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ABSTRACT

A new methodology for specifying and implementing communication proto-
cols is presented. This methodology is based on a formalism called "Real-Time
Asynchronous Grammars” (RTAG), which uses a syntax similar to that of attri-
bute grammars to specify allowable message sequences. In addition RTAG pro-
vides mechanisms for specifying data-dependent protocol activities, real-time
constraints, and concurrent activities within a protocol entity. RTAG
encourages a top-down approach to protocol design that can be of significant
benefit in expressing and reasoning about highly complex protocols. As an
lexample, an RTAG specification is given for part of the Class 4 NBS Transport
Protocol (TP-4).

Because RTAG allows protocols to be specified at a highly detailed level,
major parts of an implementation can be automatically generated from a specifi-
cation. An RTAG parser can be written which, when combined with an RTAG
specification of a protocol and a set of interface and utility routines, constitutes
an implementation of the protocol. To demonstrate the viability of RTAG for
implementation generation, an RTAG parser has been integrated into the kernel
of the 4.2 BSD UNIX operating system, and has been used in conjunction with
the RTAG TP-4 specification to obtain a working TP-4 implementation in the
DOD Internet environment.
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CHAPTER 1

INTRODUCTION

1. Background

The usage of protocol in Computer Science stems from its usual meaning
as a mutually agreed-upon set of rules for interaction. The difference is that the
|
interacting parties are computer programs rather than people. Data communica-
tion protocols are those that manage the transfer of data between entities on dis-

tinct computer systems. Such protocols serve to enhance the flexibility and reli-

ability of lower-level communication facilities.

General-purpose data communications systems may involve protocols
operating at several different logical and hardware levels ([Cyp78], [Tan81]).
As an organizational model for such systems, the International Standards Organ-
ization (1SO) developed the Open System Interconnection (OSI) Seven-Layer
Reference Model ([Zim80], [Day83], [ISO83]). In this model, the protocols at
a particular layer are defined in terms of the services they provide to the immedi-

ately upper layer, and the services they expect of the immediately lower layer.

A list of the services typically provided by each layer of the OSI model is
given in [Bow83]. For example, a typical protocol in the transport_—iayer might

provide reliable connection management and ordered, reliable dual-priority data



transfer between processes on different hosts, in the presence of packet loss,
delay, reordering and garbling by the intervening network and/or the:lower pro-

tocol levels, and in the presence of host machine failures (see [Stu83]).

The services provided by data communications protocols can be realized
using a variety of mechanisms ([Sun78], [Fle78], [Pou78]). Connection
management may involve three-way handshaking, reference numbers, and
timer-based mechanisms. Ordering, reliability, and flow control of data transfer
{
can be achieved by mechanisms using sequence numbers, with error recovery

based on positive or negative acknowledgment strategies, usually with timers.

Sliding send and receive windows are used to increase throughput.

The 1SO, in cooperation with other organizations, is developing standard
protocols corresponding to the various layers of its reference model. Earlier
work, such as the development of the Internet by the U.S. Department of
Defense [Cer83] as well as systems designed by various computer companies
(e.g., IBM’s SNA [Gra79], DEC’s DECNET [Wec80], and Xerox’s Pup
[Bog80]), has resulted in protocol architectures that are functionally similar to,

but incompatible with, each other and the proposed ISO protocols.

There is a need to specify protocols in a machine-independent way, particu-
larly in the data communications domain where many different computer sys-

tems may need to use a particular protocol. This has encouraged the develop-

ment of many formal description techniques (FDT’s) for specifying protocols.




The role of FDT’s is discussed in [Vis83], and a survey is given in [Sun8l].
Most FDT’s in current use are based on finite state automata (FSA).* Pure FSA
are amenable to automated protocol verification, but can express only simple or

idealized protocols. Other FDT’s augment the automata with high-level

language (HLL) code to express the details of real-world protocols.

1.1. Summary of Results

! We have developed a new FDT for specifying and implementing data com-
munications protocols. This FDT is called "Real-Time Asynchronous Gram-
mars” (RTAG), and is based on a context-free grammar (CFG) notation in
which ordinary terminal symbols correspond to messages sent and received.
RTAG also provides convenient mechanisms for specifying concurrent protocol

activities and real-time constraints.

RTAG has significant advantages over FSA-based FDT’s. It encourages a
top-down approach to designing and specifying protocols, in which a protocol is
decomposed into (possibly concurrent) subprotocols which can be specified
separately. In addition, RTAG allows more protocol mechanisms to be
expressed without resort to HLL code; this is in part due to its more powerful

underlying formalism (CFG versus FSA).

A software system based on an RTAG compiler and an RTAG parser has
been developed. Applied to an RTAG specification of a protocol, these programs

provide a major part of an implementation of the protocol; essentially only packet



assembly/disassembly and interface routines need be added. The RTAG parser
responds to incoming messages by attempting to "derive” them according to the
grammar. As a side-effect it may generate outgoing messages. Special terminal
symbols represent certain amounts of real time, and the parser attempts to derive

these symbols when the time intervals elapse.

If a set of protocols have been specified with RTAG, implementations of
these protocols on a computer system can be obtained by writing an RTAG
i
parser and interface routines on that system. Conversely, changes to a protocol
running on a network of (possibly dissimilar) systems all running the RTAG

parser can be effected by changing the RTAG specification, rather than by

rewriting many hand-coded protocol implementations.

We have implemented an RTAG compiler and parser under 4.2 BSD
UNIX [UNI83] and have written an RTAG specification of the NBS Class 4
Transport Protocol, TP-4 [NBS83]. The RTAG parser has been installed in the
UNIX kernel and interfaced with its networking code, yielding an RTAG-based
implementation of TP-4. This implementation has successfully communicated

with other TP-4 implementations over the DOD Internet.

1.2. Organization

This thesis is organized as follows: Chapter 2 provides an overview of pre-
vious work in protocol specification. Chapter 3 gives a brief overview of RTAG,

and Chapter 4 describes its syntax and informal semantics in more detail.




Chapter 5 explains the TP-4 specification. Chapter 6 gives the design of an
RTAG parser, and Chapter 7 discusses RTAG software tools and their integra-
tion into debugging, prototyping, and production environments. Chapter 8 gives
performance figures for the TP-4 implementation and proposes techniques for
increasing performance. Chapter 9 contrasts RTAG with related work, and

Chapter 10 summarizes RTAG and suggests areas for further work.



CHAPTER 2

PROTOCOL SPECIFICATION

2.1. Limiting the Area of Interest

This thesis is concerned with an FDT suitable for specification of data com-
munications protocols above the level of packet formatting, with an emphasis on
]automated implementation. We do not address protocol design issues, except to
discuss whether (and how) particular FDT’s can express common protocol
mechanisms. Furthermore, we are concerned with single protocol entities in a

layered protocol system, which directly interact only with adjacent entities rather

than with peer entities (see Figure 1).
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Figure 1: Entity relationships

This section motivates formal specification of standard protocols, and lists

types of semantic information which FDT’s may express (a more detailed discus-

sion can be found in [Boc80]). A survey of previous work in the area is then

given.

2.2. Goals of Formal Specification

One goal in specifying a standard protocol is to allow system programmers

to create compatible implementations of the protocol. Since there is a wide vari-

ation in existing programming language and operating system environments, an

FDT should not depend on a specific language or environment. One way to

achieve the goal is to provide a means for automated implementation generation



which is portable to different environments.

A second goal of a protocol specification methodology is to support some
form of protocol verification: i.e. to provide a logical framework for proving that
a protocol fulfills its "service specification” gi\}en assumptions about the underly-
ing communications medium, or proving that the protocol is free from specific
problems such as undefined transitions, deadlock, livelock, or unbounded out-

s'tandin g messages.

A third goal is to support study of the performance of protocol systems by
simulation or analytical methods. These are actually two very different goals,
since realistic simulation requires a detailed "executable” specification, whereas
analytical methods require a simple Fl;']" (such as bounded Petri nets or FSA)

amenable to Markov chain analysis or other analytical techniques.

Protocol specification can be seen as an extension of program specification
[Jon80]. However, conventional program specification methodologies do not
necessarily provide a good basis for protocol specification because 1) they cannot
express real-time semantics, and 2) their emphasis is for the most part on com-
putation rather than communication, and the complexity of protocols lies largely

in the latter.

2.3. Models of Protocol Activity

We now examine in detail the idea of "event” which underlies protocol

specification semantics, and classify the semantic features of existing FDT’s.




2.3.1. Semantics of Events

The underlying model for virtually all FDT’s (including RTAGY) is that of
atomic message-passing events between adjacent entities. An oufpul event is the
sending of a message by the entity being specified, and an input event is the
receipt of a message. Each message is assumed to have a type or name from

some fixed set, and may carry other information as well.

' Events involve pairs of entities that, because we ar¢ considering layered
protocols, exist on the same machine. Many different semantics for message-
passing (i.e. for events) exist. Scott [Sco85] gives a useful taxonomy for these
semantics. A sender may block until receipt, block until reply, or not block.
Receipt may be explicit or implicit. Different delivery mechanisms, both reliable

and unreliable, may be used. And, in the single-processor case, either the

sender or the receiver may resume running after a non-blocking send.

Most or all of these possibilities are realized in real systems. For example,
in the 4.2 BSD UNIX networking system code, four distinct event semantics
exist:

(1) A message between two protocol layers (say TCP and IP) is a procedure

call, so delivery is reliable and the sender blocks until reply.

(2) A message from a bottom-level protoco!l (e.g. IP) to a network interface
driver is delivered by a non-blocking append to a bounded—]etigth queue,

followed by a call to the driver. Delivery is unreliable since, if the queue is
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full, the message is discarded without notification.

(3) Message delivery from a network interface driver to IP is also unreliable
because it uses a bounded-length queue. After sending, the driver contin-
ues to run, and 1P is scheduled for later execution by a "software interrupt”

mechanism.

(4) A message from a top-level protocol to a user program is reliable, assuming
! that the protocol does flow control based on available buffer space. The
user process is notified using the wakeup mechanism, which allows the

sender (i.e. the protocol) to continue to run.

The correct operation of a protocol may depend on a particular event
semantics: for example, block-until-reply semantics may be necessary to provide
inter-layer flow control. In addition, the possibility of unreliable message pass-
ing must be reflected in the design of the protocol. In spite of these factors,
existing FDT’s (including RTAG) leave event semantics unspecified. One justif-
ication for this is that the semantics are usually provided by the existing operat-

ing system rather than by the protocol entity (this is true in 4.2 BSD UNIX).

2.3.2. Components of Protocol Specifications Semantics

There are several levels of detail which an FDT may express. Different
aspects of a protocol may be relevant in different applications. For.example, a
specification to be used in performance analysis might not specify how data to

and from higher levels is divided, concatenated, or buffered within the protocol
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entity. This specification would be crucial, however, for implementation.

The semantic models of existing FDT’s are based on the folldwing com-

ponents, and can be classified according to which components they include:
Event order constraints

All protocol specifications impose some constraint on the temporal ordering
of event occurrences. In the simplest model, only event names are con-
i

sidered and the specification thus defines a language over the alphabet of

event names, i.e. those event sequences that satisfy the ordering constraint.
Real-time constraints

A protocol may constrain the precise real time intervals between certain
event occurrences. Examples include timeout-driven retransmission,
"reference waits” before re-using reference numbers, and the "quiet ime”

observed by a host after it recovers from a crash.
Data dependencies

In real protocols, messages often contain data such as integers or variable-
size byte strings. This additional information may be destined for an upper
layer client, or it may be part of a protocol mechanism (such as the
sequence number in an acknowledgement message). Formal models for
such protocols must be based on parameterized events, and th{:ir ordering

and real-time constraints may involve these parameters.
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Packet formatting

A complete specification of a real-world protocol must include details such
as the format of packets, ordering of bytes within a word-size integer,

checksum algorithms, etc.
Underdetermined Specification

A protocol specification need not give a complete description of a deter-
ministic machine that implements the protocol. Instead, it may allow a
range of entity behaviors. For example, existing specifications of transport
protocols allow a range of acknowledgement strategies. Such a specifica-
tion may impose as well a probabilistic or "fairness” constraint on allowable

behaviors ([Mol82], [Par84}]).
2.4. Previous Work in Protocol Specification

2.4.1. Finite-state automata

Event-order constraints are often modeled by finite-state automata ([Bjo70],
[Boc78), [Dan80]). Each automaton transition is triggered by an input event,
and may generate one or more output events. The effect of timeouts on event
order (but not the actual timeout intervals) can be simulated by € transitions.

Figure 2 shows an FSA description of both ends of an alternating bit protocol.
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Figure 2: FSA description of
an alternating bit protocol
(from Yemini and Nounou [Yem83])

A more complex example, shown in Figure 3, is the FSA for the connection and
disconnection phases of one TP-4 transport connection, taken from the National

Bureau of Standards (NBS) TP-4 specification [NBS83].
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Figure 3: FSA for TP-4
(from NBS specification [NBS83])
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Pure FSA cannot express data-dependent protocol mechanisms; for exam-
ple, the FSA for TP-4 does not specify the sliding window mechanism. To deal
with this problem, FSA can be extended so that the "state” includes a set of vari-
ables, and each transition includes a HLL guard condition and a HLL code seg-
ment to be performed when the transition is performed, both of which may refer
{o state variables and event parameters. This approach is called "augmented fin-

ite state machines” (AFSM).
¢

AFSM-based FDT’s generally use explicit timers to specify real-time proto-
col mechanisms such as timeouts. HLL code segments can start and cancel
named timers, and timeouts are treated as input events which trigger "timeout”

transitions.

Pure FSA allows verification by various state-space exploration techniques,
often on a "product” FSA representing two entities ([Rub82}], [Sid83b]). Logic
programming systems such as Prolog can be used for this purpose ([Sid83a],
[Log84]). West and Zafiropulo [Wes78] use FSA to model and verify certain
aspects of the CCITT X.21 protocol. State-space exploration can be applied to
data-independent parts of an AFSM specification, but other techniques are

needed in general ([ScF80], [Hai80]).

Blumer and Tenney [Blu82] describe an AFSM-based specification project
whose goals include automatic implementation and verification. Pascal is used

as the embedded HLL. They describe software for converting an AFSM
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description to a C program that implements the protocol; this program consists of
C code simulating the FSA, intermixed with Pascal-to-C translat;ion of the
embedded HLL code. They have used this system to specify and implement the
TP-4 transport protocol, and report that approximately 40% of the final C code
was generated automatically, with execution speed comparable to manual imple-

mentations.

A similar project undertaken by IBM is described in several papers
([Sch80], [Poz82], [Nas83]). The project involves the Format and Protocol
Language (FAPL), which has been used to create an "executable specification”

of IBM’s Systems Network Architecture (SNA).

FAPL is an extension of PL/1. It can be used to specify multiple protocol
layers, and its runtime system handles scheduling and communication between
layers. Within a layer, FAPL’s capabilities are equivalent to AFSM, except that
it does not include HLL enabling conditions. Instead, the HLL code associated
with a transition can decide to "back out” of the transition, or change the target
state. FSA specification is built directly into the programming language instead
of being viewed as an exterior structure. An FAPL compiler translates FAPL
source into a sequential target language (PL/1 or related languages).
Implementation-dependent functions and interface routines are code;__i directly in
the target language. The papers mention using the resulting code for simulation

(both for verifying the SNA protocols and for testing applications that use SNA)
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and for production use.

2.4.2. Grammars-based systems

Context-free grammars (CFG’s) can be used to specify valid event orders.
Harangozo ([Har77], [Har78]) uses a CFG-based FDT to specify a portion of
the HDLC data-link protocol. An attribute-like notation is used to represent
sequence numbers. Symbols and productions are parameterized by variable
;subscripts, and each production denotes the family of productions obtained by
instantiating the variables with all values in their domains. There is not provi-

sion for real-time constraints.

Teng and Liu [Ten78] use CFG’s (without attributes or real-time con-
straints) to specify some simple protocols. They propose using these specifica-

tions for implementation and limited verification, but no results are given.

