DIFF.

program LLL12 (input, output);
var k . integer;
x, y :array [1..1000] of integer;
begin { LLL12 }
for k := 1to 999 do
x[K] := y[k+1] - y[K;
end. { LLL12 }

204

"LLL13: 2-D PARTICLE PUSHER

program LLL.13 (input, output);

var
ip : integer;
il, j1,i2, j2 : integer;
p : array [1..4, 1..512] of integer;
b, ¢, h . array [1..64, 1..8] of integer;
e, f : array [1..192] of integer;

Yy, Z : array [1..1001] of integer;
begin {LLL13}
for ip := 1 to 128 do begin
il := p[l,ipl;
j1 1= pl2,ip]; o
pl3,ip] : = p[3,ip] + b[il,j1];
pl4,ip] : = pl4,ip] + c[il,j1];
plL,ip]: = plL,ip] + p[3,ip];
PI2,iP] ;= PI2.ip] + PI4,ip);
= pl1,ip];
12 = pl2,ip}; ‘
plL,ip] : = plL,ip] + y[i2+32];
[2 lp] = p[2,ip] + z[j2+32];
i2 + e[i2+32];
]2 = j2 + f[j2+32];
h[i2,j2] : = h[i2,j2] + 1;
end;
end. {LLL13}

205

Appendix 11

A Decoupled Code of Lawrence Livermore Loop 2

(1) Access Code:

1 ENTER
2 LDBR 0
3 ALO: ALDLN
4 ALDLN
5 ADDIM
6 ALDLN
7 ALDLN
8 ADDIM
9 ALDLN
10 ALDLN
11 ADDIM
12 ALDLN
13 ALDLN
14 ADDIM
15 ALDLN
16 ALDLN
17 ADDIM
18 PBRLT
19 ASTLN
20 HALT

(2) Execute Code:

XOR
LDBR

ELO: MULI
ADDI
MULI
ADDI
MULI
ADDI
MULI

10 ADDI

11 MULI

12 ADDI

13 IPBRQ

14 MOVNFF

15 XOR 5

16 HALT

VIR WK
< W

thhwuhwhhwnon

i e e b ek e e bt b et b bt et et et e

o Lh
B

NJOWIWIWIWIW

-1000

3060
2060
1
3060
2060
1
3060
2060
1
3060
2060
1
3060
2060
1
0
1026

LMumowngUuaunan g “

/ setup loop counter
/ load branch addr ALO
/ fetch z[k] for E-proc
/ fetch x[k] for E-proc
/ inc loop counter
/ fetch z[k+ 1] for E-proc
/ fetch x[k+ 1] for E-proc
/ inc loop counter
/ fetch z[k+2] for E-proc
/ fetch x[k+2] for E-proc
/ inc loop counter
/ fetch z[k+ 3] for E-proc
/ fetch x[k+ 3] for E-proc
/ inc loop counter
/ fetch z[k +4] for E-proc
| fetch x[k +4] for E-proc
/ loop counter has been inc by 5
2 / prepare to branch to ALO
/ store addr for tp[k]

/ clear temp result

/ load branch addr ELO
7 / z[k]*x[k]

/ add temp result

/ z[k+ 11*x[k+ 1]

/ add temp result

/ z[k +2]*x[k+2]

/ add temp result

/ z[k+3]*x[k + 3]

/ add temp result

[z[k +4]*x[k+4]

/ add temp result

2 / check branch queue boolean
0 / store result tp[k]
/ clear temp result

206

207

Appendix 111

Simulation results of the memory models using the set of trace files gen-
erated from the hand-coded decoupled codes of the first twelve Lawrence Liver-
more Loops. There are Read-After-Write access hazards in loops 4, 5, 6 and 11

for this set of trace files.

The Read-After-Write access hazards in LLL loop 4, 5, 6 and 11 are
removed by better register allocation in their access codes. These new decoupled
codes are also used to generate another set of trace files where no Read-After-
Write access hazards exist, and they are used to obtain the simulation results in

Appendix IV,

The performance of a memory model is computed by normalizing its simula-
tion time with the simulation time of a contention-free memory model (described in
chapter 5). In some simulation results, the performance of the FMRF/RRF
memory model is greater than 1.0 (better than the contention-free memory model).
This is because the instructions, that issue load address requests for the Execute
Processor, was delivered to the Access Processor earlier in the FMRF/RRF
memory model than in the contention-free memory model. Thus, during the first
loop iteration, the Execute Processor received the operands from the FMRF/RRF
memory model earlier than from the contention-free memory model. So, the
simulation time of the FMRF/RRE. memory model is shorter than that of the

contention-free memory model.

208

Performance & Simulation Time of Memory Models Using LLL Loop 1

Interleaving Factors

Scheduling
Policy 4 8 16 32 64
0.988 - 1.002 1.003 1.005 1.005
FMRF with
Data Cache 3,355 3,309 3,306 3,300 3,300
0.729 0.997 1.000 1.002 1.002
FMRF/RRF
4,550 3,324 3,314 3,307 3,307
0.303 0.304 0.511 0.511 0.511
FMRF/1Q
10,933 10,887 6,491 6,491 6,489
0.641 0.900 0.904 0.904 0.904
FCFS with
Data Cache 5,174 3,683 3,667 3,667 3,667
0.649 0.995 0.995 0.999 0.999
FCFS/RRF
5,108 3,331 3,331 3,317 3,317
0.618 0.993 0.997 0.999 0.999
FCFS/WRF
5,364 3,339 3,325 3,317 3,317
0.303 0.304 0.480 0.480 0.480
FCFS/1Q
10,947 10,918 6,907 6,905 6,901

209

Performance & Simulation Time of Memory Models Using LLL Loop 2

Interleaving Factors

Scheduling
Policy 4 8 16 32 64
0.997 1.001 1.001 1.001 1.001
FMRF with
Data Cache 7,523 7,493 7,493 7,493 7,493
0.995 0.997 1.000 1.000 1.000
FMRF/RRF
7,539 7,521 7,500 7,500 7,500
0.770 0.824 1.000 1.000 1.000
FMRF/1Q
9,735 9,101 7,500 7,500 7,500
0.727 0.903 0.963 0.963 0.963
FCFS with
Data Cache 10,319 8,304 7,786 7,785 7,785
0.607 0.609 0.999 0.999 0.999
FCFS/RRF
12,345 12,316 7,509 7,509 7,509
0.607 0.609 0.999 0.999 0.999
FCFS/WRF
12,345 12,316 7,509 7,509 7,509
0.496 0.497 1.000 1.000 1.000
FCFS/1Q
15,125 15,096 7,500 7,500 7,500

