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ABSTRACT

With processors becoming small and inexpensive, many researchers attempt
to decrease program runtime by combining processors into a multicomputer and
running programs distributed over these processors. Debugging in a distributed
environment is different from debugging on a uniprocessor. On a uniprocessor,
the order in which a process’s events occur is deterministic. In a distributed
environment events occur concurrently on different processors. The order in
which events occur cannot be easily determined; a program that works correctly
one time may fail subsequently if the timing between processors changes. Tradi-
tional methods of debugging (such as putting in print statements and recompiling
the program or recompiling the program with a debug flag on) are inadequate

since they change the program and therefore change the timing.

For this research, I have investigated distributed program bugs that depend
on the relative order between events. These ordering errors include events
which always occur in the wrong order and events whose order of occurrence is
time-dependent. In this research, 1 characterize these timing errors and misord-
erings and show necessary conditions for their occurrence. Using my model of a
distributed system, I prove which features can be used in combination to avoid
ordering errors. | use these results to make suggestions to those writing distri-

buted programs, developing distributed programming languages and designing
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distributed operating systems. 1 then explain drawbacks to preventing ordering
errors and show ways to detect them as they occur. Finally, I describe a tool
(called TAP) 1o aid the programmer in discovering the causes of ordering errors
in running programs. 1 also show that TAP is useful in finding other types of

distributed program bugs.
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Chapter 1

Introduction

The goal of this research is to investigate ordering errors in distributed pro-
grams. An ordering error is an error caused by the relative order in which
events occur. We will concentrate on two types of ordering errors, misorderings
and timing errors. Misorderings are events that always occur in the wrong
order. Timing errors are time-dependent orderings of events that lead to an
error. For both types of ordering errors we will show necessary conditions for
their occurrence, methods for their prevention, and methods for their detection.
We will then describe the implementation and use of a tool called TAP, similar to
a postmortem debugger, which helps the user to discover the causes of ordering

€rrors.

Trying to find the reasons for ordering errors is a recent aspect of debug-
ging. There have been bugs in computer programs as long as there have been
programmers. A bug is an error in a computer program where the program does
not always do what it is supposed to do. To debug a computer program is to find
and correct bugs in that program. At first, debugging was heuristic. Program-
mers used the console switches, pored through core dumps, put extra output
statements in their program, and simulated the computer with pencil and paper to

find the reasons for their problems. Soon came the idea of using an interactive



program, called a debugger, to aid in the debugging process. By the late *50s and

early *60s there were many such tools [Evan66, Gilm57].

Most debuggers provide similar operations. Debuggers allow the program-
mer to peek, examine a memory location; poke, put a value in a memory loca-
tion; set breakpoints, choose a place or time that execution of the program
suspends and control returns to the debugger; patch, add to or change the
instructions of a running program; and trace, produce a history of the statements

the program has executed.

The first debuggers are considered low-level debuggers since they only let
the programmer deal with the low-level objects of the program being debugged.
These low-level objects include memory locations referenced by memory address

and machine-level instructions.

Later high-level debuggers allow conversations about the program to refer to
elements of the programming language in the programming language. That is,
variables can be referred to by name, not just by absolute address, and the
debugger can show the actual high-level instructions that are in error, not just
the machine-level instructions. High-level debuggers have many traits in com-
mon [Balz69, Kuls69, Reis75, Ditz78, Poul78, Hodg80, Card83, Kish83]. These
traits include: symbolic data access, instruction and data breakpoints, single step-

ping, view of the source program, reversible execution, and the ability to call




procedures and functions from the debugger. The compiler helps to implement
theses features by producing extra code when the debug flag is set. Though no

debugger has all of these traits most try to incorporate as many as possible.

A different type of debugger was developed by Balzer [Balz69] to allow the
programmer to examine a program after it terminates. For this debugger, a his-
tory tape is written while the program executes. This tape contains a record of
the events that occurred during the execution of the user’s program. Balzer pro-
vides tools which analyze the information on the tape to help determine where

errors may have occurred.

Another complexity added to programming environments that debuggers
have come to handle is multiple processes. The JOVIAL debugger [Pars79],
COPILOT [Swin74], and a design by Weber [Webe83] all allow the user to
select one or more processes in which to set breakpoints when instructions are
shared by multiple processes. COPILOT also allows the user to save the context
of a process for later restoration. This facility allows the programmer to test vari-
ous features from a given point in the program without having to run the pro-
gram to that point again.

Goal of This Research

With processors becoming small and inexpensive, many researchers attempt

to decrease program runtime by combining processors into a multicomputer and



running programs distributed over these processors [Alme80, Fink83a]. Debug-
ging in a distributed environment is different from debugging on a uniprocessor.
On a uniprocessor, the order in which a process’s events occur is deterministic.
In a distributed environment events occur concurrently on different processors.
The order in which events occur cannot be easily determined; a program that
works correctly one time may fail subsequently if the timing between processors
changes. Traditional methods of debugging (such as inserting print statements
and recompiling the program or recompiling the program with a debug flag on)

are inadequate since they change the program and therefore change the timing.