2.4.3. Algebraic systems

The "Calculus of Communicating Systems” (CCS), developed by R. Milner
[Mil80], is an algebraic system whose basic elements represent input/output
events. Event-ordering constraints on entities or sets of entities are represented
by "behavior expressions” built up from certain operators, or by systems of
equations involving these expressions. Milner defines a notion of "observational
equivalence” relevant to nondeterministic entities, and gives a systém of alge-

braic rules allowing equivalences between behavior expressions to be proved.
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Yemini and Nounou [Yem83] discuss a "protocol development environ-
ment” where several FDT’s (FSA, Petri nets, high-level language) afe available
for protocol specification. - They propose the development of tools to convert
these forms into a "canonical semantic model” based on CCS, that can then be

analyzed for correctness and performance by formal methods.

CCS also serves as the basis for LOTOS, an FDT developed by an 1SO
!subgroup for the purpose of specifying the 1SO protocols [Bri85]. To express
data dependencies, LOTOS augments CCS with an abstract data type mechan-
ism. LOTOS has no real-time constraint mechanism. It has been used to give a
service specification of the 1SO transport layer [Bri84]. No work involving

LOTOS-based automatic implementation has been reported.

2.4.4. Petri nets

Petri nets [Pet77] are useful for modeling concurrency and synchronization
in communication systems, and provide a basis for correctness and performance
analysis ([Mer79], [Dan77]). Figure 4 shows a Petri net used by Molloy

[Mol82] to analyze the performance of an alternating bit protocol.
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Figure 4: Petri net for an alternating bit protocol
(from Molloy [Mol82])

The Petri net formalism can be extended in several ways to express real-
time and data-dependent constraints. Ozsu and Weide [Ozs82], for an applica-
tion involving simulation-based performance study of concurrency control
mechanisms, use an extended Petri net formalism in which tokens may have
attributes. The transitions in the net have associated HLL code which is used to
generate attribute values for tokens produced by the transition and to decide the
routing of these tokens. A similar FDT based on "predicate/transitioﬁ nets” has

been used to model simplified versions of OSI protocols [Burg4].
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2.5. Formal Specification of Packet Formats

This thesis does not address the problem of specifying packet for;mats, or of
automating packel assembly based on such specifications. However, this is an
important goal, particularly for protocols (such as presentation-level protocols)
where packet structure is complex or the mapping between host system format
and network format is nontrivial. Work in this area is being done: a standard
,formalism for packet format is embodied in the CCITT Draft Recommendation

X.409, and an automated software system for packet assembly/disassembly has

been developed [Pop85].




CHAPTER 3

RTAG OVERVIEW

The successful automated-implementation projects to date have used
AFSM. After using an AFSM-based specifications in an implementation pro-
ject, we concluded that this approach has two major drawbacks: 1) it forces the
’description of independent protocol mechanisms to be intertwined, and 2)
because of the limited power of FSA, too much detail has to be putin HLL. We
feel that by using a more powerful underlying formal component, such as attri-

bute grammars, these problems can be avoided.

3.1. Goals

RTAG, (introduced in [And84]), is a formal description technique for pro-

tocols developed with the following goals:

(1) To allow detailed description of real-world communications protocols, while
avoiding, as much as possible, the complexity of a general-purpose pro-
gramming language.

(2) To support structured protocol design. Specifically, to allow a protocol to
be recursively decomposed into serial and concurrent subprotocols that are

specified separately.

21
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(3) To facilitate the development of software for generating usable protocol

implementations based on formal specifications.

Of the five semantic components described in Section 2.3.2, RTAG addresses
the first three: event order constraints, real-time constraints, and data-
dependence. 1t does not address the specification of packet formatting, or the
specification of complex data types for messages: messages are restricted to hav-
ing a fixed set of data fields, each of which has a simple type. RTAG is not
!

intended for expressing underdetermined specifications, although it is possible to

write underdetermined (ambiguous) RTAG specifications.

3.2. Protocol Specification by Attribute Grammars

An RTAG specification is based on an underlying context-free grammar in
which most terminal symbols correspond to message events. These symbols are
called input or output symbols depending on whether the message is received or

sent by the protocol entity being specified.

RTAG grammars generate event sequences allowed by the protocol. For
example, the production
<goal > : [net~data] [user—data] < goal >.

might be part of a trivial protocol that responds to messages from the network
layer (the [net-data] input event) by sending a message to the upper layer (the

[user—data] output event).
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Each RTAG symbol has an associated set of azzributes, which in each sym-
bol instance are instantiated with data values. The attributes of an input or out-
put symbol correspond to the fields of the associated message. A production
may have a boolean-valued enabling condition involving attributes values, which
must evaluate to true for the production to be applied. Each production can also
have an associated set of astribute assignments which specify its side-effects on

attributes, and which are performed when the production is applied.

Each grammar symbol can be thought of as representing a "subprotocol”
consisting of the events sequences it can generate. Productions can compose

subprotocols in sequence:
<x> . <y> <z>.
or in parallel:
<x>: {<y> <z>}.
In the first case, the events derived from <y> must precede (in real time) the

events derived from <z>, whereas in the second case the event sets may be

interleaved.

Real-time constraints, such as timeouts, can be represented in RTAG using
a special terminal symbol /timer/, which has an attribute representing the

length, in clock ticks, of an idle time interval.
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3.3. Implementations Based on RTAG Specifications

An RTAG parser is a program which, given an RTAG specification,
attempts to enforce the specification, and thus to implement the protocol. It
processes input events and handles timers. Output symbols can be thought of as
"action routines” which are performed as a consequence of applying produc-
tions. An algorithm for an RTAG parser will be given in Chapter 6. There are
major differences between an RTAG parser and a parser for a CFG with action

/
symbols. This distinction will be explored in Section 9.1.




CHAPTER 4

RTAG SYNTAX AND SEMANTICS

This section gives an informal summary of the syntax and semantics of
RTAG. A precise syntax, in the form of Lex and YACC files for RTAG, is
given in Appendix 1l. A more precise semantics could be given, perhaps by
rshowing a semantics-preserving transformation from RTAG to some version of

CSP, the semantics of which have been well studied [Hoa78].

4.1. Alternative Models for RTAG Semantics

An RTAG specification defines the behavior of a protocol entity. This
entity must respond to input messages (and to the passage of real time) by gen-
erating output messages. The mapping from an RTAG specification to the set of
entity behaviors which are allowed by the specification constitutes the semantics

of RTAG.

In spite of the informality of our treatment of RTAG semantics, we
nonetheless need a solid conceptual model on which to base it. There are

several possibilities:

(1) The denotational approach, in which a mathematical object Sy is assigned

to each grammar symbol X, by rules that recurse on productions. Sy must

fully describe the "subprotocol” represented by X, in terms of its

25
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interactions both with adjacent entities and with other subprotocols within
the same entity. We have tried this approach, using as the structure of S a
predicate over event sequences and time-dependent attribute values, but
have found that it leads to considerable complexity, with no apparent

theoretical or pedagogical benefit.

(2) The parser-based model: we give in Chapter 6 the design of an RTAG
parser, a real-ime program that maintains an attributed parse tree, and
responds to input events by attempting to derive them from leaf nonterminal
symbols. The semantics of RTAG could be defined as the actions of this

parser.

(3) The process-based model in which each grammar symbol X is associated
with a process definition Py. Event symbol processes read or write mes-
sages, and each production defines a process as the sequential or parallel

composition of subprocesses. For example, the production

<x>: <y> <z2>;
defines P, > as a process that invokes processes P.ys and P, > in
sequence. The attributes of X correspond to per-process variables of Px.

The protocol defined by an entire RTAG specification is realized by execut-

ing the process associated with the goal symbol.

The parser- and process-based models are connected in that the parse tree

of the former will always match the process ancestry tree of the latter, modulo
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design decisions on precisely when records are created or deleted. In the
process-based model, RTAG is seen as a specialized concurrent programming
language; this is related to the parser-based approach by viewing the RTAG
parser as an interpreter and process scheduler for this language. Conversely,
the process-based model can be seen as defining a type of recursive-descent

parser, in which multiple branches can be simultaneously active.

As a basis for describing informal RTAG semantics, the process-based
!
model has these advantages over the parser-based model: 1) it is higher-level
(i.e. it hides details of scheduling and interpretation) and offers a conceptually
simpler view to the RTAG user; 2) because the process-based model says less

about implementation details, it is more amenable to interpretation in different

programming models such as object-based or logic programming.

For the above reasons, our informal RTAG semantics will use the process-
based model, and RTAG features will be described as components of process
definitions. However, it seems to be easier to talk about implementation details
in parser-based terminology, and so Chapter 6 describes algorithms for an

RTAG parser.

4.2. Details of the Process Model for RTAG

We now discuss the process-based model in more detail. First, it should be
noted that the processes are very lightweight: they are essentially restricted to

executing in-line code. and their memory usage, outside of subprocess
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invocation, consists of a fixed set of per-process variables. RTAG processes

would probably not be implemented as distinct operating-system-level processes.

In an RTAG protocol entity there is at any point an ancestral tree of process
instances; initially there is exactly one instance of the goal process, i.e. that
corresponding to the goal symbol. A process is first instantiated, creating its
per-process variables; it is later started, i.e. executed. It becomes finished when
it reaches the end of its definition or because of intervention by another process.
'The per-process variables continue to exist until the process is removed .

Processes can block waiting for input events to happen, time to elapsé, or

expressions to become true.

Assuming, as we are, that the RTAG protocol entity resides on a single
machine, the scheduling of its processes must be considered. When a message
arrives, for example, there may be a choice of newly-unblocked processes to
execute. The execution of the chosen process may unblock still other processes.
We make the following restrictions on RTAG (not operating system) process

scheduling:

(1) It is non-preemptive; context switches are allowed only at the point of start-
ing a subprocess, and when a process blocks. All processing resulting

from a particular event (message arrival or timeout) is done atomically.

(2) When an input event is being handled, processes capable of reéding it have

priority over other processes.
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(3) Newly-started processes are prioritized by the order of declaration of their
symbol (earlier declaration gives higher priority), and the highest-priority

process is always executed first.

For the purpose of discussing RTAG’s real-time semantics, we assume that the
CPU time used by RTAG processes is negligible relative to real time. Without
some assumption of this sort, the real-time constraints expressed in an RTAG
’speciﬁcation would be meaningless. The assumption is not unreasonable in
applications where the protocol runs at high priority in a memory-resident ker-

nel, and does little computation.

The remainder of this section lists RTAG’s features. The description of
each feature gives the syntax, and discusses the semantics in terms of the map-

ping from a symbol X to the associated process definition Py.

4.3. Symbols and Attributes
RTAG has the following symbol classes:
(1) Nonterminal symbols are delimited by matched angle brackets (<, >).

(2) Event symbols (both input and output) are delimited by matched square
brackets ([, ]). Names should suggest whether the symbol is an input or
output symbol, and what other entity it involves. For example, in our TP-4
specification, [U-~CR] represents a connection request receivéd from the

upper layer, and [N-DT] represents a data packet sent to the network layer.
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(3) Special terminal symbols represent internal actions of the protocol entity;
their names and are delimited with slashes. There are two special terminal

symbols: /timer/ and /remove/.

Each symbol has an associated set of typed attributes, the names of which
must be valid C identifiers [Ker78]. The following attribute data types are used:
integer, boolean, dataptr (pointer to a variable-size byte string), and symbol-
’ref (pointer to a symbol or process instance; used by the /remove/ special ter-
minal symbol, see below).

Here is an example of a symbol declaration section:

goal < connection > /* declare " goal” nonterminal symbol */
nonterm < send > /* declare another nonterminal */
int seqno /* with one integer atiribute */
input [U-CR] /* declare an input terminal symbol */
int refno :
output [N-DT] /* declare an output terminal symbol */
int refno
dataptr data

The semantics of terminal symbols are as follows:

e If X is an output symbol, Py sends the associated message, using the attri-
bute values of X as values for the message fields. In practice, this sending
is done by calling an event performance routine, passing the attr_ibute values
of X as parameters to the routine. Output symbols can therefore be

thought of as "action symbols”.
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e If X is an input symbol, Px blocks until an event occurs consisting of the
arrival of the message represented by X. Py is then finished, with its per-
process variables set to the values contained in the message fields, and is

said to have accepted the message.

e /timer/ has an integer attribute interval. Pjimer/ sleeps for the amount of

time given by the value of this attribute.

e /remove/ has an attribute where of type symbol -ref , which points to a
symbol (process) instance X. When an instance of P, omoves 1S €xecuted, X
and all its descendants in the process tree are flagged as finished. This is

used, for example, in handling abnormal closure of connections.

4.4. Attribute References and Expressions

Expressions associated with a production P can refer to symbols and attri-
butes of symbols either in P, or at a relative position in the process tree. Sym-
bol references are called local and non-local accordingly. A local reference is
of the form $n, and refers to the nth symbol of P; $0 is its parent (LHS) symbol
and $1 is the first symbol of the RHS. A nonlocal reference is written as
sym1/sym2/ ... /symn, the semantics of which are as follows: find the closest
ancestor named syml of the parent of P; find the leftmost of its children named
sym2, the leftmost of that process’s children named sym3, and so forth. A refer-
ence to a nonexistent process (which can be detected at runtime) is considered a

fatal error.
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Attribute references are of the form symbol-reference.attrname and refer

to the named attribute of the process instance specified by symbol-reference.

Expressions in RTAG are formed from constants ( empty is a dataptr con-
stant denoting the empty string), symbol and attribute references, integer opera-
tors (+, —, mod), logical and relational operators (written as in C [Ker78]), a
dataptr operator (catenation, written as cat), externally defined functions (Sec-

tion 4.9) and parentheses.

4.5. Simple Productions

A simple production (i.e. the unique production rule for its LHS symbol) is

written as:

<x> ! o.

>
where <x> is any nonterminal and a is a string of grammar symbols and

optional curly brackets.

If <x> has no other productions, P, is the composition of the
processes of the grammar symbols in « (with possible modifications due to the
presence of "attribute assignments” or an "enabling condition” in the produc-
tion, see Sections 4.6 and 4.7). o may be empty, in which case P ., > is con-
sidered to consist of an invocation of an epsilon process which is immediately

finished.
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When P ., - is started, its subprocesses are instantiated but not started. In
the absence of curly brackets, the process composition is sequential, i.e. each
subprocess is started when its left neighbor finishes. Hence lefi-to-right syntac-

tic order corresponds to real-time order. For example, in the process defined by

<x> : <y> <z>.

2

execution of P 5 will strictly precede thatof P, .

Processes may also be composed in parallel, allowing their events to overlap
in time. A group of RHS symbols may be surrounded by curly brackets, form-
ing a concurrent group; the associated process executes the component processes
in parallel, and waits for them all to finish. Concurrent groups may contain
only nonterminal symbols; this restriction simplifies the semantics of attribute-

related constructs (Sections 4.6 and 4.7).
As an example, in

<x> : {<a> <b>} <c> {<d> <e>}.

the processes P, and P.p 5 start together and are executed in parallel;
when both are finished P . 5 starts, and when it is finished P4 and P, >

start together; when both are finished Py > is finished.
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4.6. Attribute Assignments

A production can have zero or more "attribute assignments”, each of the
form attribute-reference = expression. Atiribute assignments are used to
transfer information between process instances. Performing an attribute assign-
ment consists of evaluating the expression and storing the value in the refer-

enced attribute.

The order of subprocess instantiation and attribute assignment performance
is crucial to RTAG semantics. When a process starts, its subprocesses are all
instantiated and their attributes are initially undefined. In the general case, attri-
bute assignments are performed prior to starting the first subprocess. Assign-

ments are performed in the order in which they appear in the specification.

There are two special cases for attribute assignments semantics. First, in a

production of the form

<x> : [timer/ a.
$1.interval = expression
(other attribute assignments)

the assignment of /timer/.interval is performed when P, starts. When
P, simers finishes, the subprocesses in o are instantiated, and the other attribute

assignments are performed.

Second, in a production of the form
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<x> : [y]ea.
(attribute assignments)

where [y] is an input event, P, initially invokes P[yj. The subprocesses in

o are instantiated, and the attribute assignments are performed, only after [y] is

finished, i.e. after an input event has occurred and been accepted.
4.7. Enabling Conditions

A production of a symbol X can have a boolean-valued enabling condition .
Py blocks, without instantiating subprocesses or performing attribute assign-
ments, until the value of the enabling condition is true, at which point Py is
unblocked. If the condition is true but other processes cause it to revert to false

before Py is scheduled for execution, then Py remains blocked.
For example, in

<x> : [N-DT] <z>.
if $0.seq > <y>.windowstart

P ., - blocks until the seq attribute of <x> is larger than the windowstart attri-
bute of the closest <y> ancestor, then instantiates [N-DT] and <z > and starts
[N-DT]. In the general case, enabling conditions can refer only to attributes of
processes which exist when <x> is started (in particular, attributes of <x>

and its ancestors).
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If the first symbol of the production RHS is an input symbol [y], the
semantics are also slightly different. The enabling condition may depend on the
attributes of [y] as well as those of existing processes. P ., - blocks untl an
event occurs consisting of the arrival of a message of type [y] whose attribute
values satisfy the enabling condition. At this time subprocesses are instantiated

and attribute assignments are performed.