210

Performance & Simulation Time of Memory Models Using LLL Loop 3

Interleaving Factors

Scheduling
Policy 4 8 16 32 64
0.957 1.000 1.002 1.002 1.002
FMRF with
Data Cache 6,357 6,084 6,070 6,070 6,070
0.995 0.997 1.000 1.000 1.000
FMRF/RRF
6,117 6,105 6,086 6,085 6,085
0.995 0.998 1.001 1.001 1.001
FMRF/1Q
6,114 6,095 6,076 6,075 6,075
0.753 0.962 0.963 0.963 0.963
FCFS with
Data Cache 8,085 6,327 6,317 6,317 6,317
0.502 0.503 0.999 1.000 1.000
FCFS/RRF
12,120 12,105 6,094 6,085 6,085
0.502 0.503 0.999 1.000 1.000
FCFS/WRF
12,120 12,105 6,094 6,085 6,085
0.502 0.503 1.000 1.000 1.000
FCFS/1Q
12,120 12,105 6,080 6,085 6,085

211

Performance & Simulation Time of Memory Models Using LLL Loop 4

Interleaving Factors

Scheduling
Policy 4 8 16 32 64
0.594 0.858 0.952 1.001 1.002
FMRF with
Data Cache 11,424 7,902 7,120 6,774 6,765
0.477 0.526 0.556 0.570 0.578
FMRF/RRF
14,209 12,880 12,207 11,896 11,730
0.443 0.490 0.519 0.534 0.543
FMRF/1Q
15,291 13,835 13,065 12,688 12,499
0.514 0.694 0.765 0.794 0.809
FCFS with
Data Cache 13,203 9,766 8,859 8,543 8,387
0.460 0.502 0.525 0.537 0.543
FCFS/RRF
14,744 13,495 12,906 12,635 12,484
0.439 0.486 0.517 0.533 0.541
FCFS/1Q
15,435 13,940 13,106 12,719 12,523

212

Performance & Simulation Time of Memory Models Using LLL Loop 5

Interleaving Factors

Scheduling
Policy 4 8 16 32 64
0.528 0.810 0.934 0.934 0.934
FMRF with
Data Cache 9,089 5,929 5,144 5,144 5,144
0.418 0.419 0.419 0.419 0.419
FMRF/RRF
11,504 11,460 11,455 11,455 11,455
0.418 0.419 0.419 0.419 0.419
FMRF/1Q
11,495 11,470 11,457 11,451 11,451
0.382 0.521 0.656 0.766 0.792
FCFS with
Data Cache 12,560 9,215 7,317 6,273 6,063
0.285 0.286 0.419 0.419 0.419
FCFS/RRF
16,842 16,800 11,451 11,451 11,451
0.285 0.286 0.419 0.419 0.419
FCFS/1Q
16,859 16,823 11,458 11,458 11,459

213

Performance & Simulation Time of Memory Models Using LLL Loop 6

Interleaving Factors

Scheduling
Policy 4 8 16 32 64
0.705 0.999 1.000 1.001 1.001
FMRF with
Data Cache 7,752 5,472 5,469 5,462 5,462
0.476 0.477 0.478 0.478 0.478
FMRF/RRF
11,495 11,459 11,432 11,431 11,431
0.362 0.362 0.478 0.478 0.478
FMRF/1Q
15,127 15,096 11,440 11,431 11,431
0.470 0.680 0.815 0.870 0.899
FCFS with
Data Cache 11,626 8,041 6,709 6,287 6,082
0.281 0.281 0.478 0.478 0.478
FCFS/RRF :
19,476 19,440 11,450 11,439 11,439
0.267 0.268 0.478 0.478 0.478
FCFS/1Q
20,475 20,432 11,433 11,432 11,432

214

Performance & Simulation Time of Memory Models Using LLL Loop 7

Interleaving Factors

Scheduling
Policy 4 8 16 32 64

0.965 0.989 0.994 0.999 1.007

FMRF with
Data Cache 2,264 2,209 2,197 2,186 2,169
0.624 0.987 0.998 1.004 1.004

FMRF/RRF
3,499 2,213 2,188 2,175 2,175
0.376 0.490 0.534 0.605 0.605

FMRF/1Q
5,813 4,459 4,088 3,607 3,607
0.768 0.803 0.805 0.805 0.808

FCFS with
Data Cache 2,843 2,721 2,713 2,713 2,703
0.390 0.598 0.750 0.999 0.999

FCFS/RRF
5,603 3,650 2,913 2,186 2,186
0.367 0.599 0.750 0.999 0.999

{FCFS/WRF
5,957 3,649 2,913 2,186 2,186
0.296 0.371 0.478 0.586 0.586

FCFS/1Q
7,368 5,892 4,568 3,730 3,730

215

Performance & Simulation Time of Memory Models Using LLL Loop 8
Scheduling Interleaving Factors
Policy 4 8 16 32 64
0.758 0.949 0.981 0.993 0.999
FMRF with '
Data Cache 2,995 2,394 2,315 2,286 2,274
0.451 0.816 0.961 0.981 0.978
FMRF/RRF
5,035 2,782 2,363 2,315 2,322
0.264 0.392 0.452 0.509 0.543
FMRF/1Q
8,593 5,790 5,028 4,464 4,184
0.444 0.568 0.607 0.624 0.651
FCFS with
Data Cache 5,115 3,998 3,739 3,640 3,491
0.281 0.462 0.654 0.971 0.983
FCFS/RRF
8,068 4,916 3,470 2,340 2,310
0.280 0.450 0.621 0.909 0.990
FCFS/WRF
8,118 5,044 3,659 2,499 2,293
0.244 0.355 0.437 0.489 0.523
FCFS/1Q
9,307 6,391 5,201 4,645 4,345

216

Performance & Simulation Time of Memory Models Using LLL Loop 9

Interleaving Factors

Scheduling
Policy 4 8 16 32 64
0.553 0.859 0.980 0.980 0.982
FMRF with
Data Cache 3,954 2,544 2,231 2,231 2,225
0.489 0.765 0.986 0.994 1.001
FMRF/RRF
4,469 2,856 2,218 2,199 2,184
0.178 0.296 0.499 0.655 0.685
FMRF/1Q
12,257 7,393 4,383 3,339 3,191
0.392 0.567 0.752 0.752 0.752
FCFS with
Data Cache 5,576 3,858 2,905 2,905 2,905
0.197 0.347 0.617 0.941 0.994
FCFS/RRF
11,099 6,306 3,544 2,323 2,199
0.197 0.346 0.607 0.913 0.994
FCFS/WRF
11,099 6,318 3,599 2,394 2,199
0.176 0.288 0.464 0.605 0.638
FCFS/1Q
12,386 7,580 4,712 3,614 3,425