For this thesis, | have investigated distributed program bugs that depend on
the relative order between events. These ordering errors include events that
always occur in the wrong order and events whose order of occurrence is time
dependent. In this research, I characterize two types of ordering errors, timing
errors and misorderings, and show necessary conditions for their occurrence.
Using my model of a distributed system, I prove which features can be used in
combination to avoid ordering errors. I use these results to make suggestions to
those writing distributed programs, developing distributed programming
languages and designing distributed operating systems. 1 then explain drawbacks
to this prevention and show ways to detect ordering errors as they occur.

Finally, I describe a tool (called TAP) to aid the programmer in discovering the




causes of ordering errors in running programs. | also show that TAP is useful
in finding certain other types of distributed program bugs, caused by non-
ordering errors. The implementation of TAP was done on the Charlotte operat-

ing system [Fink83a]. A description of Charlotte is included in chapter 3.

1.1 A Model of Distributed Programming

In this section we will present a model of distributed programming. We will
use this model in subsequent chapters to show underlying causes of ordering
errors. In this model, a distributed program runs on a multicomputer. The
processes thal comprise the distributed program communicate through messages;

they do not share memory. The following are some formal definitions.

O Multicomputer:
A multicomputer is a collection of computers, each containing a central pro-
cessing unit and private memory; no memory is shared between computers.
The computers are connected by some type of communication hardware

such as a token ring.

O Process:
For a process we mean an independent unit of execution comprised of pro-
gram instructions and data. A process can only access instructions and data
in its own address space. Two processes do not share space. We do not
prohibit multiple threads of control in a single process.



O Distributed Program:

A distributed program is composed of one or more processes working
together on a computation. The processes may or may not be on the same
processor. The processes communicate with messages. A message is a

stream of bytes uninterpreted by the operating system.

0O Communication Subsystem:

The communication subsystem is the hardware and software underlying the
operating system whose job it is to deliver messages on behalf of processes.

Two processes communicate when one receives a message sent by the other.

These messages are sent over a communication channel. An important aspect of

communication channels is whether they are private or public. A private channel

only permits two processes to communicate; a public channel allows more than

two processes to communicate.

(1

(2)

(3)

(4)

The sending of a message has five distinct phases.
Send request

Copy message to local communication subsystem
Copy message to remote communication subsystem
Copy message to recipient

Report to sender




In the first phase, the process requests that the communication subsystem deliver
the message. The process provides the communication subsystem with a buffer
containing the message and specifies who is to receive it. The sending process
can specify a specific recipient or a set of recipients, each of which is to receive
the message (this latter case is called broadcast). We call these two types
send(specific) and send(all). We assume a send request occurs at a distinct point

in a processes code.

Phases 2 - 4 involve copying the message. In the second phase, the mes-
sage is copied from a buffer controlled by the requesting process to a buffer con-
trolled by the local communication subsystem. The communication subsystem
becomes responsible for the message and goes to work to deliver it. In the third
phase, the message is transferred to a buffer controlled by the remote communi-
cation subsystem. In the fourth phase, the message is copied into a buffer con-
trolled by the receiving process. All copying is atomic. Both the owner of the
buffer being copied from and the owner of the buffer being copied to view the
copy as a single action. They will never use a buffer with a message partially
copied. Once a message is copied the recipient becomes the party responsible for
the message. In an actual implementation of a system some of these phases

might be combined.



The sending process can be notified after each of these phases has occurred
or there might not be notification until all four phases have finished. This final
notification, called report, is the fifth and final phase of sending a message. This
report is notification that all phases of the send have occurred. The report phase

will be discussed in more detail later in this section.

We call the completion point of a send the point at which the entire message
has been copied out of the requesting process’s address space. At this point we
say completion occurs. The completion point for a send can be at the second,
third, or fourth phase depending on the design of the particular system. We will
show in Chapter 2 that if the completion point occurs synchronously with another
of the sending process’s staternents, then a certain type of timing error cannot

occur.
The receipt of a message has three phases.
(1) Receive request
(2) Copy message to recipient
(3) Report to recipient

The first phase is the request. The requesting process provides the communica-
tion subsystem with a buffer to hold the message and specifies from whom to

receive it. The receiving process can specify a specific sender or a set of




senders, from any one of which a message must be received. We call these two
types receive(specific) and receive(any). We assume a receive request occurs at
a distinct point in a processes code. The second phase is the copying of the mes-
sage into the requesting process’s buffer. The third phase is the reporting to the

requesting process that the other phases have occurred.

We call the completion point of a receive the point at which the message has
been copied into the requesting process’s address space. The completion point
for a receive is at the second phase. We will show in Chapter 2 that, if the com-
pletion point occurs synchronously with another of the receiving process’s state-
ments, then a certain type of timing error cannot occur. We assume that if a
receive can obtain more than one message that it obtains the first qualified mes-
sage received by the local communication subsystem. We also assume that all
send requests from a processor A to a processor B are received in the same order

as the send requests are made.