,4.8. Alternative Productions

A nonterminal <x> may serve as the parent of several "alternative” pro-

ductions, denoted as follows:

<xX> . aq.
(enabling condition)
(attribute assignments)

| .
The alternative productions can be thought of as alternative definitions of P <y >.
Intuitively, the process P, > blocks until some alternative can make "signifi-
cant progress”, at which point that process definition is executed, and the other

alternatives are discarded.

In the context of a process instance <x> which is defined by alternative
productions, we will say that an alternative P yields a symbol Y if execution of
P leads, without blocking and without starting more than one process per con-

current group, to instantiating and starting Py. In grammar terminology, this
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means that ¥ can be left-derived from <x> by a sequence of enabled produc-

tions.

A process P ., 5, defined by a set of alternative productions, blocks until
an alternative is selected, at which point that alternative is executed, and the oth-
ers discarded. If more than one alternative is selected, the choice is nondeter-

ministic. An alternative P is said to be selected when either

;(1) an input event [y] occurs such that P yields an instance of [y] which

accepts the message;
(2) P yields the epsilon process, an output symbol, or /remove/; or
(3) P is defined by a production of the form

<x> /timer/ .
(enabling condition)
$1.interval = expression

and an instance of P, started when <x> is started, finishes /timer/.
As an example of alternative productions, consider the following:
<getack> [N-AK].

if <connection >.closed

| /timer/ <timed out>.
$1.interval = 10

.
14

The semantics of P ¢ gck > are as follows: when an instance of <get ack> is
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started,
a) if the [N~AK] event occurs, the first production is selected;

b) if the closed attribute of the nearest <connection > ancestor becomes true,

the second (epsilon) production is selected;

¢) if 10 time units elapse without either a) or b) taking place, then the third

production is selected and a <timed out> process starts.

Hence there are three alternate definitions of the <get ack> process, and the
choice of which to execute depends on what happens first (in terms of events,

attribute value changes, and the passage of real time).

In practice, the only way to detect when an alternative process is selected
according the rules 1) and 2) above, is to execute it when something (such as an
attribute value change or message arrival) has happened that might cause it to
become selected. All possible execution paths by which the types of processes
listed in rules 1) and 2) could be reached must be tested. This execution must
be "tentative” because if it fails to yield the necessary symbol (due to being
blocked by an enabling condition) all resulting process instances must be
removed, and attribute changes in other parts of the process tree must be

undone.

For RTAG specifications to be useful, the "alternative selection” task must
be effectively computable. Switching for a moment to grammar terminology, we

point out that the production sequences of interest in rules 1) and 2) above are
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lefi-derivations (in a modified sense to be discussed in Section 6.3). in order to
ensure that the "alternative selection” task is effective, it suffices to ;';rohibit left
recursion (also in the sense of Section 6.3), since then the number of produc-
tion sequences of interest is bounded and, since each sequence can involve no
more productions than there are grammar symbols, the time needed to check a
sequence is bounded by a constant. The theoretical maximum for this constant
,is large (exponential in the number of grammar symbols) but is not approached
in practice.

For this reason, and because it did not seem to be useful as a specification
mechanism, left recursion is prohibited in RTAG (this means that no process
may yield itself, even in the underlying CFG). The loss of generality is that the

protocol cannot perform a calculation of unbounded length to yield an input

event.

4.9. Externally Defined Functions

External functions can be used in attribute assignments and enabling condi-
tions as an "escape” into HLL code. They might be used for calculations that
occur often, that are not easily expréssed within RTAG, or that are installation-
dependent. For instance, the TP-4 specification (contained in Appendix 1) uses
an external function for the cyclic "between” relation on sequenc%_t numbers.

Function names are delimited with number signs; name, value type and parame-

ter types must be declared. For example, the "between” function is declared by:
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extern boolean #between#(int, int, int) =

4.10. Multiple Acceptance of Input Symbols

Since an RTAG entity may contain many concurrent processes, message
receipt semantics could be single-receiver (an instance of a message can be
accepted by at most one process) or broadcast (all processes which can accept a
message do s0). Our experience has suggested that broadcast semantics for all
/
input messages is sufficient for typical applications. Broadcast semantics are
useful because, for certain natural subdivisions of complex protocols like TP-4,
a single input message may be relevant to several subprotocol processes. For
example, in our specification for the sending component of TP-4, the ack-
nowledged delivery of each packet is handled in a separate process. A single

acknowledgement event may serve to acknowledge several packets, and hence be

relevant to several processes.

RTAG supports only broadcast semantics. It should be added that, as a
result of the acceptance of a message X by a process, other processes may be
instantiated and started that could accept a message of the same type as X. How-
ever, the next-generation processes cannot accept X since they start after X

Ooccurs.

If an input message is not accepted by any process, it is dis;_carded and
ignored. This is a reasonable default since most standard protocols must deal

with packet duplication across networks, and therefore they ignore most types of
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duplicates. In other applications it might be preferable to regard unaccepted

messages as fatal errors and to abort the protocol, or to log them forZ"debuggin g
purposes.

4.11. Key Attributes

In our RTAG-based protocol implementations, the work done in processing

an input event consists partly of computing a candidat set, i.e. a set of processes

/. . . . .
instances that are currently blocked in an input process or in alternative selec-

tion, but which may be able to accept the new message and proceed. Since not
all candidates may in fact accept the message, and each test may be expensive,

we seek an efficient way of computing a reasonably small candidate set.

A candidate set computed only on the basis of CFG information will be
excessively large. For example, in a protocol handling multiple connections, the
candidate set for an input message relevant to only one connection will include
(if only CFG information is used) candidates from many other connections.
Most protocols that handle multiple connections have a "reference number”
mechanism for associating input messages with connections. While this could
be enforced at the leaf level by having a reference number equality clause in

each enabling condition, considerable overhead would be incurred.

RTAG includes a mechanism that can express the semantics of reference

numbers, and that provides a means for calculating smaller candidate sets. This

mechanism is as follows: an attribute name can be declared as key. No two
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nonterminal process instances may simultaneously have the same value for the
key attribute. If an input symbol instance X has the key attribute wiém value %,
and there is a nonterminal instance Y with key attribute value k, X can be
accepted only by descendants of Y. Otherwise (if no nonterminal instance has
key attribute value k) X can be accepted only by processes of which no ancestor

has the key attribute.

| The key attribute mechanism is sufficient for transport protocols, where
there is only one level of reference-numbering. An extension of the mechanism

may be required for other applications.

4.12. Removal of Finished Processes

To achieve memory conservation, process instances must be eventually

removed. Process removal is done in the following cases:

(1) When a nonterminal process finishes, the instances of its subprocesses (if

any) are removed.

(2) When, because of direct or indirect recursion, a process instance X; has an
ancestor X, with the same symbol name, and all of X;’s ancestors except
those which are ancestors of X, are finished, then the process subtree

rooted at X, is "grafted” in place of X, and the remainder of X;’s ances-

[ L L

tors are removed (see Figure 5).
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<goal>

<X>1

expanded

Figure 5: Removal of recursive processes

For typical recursive constructs, procedure 2) prevents unbounded memory
usage. Process execution is not affected by either procedure. However,
storing shared data in the attributes of a finished process, or in a process
which is part of a recursive sequence, must be done with caution since

- such processes can be removed.

TS

'



4.13. A Short Example: An Alternating Bit Protocol
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=

-

An RTAG specification of the sending end of an alt.ernating—bit*})rotoco] is

given below as a small example. The declaration section is omitted for brevity.

<goal > : <packet tail >.
$1.seqno = 0

b

<packet tail > : <packet> <packet tail >.
$2.seqno = ($0. seqno + 1) mod 2;

| [U-FINISHED] .

b

<packet> : [U-DATA] [N-DATA] <retransmit>
$0.data = $1.data
$2.data = $1.data
$2.seqno = <packet tail >.seqno

b4

<retransmit> : [N-ACK] [U-ACK].
if $1.seqno = = <packet tail >.seqno

| [N~ACK] [N-DATA] <retransmit>
if $1.segno ! = <packet tail >.seqno
$2.data = <packet>.data

$2.seqno = <packet tail >.seqno

| /timer/ [N~-DATA] <retransmit>
$1.interval = 100

$2.data = <packet>.data
$2.seqno = <packet tail >.seqno

RN R




CHAPTER 5 =

AN EXAMPLE: THE TP-4 TRANSPORT PROTOCOL

5.1. Design Principles

As an example and test case for RTAG, we have written a specification of
,an almost complete subset of the NBS class 4 transport protocol (TP-4), working
from an AFSM specification of the protocol [NBS83]. The entire specification

is given in Appendix 1; in this section we explain the mechanisms in detail.

The TP-4 example illustrates the following principles for protocol design
using RTAG:
(1) Logically distinct parts of the protocol, which we call subprotocols, are put
in different processes (i.e., subtrees). RTAG provides a means for abstrac-
tion of subprotocols (i.e. the external interface of a subprotocol can hide its

internal mechanisms) and encourages a top-down design approach.

(2) Information relevant only to a particular subprotocol is stored in the attri-
butes of the process (i.e. symbol) serving as the root for that subprotocol,

rather than higher in the tree.

RIS
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5.2. Summary of TP-4 o

TP-4 was chosen as a test case because it incorporates many co;ﬂnmon pro-
tocol mechanisms and offers a significant level of complexity. TP-4 provides
multiple connections, reliable connection management, reliable sequenced mes-
sage transfer with end-to-end flow control, a separate logical channel for
"expedited” (high-priority) data, and sliding send and receive windows for
,increased throughput. Messages between TP-4 peer entities are called transport
protocol data units (TPDU’s). There are a dozen or so types of TPDU’s,
including connection request (CR), connection confirmation (CC), data (DT),
acknowledgement (AK), and graceful close (GR). Data messages passed
between TP-4 and upper layer clients are called transport service data units
(TSDU’s).

The TP-4 subset we have specified comprises a complete and functional
protocol, and can communicate with implementations of the full protocol. Cer-

tain nonessential features have been omitted for simplicity. These simplifications

are as follows:

e Subsequence numbers for AK TPDU’s are not used, and hence spontane-

ous shrinking of the peer receive window is not handled correctly.

@ Timeout intervals are fixed.

ey gy

e Only 7-bit sequence numbers are used.
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In the 4.2 BSD UNIX protocol system, the adjacent entities are 1P*below and
the UNIX socket system (which provides buffering and process synch;onization)
above. The interfaces (i.e. message sets) used by our RTAG TP-4 specification

are chosen to reflect these entities, and deviate from those in the NBS TP-4

specification. For example:

e P provides a datagram services, while the NBS specification assumes a vir-

tual circuit network service.

® The NBS specification uses a model in which data is passed from the upper
layer via "descriptors” which are read asynchronously, whereas the socket

system keeps all buffers in kernel memory.

@ The socket system uses a "listening port” model of connection establish-

ment which differs from the NBS model.

The fact that the specification had to be "tailored” to our host environment
is not completely satisfactory. However, the differences are to some extent una-
voidable, and in any case they are small and fairly well localized in the RTAG

specification.

5.3. Naming of Event Symbols

A mnemonic naming convention for terminal symbols is used: [U-CR],

for example, is a connection request message from the upper layer.: The direc-

tion of the arrow distinguishes input and output events, and the first letter indi-



48

cates the other entity involved (N for network, U for upper layer). Each type of
TPDU has event symbols for its sending and receipt ( [N~CR] is the iarrival of a
CR TPDU from the network layer, [N-DT] is the sending of a data TPDU to the
network layer, etc.). The declaration portion of the specification (Appendix 1)

gives the complete set of event symbols and their attributes.

5.4. Multiple Transport Connections

! A timer for the production of <goal> provides an initial inactive period
which protects the integrity of connections. The first production of <TC tail>
allows many TP-4 transport connections to exist concurrently:

< goal > : Ntimer/ <TC tail>.
$1.interval = QUIET_TIME

<TC tail > : {<TC> <TC tail>}.
| [U-FIN] .

»

This produces the structure shown in Figure 6.
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<goal> 3

/N

itimer/ <TC tail>

— N

{<TC> <TCtail>}

— O

{<TC> <TC tail>}

™~

Figure 6: Multiple transport connections

The alternative productions of <TC tail> demonstrate a precaution that
must be taken with recursive productions. In the absence of its second produc-
tion, the <TC tail> process never blocks, and simply continues to spawn
<TC> processes until memory is exhausted. [U-FIN] represents a command
from the upper layer that no new connections are to be started. Even if this
message never occurs (e.g., in UNIX there is no provision for stopping a proto-
col), the second production of <TC tail> provides an alternative production of
<TC tail>, so that an instance of P _ ¢ 4 > blocks until it recei\ées an event

such as [U-CR] or [N-CR] which selects the first production.
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Each connection (i.e. <TC> process) consists of three concarrent sub-
= protocols: connection establishment, transaction, and disconnection (see Figure
"7 7). The attributes of <TC> are data, such as local and foreign addresses and

reference numbers, common to more than one of these subprotocols.

<TC>

<transact>

{<connect> / \ <disconnect>}
{ <regsend> <exprecv> }
f \ <exp send> <regrecv> /\

Figure 7: Subprotocols of a connection

5.5. Connection Establishment

Connection establishment involves an active and a passive end, which

[ ¢ RARLEE

+

engage in a "three-way handshake” consisting of a CR, a CC and an AK

TPDU. The active end is initiated by the receipt of a [U-CR] message, and
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attempts to deliver a CR TPDU to the passive peer: :

- < connect> : < active open >. -
o | < passive open>.

y

< active open > : [U-CR] {N-CR] <retransmit CR>.

(...)
$3.count = RETRANS_COUNT

< retransmit CR> : [N-CC] [U-ACC] [N-AK].
(..)

! | /timer/ [N~CR] <retransmit CR>.
if $0.count > 0
$1.interval = RETRANS_TIME

...

$3.count = $0.count - 1
| /timer/ .

if $0.count ==

$1.interval = GIVEUP_TIME
<TC > .connfailed = true

These productions show the general technique for timed retransmission of a

TPDU: the initial sending is followed by a “retransmission symbol” (
<retransmit CR>) whose attributes include a retransmission count. The
retransmission symbol has three alternative productions: the arrival of a TPDU
acknowledging the sent TPDU (in this case a CC TPDU), a timed production

= for retransmission, and a timed production (enabled when the retransmission
count reaches zero) for stopping retransmission and waiting for an additional

period before "giving up” and declaring the connection dead.
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The concurrency of the connection and transaction subprotoeols in the

# RHS of the <TC> production may be puzzling, since one thinks of Connection
establishment as strictly preceding data transfer. However, this concurrency is
necessary: the passive end of a connection must be prepared to receive regular

and expedited data after it sends a CC TPDU and while it is waiting for the com-
pletion of the three-way handshake, since the arrival of a valid data TPDU may
,take the place of a (possibly lost) AK TPDU as the third part of the handshake.

On the other hand, some sequentiality must be enforced since data cannot be

sent by either end until connection establishment is complete.

The necessary synchronization is enforced by the enabling conditions on
the productions of <transact>, <reg send> and <exp send >; which
depend on the start_send and start_receive attributes of <transact>. The pas-
sive open subprotocol enables the receive subprotocol (by setting
<transact > .start_receive) as soon as it sends the CC TPDU, and enables the
send subprotocol only when a valid AK or data TPDU has been received. The
active open subprotocol enables both the send and receive subprotocols following
receipt of the CC TPDU. This illustrates the way in which attributes and ena-

= bling conditions can be used to synchronize concurrent subprotocols.

5.6. The Transaction Subprotocol Z

The transaction subprotocol is further decomposed into four concurrent

subprotocols: regular send and receive, and expedited send and receive.
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5.6.1. Sending .