217

Performance & Simulation Time of Memory Models Using LLL Loop 10

Interleaving Factors

Scheduling
Policy 4 8 16 32 64
0.597 0.889 0.986 0.991 0.995
FMRF with
Data Cache 5,018 3,366 3,038 3,021 3,010
0.500 0.843 0.986 0.999 1.000
FMRF/RRF
5,987 3,550 3,038 2,996 2,994
0.260 0.479 0.717 0.718 0.735
FMRF/1Q
11,501 6,246 4,175 4,171 4,072
0.335 0.707 0.810 0.811 0.811
FCFS with
Data Cache 8,947 4,232 3,696 3,692 3,692
0.289 0.592 0.993 0.997 1.000
FCFS/RRF
10,374 5,057 3,016 3,003 2,995
0.157 0.318 0.600 0.950 1.000
FCFS/WRF
19,052 9,404 4,992 3,150 2,995
0.141 0.287 0.492 0.666 0.698
FCFS/1Q
21,213 10,446 6,088 4,493 4,292

218

Performance & Simulation Time of Memory Models Using LLL Loop'11

Interleaving Factors

Scheduling
Policy 4 8 16 32 64
0.998 1.002 1.002 1.002 1.003
FMRF with
Data Cache 7,088 7,062 7,062 7,062 7,058
0.294 0.295 0.295 0.295 0.295
FMRF/RRF
24,049 24,030 24,030 24,030 24,030
0.294 0.295 0.295 0.295 0.295
FMRF/1Q
24,039 24,020 24,020 24,020 24,020
0.646 0.820 0.972 0.972 0.973
FCFS with
Data Cache 10,956 8,633 7,280 7,280 7,272
0.294 0.295 0.295 0.295 0.295
FCFS/RRF
24,058 24,030 24,030 24,030 24,030
0.294 0.295 0.295 0.295 0.295
FCFS/1Q
24,058 24,030 24,030 24,030 24,030

219

Performance & Simulation Time of Memory Models Using LLL Loop 12

Interleaving Factors

Scheduling
Policy 4 8 16 32 64
1.000 1.003 1.003 1.003 1.003
FMRF with ‘
Data Cache 7,077 7,059 7,059 7,059 7,058
0.849 1.000 1.001 1.001 1.001
FMRF/RRF
8,340 7,077 7,069 7,069 7,069
0.503 0.504 0.504 0.504 0.504
FMRF/1Q
14,071 14,046 14,046 14,046 14,046
0.898 0.972 0.973 0.973 0.973
FCFS with
Data Cache 7,883 7,284 7,273 7,273 7,271
0.800 1.000 1.000 1.000 1.000
FCFS/RRF
8,841 7,079 7,079 7,079 7,079
0.800 1.000 1.000 1.000 1.000
FCFS/WRF
8,840 7,079 7,079 7,079 7,079
0.469 0.470 0.470 0.470 0.470
FCFS/1Q
15,077 15,055 15,055 15,055 15,055

Appendix 1V

Simulation results of Lawrence Livermore Loops 4, 5, 6 and 11 in different
memory models using the set of trace files where no Read-After-Write access
hazards exist. The Read-After-Write hazards are removed by modifying the
decoupled codes, then using the PIPE interpreter to generate the new set of trace

files.

220

221

Performance & Simulation Time of Memory Models Using LLL Loop 4

Interieaving Factors

Scheduling
Policy 4 8 16 32 64
0.991 0.995 0.995 0.995 0.999
FMRF/RRF
5,790 5,763 5,763 5,763 5,743
0.991 0.995 0.995 0.995 0.999
FMRF/1Q
5,790 5,763 5,763 5,763 5,743
0.967 0.995 0.995 0.995 0.999
FCFS/RRF
5,932 5,763 5,763 5,763 5,744
0.967 0.995 0.995 0.995 0.999
FCFS/WRF
5,932 5,763 5,763 5,763 5,744
0.968 0.997 0.997 0.997 0.999
FCFS/1Q
5,928 5,757 5,753 5,753 5,743

222

Performance & Simulation Time of Memory Models Using LLL Loop 5

Scheduling Interleaving Factors
Policy 4 8 16 32 64
0.490 0.960 1.000 0.999 1.000
FMRF/RRF
8,450 4,310 4,139 4,143 4,139
0.370 0.371 0.531 0.531 0.531
FMRF/1Q
11,188 11,142 7,791 7,795 7,791
0.339 0.340 1.000 1.000 1.000
FCFS/RRF
12,226 12,173 4,141 4,141 4,141
0.339 0.340 1.000 1.000 1.000
FCFS/WRF
12,226 12,173 4,141 4,141 4,141
0.246 0.246 0.509 0.509 0.509
FCFS/1Q
16,848 16,795 8,126 8,126 8,126

223

Performance & Simulation Time of Memory Models Using LLL Loop 6

Interleaving Factors

Scheduling
Policy 4 8 16 32 64
0.569 0.987 0.995 1.000 1.000
FMRF/RRF
8,527 4,921 4,880 4,857 4,856
0.543 0.547 0.708 0.710 0.710
FMRF/1Q
8,946 8,879 6,860 6,837 6,836
0.396 0.397 0.997 1.000 1.000
FCFS/RRF
12,270 12,217 4,869 4,857 4,856
0.395 0.397 0.997 1.000 1.000
FCFS/WRF
12,283 12,230 4,869 4,857 4,856
0.396 0.399 0.674 0.674 0.675
FCFS/1Q
12,249 12,170 7,208 7,201 7,194

224

Performance & Simulation Time of Memory Models Using LLL Loop 11

Scheduling Interleaving Factors
Policy 4 8 16 32 64
0.640 0.996 0.997 1.000 1.000
FMRF/RRF
5,647 3,628 3,624 3,615 3,615
0.418 0.419 0.420 0.421 0.421
FMRF/1Q
8,649 8,618 8,598 8,590 8,590
0.640 0.993 0.997 0.999 0.999
FCFS/RRF
5,647 3,639 3,627 3,617 3,617
0.639 0.993 0.997 0.999 0.999
FCFS/WRF
5,661 3,639 3,628 3,619 3,619
0.396 0.397 0.397 0.398 0.398
FCFS/1Q
9,123 9,106 9,102 9,086 9,086

Appendix V

Simulation results of different input multiplexing schemes in the memory
models using two request scheduling policies, the First-Come-First-Serve/Read-
Request-First scheduling policy and the Free-Module-Request-First/Read-
Request-First scheduling policy. No Read-After-Write access hazards are in the

trace files that are used in this simulation.

The performance of a memory model is computed by normalizing its simula-
tion time with the simulation time of a contention-free memory model (described in
chapter 5). In some simulation results, the performance of the FMRF/RRF
memory model is greater than 1.0 (better than the contention-free memory model).
This is because the instructions, that issue load address requests for the Execute
Processor, was delivered to the Access Processor earlier in the FMRF/RRF
memory model than in the contention-free memory model. Thus, during the first
loop iteration, the Execute Processor received the operands from the FMRF/RRF
memory model earlier than from the contention-free memory model. So, the

simulation time of the FMRE/RRF memory model is shorter than that of the

contention-free memory model.