In some systems a process can make a send or receive request and continue
processing [Fink81, Arts84, Stro83, Andr82]; the result of the request is reported
later. In other systems all phases of a send or a receive occur as an atomic unit
[Unit83, Cher83, Lisk83]; the requesting process is suspended until the results of
the request are reported. The former case is referred to as non-blocking com-

munication. The latter case is referred to as blocking communication.
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Communication can also be partially blocking. For example, a send request
might block the requesting process until phase two (transfer to the local commun-
ication subsystem’s buffer) or phase three (transfer to the remote communication

subsystem’s buffer) finishes and then allow the process to proceed.

It is our belief that the use of non-blocking communication will lead to
increased parallelism for many applications. With non-blocking communication
processes are able to do other wori while the communication subsystem is han-
dling the message. One example is a file server process that handles file requests
for other processes. After requesting a send of information to one client, the file
server can handle requests from other clients without being blocked waiting for

the first client to receive the information.

When blocking communication is used the requesting process receives the
report implicitly. The fact that the process is unblocked means the requested
action has occurred. When non-blocking communication is used there must be
an explicit mechanism for the requesting process to receive the report. This
mechanism can be an interrupt to a predetermined user routine or can be a sys-

tem procedure call made by the requesting process.

There are two types of system procedure calls used for report. These are
wait and poll. A wait specifies a specific send, a specific receive, or a set of

sends and/or receives. The user process is then blocked until a matching send or
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receive completes. Poll is like a non-blocking version of wait. Poll returns the
report of the corresponding send or receive if there is one. If not, it returns
"nothing has happed yet” and the requesting process can continue. We assume

that wait(any) and poll(any) match the earliest qualified send or receive.

When discussing communication we will use the following terms.

O Communication Event:
A communication event is any event that affects the transfer of a message
from a sending process to a receiving process. A communication event is
any phase of sending or receiving from the request through the report. The
group of events that comprise a send or a receive are called the send or
receive activity. The time from the start of the request up to and including
the end of the corresponding report is called the lifetime of the activity.

O Match:
We say a send and a receive match if the message sent by the send is the
message received by the receive.
We say a wait/poll and a send/receive match if the wait/poll is the report
phase of the send/receive.

O Remote Procedure Call:
A remote procedure call is the exchange of two messages between two
processes called the client and the server. The client sends a message lo the
server, posts a receive request, and blocks until the receive is reported. The
server receives the message, may or may not do some computing, and
finally sends a reply.
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1.2 An Overview of Timing Errors

In a distributed program events occur concurrently on different processors.
The order in which events occur cannot be easily determined; a program that
works correctly one time may have an error and fail subsequently if the timing

between processors changes. We call these errors timing errors.

O Timing Error:
A timing error is a program error that may or may not occur depending on

time-dependent ordering of events.

Timing errors depend on sequences of events. A program containing a tim-

ing error might run correctly many times before the timing error manifests itself.
Examples of timing errors include:

(1) failure to use old information before it is overwritten by new information

(2) attempt to use information before it arrives

(3) failure to send old information before it is overwritten by new information

(4) arrival of messages in an unexpected order (in a multiple-process conversa-

tion)

(5) failure to keep a conversation synchronized
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In a distributed environment, timing errors are tied to interprocess commun-

ication.

Examples of Timing Errors

The following are five examples of timing errors. Non-blocking communi-

cation is used in all of the examples.

Example: #1.1: Overwriting old information before it is used

A process inadvertently receives a message into a buffer before using the
information last received into that buffer. For example, a programmer means to
write:

Receive(bufferl);
Receive(buffer2);
Wait for first receive to complete.
Compute with bufferl.
Unfortunately the programmer targets bufferl for both receives. Since both

receives are non-blocking, the information used during the computation phase

may be from the first receive, the second receive, or a combination of the two.

Example: #1.2: Attempt to use information before it arrives

The following example shows how a process can use information before it

arrives.

Receive(bufferl);
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Compute with bufferl.
Since there is no Wait statement, the process might start computing before the

data had been received in the buffer.

Example: #1.3: Changing a buffer before the send occurs

The following example shows how a process can inadvertently change infor-
mation before before it is sent.
Send(buffer);
Change buffer.
Send(buffer);
The first Send above informs the operating system that the process wants to send
the information in the buffer, but the send might not actually occur until later.
Since the operating system sends messages directly from the user’s address
space, the actual sending of the message could occur before the user changes the

buffer, while the user is changing the buffer, or after the user has changed the

buffer.

Example: #1.4: Arrival of messages in an unexpected order

A distributed program might fail sporadically because messages arrive at a
process in an unexpected order. This unexpected order of message arrival can
cause the receiving process to produce an incorrect result or perform an

incorrect action. For example (see figure 1.1), assume there is a distributed
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program with a process called the global data handler (GDH). The GDH
administers the global data for the distributed program, storing values sent to it
and returning the values of variables that are requested of it. Process S keeps
statistics about the distributed program. At the end of each round of computa-
tion, process S asks the GDH for the values of various variables. Process S waits
to make this request until process L informs it a round has been completed. Pro-
cess L is the last process to perform a computation in a given round and L sends
its computed value to the GDH before informing S that a round has ended.
Since sending a message does not block a process, it is possible that the message
from process S to the GDH will arrive before the message from process L and
the GDH will send the wrong information to S. The action performed by the

GDH is the same no matter in which order the messages arrive; the results, how-

Figure 1.1: example 1.4: The Global Data Handler
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ever, will differ.