-

For sending regular-priority data, TP-4 uses a sliding window ;vhose size
cannot exceed to the receive window size (or "credit”) supplied by the peer.
Acknowledgement TPDU’s are used to 1) acknowledge new data, 2) report
increases in the receive window size, and 3) provide a connection "heartbeat”

allowing failures to be detected early.

! The upper layer is assumed to manage a "send buffer” (a superset of the
send window) such that a writer attempting to generate a [U-DT] message is
blocked until there is room for the data. The [U-AK] message is used to inform
the buffer manager of new space in the send buffer resulting from acknowledge-

ment of data.

The regular send subprotocol is divided into subprotocols for sending data

and for handling acknowledgements.

<reg send > : {<send msg tail> <recv acks>}.
if <transact>.start_send
$0.nextseq = 0
$0.windowend = < transact>.initial credit
$1.ready = true

»

<recv acks> : /timer/.
$1.interval = INACTIVITY_TIME
= < TC > .transerror = true

- | [N-AK] <recv acks>. A
. <reg send>.windowend = ($1.seqno + $1.credit) mod MAXSEQ

it

r

VEDE

The send-data subprotocol is further divided into subprotocols for TSDU’s

(<send msg>) and each of these is further divided into subprotocols for each
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packet within the TSDU ( <send packet>). :

-

= The recursive production of <send msg tail> provides a ‘queue for

"~ TSDU’s which are in the send buffer but not necessarily in the send window.

<send msg tail > : {<send msg> <send msg tail>}.
$2.ready = false

| [U-GR] <transmit GR>.

<send msg> [U~DT] <transmit msg>.
$2.data = $1.data

’

Figure 8 shows the queueing and transmission of TSDU’s.

NS EES I LT
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<reg send > =

<send msg tail>

- S~

{ <send msg> <send msg tail> }

T

[U->DT] <transmit msg>
{ <sendmsg> <send msgtail> }

[U->DT] <transmit msg >

Figure 8: TSDU sending

The delivery of each TSDU involves a recursive process <send packet tail>
which splits the TSDU’s data into packets, and invokes a <send packet> pro-
cess to handle the delivery of each one. The concurrency of these processes is

needed to correctly implement the sliding window protocol.

The subprotocol for delivering a TSDU is defined below. It uses the fol-

lowing external functions: #extract#(d) removes a packet-sized substring from

the head of the byte string referenced by d, and returns a refer;'ence to the

removed data; #eot#(d) returns true if the given byte string is empty.
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< transmit msg> : < send packet tail >.
if <send msg tail >.ready
$1.eot = #eot#($0.data) -

< send packet tall > : { < send packet> <send packet tail > }.
if not $0.eot
$1.data = #extract¥(< transmit msg>.data)
$1.eot = Heot(< transmit msg>.data)
$1.seqno = <reg send>.nextseq
<reg send >.nextseq = (<reg send > .nextseq + 1) mod MAXSEQ
$2.eot = $1.eot
! /freedata/.
if $0.eot

f $1.data = <transmit msg>.data
<send msg tail >/ <send msg tail> .ready = true

A boolean attribute ready of <send msg tail> is used to prevent a queued
TSDU from beginning transmission until the last packet of the previous message

has been sent. It is set by the last production of <send packet tail>.

The acknowledged delivery of a packet is handled by an instance of the
<send packet> process, defined below. The following external functions are
used: #betweenl#(x,y,z) returns true iff x<y=z in cyclic order; #copy#(d)
returns a new reference to the given byte string (this could involve a reference
count mechanism rather than physically copying the data). Figure 9 shows the

delivery of packets within a TSDU.
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{ <send packet>

~

[N<-DT]

timer/

ST

<transmit msg >

<send packet tail>

-

<send packet tail> }

N /

<retransmit DT> { <send packet>

|

[N<-DT] <retransmit DT>

\
<retransmit DT>

pd

[N->AK] /freedata/

Figure 9: Packet sending
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< send packet> : [N-DT] <retransmit DT >. L
if (< reg send >.nextseq ! = <reg send >.windowend) .
&& (< transact>.nxoutstanding = = 0) =

$1.src_ref = <TC>.refno
$1.dst_ref = <TC > .foreign_refno
$1.eot = $0.eot

$1.segno = $0.segno

$1.data = #copy#($0.data)
$2.count = RETRANS_COUNT

< retransmit DT> : {timer/ [N-DT] <retransmit DT >.
if $0.count > 0
$1.interval = RETRANS_TIME
$2.src_ref = <TC>_refno
$2.dst_ref = <TC > .foreign refno
$2.eot = <send packet>.eot
$2.seqno = <send packet>.seqno
$2.data = #copy#(< send packet>.data)
$3.count = $0.count - 1

] [N-AK] [U-AK].

if #between1#(< send packet>.seqno, $1.seqno, <reg send>.nextseq)
$2.refno = <TC>.refno

$2.data = <send packet>.data

| /timer/.

if $0.count = =

$1.interval = GIVEUP_TIME
<TC > .transerror = true

There is an enabling condition on the production of <send packet> which
delays transmission of a data packet until it is in the send window and there are
no outstanding expedited data packets (this correctly implement the semantics of
expedited send: new regular data packets cannot be sent while there are out-
standing expedited packets, but retransmissions are unaffected). The delivery of
a packet ends when either it is acknowledged or when the give-up interval has
elapsed after the last retransmission. In the latter case the trans_er;or attribute

of <TC> is set to true, enabling a production of <disconnect> that ter-
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minates the connection (see Section 5.7). e

Expedited sending, which uses a stop-and-wait protocol and has its own

sequence numbering, takes place in a separate subprotocol, <exp send >.

The sending portion of the grammar also handles the sending of a GR,
since the GR TPDU has a sequence number in the regular data TPDU space

and must be sent in sequence. Graceful close is discussed in Section 5.6.3.

!

'5.6.2. Receiving

The regular receive subprotocol ( <reg recv>) is interfaced to an upper-
layer buffer manager with which it communicates via an input event [U-AK],
sent when there is new space in the buffer, and an external function #bufslots#
which returns the number of receive window “slots” available in the buffer.
The receive subprotocol is composed of two concurrent subprotocols: the receiv-

ing and transfer of data ( <recv packet tail>) and the sending of acknowledg-
ments ( <send acks>):

<reg recv> : { <recv packet tail> <send acks>}.
$0.recv_next = 0
$0.window_end = #bufslots#(< TC >.refno)
$1.data = empty
$1.seqno = 0

z The receive window is implemented as a dynamic set of _concurrent

processes, each of which waits to receive a packet with a particular sequence

number (see Figure 10).
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<recv packet tail>

- N -

-— { <recvpacket> <recvpackettail> }

SN

{ <recv packet> <recv packet tail> }

SN DN
[N->DT] <transfer data> ..
/ \

{ <recvpacket> <recvpackettail> }

Figure 10: Receive window

This is realized by the following productions (#between2#(x,y,z) is true iff
x=y<z in cyclic order):

<recv packet tail> : {<recv packet> <recv packet tail > }.
if #between2#(<reg recv>.recv_next, $0.seqno, <reg recv>.window_end)
$1.seqno = $0.segno
$2.seqno = ($0.seqno + 1) mod MAXSEQ

’

<recv packet> : [N-DT] <transfer data>.
if $0.segno = = $1.seqno
$2.data = $1.data
$2.eot = $1.eot

- $2.seqno = $0.seqno

i

N S L

The <transfer data > subprotocol is responsible for delivering the data to the
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upper layer:

1 |.’.

< transfer data>: .
if (not $0.eot) && ($0.seqno == <reg recv:>.recv_next)
<reg recv>.recv.next = ($0.segno + 1) mod MAXSEQ
< recv packet tail >/ < recv packet tail > .data =

< recv packet tail > .data cat $0.data

l [U-DTI.
if $0.eot && ($0.seqno = = <reg recv>.recv_nex)
<reg recv>.recv_next = ($0.seqno + 1) mod MAXSEQ
$1.refno = <TC>.refno
$1.data = <recv packet tail > .data cat $0.data
< recv packet tail >/ <recv packet tail > .data = empty

The process blocks until its packet is the first packet in the receive window.
Then, if the packet’s end-of-message flag (eor) is not set, the data is appended to
the earlier portion of the message, and passed on to next process in the receive
window. If the end-of-message flag is set, the packet is again appended, and the

resulting string (which is a complete TSDU) is sent to the upper layer.

Because data packets can arrive out of order and do not include a TSDU
number, it is impossible to write a specification in which each TSDU is received

in a different subprotocol.

The <send acks> subprotocol is responsible for sending acknowledge-
ments. In the acknowledgement strategy specified, AK TPDU’s are sent when a
data or graceful close TPDU is received, when a [U~AK] is received, and when

no AK has been sent in a certain amount of time (this provides a.guaranteed

Jevel of background subprotocol, the absence of which indicates a déad connec-

tion). The subprotocol is specified as follows:
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<send acks> /timer/ <send ack> <send acks>.
$1.interval = WINDOW_TIME

_e

| [N-DT] <send ack> <send acks>.
| [N-GR] <send ack> <send acks>.

| [U~AK] <send ack> <send acks>.
<reg recv>.window_end =
(< reg recv>.recv_next + #bufslots#(< TC > .refno)) mod MAXSEQ

»

< send ack > : [N-AK].
$1.src_ref = <TC>.refno
$1.dst.ref = <TC>.foreign refno
$1.seqno = <reg recv>.recv_next
$1.credit = #bufslots#(< TC >.refno)

5.6.3. Graceful Close

TP-4’s "graceful close” mechanism allows connections to be closed by a
three-way handshake, ensuring that no data is lost. The upper layer sends a
"graceful close request” to the transport layer to indicate that it has no more data
to send. This is sent to the peer entity as a GR TPDU, which is numbered in
the regular data sequence space so that peer can know the sequence number of
the last data packet. In the peer, when all data has been received (i.e., when the
GR is first in the receive window), the upper layer is notified. After this point,
as soon as the upper layer issues its own graceful close request (which it may
already have done) the connection is closed (except for the "reference wait”, see

Section 5.7).

PR LT

Sending and receiving of GR TPDU’s is handled in the regular data send

and receive subprotocols. Attributes GRsent and GRarrived of <transact>
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signify respectively that a GR TPDU has been sent and acknowledged, and that a
GR TPDU has arrived and is first in the receive window. When these are both
true, the <disconnect> process takes over and terminates the connection (see

Section 5.7).

5.7. Disconnection

The <disconnect> subprotocol of a connection handles messages from
'the upper or lower layers which abruptly close the connection, "cleans up” a
connection which has failed in either the connection or transaction phases, and
provides the "reference wait” (a period during which an old reference number

cannot be reused) following a graceful close. The disconnect subprotocol is

defined as follows:
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< disconnect> : [U-DR] /remove/ /remove/ <deliver DR> <ref wait>.
if <TC> .transerror || <TC>.connfailed
$1.refno = <TC>.refno
$2.where = <TC>/<transact> s
$3.where = <TC >/< connect>

-

| /remove/ /remove/ < ref wait>.

if <TC>/<transact>.GRsent && <TC>/<transact>.GRarrived
$2.where = <TC>/<ransact>

$3.where = <TC >/<connect>

[ [U-DR] /remove/ /remove/ <deliver DR> <ref wait>.
$2.where = <TC>/<transact>
$3.where = <TC>/<connect>

I

I

| [N-DR] /remove/ /remove/ [U-DR] [N-DC] <ref wait>.
$2.where = <TC>/<transact>

$3.where = <TC>/<connect>

$4.refno = <TC>.refno

$5.src_ref = <TC>.refno

$5.dst_ref = <TC>.foreign_refno

The connfailed and transerror attributes of <TC> are used by <connect> and
<transact>, respectively, to communicate to <disconnect> that a fatal error

has occurred.

<disconnect> uses /remove/ to remove all processes in the connect and
transact subprotocols. This guarantees that no loose ends will remain in the

process tree after a connection is finished.

RTRYEN




CHAPTER 6

DESIGN OF AN RTAG PARSER

6.1. The RTAG Parsing Task

The discussion of RTAG semantics in Section 4 mentions that an algorithm
,exists which supports those semantics, i.e. which given an RTAG specification
will "interpret” it correctly within the limits of CPU speed. The main tasks of

this algorithm are to provide multiplexed process execution, handle timers, and

correctly select among alternative process definitions.

In this section we sketch an algorithm which performs these tasks reason-
ably efficiently, in the context of a conventional interrupt-driven sequential
architecture. 1t seems easier to discuss the algorithm using parser-based termi-
nology, perhaps because its connection to concrete data structures is clearer.
For this reason, the implementation of the algorithm will be called an
RTAG parser; it is a real-time program that, given an RTAG specification,
processes input messages, handles timers, and generates output events in such a
way that the protocol defined by the specification is obeyed. It does so by main-
taining a "parse tree” of attributed symbol instances, and respondi_‘pg to input
events by attempting to "left-derive” them by applying productions to -ieaf nonter-

minal symbols. It is essentially a top-down parser with backtracking.

65
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An RTAG parser based on this design has been written in C under UNIX.
s Chapter 8 gives performance figures for a TP-4 implementation based on this

== parser, and discusses how the efficiency of the parser might be increased.

6.2. Restrictions Imposed by the RTAG Parser

The RTAG parser requires that input symbols and /timer/ occur only as
the first symbol in a production RHS. This restriction simplifies the parser
'design. Since communication protocols using an unreliable lower level cannot
rely on receiving a particular message, their RTAG specifications must always
leave an alternative, meaning that input symbols must be leftmost. Therefore

the restriction is a natural one in this setting.

To simplify the design of the parser, the semantics it provides differ in the

following ways from those described in Chapter 4:

(1) Recall from Section 4.7 that an alternative process definition is selected if it
can yield (without blocking) epsilon, an output symbol, or /remove/. The
parser does not check each of the many possible production sequences to its
end. Rather, if the first production in a sequence is enabled, it is applied
irrevocably, regardless of whether productions later in the sequence are dis-

abled.

(2) The parser maintains at most one timer per process.
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(3) Process removal because of recursion (Section 4.12) is dong only for

right-recursive productions, rather than for arbitrary recursion. >

For the RTAG specifications that we have written (including the TP-4 specifica-

tion) these differences have no effect.

6.3. Definitions

A revised notion of "left-derivation” is needed in discussing selection of
alternative process definitions. The intended semantics of the curly bracket
notation (Section 4.4) are that the ordering of symbols within a concurrent
group is irrelevant. We must therefore modify the notions of "leftmost” and
"eft-derivation”. 1f a production RHS begins with a concurrent group, all the
symbols in that group are weakly lefimost in the production; otherwise only the
leftmost RHS symbol is weakly leftmost. A symbol <x> immediately weakly

lefi-derives <y > if there is a production of the form
<X> 0.

in which <y> is weakly leftmost. Weakly lefi-derives is the transitive closure of
"immediately weakly left-derives”. The "weakly” prefix will henceforth be
omitted.

The notions of "derives” and "left-derives” involve only the underlying

CFG. If X is a nonterminal leaf in a particular parse tree and Y is afaother sym-

bol instance or epsilon, X yields Y means that Y can be left-derived from X by a
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sequence of productions which, when applied top-down from X and with attri-

-

bute assignments performed, are all enabled.

6.4. Immediate Productions

Some productions are applied only in the course of deriving input events.
The parser must distinguish these from productions that may have to be applied

for reasons other than message arrival. A production P is immediate if either

1
(1) P is the only production of its parent symbol and the RHS starts with a

nonterminal;

(2) P is part of a production sequence which lefi-derives epsilon, an output

symbol, or /remove/;

(3) the RHS of P starts with /timer/.

6.5. Status of Symbol Instances

A symbol instance is expanded when a production has been applied to it,
and active if it, or one of its descendants, is eligible for expansion. A symbol
instance is initially inactive, and becomes active when all of its left siblings are
finished (or, if part of a concurrent group, when all siblings to the left of the

group are finished).

Symbol status can be mapped roughly to process status: actjvati;xg a symbol
corresponds to starting a process, expanding the symbol corresponds" to selecting

an alternative or proceeding after an initial blockage, and the symbol instance is
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deactivated when the process finishes.

6.6. Static Data Structures

The parser uses the following static structures, which depend on the RTAG

specification, and are computed in advance:
e Symbol Descriptors

Each symbol X is described by record giving its class (input, output, non-
!
terminal, special) and the number of attributes.