225

226

Performance & Simulation Time of Memory Models Using LLL Loop 1
Scheduling Multiplexing Interleaving Factors
Policy Scheme 4 8 16 32 64
0.729 | 0.997 | 1.000 | 1.002 | 1.002
No Multiplexing
4,550 | 3,324 | 3,314 | 3,307 | 3,307
0.728 | 0.995 | 0.999 | 0.999 | 0.999
Time-Division
4,551 | 3,335 | 3,317 | 3,317 | 3,317
0.729 | 0.997 | 1.000 | 1.002 | 1.002
FMRF/RRF AP-First
4,550 | 3,324 | 3,314 | 3,307 | 3,307
0.728 | 0.995 | 0.998 | 0.998 | 0.998
EP-First
4,550 | 3,331 | 3,323 | 3,323 | 3,323
0.728 | 0.997 | 0.999 | 0.999 | 0.999
Round-Robin
4,550 | 3,325 | 3,318 | 3,317 | 3,317
0.649 | 0.995 | 0.995 | 0.999 | 0.999
No Multiplexing
5,108 | 3,331 | 3,331 | 3,317 | 3,317
0.653 | 0.993 | 0.996 | 0.996 | 0.996
Time-Division
5,079 | 3,337 | 3,327 | 3,327 | 3,327
0.585 | 0.995 | 0.995 | 0.999 | 0.999
FCFS/RRF AP-First
5,665 | 3,331 | 3,331 | 3,317 | 3,317
0.626 | 0.994 | 0.998 | 0.998 | 0.998
EP-First
5,299 | 3,335 | 3,323 | 3,323 | 3,323
0.585 | 0.995 | 0.995 | 0.999 | 0.999
Round-Robin
5,665 | 3,331 | 3,325 | 3,317 | 3,317

227

Performance & Simulation Time of Memory Models Using LLL Loop 2
Scheduling Multiplexing Interleaving Factors
Policy Scheme 4 8 16 32 64
0.995 0.997 | 1.000 | 1.000 | 1.000
No Multiplexing
7,539 7,521 | 7,500 | 7,500 | 7,500
0.985 0.996 | 0.999 | 0.999 | 0.999
Time-Division
7,610 7,530 | 7,506 | 7,506 | 7,506
0.995 0.997 | 1.000 | 1.000 | 1.000
FMRF/RRF AP-First
7,539 7,521 | 7,500 | 7,500 | 7,500
0.993 0.995 | 0.998 | 0.998 | 0.998
EP-First
7,553 7,534 | 7,513 | 7,513 | 7,513
0.994 0.996 | 0.999 | 0.999 | 0.999
Round-Robin
7,548 7,530 | 7,509 | 7,509 | 7,509
0.607 0.609 | 0.999 | 0.999 | 0.999
No Multiplexing
12,345 | 12,316 | 7,509 | 7,509 | 7,509
0.598 0.599 | 0.997 | 0.997 | 0.997
. Time-Division
12,547 | 12,529 | 7,519 | 7,519 | 7,519
0.607 0.609 | 0.999 | 0.999 | 0.999
FCFS/RRF AP-First
12,345 | 12,316 | 7,509 | 7,509 | 7,509
0.607 0.609 | 0.998 | 0.998 | 0.998
EP-First
12,350 | 12,320 | 7,513 | 7,513 | 7,513
0.607 0.609 | 0.999 | 0.999 | 0.999
Round-Robin
12,345 | 12,316 | 7,509 | 7,509 | 7,509

228

Performance & Simulation Time of Memory Models Using LLL Loop 3
Scheduling Multiplexing Interleaving Factors
Policy Scheme 4 8 16 32 64
0.995 0.997 1.000 | 1.000 | 1.000
No Multiplexing
6,117 6,105 | 6,086 | 6,085 | 6,085
0.994 0.996 | 0.999 | 0.999 | 0.999
Time-Division
6,123 6,111 | 6,093 | 6,093 | 6,093
0.995 0.997 1.000 | 1.000 | 1.000
FMRF/RRF AP-First
6,117 6,105 | 6,086 | 6,085 | 6,085
0.994 0.996 | 0.999 | 0.999 | 0.999
EP-First
6,122 6,109 | 6,090 | 6,089 | 6,089
0.995 0.997 1.000 | 1.000 | 1.000
Round-Robin
6,117 6,105 | 6,086 | 6,085 | 6,085
0.502 0.503 | 0.999 | 1.000 | 1.000
No Multiplexing
12,120 | 12,105 | 6,094 | 6,085 | 6,085
0.502 0.502 | 0.997 | 0.999 | 0.999
Time-Division
12,125 | 12,111 | 6,101 | 6,093 | 6,093
0.502 0.503 | 0.999 | 1.000 | 1.000
FCFS/RRF AP-First
12,120 | 12,105 | 6,094 | 6,085 | 6,085
0.502 0.503 | 0.998 | 0.999 | 0.999
EP-First ‘
12,125 | 12,109 | 6,098 | 6,089 | 6,089
0.502 0.503 | 0.999 | 1.000 | 1.000
Round-Robin
12,120 | 12,105 | 6,094 | 6,085 | 6,085

229

Performance & Simulation Time of Memory Models Using LLL Loop 4
Scheduling Multiplexing Interleaving Factors
Policy Scheme 4 8 16 32 64
0.991 | 0.995 | 0.995 | 0.995 | 0.999
No Multiplexing
5,790 | 5,763 | 5,763 | 5,763 | 5,743
0.989 | 0.994 | 0.994 | 0.994 | 0.995
Time-Division
5,801 | 5,771 | 5,771 | 5,771 | 5,763
0.992 | 0.997 | 0.997 | 0.997 | 0.999
FMRF/RRF AP-First
5,783 | 5,752 | 5,752 | 5,752 | 5,743
0.991 | 0.997 | 0.997 | 0.997 | 0.998
EP-First
5,788 | 5,754 | 5,754 | 5,754 | 5,747
0.992 | 0.997 | 0.997 | 0.997 | 0.999
Round-Robin
5,783 | 5,752 | 5,752 | 5,752 | 5,743
0.967 | 0.995 | 0.995 | 0.995 | 0.999
No Multiplexing
5,932 | 5,763 | 5,763 | 5,763 | 5,744
0.964 | 0.991 | 0.991 | 0.991 | 0.995
Time-Division
5,953 | 5,787 | 5,787 | 5,787 | 5,765
0.967 | 0.995 | 0.995 | 0.995 | 0.999
FCFS/RRF AP-First
5,932 | 5,763 | 5,763 | 5,763 | 5,744
0.966 | 0.994 | 0.994 | 0.994 | 0.998
EP-First
5,937 | 5,772 | 5,772 | 5,772 | 5,748
0.967 | 0.995 | 0.995 | 0.995 | 0.999
Round-Robin
5,932 | 5,763 | 5,763 | 5,763 | 5,744