Example: #1.5: Failure to keep a conversation synchronized

A conversation is synchronized when all participants agree on where in the
conversation each message occurs. If at least two participants disagree then the
conversation is not synchronized. For example: A server process handles student
records for a university and will answer YES or NO when asked various ques-
tions such as "is student X enrolled this semester”. A client process makes a
stream of requests. I a request or a response is lost then the conversation will

become unsynchronized.

A lost message need not be the fault of the communication subsystem but
might be caused by the client process thinking it had made a request when none
had been made. For example, a programmer expects a message to be sent as
part of the evaluation of a logical expression. If the program is writien in a
language that short-circuits logical expression evaluation, then the communica-

tion part of the expression could be skipped (See figure 1.2).
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if flag and Send(msg) then ...
When ’flag’ is false the Send will be skipped.

Figure 1.2: Short-circuit of logical expression

1.3 Related Work

Other researchers [Garc84, Gros83, LeBl183, Mcda77, Phil82, Schi81] have
discussed special problems in debugging distributed programs. Debugging distri-
buted processes differs from debugging multiple processes on a single processor
in two important ways. In the latter case, the programmer can look at the order
in which events occur in order to determine causes of errors. The programmer
can also stop all processes at the same instant when an error is suspected. In a
distributed environment, processes execute concurrently. The only way to tell
the order in which events in one process occur in relation to events in another
process is to look at the communication between the processes. Similarly, by
disabling communication, all processes can be suspended at the same relative
time to examine the state of the program. Most of these researchers agree that
for a debugger to handle the special problems inherent in a distributed environ-

ment, the debugger has to deal with interprocess communication.
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Some researchers have addressed the theoretical issues involved in debug-
ging distributed programs [LeBI83, Gros83, Garc84]. Both LeBlanc and Gross
suggest that two major, necessary features of a distributed debugger are the abil-
ity to interact with the operating system and the ability to control the communica-
tion between processes. They claim distributed programs are not only character-
ized by their internal state but also by the state of kernel tables, containing infor-
mation such as which processes can communicate with which other processes
and what messages are pending between which processes. They point out that
the only real difference between debugging a sequential program and debugging
a distributed program is monitoring the interprocess communication. They sug-
gest a hierarchy of debuggers: a "traditional” debugger to aid in testing each
sequential process and a higher-level debugger to monitor communication. Our
work supports their claim; the tool we have developed is a debugger to monitor

communication.

A group headed by Garcia-Molina also address the issue of debugging distri-
buted programs [Garc84]. Their model has an operating system, a communica-
tion module, and a debugging module (DM) on each processor. There is also
one process per system, the master debugger, which handles the user interface.
The DM is integrated with the operating system, the communication module and

the programming language. The DM monitors interprocess communication and
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can find the values of the variables in the application program. Certain events,
such as sends and receives, are traced by the DM which records their
occurrences. Part of the information kept when recording an event includes a

time stamp.

These researchers claim that observed results are hard to reproduce in a dis-
tributed environment, so tracing must play a predominant roll in debugging. We
agree with this assessment and incorporate tracing in our implementation. They
also note that the inclusion of the DM will affect timing and therefore mask some
bugs. They claim little can be done about this problem. We do not entirely
agree with this claim as we show in Chapter 3. To look at the saved information
all of the program’s processes need to be stopped. They suggest both a user ini-
tiated and a system initiated "stop-all-processes” capability. We have also made

use of a "stop-all-processes” capability.

The Garcia-Molina group envisions distributed debugging taking place in
two phases. The first phase would be tracing as described above. If tracing does
not find the bug it should narrow down the search. In the second phase the area
of the program that is still in doubt would be thoroughly tested. They claim that
the second phase "is needed because in many cases it is simply not feasible to

collect all the necessary information during the first phase”.
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Using the DM, as described above, is again more like program testing than
program debugging. The Garcia-Molina group recognizes the possibility of bugs
occurring in a released program and claims that tracing will have to be turned on
again and an attempt made to reproduce the bug. If this is one of the bugs
masked by the inclusion of the DM then they have no suggestion of a method to
use to find the cause of the bug. They list more than twenty important events to

be stored in the trace but fail to describe the way the information can be used.

Other researchers [Baia83, Phil82, Schi81, Owen81, Smit83] have imple-
mented debuggers for distributed environments. A debugger by Baiardi [Baia83]
monitors the user’s program during execution and traps if problems arise. The
four debuggers by Phillips [Phil82], Schiffenbauer [Schi81], Owen [Owen8l],

and Smith [Smit83] are interactive debuggers for distributed environments.