If X is an input symbol, the descriptor also contains 1) a list of nontermi-
nals that derive X in the underlying CFG; 2) a list of nonterminals that left-
derive X (in the sense of Section 6.3); and 3) for each nonterminal Y which
left-derives X, a list of the production sequences by which X can be left-derived

from Y.

If X is an output symbol, the descriptor contains a pointer to the

corresponding event performance routine.

If X is a nonterminal, the descriptor contains a list of its immediate produc-

tions.
® Production Descriptors

Each production in the RTAG specification is described by a record con-
taining: 1) the enabling condition (in the current version, expressions are

encoded in an intermediate form that is interpreted by the parser); 2) a list of
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encoded attribute assignments; 3) pointers to the parent symbol’s deseriptor, and
to those of each RHS symbol; and 4) information describing the “concurrent

grouping of the RHS symbols.

6.7. Dynamic Data Structures
The parser maintains the following dynamic (time-varying) data structures:

e Symbol Instance Descriptors:
{
Each symbol instance is described by a record containing 1) pointers to its

parent and children instances; 2) the status (Section 6.4) of the symbol; 3) if
expanded, a pointer to the production descriptor; 4) pointers to attribute instance
descriptors for this symbol; and 5) a pointer (possibly null) to a timer descriptor.
The parse tree is rooted by an instance (called root) of the goal symbol of the

grammar.
e Attribute Instance Descriptors:

Each attribute instance is described by a record containing permanent and
tentative values, and a set of immediate links, each of which points to an active
symbol instance having an immediate production whose enabling condition
depends on this attribute. Immediate links are also chained to the symbol

instance.

U

® Timer Descriptors
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Each timer is described by a record containing pointers to a symbol
instance and to the descriptor of a production whose RHS starts with /timer/,
and an integer delay. The parser maintains an incremental delay queue of

timers descriptors.

The parser maintains the following queues, which can be thought of as

"ready queues” of processes waiting to run:

,( 1) Newly_active_queue, a queue of symbol instances that have just become
active and are awaiting processing. It is sorted by priority. A symbol is
added to this queue when the left siblings of its concurrent group are fin-

ished.

(2) Immed_queue, a queue of active nonterminal instances that may be eligible
for expansion by an immediate production. A symbol is added to this
queue when an attribute value, on which the enabling condition of one of

its immediate production depends, is changed.

Figure 11 illustrates the parser’s data structures.
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- Figure 11: RTAG parser data structures
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6.8. Algorithms :

We present the parser design in roughly top-down order, starting with the
algorithms for processing input events and timeouts, and recursively working

down. The algorithms are expressed in C-like pseudocode.

The initialization of the parser consists of creating a goal symbol descriptor
to serve as the parse tree root, and setting all queues to empty. lts actions

thereafter are initiated only by input events and timeouts.

6.8.1. Processing Input Events

The algorithm for processing an input event is as follows:

/* process the message input_sym */
process_input(input_sym) {
build_candidate_set(input_sym);
for each element nonterm_sym of the candidate set {
yield_input(nonterm _sym, input_sym);

}

do_consequences();

The steps are as follows:

(1) compute a "candidate” set of leaf nonterminals which might yield the input
symbol;

(2) attempt to yield the input symbol from each candidate in turn, and

(3) perform the consequences of applying these productions (in the process

model, this corresponds to executing newly-created or newl);-unblocked

processes).
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In the context of a particular parse tree, the ”candidate set” of an input

==~ symbol instance [x] is the set of nonterminal leaves that left-derivgi [x] in the

i

‘: underlying CFG, and that satisfy the "key attribute” restriction. It is computed

by the following routine:

/* Find candidate set for input_sym */

build_candidate_set(input_sym) {
candidate set = empty;
if input_sym has the key attribute with value x {
if some nonterminal P has the key attribute with value x
! search_subtree(input.sym, P, false);
else
search_subtree(input.sym, root, true);
} else
search. subtree(input_sym, root, false);

/* Do depth-first search for candidates in subtree below nonterm._sym.
If check_key is true, prune subtrees having key atiribute. */

search_subtree(input_sym, nonterm_sym, check key) {
if check_key {
if nonterm_sym has different key attribute value than input._sym, return;
}
if nonterm_sym is expanded {
for each nonterminal child X of nonterm._sym {
if X is active and derives input._sym
search_subtree(input_sym, X);
}
} else §
if nonterm_sym left-derives input_sym
add nonterm_sym to candidate set;

Having computed the candidate set, the parser calls yield_input to attempt

to yield the input symbol from each candidate.

N

The algorithm for yield_input (given below) refers to various other pro-

cedures. Of these, the following will be explained in more detail in later
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sections: prod_assigns performs the attribute assignments of a production;
undo_changes undoes tentative assignments; make_permanent makes tenta-

tive assignments permanent, and finished processes a newly finished symbol.
The remaining procedures called by yield_input are the following:

activate(sym): mark sym as active and append it to newly_active_queue .

Repeat this for siblings of sym that are in its concurrent group.

prod_enabled(production, sym): return true iff production has no ena-
bling condition, or has an enabling condition whose value, relative to sym, is
true.

remove_immed_links(sym): remove the immediate links to sym from

attributes of other symbols.
cancel_timer(sym): cancel the timer associated with sym, if any.

add_production(sym, production): create symbol instances as given by the

RHS of production, and link them into the parse tree as the children of sym.
remove_ancestors(sym): remove the ancestors of sym from the parse tree.

We now return to yield_input, whose goal is to yield an input symbol [x]
from a candidate <a >. Its logic is as follows: an outer for-loop ranges over the
set of production sequences that left-derive [x] from <a> in the underlying
CFG. These sequences are tested in turn until one of them succeecis or the set

is exhausted. The task of testing a sequence is divided into cases depending on
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whether the sequence has more than one production. If so, the productions,

- and their attribute assignments, are applied tentatively, and are undéne if some

production in the sequence is not enabled.

Jrat

/* attempt to yield input_sym from nonterm_sym */
yield_input(input_sym, nonterm_sym) {
/* loop over possible production sequences */

for each prod. seq. Py, . . . , P, by which nonterm_sym left-derives input_sym {
ifn == 1 (i.e., the sequence is a single production) {

/* if single-production sequence, just check enabling condition */

if prod_enabled(P,, nonterm_sym) {
remove_immed._links(nonterm.sym);
cancel_timer(nonterm._sym);
add_production(nonterm.sym, P1);
copy attribute values from input_sym to leftmost child of nonterm_sym;
prod_assigns(nonterm._sym, P, false);
break;

!
} else {

/* if multiple-production sequence, tentatively apply it.
parent is next nonterminal to be expanded. */

parent = nonterm_sym;
fori = 1ton {
ifi==n
temporarily link input_sym as leftmost child of parent;
if prod_enabled(P;, parent) {

/* production succeeded -- apply it and keep going */

add_production(parent, F;);
ifi==n
copy attribute values from inpuz_sym to leftmost child of parent;
prod_assigns(parent, F;, true);
} else {

/* production sequence failed -- undo all changes */ z
if nonterm_sym is expanded {

undo_changes();
remove_children(nonterm _sym);
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remove "expanded” flag from nonterm_sym;
break;

| L
= }

Jrul

/* because of concurrent groups, next symbol to expand is not necessarily
the first RHS symbol of the production just applied. */

if i#n

parent = lefumost child of parent which is LHS symbol of P;
} /* for */

/* entire production sequence succeeded -- make it permanent */

remove_immed_links(nonterm.sym);
make_permanent();

/ cancel_timer(nonterm_sym);
fori=1ton-1{

S = leftmost child of production P;;
activate(S);

}
break;

} 1* if */
} 1* for */

/* each production may have more than one leftmost symbol;
activate those that were not expanded */

if nonterm is expanded {
finished(input_sym);
if sym is on immed_queue

remove sym from immed_queue;

6.8.2. Processing Timeouts

Each timer record points to 1) a production and 2) an active nonterminal

symbol instance. A timeout is processed by applying the production to the sym-

bol instance. As with input events, this can result in additions to

L

newly_active_queue and immed_queue , which must then be processed.
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/* apply timer production production to nonterminal sym */

process_timeout(production, sym) { =
remove._immed_links(sym);
add_production(sym, production);
prod_assigns(sym, production, false);
finished(leftmost child of sym);
do_consequences();

Jrey

6.8.3. Attribute Assignments

| Whenever an attribute value is changed, it is possible that that the enabling
condition of some immediate production is changed from false to true. This is

handled by adding to immed_queue all relevant symbol instances. Hence the
following is called each time an attribute value is changed permanently:

/* see if changing anribute triggers immediate productions */

add_to_immed(attribute) {
for each immediate link L of antribute {
symbol = L.symbol;
if symbol is not in immed_queue
add symbol to immed_queue ;

When a production is applied as paft of a sequence (in yield_input), its
attribute assignments must be performed since later productions in the sequence
may use the target attributes in their enabling conditions. On the other hand, if
the sequence fails then all its assignments must be undone. Hence while multi-
production sequences are being tested, their attribute assignments a:Te "logged”

(i.e. modified attributes are put in a "change log” along with their old values).

If the sequence fails, the changes are undone.
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The following routine performs the attribute assignments for a particular
production in which nonterm is the parent instance. The zentative parameter is
true if the changes are 1o be logged; otherwise the changes are permanent.

Each permanent change may enable new immediate productions, which are

added to the immediate queue by add_to_immed.

prod_assigns(nonterm, production, tentative) {
for each attribute assignment S of production {
find target attribute A (LHS of §);
compute value X of RHS expression of S;
/ if tentative {
if A4 is not in change _log {
A.oldvalue = A.value;
add A to change_log;

!
} else
add_to_immed(A);
Avalue = X;

When a production sequence fails, the attribute assignments it generated

must be undone:

undo_changes() {
for each element 4 of change_log
A.value = A.oldvalue;
change_log = empty;
}

If a production sequence succeeds, the following routine makes the attribute
changes permanent by purging the change log, and handles their consequences

by adding to immed_queue those symbol instances which may have an immedi-

ate production enabled by the attribute changes. i
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make_permanent() {
for each element A of change_log
add_to_immed(A); :
change_log = empty, -
y -

6.8.4. Processing Immediate Productions and Newly Active Symbols

The immediate and the newly active queues are processed after handling an

input event or timeout. This processing, which may add new entries to the

queues, is continued until both queues are empty.

!

do_consequences() {
while (newly_active _queue * empty) or (immed_queue # empty) {
if newly_active_queue # empty {
sym = head of newly_active_queue;
process_newly_active(sym);

if immed_queue + empty {
sym = head of immed_queue;
do_immediate(sym);
}
}
}

An element on the immediate queue is processed by testing the enabling
conditions of its immediate productions. If a condition is satisfied for a produc-
tion whose RHS starts with /timer/, a timer is started; if a condition for a dif-
ferent type of production is satisfied, the production is applied.
start_timer(interval, P, sym) is a procedure which starts a timer for the given

time interval, linking it to the given nonterminal symbol instance and produc-

tion.
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do.immediate(sym) {

for each immediate production P of sym { 4
if prod_enabled(P, sym) { <
if first symbol of P’s RHS is /timer/ { -
evaluate x = /timer/.interval; '
start_timer(x, P, sym);
} else {
remove_immed_links(sym);
add_production(sym, P);
prod_assigns(sym, P, false);
cancel timer(sym),
if RHS of P is empty
finished(sym);
else
activate(leftmost child of sym}j;
break;

Special actions are taken when a symbol X is first activated:

If X is an output symbol then the corresponding external function is called;

the attribute values of X are passed as arguments.

If X is /remove/, the appropriate action is taken. /remove/ removes the
symbols and associated storage below the symbol instance Y pointed to by

/remove/.where; Y is left in the tree but marked as finished.

If X is a nonterminal, do_immediate is called to start a timer or apply an
immediate production, as appropriate. If no production was applied, the set
of attributes on which the conditions depend is found, and immediate links
from these attributes to X are established, so that if one of the flttributes is
later changed the conditions can be retested. get._attr..list(syn‘;) returns a

list of all attributes instances that are operands of enabling expressions of
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immediate productions of sym.

The processing for a newly activated symbol instance sym is as follows:

process_newly_active(sym) {

if sym is an output symbol {
call the event routine for sym, passing sym’s attributes as parameters;
finished(sym);

} else if sym is a nonterminal {
do_immediate(sym);
if sym is expanded, return;
list = get attr_list(sym);
for each atiribute A in list

add an entry, pointing to sym, to A’s immediate-link set;

} else if sym is /remove/ {

! remove_children(sym.where);

finished(sym.where);
finished(sym);
}

}

6.8.5. Processing of Finished Symbols

When a symbol becomes finished, symbols may have to be removed from

the tree as described in Section 4.11. This is done as follows:
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/* process a newly finished symbol */

finished(sym) {
if sym is the root
exit; /* protocol is finished */
mark sym as finished;
parent = Sym.parent,
if sym is a nonterminal
free children of sym;

/* recurse if necessary */
if all siblings of sym are finished {

finished(parent);
return;

}

/* remove symbols from recursive constructs */

if all siblings of paren: are finished , and sym and parent are the same symbol {

grandparent = parent.parent;
free parent and its siblings;

relink children of parent as children of grandparent;

sym2 = right sibling of sym;

if sym2 is not active
activate(sym2);

return;

}

/* activate right sibling if necessary */

if all symbols in sym’s concurrent group are finished,

and this group has a right sibling sym2
activate(sym?2);

&3



CHAPTER 7
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RTAG SOFTWARE ENVIRONMENTS
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In the section weé describe an RTAG-based software system for protocol
development, debugging, and implementation. This software has been written in
C under 4.2 BSD UNIX. The two central components are an RTAG parser
!based on the algorithm described in Chapter 6, and an "RTAG compiler”, an

off-line program which converts an RTAG specification into the form required

by the RTAG parser.

In using RTAG in a heterogeneous network environment, the RTAG com-
piler will generally be needed only on a "host” system, while versions of the
RTAG parser run on the "target” systems on which the protocol must run. The
relationship between the components of the RTAG software system is shown in

Figure 12.

84
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The primary goal of the implementation work to date has beenfto produce
protocol implementations in the UNIX kernel. Tools have also bee_r'i developed
to assist in user-level debugging of RTAG specifications and interface routines.
Analogous systems could be built in the context of other operating systems and

languages.

7.1. The RTAG Compiler

The RTAG compiler converts an RTAG grammar from its symbolic form
into a form that encodes the static data structures of the RTAG parser (see Sec-
tion 6.6). The output of the RTAG compiler is a file of integers that can be read
by the initialization phase of an RTAG parser and converted into more efficiently
accessible structures. This is a "portable” format in that it can be directly used

by RTAG parsers on all target systems.

The RTAG compiler can optionally convert these integer files into C source
files containing initializer declarations for the parser’s static data structures.
This file can be compiled and linked with the parser. This format is used by the

UNIX kernel implementations because it eliminates the initialization phase.

The RTAG parser and the user-supplied interface routines must have a
common way of referring to symbols. For this purpose, the RTAG compiler
assigns numbers to input symbols, and produces a file of these a:ésignments.

For example, if the grammar contains input symbols [N-DT] and [U-DT], this

file might contain
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#define NDT_in 0
#define UDT_in 1

-

Note that the symbol names are converted to legal C identifiers. “The file is
intended to be #included in the interface routines which generate input events

(Section 7.3.2)

The RTAG compiler must also provide a means for associating procedures
with output symbols. This is done by producing an "include” file containing
! declarations for the output event routines and external functions which the user
must supply, as well as an address table through which these routines can be

called by the RTAG parser. For example, if the RTAG specification contains

output symbol [U-DT] and external function #eot#, this file would be

extern int UDT_out(), eot();
extern int (*externtable[])() = {UDT-_out, eot};

The RTAG compiler was constructed using the Lex scanner generator
[Les79] and the Yacc parser generator [Joh79]; this facilitates changing or
extending RTAG. The RTAG compiler also uses the C pre-processor [UNI83]

to handle comments, macro substitutions, and include files.