230

Performance & Simulation Time of Memory Models Using LL.L Loop 5
Scheduling Multiplexing Interleaving Factors
Policy Scheme 4 8 16 32 64
0.490 0.960 | 1.000 | 0.999 | 1.000
No Multiplexing
8,450 4,310 | 4,139 | 4,143 | 4,139
0.489 0.671 | 0.674 | 0.674 | 0.674
Time-Division
8,459 6,167 | 6,141 | 6,141 | 6,141
0.490 0.960 | 1.000 | 1.000 | 1.000
FMRF/RRF AP-First
8,443 4,310 | 4,139 | 4,139 | 4,139
0.490 0.961 | 0.996 | 0.996 | 0.998
EP-First
8,453 4,307 | 4,157 | 4,157 | 4,148
0.490 0.960 | 0.998 | 0.998 | 1.000
Round-Robin
8,443 4,310 | 4,149 | 4,149 | 4,140
0.339 0.340 | 1.000 { 1.000 | 1.000
No Multiplexing
12,226 | 12,173 | 4,141 | 4,141 | 4,141
0.338 0.340 | 0.674 | 0.674 | 0.674
Time-Division
12,239 | 12,175 | 6,143 | 6,143 | 6,143
0.339 0.340 | 1.000 | 1.000 | 1.000
FCFS/RRF AP-First
12,226 | 12,173 | 4,141 | 4,141 | 4,141
0.338 0.340 | 0.996 | 0.998 | 0.998
EP-First
12,237 | 12,172 | 4,157 | 4,147 | 4,148
0.339 0.340 | 0.997 | 0.997 | 1.000
Round-Robin
112,226 | 12,173 | 4,151 | 4,151 | 4,142

231

Performance & Simulation Time of Memory Models Using LLL Loop 6
Scheduling Multiplexing Interleaving Factors
Policy Scheme 4 8 16 32 64
’ 0.569 | 0.987 | 0.995 | 1.000 | 1.000
No Multiplexing
8,527 4,921 4,880 | 4,857 | 4,856
0.570 0.779 | 0.783 | 0.784 | 0.784
Time-Division
8,524 6,235 | 6,201 | 6,197 | 6,191
0.570 0.989 | 0.998 | 1.000 | 1.000
FMRF/RRF AP-First
8,526 4,909 | 4,866 | 4,856 | 4,856
0.570 0.989 | 0.995 | 0.996 | 0.997
EP-First
8,519 4,909 | 4,879 | 4,874 | 4,873
0.570 0.989 | 0.998 | 1.000 | 1.000
Round-Robin
8,526 4,908 | 4,866 | 4,857 | 4,856
0.396 0.397 | 0.997 | 1.000 | 1.000
No Multiplexing
12,270 | 12,217 | 4,869 | 4,857 | 4,856
0.395 0.397 | 0.783 | 0.784 | 0.784
Time-Division
12,282 | 12,220 | 6,205 | 6,195 | 6,195
0.396 0.397 | 0.997 | 1.000 | 1.000
FCFS/RRF AP-First
12,270 | 12,217 | 4,869 | 4,856 | 4,856
0.396 0.397 | 0.995 | 0.997 | 0.997
EP-First
12,278 | 12,222 | 4,879 | 4,869 | 4,873
0.396 0.397 | 0.997 | 1.000 | 1.000
Round-Robin
‘ 12,270 | 12,217 | 4,869 | 4,857 | 4,856

232

Performance & Simulation Time of Memory Models Using LLL Loop 7
Scheduling Multiplexing Interleaving Factors
Policy Scheme 4 8 16 32 64
0.624 | 0.987 | 0.998 | 1.004 | 1.004
No Multiplexing
3,499 | 2,213 | 2,188 | 2,175 | 2,175
0.623 | 0.846 | 0.853 | 0.860 | 0.860
Time-Division
3,506 | 2,581 | 2,559 | 2,539 | 2,539
0.624 | 0.987 | 0.998 | 1.004 | 1.004
FMRF/RRF AP-First
3,499 | 2,213 | 2,188 | 2,175 | 2,175
0.623 | 0.980 | 0.969 | 0.998 | 0.998
EP-First
3,504 | 2,229 | 2,253 | 2,189 | 2,189
0.624 | 0.983 | 0.994 | 1.000 | 1.000
Round-Robin
3,499 | 2,222 | 2,198 | 2,185 | 2,185
0.390 | 0.598 | 0.750 | 0.999 | 0.999
No Multiplexing
5,603 | 3,650 | 2,913 | 2,186 | 2,186
0.389 | 0.597 | 0.746 | 0.857 | 0.857
Time-Division
5,621 | 3,661 | 2,929 | 2,549 | 2,549
0.390 | 0.598 | 0.750 | 0.999 | 0.999
FCFS/RRF AP-First
5,603 | 3,650 | 2,913 | 2,186 | 2,186
0.389 | 0.597 | 0.746 | 0.996 | 0.996
EP-First
5,608 | 3,656 | 2,926 | 2,192 | 2,192
0.390 | 0.598 | 0.750 | 0.999 | 0.999
Round-Robin
5,603 | 3,649 | 2,913 | 2,186 | 2,186

233

Performance & Simulation Time of Memory Models Using LLL Loop 8
Scheduling Multiplexing Interleaving Factors
Policy Scheme 4 8 16 32 64
0.451 | 0.816 | 0.961 | 0.981 | 0.978
No Multiplexing
5,035 | 2,782 | 2,363 | 2,315 | 2,322
0.450 | 0.817 | 0.848 | 0.857 | 0.860
Time-Division
5,052 | 2,781 | 2,677 | 2,651 | 2,641
0.452 | 0.830 | 0.947 | 0.954 | 0.961
FMRF/RRF AP-First
5,024 | 2,736 | 2,398 | 2,380 | 2,363
0.450 | 0.810 | 0.909 | 0.973 | 0.984
EP-First
5,042 | 2,802 | 2,499 | 2,333 | 2,307
0.452 | 0.817 | 0.957 | 0.988 | 0.992
Round-Robin
5,027 | 2,781 | 2,372 | 2,299 | 2,289
0.281 | 0.462 | 0.654 | 0.971 | 0.983
No Multiplexing
8,068 | 4,916 | 3,470 | 2,340 | 2,310
0.281 | 0.461 | 0.653 | 0.853 | 0.857
Time-Division
8,078 | 4,929 | 3,476 | 2,663 | 2,651
0.283 | 0.462 | 0.653 | 0.973 | 0.964
FCFS/RRF AP-First
8,011 | 4,918 | 3,475 | 2,334 | 2,355
0.283 | 0.460 | 0.655 | 0.951 | 0.980
EP-First
8,016 | 4,932 | 3,469 | 2,387 | 2,317
0.283 | 0.462 | 0.654 | 0.953 | 0.964
Round-Robin
- 8,011 | 4,916 | 3,471 | 2,384 | 2,346