Baiardi’s debugger has two modes as suggested by LeBlanc and Gross,
sequential and concurrent. Users supply this debugger with a formal description
of the process behavior. The debugger compares the actual performance of the
user’s program with the formal description and traps to the user if there is a
difference. The formal statement describes conditions such as which processes

interact and asserts a partial ordering on events.

Interactive distributed debugging was attempted by Owen, Smith, Philips,

and Schiffenbauer. Owen [Owen81] has implemented a debugger for distributed
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programs that allows the user to set breakpoints on message send and receive and
saves all messages in a file. The SPIDER debugger [Smit83] provides the facility
for the user to create and manipulate interprocess events. SPIDER keeps tran-
scripts of messages sent and provides demon processes to automatically monitor
and modify communication. It also allows the user to test an individual process

by handling all communication to and from that process.

Similar interactive debuggers were implemented in the Blackflag debugger
[Phil82] and a debugger developed at MIT by Schiffenbauer [Schi8l]. Both
debuggers allow the programmer to interpose a debugging process between two

communicating processes o monitor message traffic.

With Blackflag a user can inspect messages before having them forwarded to
the receiving process or have them forwarded automatically. The design of
Blackflag calls for allowing the user to set breakpoints dependent on the contents
of a message, edit messages before forwarding them, delete messages, and create

messages from scratch.

One positive aspect of Blackflag is that it requires no changes to the operat-
ing system or to the compiler. The only cooperation required is from user
processes that must have global names for all kernel ports used. Having global

names presumably lets the debugger find the information it needs to eavesdrop.
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Schiffenbauer recognizes the possibility of timing errors (called lurking
bugs) and attempts to deal with them. This debugger has two parts, a nub on
each processor and a central site (CS) residing on one processor communicating
with the user. All packets are sent by the nub on the sending processor to the
CS which asks the user for an action to perform with the packet. Possible
actions includ\e: send the packet, lose the packet, delay the packet, and change
the packet. Schiffenbauer attempts to limit the impact the debugger will have on
the relative timing between the user processes by having all processes use logical

instead of real time.

These debuggers are more program testers than they are debuggers. They
cannot help the user find errors unless the program is run under the control of
the debugger. With Blackflag present, a program will not necessarily behave the
same as it would at other times. The presence of Blackflag potentially affects the
timing between processes in three ways. First, a message has to be sent twice to
get to its destination, once from the sending process to Blackflag and once from
Blackflag to the receiving process. Second, the user can delay the delivery of a
message. Third, the inclusion of Blackflag adds another process to the system;
both the order in which the user’s processes are run and the allocation of
processes to processors might change. Schiffenbauer tries to overcome the first

two of these problems by having his processes use logical time (as opposed to real
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time). Presumably he could make sure the processes were allocated to proces-
sors as they would be if there were no debugger. Though Schiffenbauer recog-
nizes the problems caused by lurking bugs, he makes the naive assumption that
the programmer will have an intuition as to where the lurking bugs might occur
and will test these sections thoroughly with the debugger. Neither of these
debuggers allow the programmer to find the causes of bugs as they occur in a

released program.

The approach taken in this thesis is to characterize timing errors and explain
the underlying basis for them. It is our belief that understanding which features
of interprocess communication lead to timing errors will help the programmer
avoid them when possible and will better clue the programmer as to their possible
location when they do arise. We advocate using the debugger on the "release”
version of the program when the bug is detected, not a test version compiled with
special features after the bug has been detected. Our approach to finding timing
errors is similar in many ways to two approaches taken to performance analysis
of distributed programs [Mcda77, Mill85]. METRIC [Mcda77] was designed to
measure performance in distributed programs, but the author claims it can also

be used to detect timing errors (called cosmic ray bugs).

METRIC is composed of three parts, the probe, accountant, and analyst.

The probe is the user interface to METRIC. It is a procedure call provided to
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the user that sends information to the accountant. The accountant collects these
messages and acts as a filter, storing those that are interesting and discarding the

rest. This saved information is then made available to the analyst if needed.

Miller’s system [Mill85] has three similar components. The metering phase
collects information and passes it on to the filter. The filter discards any mes-
sages not matching a user-supplied pattern and stores the rest for analysis. The
analyst uses the data from the filter to build graphs that show a partial ordering of
events and the amount of time between events. The analyst then looks for a map-

ping of processes to processors that will increase the parallelism in the graph.

Both of these approaches could be used to find timing errors but they have
significant flaws. The methods used to record events would more than triple the
message traffic since each message exchanged between users would generate a
message to the accountant (filter) from the probe (meter) at the sending processor
and another message to the accountant from the probe at the receiving processor.
METRIC was able to sidestep this problem because the system on which it was
implemented provided a separate physical channel on which these messages could
be sent. Miller provided a buffering mechanism to store many records and for-
ward them as a unit. Drawbacks to this technique under our implementation are

discussed in section 3.2.
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To use METRIC to detect timing errors, the runtime could execute a probe
procedure call to record each important event such as a send or a receive. Using
METRIC this way would not catch all timing errors on systems such as Charlotte
since the probe would be initiated by the user when the send or receive request is

made and not at the completion point.