7.2. An RTAG Parser Under 4.2 BSD UNIX

The parsing algorithm described in Section 6 has been implemented in C
under UNIX. This section discusses the software environments and debugging
aids that have been developed for the parser, and gives some systen%-dependent

internal details.
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7.2.1. Software Environments for the RTAG Parser
The following execution environments are available for the RTA@ parser:
@ Kernel Mode

The 4.2 BSD UNIX kernel is designed to facilitate experimentation with com-
munication protocols [UNI83]. All protocols are interfaced to user-level
processes by the "socket system”, which provides services such as process syn-
,chronization, data buffer management, and queueing of pending connections.
4.2 BSD UNIX supports the coexistence of multiple "protocol families”, and the
interfaces between 1) protocols and the socket system, 2) protocol layers within a
family, and 3) protocols and network interfaces drivers, are standardized to some

extent. The position of the RTAG parser in this setting is shown in Figure 13.
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Figure 13: The UNIX kernel environment

@ User-level Kernel Simulation

In debugging kernel-level protocols it has been extremely helpful to simulate the
kernel at the user level. This was done by compiling the relevant i)arts of the

kernel (such as the socket routines and the read/write system call routines) into
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the user program, and using a software simulation of the lower laygrs (IP and
the network interfaces). Also available in this mode is a routine for%interactive
perusal of the parse tree, and debugging options that allow logging th‘e actions of
the parser (productions, event OCCurrence, and attribute assignments) in a disk

file. See Figure 14.
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Figure 14: The UNIX kernel simulation environment

® User-level Experimentation System
This system allows RTAG specifications to be tested with a minimum of pro-
gramming. It consists of a simulated network layer based on the “UNIX 1PC

facility, as well as a routines that translate between event symbols and packets
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(correctly handling data pointed to by dataprr attributes). The tree perusal and

logging routines are available here also. T

7.2.2. Memory Management in the RTAG Parser

The networking portion of the 4.2 BSD UNIX kernel includes a memory
management system which stores variable-size byte strings using chains of
"mbuf” records. Utility routines are available to manipulate mbuf chains in
fvarious ways. in the UNIX version of RTAG, the dataptr attribute type is a
pointer to an mbuf chain; the RTAG parser and external functions perform

dataptr operations by calling kernel mbuf utility routines.

A second memory management task is allocation of the various descriptors
used by the RTAG parser (symbols instances, attributes, timers, and immediate
links). The parser allocates and frees these descriptors at a high rate, so a
general-purpose memory allocation scheme (like malloc and free on UNIX)
may impose a prohibitive performance penalty. The mbuf system could be used,
but this would also be inefficient, particularly in terms of memory. Instead, a
dedicated allocation system is used: pools of free records of each type are main-
tained, so allocation and deallocation are trivial and fast. The RTAG parser
demands that records for the RHS symbols of each production be contiguous, SO
the allocator maintains separate pools of blocks of symbol records, in_sizes rang-
ing up to the maximum RHS length. A similar system is used fo} attributes,

which are also allocated in blocks.
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7.2.3. Entry Points
The entry points to the RTAG parser are the following:
init_parser() must be called first; it initializes all dynamic data structures.

gen_event(symnum, x1, x2, ...) adds an input event with the given symbol
number and attributes to the input queue. Symnum is a name defined in the

"include” file generated by the RTAG compiler (Section 7.1).

iclock() must be called by the clock interrupt routine; it counts a tick off of all

timers and processes any resulting timeouts.

User-supplied output routines and external functions must be linked with
the parser and with the address table generated by the RTAG compiler. The

parser calls them indirectly through this table.

7.3. Interface Routines for TP-4 under 4.2 BSD UNIX

The RTAG specification for the TP-4 transport protocol described in
Chapter 5 has been combined with the kernel-mode RTAG parser to obtain a
production version of TP-4 operating in the Internet domain. The following

interface routines and external functions were needed:

e Lower-layer event output routines for assembling TPDU’s and sending

them via IP.

e A lower-layer input routine to accept a TPDU from IP, verif)—i- the check-

sum, extract the TPDU parameters, and generate the appropriate input
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Upper-layer output event routines for conveying information toithe UNIX
socket system. For example, the data output routine simply appends the

mbuf chain pointed to by its argument to the receive buffer of the appropri-
ate socket.

An upper-layer input routine to handle requests from the socket system.

These, for the most part, translate directly into input events.
7.4. Summary of RTAG Pretocol Implementation Procedure

We now summarize the steps involved in generating an RTAG-based UNIX
kernel protocol implementation:

(1) Based on the nature of the adjacent protocol entities and the services

supplied/required by the protocol, choose an event set for the RTAG specif-
ication.

(2) Develop an RTAG specification of the protocol.
(3)

Write input interface routines which handle messages from adjacent enti-
ties, and clock interrupts, by calling the RTAG parser entry points

described in Section 7.3.2.

(4) Write output interface routines (output event performance routines) which

send messages to adjacent entities.
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(5)

(6)

(7)

(8)

)
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Compile the RTAG specification with the RTAG compiler, producing C ini-

tialization files. :

Compile and link the C initialization files, the RTAG parser, the interface

routines, and the kernel simulation code.
Debug the protocol implementation in user-mode kernel simulation.

Generate a UNIX kernel which includes the C initialization files, the

RTAG parser, and the interface routines.

Debug the protocol implementation in kernel mode.
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CHAPTER 8

EFFICIENCY OF RTAG IMPLEMENTATIONS

Time and space efficiency are critical in protocol implementations [Cla83].
Time efficiency is necessary for high data transfer rates, to avoid interference
with the timing of the protocol, and to avoid degradation of the host system per-
’formance. Space efficiency (code size and buffer use) is important since space

is often at a premium in operating system kernels.

The viability of RTAG as a means for producing production-quality imple-
mentations thus depends on the time and space efficiency of the RTAG parser.
In this section we report various performance measurements of the RTAG-based
TP-4 implementation under UNIX, and compare these measurements with those
of a conventional (hand-coded) implementation of the same protocol, written by
Allan Bricker and Tad Lebeck at the University of Wisconsin - Madison. We
then suggest several ways in which the efficiency of the RTAG parser could be

improved.

8.1. Efficiency of the RTAG TP-4 Implementation

The memory usage of the RTAG TP-4 implementation under UNIX is bro-

ken down as follows:

96
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RTAG parser object code size: 9640 bytes -
interface routines object code size: 7968 bytes A
static data structures: 42728 bytes i
total: 60336 bytes '

The conventional implementation has an object code size of 34412 bytes. Both
implementations use a small (1-2 Kbytes) additional amount of memory per con-
nection. Thus the RTAG version is somewhat larger, mostly due to the static

data structures. Use of more space-efficient representations could almost cer-

’tain]y eliminate this difference. RTAG implementations would then be feasible

in memory-restricted environments such as personal computers.

Throughput measurements were made as follows: two user-level processes
running on different unloaded hosts (VAX 11/750s) establish a TP-4 connec-
tion. One process reads the time-of-day clock, sends a large amount (> 1
Mbyte) of data, then reads the clock again and reports the elapsed time. The
receiving process works analogously. Neither process does any disk 1/0; the
data sent is meaningless. A TPDU size of 1024 bytes was used, and the data

was checksummed at both ends.

When the RTAG version sends and the conventional version receives,
throughput varies between 20 and 22 Kbytes/second. When the roles are
reversed, throughput drops to about 15 Kbytes/second. In both cases the CPU
utilization (as indicated by the load average) is between .3 and 5 When the
conventional version is used on both ends, throughput ranges fr01;1 40 to 45

Kbytes/second, and CPU utilization is about .07.
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These figures suggest that the RTAG version is about 10 to 15 times slower
than the conventional version in terms of CPU time. The thrOL;ghput rate
depends on other factors (such as network delay) which are identical in the two
versions. Therefore the discrepancy in throughput will be smaller, and will

decrease as the packet size is increased.

The current RTAG TP-4 implementation would not provide acceptable per-
,formance on a moderately-loaded multi-user system. However, with reasonable
timer values, its speed on an unloaded system doesn’t interfere with the protocol
functionality (e.g. by causing spurious retransmissions). Hence it could be use-
able for implementations which are experimental or run in a front-end proces-

SOr.

8.2. Increasing the Performance of the RTAG Parser

Simplicity, rather than efficiency, was the major factor in the design of the
RTAG parser, and there are many ways in which its efficiency can be improved.
Some of these are "portable” in the sense that they don’t affect the RTAG com-
piler or the format of the grammar description file. Others require that the

RTAG compiler depend somewhat on the language of the target machine.

8.2.1. Candidate Set Computation

Consider the task of computing the candidate set for an input event; the set

is a function of the type of the input symbol and the values of its key attribute, if




t'l'i

[l

99

any. In the current implementation, this set is computed, on message arrival,

by a top-down search of the parse tree. Even if all possible pruning is done, this

may use time proportional to the size of the tree.

A possibly better approach is to compute candidate sets in advance, and
store them in an easily-accessible form. For example, one could consider (sym-
bol name, key attribute value) pairs as indices, and build a hash table whose
entries are candidate sets for particular indices. When a nonterminal symbol is
!
activated it must be added to the appropriate sets, and when it is later expanded it

must be removed. This would have a constant average lookup time, although

the overhead of maintaining the hash table might be significant.

8.2.2. Evaluation of Attribute References

In the current implementation, attribute references are interpreted. A local
attribute reference, for example, is described by a record containing the offset of
the symbol in the production, and the offset of the attribute in that symbol’s

attribute set. Locating the attribute involves a moderate amount of work.

Speeding up attribute reference evaluation requires a suitable organization
of symbol and attribute records in memory. The current implementation has
contiguous symbol records for a RHS, and contiguous attribute records for a
symbol, but no fixed relation between a symbol and its attributes. A better
organization has the symbol records for a RHS followed immediatel; by records

for all attributes of those symbols. This reduces the time spent allocating
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memory and also provides constant offsets of attributes relative to their symbols,

and to the start of the aggregate RHS record. +

- It would also be possible to calculate the addresses of non-local symbol
references at the time of production application, and put these at fixed locations

in the aggregate RHS record. Combined with the above, this could reduce attri-

bute references to a few machine instructions.

18.2.3. Expression Evaluation

Expression evaluation is also interpretive in the current implementation; the
RTAG compiler produces parse trees for expressions, and the RTAG parser
interprets these trees. An alternative would have enabling conditions and attri-
bute assignments be converted into function definitions in the language of the
target machine. This could be done by the RTAG compiler using a per-target-
machine expression translator. The approach would be particularly efficient in
combination with the attribute reference mechanism described above; each func-
tion would take as arguments pointers to the parent’s attribute block and the
aggregate RHS record.

For example, suppose the target language is C, and the grammar contains

<x> <y> <z>.
if $0.attr == <foo>.attr
$1.number = <blah>.seq + 1

bl

The RTAG compiler would produce something like




.
e

frat,

101

func1(par.atir,rhs_block)
int *par_attr, *rhs_block;

{ =
return(par_attr{3] = = *(rhs_block[47])); :
}

for the enabling condition and

func2(rhs_block)
int *rhs_block;

{
}

rhs_block[22] = *(rhs_block[59])+1;

,for the attribute assignment. These functions would then be compiled and
linked with the RTAG parser; production descriptors would contain pointers to

the code for their enabling conditions and attribute assignments.

This approach would make expression evaluation roughly as efficient as in
hand-coded implementations. It has the drawback that a portion of the RTAG
compiler must be modified to accommodate different target languages. On the
other hand, the relevant part of the target language (expressions and functions

calls with only simple types) is small and is similar among many HLL’s.

8.3. Finite-State Constructs

The parser could treat certain grammar constructs as special cases, and
bypass the normal mechanisms. This would be particularly useful for RTAG
constructs which are equivalent to FSA’s. For example, the net effect of a pro-

duction like:
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<foo> : [N-AK] [U-AK] <foo>.

’

could be achieved without modifying the tree.

8.4. Performance Summary

The current RTAG software system can produce protocols which, though

less efficient than their hand-coded counterparts, are usably efficient. There are

,means by which the efficiency of RTAG implementations can be increased, pos-

sibly to the point of rivaling hand-coded implementations. These may tend to
increase the complexity of the RTAG parser and the RTAG compiler, and to
decrease the portability of the latter. Increasing RTAG efficiency is an area for

future study.




CHAPTER 9

COMPARISONS TO RELATED WORK -

[

e,

In this section we contrast RTAG with conventional attribute grammars,

and compare it to other protocol specification formalisms.

9.1. Context-Free Grammars
)

The use of CFG programming language specification as a basis for com-
piler construction has been a great success, and RTAG is in some sense an
attempt to translate this approach to the realm of protocols. There are, however,
two fundamental differences between RTAG and CFG which make it unlikely

that CFG parsing techniques can be applied directly to RTAG:

(1) The presence of multiple concurrent processes means that a single CFG

parser instance is not sufficient.

(2) There is no notion of temporal ordering in language parsers; for example,
consider a production of the form
<x> : [input] [output] [input].

In order to maintain sequential order, the RTAG parser must perform the
output event immediately after the first input event. A language parser,
however, can wait until the second input event occurs (and, in fact, may

need to do so if the grammar is not LL(1)) before performing the output

103
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event (i.e., action routine).

9.2. Attribute Grammars :

Attribute grammars [Knu68] are an extension of CFG’s in which symbols
have associated data attributes. Each production has an associated set of
semantic functions which express functional dependencies among the attributes
of the symbols in the productions. The notion of derivation is defined in terms
tof a parse tree in which all attributes have values and the dependencies are
obeyed. Attributes are classified as inherited or synthesized. Affix grammars
[Kos71] are a related formalism in which attribute dependencies are expressed
by primitive predicates, special terminal symbols which can fail or succeed based
on their inherited attributes, and which in the latter case provide values for their

synthesized attributes.

Most applications of attribute grammars have involved programming
languages, for formally expressing the semantics of programming language
[Knu71], or for expressing context-sensitive syntactic properties such as type
consistency. The latter application has been especially useful for language-based
editors ([Joh83], [Dem81]). Recently Fischer and Ganapathi used attribute
grammars as a specification language for CPU architectures, and used this as a
basis for constructing retargetable code generators [Gan82]. .

Many algorithms have been developed for evaluation of attribu;‘te and affix

grammars ([Ken76], [Saa78], [Boc76}, [Wat77]). These generally require that
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the attribute grammar be free from circular attribute dependencies, and often

additional properties that allow one-pass evaluation. -

Some of the existing results for attribute grammars may be applicable to
RTAG, but many of them are rendered inapplicable by the following differences

between attribute grammars and RTAG:

(1) The semantics of attribute grammars are defined in terms of a single parse
tree in which attributes have fixed values. Some attribute evaluation algo-
rithms may involve changing attribute values, either as part of the attribute
evaluation algorithm or because of an edit of the parse tree, but the goal is
still to find fixed final values. In RTAG, on the other hand, the change of
values of an attribute over time is an essential part of the semantics. Attri-
butes are properly thought of as "variables” which can be used for tem-

porary storage of information.

(2) In most language-related uses, the entire parse tree (in the underlying
CFG) is generated before attribute evaluation, and enabling conditions (or
their equivalent) are used for after-the-fact error checking rather than being
incorporated into the parsing process as a means of selecting a production

- from among several alternatives.

Johnson [Joh83] describes a system for expressing and evaluating non-local
atiribute references that is different from ours. His system uses "non-local pro-

ductions” which are matched, whenever possible, with symbol instances created
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by conventional (local) productions. The attribute evaluatién rules associated
with non-local productions can cause the flow of attribute informatiém between
widely separated symbols in the tree. Johnson’s use of attribute grammars
involves language-based editors, in which an edit (such as changing the type of a
variable) necessitates the flow of updated attribute information to the places in

the tree where the variable is referenced. He presents algorithms for updating

the parse tree when a subtree replacement is done. The primary connection

between Johnson’s work and RTAG is that in both cases attribute instances are

dynarmically linked to expressions that refer to them, so that the consequences of

modifying an attribute value can be done efficiently.

Skedzeleski [Ske78] defines "time-varying attribute grammars” as a means
for non-procedural description of iterative algorithms, and uses this to specify
code generation and optimization techniques. The semantics of attribute assign-
ments in RTAG are similar to those used by Skedzeleski; in both cases assign-
ments are thought of as operations that must be performed (possibly several
times) rather than as conditions that must be satisfied. Like us, Skedzeleski uses
the idea of linking attributes to assignments that refer to them. One difference is
that Skedzeleski attaches enabling conditions to individual attribute assignments

so that circular data dependencies are not necessarily meaningless.
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9.3. Comparison with Other Implementation Systems

]

The AFSM system reported by Blumer and Tenney and 1IBM’s %APL Sys-
tem (see Section 2.4.1) are representative of current work in automated imple-
mentation of data communications protocols. As described earlier, these have a
similar structural basis: the major control flow for each protocol entity is pro-
vided by a finite state machine whose transitions are triggered by input events or
,timeouts, the processing done at each transition (which may generate output
events or schedule timers) is written in a high level language, and there are glo-
bal variables and data structures that are manipulated by this processing. FAPL
also has scheduling features for handling multiple protocol layers within a single
specification. In both systems, a program converts the information contained in
the FSA into a driver program or a set of tables to be used by a driver program.