234

Performance & Simulation Time of Memory Models Using LLL Loop 9
Scheduling Multiplexing Interleaving Factors
Policy Scheme 4 8 16 32 64
0.489 | 0.765 | 0.986 | 0.994 | 1.001
No Multiplexing
4,469 | 2,856 | 2,218 | 2,199 | 2,184
0.489 | 0.716 | 0.729 | 0.730 | 0.733
Time-Division
4,472 | 3,052 | 2,999 | 2,993 | 2,981
0.489 | 0.765 | 0.987 | 0.994 | 1.001
FMRF/RRF AP-First
4,469 | 2,856 | 2,215 | 2,199 | 2,184
0.490 | 0.765 | 0.981 | 0.988 | 0.995
EP-First
4,464 | 2,856 | 2,229 | 2,212 | 2,197
0.489 | 0.765 | 0.982 | 0.990 | 0.996
Round-Robin
4,469 | 2,856 | 2,225 | 2,209 | 2,194
0.197 | 0.347 | 0.617 | 0.941 | 0.99%4
No Multiplexing
11,099 | 6,306 | 3,544 | 2,323 | 2,199
0.197 | 0.347 | 0.618 | 0.728 | 0.731
Time-Division
11,091 | 6,307 | 3,539 | 3,003 | 2,991
0.197 | 0.347 | 0.619 | 0.931 | 0.99%4
FCFS/RRF AP-First
11,099 | 6,306 | 3,532 | 2,347 | 2,199
0.197 | 0.347 | 0.619 | 0.926 | 0.992
EP-First
11,088 | 6,304 | 3,534 | 2,361 | 2,204
v 0.197 | 0.347 | 0.619 | 0.929 | 0.9%4
Round-Robin
’ 11,099 | 6,306 | 3,532 | 2,354 | 2,199

235

Performar}ce & Simulation Time of Memory Models Using LLL Loop 10
Scheduling Multiplexing Interleaving Factors
Policy Scheme 4 8 16 32 64
0.500 | 0.843 | 0.986 | 0.999 | 1.000
No Multiplexing
5,987 3,550 | 3,038 | 2,996 | 2,994
0.487 | 0.702 | 0.713 | 0.717 | 0.717
Time-Division
6,153 4,267 | 4,201 | 4,178 | 4,174
0.448 0.669 | 0.650 | 0.637 | 0.635
FMRF/RRF AP-First
6,691 4,476 | 4,605 | 4,701 | 4,718
0.499 | 0.914 | 0.929 | 0.937 | 0.934
EP-First
5,994 3,276 | 3,223 | 3,196 | 3,207
0.481 0.917 | 0.934 | 0.941 | 0.939
Round-Robin
6,219 3,265 | 3,205 | 3,189 | 3,187
0.289 | 0.592 | 0.993 | 0.997 | 1.000
No Multiplexing
10,374 | 5,057 | 3,016 | 3,003 | 2,995
0.288 0.591 | 0.709 | 0.715 | 0.716
Time-Division
10,379 | 5,062 | 4,221 | 4,190 | 4,179
0.289 | 0.592 | 0.491 | 0.688 | 0.688
FCFS/RRF AP-First
10,374 | 5,057 | 6,098 | 4,354 | 4,353
0.288 0.591 | 0.923 | 0.934 | 0.934
EP-First
10,379 | 5,066 | 3,243 | 3,204 | 3,207
A 0.289 | 0.592 | 0.929 | 0.937 | 0.939
Round-Robin
‘10,374 | 5,057 | 3,224 | 3,196 | 3,188

236

Performance & Simulation Time of Memory Models Using LLL Loop 11
Scheduling Multiplexing Interleaving Factors
Policy Scheme 4 8 16 32 64
0.640 | 0.996 | 0.997 | 1.000 | 1.000
No Multiplexing
5,647 | 3,628 | 3,624 | 3,615 | 3,615
0.640 | 0.877 | 0.878 | 0.878 | 0.878
Time-Division
5,650 | 4,122 | 4,119 | 4,117 | 4,117
0.641 | 0.996 | 0.997 | 1.000 | 1.000
FMRF/RRF AP-First
5,643 | 3,628 | 3,625 | 3,615 | 3,615
0.640 | 0.998 | 0.999 | 0.999 | 0.999
EP-First
5,647 | 3,624 | 3,620 | 3,620 | 3,620
0.641 | 0.996 | 0.997 | 1.000 | 1.000
Round-Robin
5,641 | 3,628 | 3,625 | 3,615 | 3,615
0.640 | 0.993 | 0.997 | 0.999 | 0.999
No Multiplexing
5,647 | 3,639 | 3,627 | 3,617 | 3,617
0.639 | 0.877 | 0.877 | 0.878 | 0.878
Time-Division »
5,656 | 4,124 | 4,121 | 4,117 | 4,117
0.640 | 0.996 | 0.997 | 1.000 | 1.000
FCFS/RRF AP-First
5,647 | 3,628 | 3,625 | 3,615 | 3,615
0.639 | 0.997 | 0.998 | 0.999 | 0.999
EP-First
5,653 | 3,625 | 3,622 | 3,620 | 3,620
_ 0.640 | 0.993 | 0.997 | 0.999 | 0.999
Round-Robin
5,647 | 3,639 | 3,627 | 3,617 | 3,617

237

Performance & Simulation Time of Memory Models Using LLL Loop 12
Scheduling Multiplexing Interleaving Factors
Policy Scheme 4 8 16 32 64
0.849 | 1.000 | 1.001 | 1.001 | 1.001
No Multiplexing
8,340 | 7,077 | 7,069 | 7,069 | 7,069
0.848 | 0.999 | 1.000 | 1.000 | 1.000
Time-Division
8,345 | 7,082 | 7,075 | 7,075 | 7,075
0.849 | 1.000 | 1.001 | 1.001 | 1.001
FMRF/RRF AP-First
8,340 | 7,077 | 7,069 | 7,069 | 7,069
0.848 | 0.999 | 0.999 | 0.999 | 0.999
EP-First
8,347 | 7,083 | 7,083 | 7,083 | 7,083
0.849 | 1.000 | 1.000 | 1.000 | 1.000
Round-Robin
8,343 | 7,079 | 7,079 | 7,079 | 7,079
0.800 | 1.000 | 1.000 | 1.000 | 1.000
No Multiplexing
8,841 | 7,079 | 7,079 | 7,079 | 7,079
0.778 | 0.999 | 0.999 | 0.999 | 0.999
Time-Division
9,095 | 7,085 | 7,085 | 7,085 | 7,085
0.800 | 1.000 | 1.000 | 1.000 | 1.000
FCFS/RRF AP-First
8,841 | 7,079 | 7,079 | 7,079 | 7,079
0.800 | 0.999 | 0.999 | 0.999 | 0.999
EP-First
8,845 | 7,083 | 7,083 | 7,083 | 7,083
0.800 | 1.000 | 1.000 | 1.000 | 1.000
Round-Robin
8,841 | 7,079 | 7,079 | 7,079 | 7,079