In Miller’s system event recording is initiaied in the operating system, pro-
viding the facility to record all events whose account is necessary for finding tim-
ing errors. The filter could be adjusted to weed out extraneous events. The par-
tial ordering of events extracted from the graphs can be used to detect timing

errors. These graphs will be discussed further in section 1.4.2.

1.4 Timing Graphs

The Use of Timing Graphs

Timing errors are caused by events failing to occur in the same order from
one run or one iteration to the next. To find timing errors, we need to be able to
show the order in which events occurred. Lamport [Lamp78] defines a partial
ordering of events for a distributed program. He shows this partial ordering can
be used to construct, what we call here, timing graphs. A timing graph is a
directed acyclic graph representing this partial ordering. We will use the

symbol — to represent the relation precedes. We say A—- Bif
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(1) A and B are in the same process, and A happens before B, or

(2) A is the completion point of a send, and B is the completion point of the

matching receive, or

(3) There is some event C such that A - Cand C— B.

Receive A

Send B

Receive B

For example, we can see that A’s send to B precedes B’s second receive from C.
We can also see that A’s send to B precedes B’s first receive from C.

Figure 1.3: A Timing Graph
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To construct the timing graph (see figure 1.3), an arc is drawn from node,
to nodey if: A— B and there is no node. such that A — C and C-—> B. The
nodes of the timing graph are events and an arc from node, to nodep means A

directly precedes B in time. Timing graphs may be constructed from information
known at compilation and execution time. In practice, the entire timing graph
need not be built. We propose that information should be saved during execution
of a distributed program so that timing graphs can be built, if needed, when the
existence of a bug is discovered. Our implementation continually builds only a
skeleton of this graph and derives other parts of the graph from it when needed.
The timing graph is then used to show the relative order of events in the distri-
buted program. Our claim is that this information is sufficient to find causes of

timing errors.

The Philosophy of Timing Graph Use

Communication event tracing is keeping a history of the communication
events as they occur in a running program. This is necessary for creating timing
graphs. We do not think that the tracing should be activated and the program
rerun when a timing error is suspected. We propose to keep this tracing facility
active at all times for two reasons. First, timing errors may not be easily repeat-

able. The precise timing between processes that caused the error may not show
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up again for many runs once tracing is activated. Second, tracing affects the
execution of a program. More instructions are executed to accomplish the trac-
ing, so the timings between processes can change. A program that encounters a
timing error while tracing is disabled might never encounter the same error with
tracing active. We view tracing as being similar to subscript checking supported
by many current compilers; tracing is active unless specifically disabled by the

user.

Since this tracing is always active it must have minimal impact on the per-
formance of the user’s program. The tracing should also be transparent to the
user in that the programmer should not have to write any special code to help
with the tracing. We will discuss an implementation of this tracing facility in

Chapter 3.

1.5 Organization of this Thesis

Chapter 2 describes the theoretical aspects of ordering errors including tim-
ing errors and misorderings. We show ways to prevent timing errors and
misorderings, discuss reasons why such prevention is not always desirable and
discuss ways of detecting ordering errors as they occur. Chapter 3 describes
TAP and Charlotte. Chapter 4 describes the experiments run using TAP. We

show examples of distributed programs containing timing errors and use TAP to
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discover the causes of the errors. Chapter 5 contains suggestions for writing dis-
tributed programs, designing distributed programming languages, and designing
operating systems for distributed programming based on lessons learned in

chapter 2. Chapter 6 contains conclusions and suggestions for future research.
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Chapter 2

Ordering Errors

An error occurs in a process when the process behaves incorrectly. This
misbehavior is reflected in the process’s state, which is invalid after an error
occurs. An ordering error is an error caused by the relative order in which
events occur. We will discuss two types of ordering errors in this chapter, tim-
ing errors and misorderings. The relationship of ordering errors to other classes

of errors is shown in figure 2.1.

Ordering Errors -

Figure 2.1: Ordering errors
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2.1 Prevention and Detection of Timing Errors

in chapter 1 we have shown examples of timing errors and the approaches
others have used to deal with them. In this section we characterize timing
errors. We discuss types of timing errors, conditions that permit them to occur,
and ways to prevent and detect their occurrence. The following definition is

repeated from chapter 1.

0 Timing Error:
A timing error is a program error that may or may not occur depending on
time-dependent ordering of events.

Timing errors depend on sequences of events. A program containing a tim-
ing error might run correctly many times before the timing error manifests itself.
For this discussion we make two assumptions. First we assume each process is
sequential. The only interrupts that might affect a process are those dealing with
communication. Second, we assume every activity reaches the report phase.
This assumption does not affect the analysis we present since any uncompleted

activity can be assumed to reach report afier the program terminates.

Timing errors fil into two disjoint categories, single-event timing errors,
those involving the order between a communication event and a local event, and

multi-event timing errors, those involving the order between two communication
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events. We discuss each category separately.