This, interspersed with calls to interface routines and to the HLL code,

comprises an implementation of the protocol.

These approaches use an FSA as an event-coupled control structure, but
many aspects of the specification of existing protocols must be relegated to HLL.
In contrast, RTAG uses a more powerful control structure that includes simple
data manipulation capabilities, and the use of HLL code can be considerably
reduced. These differences result in several advantages of RTAG over the other

systems: -
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® RTAG provides greater portability. .
The AFSM and FAPL systems provide automnatic imp]ementatiq;n only in a
particular target language (C and PL/I respectively), and, because their
designs are strongly linked to the target language, it would most likely not
be practical to retarget them to, say, an object-oriented or functional

language. There are also likely to be problems resulting from differences

between implementations of the target language on different systems.

The RTAG system, on the other hand, provides an attractive form of porta-
bility. There is the one-time task of implementing an RTAG parser for
each system, in whatever programming style is most appropriate to that sys-
tem. This is likely to be an easier task than writing a C or PL/1 compiler.
From that point, the task of implementing an arbitrary RTAG-specified pro-

tocol is reduced to writing a few packet-formatting and interface routines.
e RTAG specifications are easier to read and write.

A grammar shows legal sequences of related events more compactly than an
AFSM specification. In addition, RTAG’s ability to express activities in a
modular form, and to combine activities both sequentially and in parallel
with synchronization, makes it easier for both reader and writer to isolate

and correlate the mechanisms of the protocol.

LY S

This is not to say that RTAG specifications are initially easy to write. How-

ever, once techniques are developed for expressing common protocol
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features, writing a RTAG grammar for a new protocol is most likely easier

than writing a complete and precise AFSM-type specification fo?*_the proto-

col.
® RTAG is better suited to expressing complex protocols.

Special-purpose protocols for distributed operating systems, distributed data-
base algorithms, and other applications could require different or more
complex features than those of current data communications protocols.
RTAG is well-suited to expressing this type of complexity, especially that
involving the dynamic creation of concurrent subprotocols. AFSM-based
systems, because they are based on a static FSA, must resort to HLL to

express dynamic structure.

9.4. Concurrent programming languages

It was observed that RTAG can be viewed as concurrent programming
language with very lightweight processes and an unusual form of process
scheduling. The idea of organizing a protocol as a collection of lightweight
processes has also been used in implementing TCP/IP on microcomputers
([MIT83]). It also raises the possibility of using a concurrent programming
language such as Ada [DOD83], CSP [Hoa78] or StarMod [Coo81] for protocol
specification. Like RTAG, such a specification language could eg%press con-

current hierarchical structures (which, as argued above, is an important feature

of a protocol specification formalism).
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RTAG has the following advantages over such an approach:

N RN

® More portability.

e RTAG’s mechanism for selecting among alternative productions, which 1s
not part of conventional concurrent languages, and would have to be imple-

mented ad hoc in each program.

® Efficiency: If a concurrent-language specification were run in a conven-
tional multiprogramming environment, the expense of process creation,
context switching, and interprocess communication would limit the effi-
ciency of protocol implementations. The RTAG parser can be seen as a
process scheduler and language interpreter that exploits the limited nature

of RTAG process and does minimal work.

9.5. Comparison with Other FDT’s

LOTOS is strongly related to RTAG in the sense that it allows decomposi-
tion into a dynamic set of subprotocols with serial and parallel composition, and
it can express data dependencies. There are, however, the following major

differences:

e In RTAG, attribute values can be re-assigned, and subprocesses can com-
municate via attribute assignments, as in Section 5.5. In LOTQOS, value-
identifiers (which correspond to attributes) can be assigned once only, and

all communication between processes is via messages.
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e LOTOS is designed for protocol verification rather than automated imple-
mentation. The semantics of LOTOS are defined in terms of leg%al "observ-
able action sequences”, and say nothing about the algorithm to be executed

by an implementation of the specified protocol.

Harangozo’s work [Har77] uses grammars and attempts to specify real-
world protocols (in his case, the HDLC data link protocol). Harangozo uses

only regular grammars; all productions are of the form
!
A-XB
where A and B are nonterminals and X is an input or output event. This is

equivalent to FSA.

To model sequence numbers, Harangozo attaches a numeric attribute to

certain symbols, and uses notation of the form
A() - X(@i) BGi+1)
to denote "indexed families” of productions.

Harangozo’s work does not include notions of enabling conditions, nonlocal
attribute references, timers, etc., and so the formalism is probably inadequate

for specifying real protocols.

Teng and Liu [Ten78] use a formalism based on context-free grammars.
Their system lacks attributes and explicit timers and is hence iflcapable of

expressing complex protocols. They articulate some of the principles and advan-
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tages in using grammars: that logically independent protocol activigies can be
isolated, and that automnated parsers can be built. However, they faii to provide
a means for specifying concurrency within an entity. They also fail to distin-
guish between input and output events, or to notice that the necessity of perform-
ing output events in real time makes conventional parsing techniques inapplica-

ble.




CHAPTER 10

CONCLUSION -

10.1. Summary

RTAG has been developed to allow complete, concise, and well-structured
specification of complex communications protocols. Furthermore, automated
/
generation of protocol implementations based on RTAG specifications has been
achieved, and the performance of these implementations is acceptable for many
applications. Thus, RTAG can serve as the basis for many protocol-related
activities, ranging from bringing up international-standard communications pro-

tocols to implementing distributed algorithms on heterogeneous local area net-

works.

We believe that, with additional development, the RTAG methodology can
have a major effect on the way protocols for a wide range of applications are

specified and implemented.

10.2. Directions for Future Work

Considerable work remains to be done towards the goal of obtaining
RTAG-based implementations whose efficiency is competitive with that of con-

ventional implementations. In addition, RTAG specifications of more standard

protocols need to be written.
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RTAG can be viewed as means of specifying complex real-time interac-
tions, and may be applicable to areas outside data communications. 1For exam-
ple, it may be useful in specifying user interfaces in which the man/machine

dialogue involves several 1/0 devices, and in expert systems as a way of express-

ing certain types of time-dependent activities or knowledge.

It is likely that future applications of RTAG will suggest additional semantic
Ifeatures. For example, it may be useful to provide a mulii-level "key attribute”

mechanism, and to extend the priority mechanism to provide closer control over .

process scheduling and production selection,
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APPENDIX 1: RTAG SPECIFICATION OF TP-4

The following is the RTAG specification of the TP-4 fragment d;:scribed in
Chapter 5. j

/* RTAG specification of a TP-4 subset, based on NBS spec.

David P. Anderson, Computer Sciences Dept., Univ. of Wisconsin - Madison
started 6/84, last revised 8/85.

Some differences from NBS spec:
interface 1o user level is different, to accomodate interactions
with buffer manager (and no "system read").
interface to network level is datagram, not virtual circuit.
S

/* macro definitions for timers (200 msec units for VAX/4.2UNIX) */

#define QUIET_TIME 40 /* rest period after reboot */
#define RETRANS_TIME 10 /* retransmission interval */
#define GIVEUP_TIME 40 /* time after last retransmission to end connection */

#define INACTIVITY_.TIME 60 /* end connection if no activity in this time */
#define REF_WAIT_TIME 80 /* don’t re-use ref# after conn ends */
#define WINDOW_TIME 20 /* transmit acks periodically */

/* other tuneable parameters */

#define RETRANS_COUNT 4 /* number of retransmissions before give up */
#define MAXSEQ 128

/**************************************************

SYMBOL DEFINITIONS

e e sk s s sk ok 3K ke ok oK ok ok ok ok ok o ok sk s ok e ok e ok ok ok ok sk ok ok ok ok ok sk ok sk o ok skok sk kol skokok dokok

key refno /* define key attribute name */

/* NETWORK EVENTS: These correspond to different types of TPDU’s.
The symbol and attribute names should be self-explanatory */

input  [N-CR] /* connection request TPDU */
int refno
int src_ref
int from_net_addr
int from._port -
int to_port =

int credit -

output [N-CR]
int src.ref
int from_port



output

input

output

input

output

input

output

input

output

int toport

int credit

[N-CC] /* connection confirm TPDU */
int refno

int src_ref

int credit

[N-CC]

int sre_ref

int dst_ref

int from._.port

int to_port

int credit

[N-DR] /* disconnect request TPDU */
int refno

[N-DR]

int src_ref

int dst_ref

[N-DC] /* disconnect confirm TPDU */
int refno

[N-DC]

int src_ref

int dst_ref

[N-GR] /* graceful close TPDU */
int refno

int seqno

[N-GR]

int src_ref

int dst_ref

int seqno

{(N-DT] /* data TPDU */

int refno

boolean eot

int seqno

dataptr data

[N-DT]

int src_ref

int dst_ref

boolean eot

int seqno

dataptr data

EEa T
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input  [N-XD]
int refno
int Xseqgno
dataptr data
output [N-XD]
int src_ref
int dst_ref
int xseqno
dataptr data
input  [N-AK]
int refno
int credit
int seqno
butput [N-AK]
int src..ref
int dst_ref
int credit
int seqno
input  [N-XAK]
int refno
int Xseqno
output [N-XAK]
int src_ref
int dst_ref
int XSeqno

/* expedited data TPDU */

R SEN

/* acknowledgement TPDU */

/* expedited acknowledgement TPDU */

/* EVENTS AT UPPER-LEVEL INTERFACE */

input [U-CR]

int refno

int from_port

int to_net_addr

int to_port
output [U-ACC]

int refno
output [U~PCC]

int refno
input [U-DR]

int refno
output [U~DR]

int

refno

/* connection request */

/* connection confirmation at active end */
/* connection confirmation at passive end */
/* disconnect request */ o

/* disconnect indication */
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output [U-FR]

int

input [U-GR]

int

refno

refno

output

input

output

output

input

input

output

[U-GR]
int refno

[U-DT]
int refno
dataptr data

[U-DT]
int refno
dataptr data

[U-AK]
int refno
dataptr data

[U-AK]
int refno

[U-XD]
int refno
dataptr data

[U-XD]
int refno
dataptr data

input [U-FIN]

/* free reference number */

I LA 1

/* graceful close request */ -

/* graceful close indication */

/* send regular data */

/* data indication */

/* notification that data has been acknowledged */

/* user process has accepted data */

/* send expedited data */

/* expedited data indication */

/* no new connections allowed */

/* NONTERMINAL SYMBOLS */

goal < goal >

nonterm <TC tail>

nonterm < TC >
int
int
int
int
int

refno
foreign_refno

foreign_net_addr

local _port
foreign.port

boolean connfailed
boolean transerror

/* handles one transport connection */
/* local transport connection reference # */

/* set if connection establishment fails */
/* set if transaction error occurs */
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nonterm < connect >
nonterm < active open >
nonterm < passive open >

nonterm < retransmit CR>
int count

nonterm < get CR>
nonterm < deliver CC >

nonterm < retransmit CC >
int count

/* connection establishment */

inonterm < disconnect> /* disconnection subprotocol */

nonterm < deliver DR >

nonterm < retransmit DR >
int count

nonterm < ref wait >

nonterm < transact>
boolean start_send
boolean start recv
int initial credit
int nxoutstanding
boolean GRarrived
boolean GRsent

nonterm < reg send >
int nextseq

int windowend

nonterm < send msg tail >
boolean ready

nonterm < recv acks >
nonterm < send msg >
ponterm < transmit GR>

nonterm < retransmit GR>
int count

nonterm < transmit msg >
dataptr data

/* data transfer and graceful close */

/* # of unacknowledged expedited packets */
/* true if have received in-sequence GR. */
/* true if have delivered GR */

/* next seqno to assign */
/* seqno just beyond end of send window */
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nonterm < send packet>
dataptr data
int seqno
boolean eot

nonterm < send packet tail >
boolean eot

nonterm < deliver DT >

nonterm < retransmit DT >
int count

nonterm < exp send >

nonterm < exp send tail >
boolean ready
int Xseqno

nonterm < send exp packet>
int xseqno

nonterm < deliver xdata>
dataptr data

nonterm < retransmit xdata >
int count

nonterm < reg recv>
int recv..next
int window._end

nonterm < send acks >

ponterm < recv packet>
int seqno

nonterm < recv packet tail >
int seqno
dataptr data

nonterm < transfer data >
dataptr data
int seqno
boolean eot

nonterm < send ack>

nonterm < exp recv>
int Xxrecv..next

/* first seqno in receive window */
/* first seqno beyond receive window */

/* handles acknowledgements */

/* sequence # of packet */

/* message thus far */
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nonterm < exp recv tail >
int xXrecv_next .

nonterm < process GRP > +
int segno -~

/************************************************

DECLARATIONS OF EXTERNAL FUNCTIONS

***********************************************/

extern boolean #betweenl#(int,int,int) /* (i,j,k); true ifi < j <= kin cyclic order */
extern boolean #between2#(int,int,int) /* (G,j,k); rue if i <=j < k in cyclic order */

extern dataptr #extract#(dataptr) /* copy initial segment of data */

extern int #bufslots#(int) /* number of rec. window slots for connection */
extern boolean #eot#(dataptr) /* true if data is empty string */

extern dataptr #copy#(dataptr) [* copy data */

I

/************************************************

MULTIPLE TRANSPORT CONNECTIONS

************************************************/

< goal > : ftimer/ <TC tail >.
$1.interval = QUIET_TIME

>

<TC tail> : {<TC> <TC wil>}.
| [U-FIN].
<TC> : { < connect> <transact> < disconnect> }.

$0.transerror = false
$0.connfailed = false

13

< connect> : < active open>.
< passive open>.

’
/************************************************

ACTIVE OPEN

************************************************/

< active open> : [U-CR]} [N-CR] < retransmit CR>.

<TC>.foreign_net addr = $1.to_net_addr

<TC>.local_port = $1.from_port

<TC > .foreign_port = $1.to_port =
<TC>.refno = $l.refno T
$2.src_ref = <TC>.refno k
$2.from_port = <TC>.local port

$2.to_port = <TC>.foreign port
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$2._credit = #bufslots#($1.refno)
$3.count = RETRANS_COUNT

< retransmit CR > : /timer/ [N-CR] <retransmit CR>.

if $0.count > 0

$1.interval = RETRANS_TIME
$2.src_ref = <TC>.refno
$2.from_port = <TC > .local_port
$2.to_port = <TC>.foreign_port
$2.credit = #bufslots#(< TC >.refno)
$3.count = $0.count - 1

I

| /timer/ .

if $0.count ==

$i.interval = GIVEUP_TIME
<TC > .connfailed = true

| [N-CC] [U-ACC] [N-AK].
<TC>/<transact>.initial_credit = $1.credit
< TC >/ <transact>.start_send = true

<TC >/<transact>.start_recv = true

<TC > .foreign_refno = $1.src_ref

$2.refno = $1.refno

$3.src_ref = <TC>.refno

$3.dst_ref = <TC>.foreign_refno

$3.seqno = 0

$3.credit = #bufslots#(< TC > .refno)

/************************************************

PASSIVE OPEN

sk ske sk ok ok sk ok s ok sk e sk ok e sk sk sk sk ke ok ok ok ok sk ok ok sk ok ok ok ok oK ok ok sk ok ok sk ok ok skok ok ok skok sk ok f

< passive open>: [N-CR] «<deliver CC>.