238

Simulation Results of Simultaneous Arrivals at the
4-Way Interleaved FMRF/RRF Memory Model

LLL Simulation Number of Percentage of
Loop Time Occurrences Simulation Time
LLL1 4,550 287 6.3%
LLL2 7,539 1 0.0%
LLL3 6,117 1 0.0%
LLL4 5,790 1 0.0%
LLLS 8,450 420 5.0%
LLL6 8,527 263 3.1%
LLL7 3,499 50 1.4%
LLLS 5,035 176 3.5%
LLLLY9 4,469 3 0.0%
LLL10 5,987 343 5.7%
LLL11 5,647 263 4.7%
LLL12 8,340 947 11.4%
Simulation Result of Simultaneous Arrivals at the
4-Way Interleaved FCFS/RRF Memory Model
LLL Simulation Number of Percentage of
Loop Time Occurrences Simulation Time
I.LL1 5,108 22 0.4%
LLL2 12,345 1 0.0%
LLL3 12,120 1 0.0%
LLL4 5,932 1 0.0%
LLLS5 12,226 333 2.7%
LLL6 12,270 330 2.7%
LLL7 5,603 4 0.0%
LLLS8 8,068 11 0.1%
LLL9 11,099 3 0.0%
LL.L10 10,374 103 1.0%
LLL11 5,647 500 8.9%
LLL12 8,841 3 0.0%

239

Simulation Results of Simultaneous Arrivals at the
8-Way Interleaved FMRF/RRF Memory Model

LLL

Simulation Number of Percentage of
Loop Time Occurrences Simulation Time
LLL1 3,324 398 12.0%
LLL2 7,521 1 0.0%
LLL3 6,105 1 0.0%
LLL4 5,763 1 0.0%
LLL5 4,310 443 10.3%
LLL6 4,921 660 13.4%
LLL7 2,213 126 5.7%
LLLS 2,782 180 6.5%
LLL9 2,856 63 2.2%
LLL10 3,550 719 20.3%
LLLI11 3,628 995 27.4%
LLL12 7,077 996 14.1%
Simulation Result of Simultaneous Arrivals at the
8-Way Interleaved FCFS/RRF Memory Model

LLL Simulation Number of Percentage of

Loop Time Occurrences Simulation Time
LLL1 3,331 5 0.2%
LLL2 12,316 1 0.0%
LLL3 12,105 1 0.0%
LLL4 5,763 1 0.0%
LLL5 12,173 334 2.7%
LLL6 12,217 331 2.7%
LLL7 3,650 114 3.1%
LLLS 4,916 80 1.6%
LLLY9 6,306 98 1.6%
LLL10 5,057 411 8.1%
LLL11 3,639 995 27.3%
LLL12 7,079 996 14.1%

240

Simulation Results of Simultaneous Arrivals at the
16-Way Interleaved FMRF/RRF Memory Model

LLL Simulation Number of Percentage of
Loop Time Occurrences Simulation Time
LLL1 3,314 3 0.0%
LLL2 7,500 1 0.0%
LLL3 6,086 1 0.0%
LLL4 5,763 1 0.0%
LLL5 4,139 668 16.1%
LLL6 4,880 661 13.5%
LLL7 2,188 132 6.0%
LLLS 2,363 192 8.1%
LLLY9 2,218 160 7.2%
LLL10 3,038 1,918 63.1%
LLLI1 3,624 994 27.4%
LLLI2 7,069 996 14.1%
Simulation Result of Simultaneous Arrivals at the
16-Way Interleaved FCFS/RRF Memory Model

LLL Simulation Number of Percentage of
Loop Time Occurrences Simulation Time
LLL1 3,331 5 0.2%
LLL2 7,509 1 0.0%
LLL3 6,094 1 0.0%
LLL4 5,763 1 0.0%
LLLS5 4,141 668 16.1%
LLL6 4,869 662 13.6%
LLL7 2,913 113 3.9%
LLL3 3,470 81 2.3%
LLLS 3,544 85 2.4%
LLL10 3,016 1,915 63.5%
LLLL11 3,627 994 27.4%
LLL12 7,079 996 14.1%

241

Simulation Results of Simultaneous Arrivals at the
32-Way Interleaved FMRF/RRF Memory Model

LLL Simulation Number of Percentage of
Loop Time Occurrences Simulation Time
LLL1 3,307 3 0.0%
LLL2 7,500 1 0.0%
LLL3 6,085 1 0.0%
LLL4 5,763 1 0.0%
LLLS 4,143 668 16.1%
LLL6 4,857 662 13.6%
LLL7 2,175 137 6.3%
LLL8 2,315 205 8.9%
LLL9 2,199 37 1.7%
LLL10 2,996 1,919 64.1%
LLL11 3,615 994 27.5%
LLL12 7,069 996 14.1%
Simulation Result of Simultaneous Arrivals at the
32-Way Interleaved FCFS/RRF Memory Model
LLL Simulation Number of Percentage of
Loop Time Occurrences Simulation Time
LLL1 3,317 4 0.1%
LLL2 7,509 1 0.0%
LLL3 6,085 1 0.0%
LLL4 5,763 1 0.0%
LLL5 4,141 668 16.1%
LLL6 4,857 662 13.6%
LLL7 2,186 134 6.1%
LLLS 2,340 245 10.5%
LLLS 2,323 69 3.0%
LLL10 3,003 1,919 63.9%
LLL11 3,617 994 27.5%
LLL12 7,079 996 14.1%

242

Simulation Results of Simultaneous Arrivals at the
64-Way Interleaved FMRF/RRF Memory Model

LLL Simulation Number of Percentage of
Loop Time Occurrences Simulation Time
LLL1 3,307 3 0.0%
LLL2 7,500 1 0.0%
LLL3 6,085 1 0.0%
LLL4 5,743 2 0.0%
LLL5 4,139 668 16.1%
LLL6 4,856 665 13.7%
LLL7 2,175 137 6.3%
LLL8 2,322 187 8.1%
LLLY 2,184 67 3.1%
LLL10 2,994 1,926 64.3%
LLL11 3,615 995 27.5%
LLL12 7,069 996 14.1%
Simulation Result of Simultaneous Arrivals at the
64-Way Interleaved FCFS/RRF Memory Model
LLL Simulation Number of Percentage of
Loop Time Occurrences Simulation Time
LLL1 3,317 3 0.1%
LLL2 7,509 1 0.0%
LLL3 6,085 1 0.0%
LLL4 5,744 2 0.0%
LLLS 4,141 668 16.1%
LLL6 4,856 665 13.7%
LLL7 2,186 134 6.1%
LLL8 2,310 204 8.8%
LLL9 2,199 70 3.2%
LLL10 2,995 1,926 64.3%
LLL11 3,617 994 27.5%
LLL12 7,079 996 14.1%

Appendix VI

Simulation results of different data cache sizes on each Module Controller of
an 8-way interleaved memory system are presented here. There are Read-After-

Write access hazards in the simulations (loops 4, 5, 6, and 11).