Preventing Single-Event Timing Errors

The first category of timing errors is single-event timing errors (shown in
figure 2.2). In this section we will define single-event timing errors, show their
necessary conditions, and show ways to prevent their occurrence. We begin with

the following definitions.

O Single-event Timing Error:
A single-event timing error is a timing error involving exactly one com-

munication event.

Single-event

completion

Figure 2.2: Single-event timing errors
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Examples

® Send, change (see section 1.2, example 1.3)
® Receive, use (see section 1.2, example 1.2)
® An interrupt occurs when a message is received. The interrupt routine
uses and changes many variables. The process that uses those variables at
other points might produce different results if the interrupt occurs at dif-

ferent points in the code.

O State:
The state of a process at a given point in time is the value of its variables in
its address space and the information kept for the process by the operating
system. The state includes information kept by the operating system kernel,

the communication subsystem and any utility processes such as a file server.

O Space:
Let M be the set of memory locations that can be part of any valid state of a
process P. The Space S used by a communication event is that subset of M
used by the communication event. This space includes the subset of M used

for the report.

O Local Event:
A local event is any operation, not part of a communication event, that
accesses or changes a memory location in a process. Examples of local
events include assignment statements, expression evaluation, and function

calls.
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With these definitions we can state the following theorem.

Theorem #1:  There are two necessary conditions for the occurrence of a

single-event timing error.

(1) A communication event and a local event must be able to
occur in either order (we say the communication event

occurs asynchronously).

(2) The communication event’s space must be shared with this
local event.

Proof

(1) From the definition of timing error there must be at least
two events whose relative order varies. Since only one of
these events is a communication event the other must be a

local event.

(2) Let C be the communication event involved in the timing
error. Let L be a local event such that the relative order of
C and L varies. Assume L neither accesses nor changes
any locations in C’s space. Then, no matter in which
order C and L occur, there can be no timing error because
the behavior of the program will not vary.

We can prevent single-event timing errors by preventing the occurrence of
one or both necessary conditions stated in theorem #1. One way that asynchro-
nous communication events can be prevented is through the use of blocking com-

munication.
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A program that uses only blocking communication contains no

single-event timing errors.
Proof

By theorem #1, the order between a communication event and
some other event must vary to have a single-event timing error.
Blocking communication guarantees that every communication
event will occur in the same order with respect to all other
events. Since there is no asynchrony there can be no single-

event timing errors.

To prevent single-event timing errors, we can use conditions weaker than

the requirement of blocking communication. First we note that only communica-

tion events that meet both conditions in theorem #1 are completion and report.

Lemma #1:

Completion and report are the only communication events that

can be involved in a single-event timing error.
Proof

Since completion and report are the only communication events
that are able to both share space with other events and occur
asynchronously with other events, then they are the only com-
munication events that can be involved in a single-event timing

€rror.
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Buffering in the communication subsystem can prevent single-event timing
errors while still allowing non-blocking communication for processes that use
synchronous report. This use of buffering can prevent asynchronous completion
points as follows. On a send request, the communication subsystem copies the
message to a buffer of its own before returning to the user’s process, thereby
preventing the user’s process from changing the message before the send occurs.
A receive request asks the system to hold on to a message if it arrives. The
matching wait causes the system (o copy the message into the user’s buffer.
With this method, the completion point of every receive must occur with the

report and the completion point of every send must occur with the request.

Asynchronous report can be avoided by using blocking report (wait).
Blocking report has to occur at a distinct point in the process’s execution. Asyn-
chronous report is not avoided by the use of polling or interrupts, since with pol-
ling and interrupts, report does not have to occur at a distinct point in the

processes execution.

Theorem #3:  The use of buffers in the communication subsystem, where the
requesting process is blocked on a send request until the mes-
sage is copied to a system buffer and a message is transferred to
the recipient at the time of report, along with the use of syn-
chronous report, prevents single-event timing errors.
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Proof

By theorem #1 and lemma #1, to have a single-event timing
error the relative order of occurrence between completion or
report and some other event must vary. Using the buffering
algorithm with wait for report, the completion point of every
send must occur with the request, the completion point of every
receive must occur with the report, and the request and report
must occur at known points. Therefore, there can be no
single-event timing errors.

There are, however, problems associated with buffering messages in the
communication subsystem. There is added overhead; every off-machine message
has to be copied an extra time and the communication subsystem has to worry
about buffer management. To avoid this extra overhead, the Charlotte kernel

[Fink83a] provides no buffering.

Another way to guarantee that no single-event timing error can occur is to
make sure the second necessary condition is prohibited. That is, we can prevent
single-event timing errors by guaranteeing no communication event shares space
with any other event during the lifetime of the communication event’s activity.

We call this restriction bounded asynchrony.

Let the terminus of an activity be the earliest point in the process’s code by

which the report must occur. For synchronous report terminus occurs immedi-
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ately after the last possible wait statement that can match the request. For pol-
ling, terminus occurs some time after the last possible poll statement that can

match the request. For example, given the following code:

A: while poll(X, received) = = false do

end while

terminus occurs at B since this is the earliest location by which we can guarantee
the report has occurred. For interrupt report terminus might not occur until the
end of the process. We call the time from an activity’s request until its terminus

the extended lifetime of the activity.