’

< deliver CC>

<TC>.refno = $l.refno

< TC> .foreign_refno = $1.src_ref

<TC> .foreign_net_addr = $1.from_net addr
<TC> .local_port = $1.to_port

< TC> .foreign_port = $1.from_port
<TC>/<transact>.initial_credit = $1.credit
<TC>/<transact>.start_recv = true

[N-CC] «retransmit CC>.
$1.src_ref = <TC>.refno
$1.dst_ref = <TC>.foreign refno
$1.from_port = <TC>.local port

T
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$1.to_port = <TC> foreign port
$1.credit = #bufslots#(< TC > .refno) s
$2.count = RETRANS_COUNT

< retransmit CC> : ftiimer/ [N-CC] < retransmit CC>.
if $0.count > 0
$1.interval = RETRANS_TIME
$2.src_ref = <TC>.refno
$2.dstref = <TC> . foreign_refno
$2.from_port = <TC>.local port
$2.to_port = < TC>.foreign port
$2.credit = #bufslots#(< TC >.refno)
$3.count = $0.count - 1

| /timer/.

if $0.count = = 0

$1.interval = GIVEUP_TIME
< TC > .connfailed = true

I [N-AK] [U-PCC].

if $1.seqno == 0

<TC >/<transact>.start_send = true
$2.refno = <TC>.refno

| [N-DT] [U-PCC].

if #between2#(0, $1.seqno, < TC >/ < transact>/<reg recv> .window.end)
<TC>/<transact>.start_send = true

$2.refno = <TC>.refno

| [N-XD].
if $1.xseqno ==
<TC >/<transact>.start.send = true

/****************************************************

DISCONNECTION SUBPROTOCOL

****************************************************/

<disconnect> [U-DR] /remove/ /remove/ <deliver DR> <ref wait>.
if < TC>.transerror || <TC>.connfailed
$1.refno = <TC>.refno
$2.where = <TC>/<transact>
$3.where = <TC>/<connect>

l /remove/ /remove/ <ref wait>.
if <TC>/<transact>.GRsent && <TC>/<transact>.GRarrived
$1.where = <TC>/<transact> '
$2.where = <TC>/<connect>

Il
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l [U-DR] /remove/ /remove/ <deliver DR> <ref wait>.
$2.where = <TC >/<transact>
$3.where = <TC>/<connect>

TR

| [N-DR] /remove/ /remove/ [U~-DR] [N-DC] <ref wait>.
$2.where = <TC>/<transact>

$3.where = <TC>/<connect>

$4.refno = <TC>.refno

$5.src_ref = <TC>.refno

$5.dst_ref = <TC>.foreign_refno

y

<deliver DR> : [N-DR] <retransmit DR>.
$1.sre_ref = <TC>.refno
$1.dstref = <TC > .foreign_refno
$2.count = RETRANS_COUNT

’

<retransmit DR> : /timer/ [N-DR] <retransmit DR>.
if $0.count > 0
$1.interval = RETRANS_TIME
$2.src_ref = <TC>.refno
$2.dst_ref = <TC> .foreign refno
$3.count = $0.count - 1

l /timer/.
if $0.count ==
$1.interval = GIVEUP_TIME

1 [N-DC].

»

< ref wait> : /timer/ [U~FR] .
$1.interval = REF_.WAIT_TIME
$2.refno = <TC>.refno

| {N-DR] [N-DC] <ref wait>.
$2.src_ref = <TC> .refno
$2.dst_ref = <TC>.foreign_refno

| [N-DT] <ref wait>.

| [N-GR] <ref wait>.
/******************************************************** -
TRANSACTION SUBPROTOCOL
Handles sending and receiving of regular and expedited data.

If a timeout error occurs, sets <TC> .transerror and
lets the disconnection phase finish up.




If close gracefully, set flags in <TC>.

********************************************************/

< transact> : { <reg send> <exp send> <regrecv> <€xXp recv> }.

if $0.start_recv
$0.nxoutstanding = 0
$0.GRarrived = false
$0.GRsent = false

y

/*************************************************

REGULAR SEND

*************************************************/

<reg send > : { <send msg tail> <recv acks> 1.
if <transact>.start_send
$0.nextseq = 0
$0.windowend = < transact>.initial_credit
$1.ready = true

y

<recv acks> /timer/.
$1.interval = INACTIVITY_TIME
<TC > .transerror = true

| [N-AK] <recv acks>.

<reg send >.windowend = ($1.seqno + $1.credit) mod MAXSEQ

y

< send msg tail > : { <send msg> <send msg tail > }.
$2.ready = false

| [U-GR] <transmit GR>.

y

<send msg> [U-DT] <transmit msg>.
$2.data = $1.data

y

< transmit GR> : [N-GR] <retransmit GR>.
if <send msg tail >.ready
$1.src_ref = <TC>.refno
$1.dst_ref = <TC>.foreign refno
$1.seqno = <reg send>.nextseq
$2.count = RETRANS_COUNT

13

< retransmit GR> : /timer/ [N~GR] <retransmit GR>.
if $0.count > 0
$1.interval = RETRANS_TIME
$2.src_ref = <TC>.refno
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<transmit msg> :

¢

»
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$2.dst_ref = <TC > .foreign_refno
$2.seqno = <reg send > .nextseq
$3.count = $0.count - 1

FEET

| [N~AK].
if $1.seqno = = ((<reg send>.nextseq + 1) mod MAXSEQ)
< transact>.GRsent = true

| /timer/.

if $0.count = =

$1.interval = GIVEUP_TIME
<TC >.transerror = true

< send packet tail >.
if <send msg tail >.ready
$1.eot = #eot#($0.data)

< send packet tail > : { < send packet> <send packet tail>}.

< send packet> :

13

< retransmit DT> : /timer/ [N-DT] <retransmit DT >.

if not $0.eot

$1.data = #extract#(< transmit msg>.data)

$1.eot = #eot#(< transmit msg>.data)

$1.seqno = <reg send >.nextseq

<reg send >.nextseq = (<reg send >.nextseq + 1) mod MAXSEQ
$2.eot = $1.eot

I /freedata/.

if $0.eot

$1.data = <transmit msg>.data

< send msg tail >/ < send msg tail >.ready = true

[N-DT] <retransmit DT >.

if (<reg send >.nextseq ! = <reg send> .windowend)
&& (< transact>.nxoutstanding == 0)

$1.src_ref = <TC>.refno

$1.dst_ref = <TC > .foreign_refno

$1.eot = $0.eot

$1.seqno = $0.segno

$1.data = #copy#($0.data)

$2.count = RETRANS_COUNT

if $0.count > 0 .
$1.interval = RETRANS_TIME -
$2.src_ref = <TC>.refno :
$2.dst_ref = <TC> .foreign_refno

$2.eot = <send packet>.eot

$2.seqno = <send packet>.seqno




$2.data = #copy#(<send packet>.data)
$3.count = $0.count - 1

A

| [N-AK] [U-AK]. -
if #between 1#( < send packet>.segno, $1.seqno, <reg send > .nextseq)
$2.refno = <TC>.refno

$2.data = <send packet>_data

| /timer/.

if $0.count = =

$1.interval = GIVEUP_TIME
<TC > .transerror = true

’
/************************************************

EXPEDITED DATA SENDING

'************************************************/

<expsend> <exp send tail>.
if <transact>.start.send
$1.xseqno = 0
$1.ready = true

»

<exp send tail> : {<send exp packet> <exp send tail> }.
$1.xseqno = $0.xseqno
$2.ready = false
$2.xseqno = ($0.xseqno + 1) mod MAXSEQ

if <transact>.GRsent

’

<send exp packet> : [U-XD] <deliver xdata>.
<transact>.nxoutstanding = < transact>.nxoutstanding + 1
$2.data = $1.data

13

< deliver xdata > : [N-XD] <retransmit xdata>.
if <exp send tail >.ready
$1.src_ref = <TC>.refno
$1.dst_ref = <TC>.foreign_refno
$1.data = #copy#($0.data)
$2.count = RETRANS_COUNT

13

<retransmit xdata> :  /timer/ [N-XD] <retransmit xdata>. -
if $0.count > 0 :
$1.interval = RETRANS._TIME
$2.src_ref = <TC>.refno
$2.dst_ref = <TC>.foreign_refno
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$2.data = #copy#(<deliver xdata> .data)
$3.count = $0.count - 1

Y

| [N-XAK] /freedata/. =
if $1.xseqno = = <send exp packet>.xseqno ’
$2_data = <deliver xdata>.data

<exp send tail >/ < exp send tail > .ready = true

< transact>.nxoutstanding = < transact>.nxoutstanding - 1

| /timer/.

if $0.count = =

$1.interval = GIVEUP_TIME
< TC > .transerror = true

!/********************************************************

REGULAR RECEIVE

********************************************************/

<regrecv> :

»

{<recv packet tail > <send acks>}.
$0.recv_next = 0

$0.window_end = #bufslots#(< TC > .refno)
$1.data = empty

$1.seqno = 0

<recv packet tail > : { <recv packet> <recv packet tail > 3.

if #between2#( < reg recv>.recv_next, $0.seqno, <reg recv>.window.end)
$1.seqno = $0.segno
$2.seqno = ($0.seqno + 1) mod MAXSEQ

< recv packet> : [N-DT] < transfer data>.

’

if $0.seqno = = $1.seqno
$2.data = $1.data

$2.eot = $1.eot
$2.seqno = $0.seqno

| [N-GR] /remove/ <process GRP>.

if $1.seqno = = $0.seqno

$2.where = <recv packet tail >/ <recv packet tail >
$3.seqno = $0.seqno

<transfer data>: . -

if (not $0.eot) && ($0.seqno == <reg recv> .recv_next) -
<reg recv>.recv_next = ($0.seqno + 1) mod MAXSEQ ‘
<recv packet tail >/ <recv packet tail>.data =

<recv packet tail > .data cat $0.data




< process GRP >

1

, <send acks>

’

< send ack >

| [U-DT]. .
if $0.eot && ($0.seqno = = <reg recv>.recv.next) )
<reg recv>.recv_next = ($0.seqno + 1) mod MAXSEQ :

$1.refno = <TC>.refno .
$1.data = <recv packet tail > .data cat $0.data
< recv packet tail >/ < recv packet tail >.data = empty

[U-GR].
if $0.seqno = = <reg recv>.recv_next
<reg recv>.recv_next = (<reg recv>.recv_next + 1) mod MAXSEQ
<transact>.GRarrived = true
$1.refno = <TC>.refno

/timer/ <send ack> <send acks>.
$1.interval = WINDOW_TIME
| [N-DT] <send ack> <send acks>.
i [N~GR] <send ack> <send acks>.

| [U-AK] <send ack> <send acks>.
<reg recv>.window_end =

129

(<reg recv>.recv_next + #bufsiots#(< TC >.refno)) mod MAXSEQ

[N-AK].
$1.src..ref = <TC>.refno
$1.dst_ref = <TC>.foreign_refno
$1.seqno = <reg recv>.recv._next
$1.credit = #bufslots#(< TC >.refno)

/********************************************************

EXPEDITED RECEIVE

********************************************************/

< exp recv> <exp recv tail>.
$1.xrecv.next = 0
<exp recv tail> : [N-XD] [U-XD] [N-XAK] <exp recv tail>.

if $1.xseqno = = $0.xrecv_next )
$2.refno = <TC>.refno -
$2.data = $1.data -
$3.src_ref = <TC>.refno :
$3.dst_ref = <TC>.foreign_refno

$3.xseqno = $0.xrecv_next

$4.xrecv_next = ($0.xrecv_next + 1) mod MAXSEQ

[l



l [N-XD] [N-XAK] <exp recv tail >.

if $1.xseqno != $0.xrecv_next
$2.src_ref = <TC>.refno
$2.dst_ref = <TC > .foreign_refno
$2.xseqno = $0.xrecv_next
$3.xrecv_next = $0.xrecv.next

if <transact>.GRarrived
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APPENDIX 1I: RTAG FORMAL SYNTAX

The following is the Lex input file used to generate the scannef-.portion of

the RTAG compiler.

alpha [a-zA-Z]

digit [0-9]

% Po

key return(KEY);

int return(INT);

boolean return(BOOLEAN);
! dataptr return(DATAPTR);

empty return(EMPTY);

procid return(PROCID);

output return(OUTPUT);

input return(INPUT);

nonterm return(NONTERM);

goal return(GOAL);

extern return(EXTERN);

if return(IF);

true return(TRUE),

false return(FALSE);

not return(NOTOP);

mod return(MODOP);

cat return(CONCATOP);

»["({alpha}|{digit}|"-"|" <”|" >")+"1" {yylval.ptrval = yytext; return(TERMSYM); }
" <"({alpha}|{digit}|” ")+">" {yylval.ptrval = yytext; return(NONTERMSYM); }
"/ ({alpha}|{digit}|"-")+"/"  {yylval.ptrval =yytext; return(SPECIALSYM);}

v ({alpha}|{digit}|"_")+"#" {yylval.ptrval = yytext; return(EXTERNSYM); }
{alpha}({alpha}|{digit}|"_")*  {yylval.ptrval = yytext; return(ATTRNAME); }
-?{digit} + {yylval.intval = atoi(yytext); reurn(NUMBER); }

"ot return(ASSIGNOP);

" o %N return(SASSIGNOP);

" return(PLUSOP);

nn return(MINUSOP);

Mo =t return(RELEQ);

"=" return(RELNE);

Tt return(RELLT);

LN return(RELGT);

g =" return(RELLE); -
"=t return(RELGE); =
"o &" return(ANDOP); -
ik return(OROP); :
return(COMMA);

" return(PERIOD);

".n re[urn(COLON);



e

"aon
»
” (n
” )n
" {n
" } "
n/n
” $n
” ‘n

[0
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return(SEMICOLON); i
return(LPAREN); “
return(RPAREN); i
return(LCURL); =
return(RCURL);

return{SLASH);

return(DOLLAR);

return(BAR);

’

The following is the Yacc input file giving the context-free grammar

ldescription of RTAG syntax. The RTAG compiler is based on this grammar,

with "action routine” code inserted at various points.

%token < intval > INT BOOLEAN DATAPTR PROCID KEY
OROP ANDOP PLUSOP MINUSOP CONCATOP MODOP NOTOP
COLON SEMICOLON PERIOD COMMA LPAREN RPAREN
LCURL RCURL DOLLAR SLASH BAR
INPUT OUTPUT NONTERM GOAL EXTERN SPECIAL
PASSWORD SASSIGNOP ASSIGNOP NUMBER
TRUE FALSE IF EMPTY
RELLT RELLE RELEQ RELNE RELGE RELGT
%token < ptrval> NONTERMSYM TERMSYM SPECIALSYM EXTERNSYM ATTRNAME

%left OROP
%1eft ANDOP

% nonassoc RELEQ RELNE
% nonassoc RELLT RELLE RELGE RELGT
%left PLUSOP MINUSOP CONCATOP

% left MODOP

%left UMINUS NOTOP

% %
grammar

keydef

symdefs

keydef symdefs productions

KEY ATTRNAME -

symdefs symdef




ad
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symdef : INPUT TERMSYM atirdefs

OUTPUT TERMSYM attrdefs :
NONTERM NONTERMSYM attrdefs ;
GOAL NONTERMSYM atirdefs :
EXTERN attrtype EXTERNSYM LPAREN params RPAREN
error

8 e s—— i e st

params :
l attrtype
| params COMMA attrtype
attrdefs
attrdefs attrdef
) ;
attrdef : atirtype attrdeflist
attrdeflist : ATTRNAME
attrdeflist COMMA ATTRNAME
attrtype : INT
| BOOLEAN
| DATAPTR
] PROCID
productions : production
productions production
production : NONTERMSYM COLON prodlist SEMICOLON
error SEMICOLON
prodlist : prod
prodlist BAR prod
prod : rhs PERIOD enabling assignlist
rhs : _

| rhs rhssymbol -
| rhs rhsgroup :

rhsgroup : LCURL rhssymbollist RCURL



rhssymbollist

rhssymbol

enabling

assignlist
!

assignments

assignment

attref

symexpr

symlisttail

expr

rhssymbol
rhssymbollist rhssymbol

NONTERMSYM
TERMSYM
SPECIALSYM

1F expr

assignments

assignment
assignments assignment

attref ASSIGNOP expr

symexpr PERIOD ATTRNAME

DOLLAR NUMBER
NONTERMSYM
symlisttail

SLASH NONTERMSYM symlisttail

LPAREN expr RPAREN
EXTERNSYM

LPAREN arglist RPAREN
attref

symexpr

TRUE

FALSE

EMPTY

expr OROP expr

expr ANDOP expr
NOTOP expr %prec UMINUS
NUMBER

expr PLUSOP expr
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arglist

% %

JO

expr MINUSOP expr

expr MODOP expr

MINUSOP expr %prec UMINUS
expr CONCATOP expr

expr RELEQ expr

expr RELNE expr

expr RELLT expr

expr RELLE expr

expr RELGT expr

expr RELGE expr

expr
arglist COMMA expr

BT R
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