Data cache sizes from 1 to 256 words per Module Controller are investi-
gated. Half of the loops (4, 5, 7, 8, 9 and 10) indicate that the performance of
cache size 1 is better than the performance of cache size 2 or 4. These results
are due to the cache fetch and replacement algorithms used in the simulations. A
prefetch is discarded if the address of prefetch request is mapped into a Pending
entry. When the cache size is 1, all the addresses of memory requests are
mapped into the same cache entry (since there is only one entry), thus most of the
prefetches are discarded. When the cache sizes are 2 or 4, the first few pre-
fetches are often mapped to separated entries and memory read operations are
issued to prefetch the memory words into the data cache. The subsequent read
requests will then be mapped into the entries where the prefetched operands are
just stored. Therefore, there are numerous prefetching operations that use
memory cycles, but the prefetched operands are replaced before they are used.
However, as the data cache size increases, the prefetched operands are more
likely to remain in the data cache until called for. Thus, the performance

increases as the cache size increases.

243

244

Performance & Simulation Time

of 8-Way Interleaved Memory Model with Data Cache

Lawrence Livermore Loop

Data Cache

Words per Module LLLI LLL2 LLL3 LLL4
0.479 0.942 0.906 0.767
1 6,916 7,963 6,717 8,843
0.943 0.997 1.000 0.595
2 3,514 7,518 6,084 11,399
0.996 1.000 1.000 0.608
‘ 3,327 7,493 6,084 11,158
1.002 1.000 1.000 0.633
’ 3,309 7,493 6,084 10,710
1.002 1.000 1.000 0.656
16 3,309 7,493 6,084 10,340
1.002 1.000 1.000 0.670
2 3,309 7,493 6,084 10,127
1.002 1.000 1.000 0.703
o4 3,309 7,493 6,084 9,642
1.002 1.001 1.000 0.858

128
3,309 7,493 6,084 7,902
1.002 1.001 1.000 0.861

256
3,309 7,493 6,084 7,875

245

of 8-Way Interleaved Memory Model with Data Cache

Performance & Simulation Time

Lawrence Livermore Loop

Data Cache

Words per Module LLLS LLL6 LLL7 LLLS8
0.772 0.464 0.746 0.615
1 6,219 11,785 2,928 3,604
0.632 0.999 0.428 0.384
? 7,600 5,477 5,097 5,912
0.810 | 0.999 0.986 0.323
* 5,929 5,477 2,216 7,039
0.810 0.999 0.986 0.453
’ 5,929 5,477 2,216 5,015
0.810 0.999 0.986 0.508
e 5,929 5,477 2,216 4,471
0.810 0.999 0.989 0.878
2 5,929 5,477 2,209 2,586
~ 0.810 0.999 0.989 0.905
o4 5,929 5,477 2,209 2,509
0.810 0.999 0.989 0.949
128 5,929 5,472 2,209 2,394
0.810 0.999 0.989 0.949

256
5,929 5,472 © 2,209 2,394

246

Performance & Simulation Time

of 8-Way Interleaved Memory Model with Data Cache

Lawrence Livermore Loop

Data Cache

Words per Module LLLY LLL10 LLLI1 LLL12
0.620 0.679 0.989 1.001
l 3,527 4,410 7,154 7,069
0.256 0.361 1.000 1.003
2 8,547 8,283 7,072 7,059
0.244 0.370 1.001 1.003
! 8,975 8,096 7,067 7,059
0.285 0.536 1.001 1.003
° 7,668 5,581 7,067 7,059
0.649 0.839 1.001 1.003
1o 3,371 3,570 7,067 7,059
0.771 0.883 1.001 1.003
? 2,836 3,392 7,067 7,059
0.838 0.886 1.001 1.003
o4 2,608 3,381 7,067 7,059
0.859 0.889 1.002 1.003
128 2,544 3,366 7,062 7,059
0.859 0.889 1.002 1.003

256
2,545 " 3,366 7,062 7,059

Appendix VII

Simulation results for the comparison of the FCFS/RRF scheduling policy
and the AP-First and EP-First scheduling policies are presented here. The com-
parison indicates that memory access conflicts and access hazards are the main
factors which can prevent the requests from being serviced according to the prior-
ity order.

In LLL loops 4, 5, and 6, access hazards force the requests to be serviced
~according to the arrival order, so that the performance for the FCFS/RRF
scheduling policy and the AP-First (or EP-First) scheduling policy are almost
identical. In the simulation of LLL loop 2, the performance of FCFS/RRF policy
is worse than the AP-First (or EP-First) scheduling policy when the interleaving
factor is 4, and it is as good as the AP-First (or EP-First) scheduling policy when

the interleaving factor is infinite.

In a memory model that uses AP-First or EP-First scheduling policies, there
are two read request queues: the load data request queue and the alternative load
data requést queue; there is only one read request queue in the memory model
using FCFS/RRF scheduling policy. The probability of having memory conflicts
for both requests at the heads of read queues in the AP-First or EP-First schedul-
ing policies are smaller than the probability of having a memory conflict for the
request at the head of read queue in the FCFS/RRF scheduling policy. Thus, the
probability of selecting a non-conflicting request for service is higher in the AP-

First or EP-First scheduling policies than in the FCFS/RRF scheduling policy.

247

248

This is the reason that the FCFS/RRF scheduling policy is worse than the AP-

First or EP-First scheduling policies when the interleaving factor is 4.

249

Total Simulation Time of

Priority Scheduling Policy & Read-Request-First Policy

Interleaving | Scheduling Lawrence Livermore Laboratory Loops

Factor Policy LLL2 LLLA4 LLL5 LLL6
AP-First 37,465 50,459 51,921 59,877
4 EP-First 36,165 50,459 51,921 59,877
FCFS/RRF 39,034 50,464 51,919 59,888

AP-First 20,502 36,035 33,188 37,155
Infinity EP-First 20,525 36,058 33,202 37,171
FCFS/RRF | 20,554 36,035 33,187 37,208

250

Performance of

Priority Scheduling Policy & Read-Request-First Policy

Interleaving | Scheduling Lawrence Livermore Laboratory Loops
Factor Policy LLL2 LLL4 LLL5 LLL6
AP-First 0.489 0.593 0.524 0.426
4 EP-First» 0.506 0.593 0.524 0.426
FCFS/RRF 0.469 0.593 0.524 0.426
AP-First 0.893 0.830 0.820 0.687
Infinity EP-First 0.892 0.829 0.819 0.687
FCFS/RRF 0.891 0.830 0.820 0.686