Since, by lemma #1, completion and report are the only communication
events that can be involved in single-event timing errors, we can prevent single-
event timing errors by insisting that all completion and report events share no
space with other events with which they may asynchronously occur. Completion
and report must occur between two well known locations. These are the
corresponding request and terminus. Therefore we can state the following

theorem.
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No single-event timing error can occur for a given activity if the
report event’s space and the completion event’s space do not
intersect with space used by other events that dynamically occur
between the request and the terminus for that activity.

Proof

Since both completion and report must dynamically occur
between the corresponding request and terminus, then the only
events that can be in asynchrony with them lie in this same
region. Since they do not share space with events in this
region, they have no events with which they meet both neces-
sary conditions for single-event timing errors.

Method

Blocking Communication X
Kernel Buffering X

Bounded Asynchrony X

NECESSARY CONDITION AVOIDED

Shared Space Asynchronous Communication Event

Figure 2.3: Methods for preventing single-event timing errors
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In this section we have shown necessary conditions for the occurrence of
single-event timing errors. We have also shown that single-event timing errors
can be prevented in several ways by preventing at least one of these necessary

conditions. Our findings are summarized in figure 2.3.

Preventing Multi-Event Timing Errors

The other category of timing errors is multi-event timing errors (shown in
figure 2.4). In this section we will define multi-event timing errors and show

ways to prevent their occurrence.

O Multi-event Timing Error:
A multi-event timing error is a timing error involving two or more com-

munication events.

Examples

® GDH (see section 1.2, example 1.4)
@ Conversation becomes unsynchronized (see section 1.2, example 1.5)
@ Receive, Receive, Wait, use (see section 1.2, example 1.1)

We can now state necessary conditions for multi-event timing errors.

Lemma #2: For a multi-event timing error to occur, the relative order
between two communication events must be non-deterministic

and they must share space.
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Timing Errors
Single-event

completion- completion- completion-

completio request report

report- request-
request request

Figure 2.4: Multi-event timing errors

report-
report

Proof

The proof follows directly from the definition of multi-event tim-
ing error and the definition of timing error.

We can now use these necessary conditions to develop methods of prevent-
ing multi-event timing errors. The only communication events that can share
space with each other are request, report, and completion. Therefore, multi-
event timing errors can only arise from the relative order of occurrence of two or

more request, completion or report events. We will use the following definitions
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to talk about multi-event timing errors.

O Conflict:
We call a multi-event timing error occurring because of the relative order of
two reports a report-report conflict. Similarly, we have report-completion
conflict, completion-completion conflict, report-request conflict, request-

completion conflict, and request-request conflict.

Conflict occurs because the communication events involved occur asynchro-
nously or because other communication events that affect the order of the ones in
conflict, occur asynchronously. Request events cannot occur asynchronously;
request-request conflict refers to the use of requests that can potentially match
more than one corresponding request. For instance, receive(any) might poten-
tially match any send request from the specified set. Because these sends occur

asynchronously, request-request conflicts arise.

I

O Deterministic:
We say the relative order of two communication events is deterministic if
their relative order is a function only of reproducible events and objects such
as the input data, previous communication events, and the program code. If
the relative order between two communication events is not deterministic we

say their relative order is non-deterministic.
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Examples
The following examples assume non-blocking communication.

® If a process has the following segment of code, then the order of comple-
tion of the two sends is deterministic.

Send(1, msg,);
Wait(1, send);
Send(2, msgz);

e If the following segment of code is in a process, then the order of comple-
tion (point at which the sending process is no longer responsible for the
message) of the two sends is non-deterministic.

Send(1, msg;);
Send(2, msg,);
Wait(all, send);

O Deterministic match:
A deterministic match is a maich that is a function only of reproducible
events and objects such as the input data, previous communication events

(those occurring before either end of the match), and the program code.

Deterministic send-receive match can be ensured by the use of specific,
private channels for communication. The use of specific, private channels
guarantees the receive can only match one channel, and a message on a channel
can only come from one sender. Since messages from one process to another

are delivered in the order sent, the receive can only match one send.
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O Deterministic Process:
If the relative order of every pair of the process’s communication events
(those communication events whose activity has its request as one of the
process’s statements) is deterministic and every match involving at least one
of the process’s communication events is a deterministic match, then we say

the process is a deterministic process.

O Well-Ordered:
Let £(P) be the set of events comprising process P. A process P is well-
ordered if for every pair of communication events A and B € £(P), the rela-
tive order of the occurrence of A and B is deterministic.

A distributed program is well-ordered if all of its processes are well ordered.

With these definitions we can state the following lemmas.

Lemma #3: If the relative order of occurrence of two communication events
is deterministic, then there is no multi-event timing error involv-

ing the order in which the two communication events occur.
Proof

This lemma follows from the definition of timing error and the

definition of multi-event timing error.
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A well-ordered process has no multi-event timing errors.
Proof

Since a process is well-ordered, a given input will always pro-
duce the same order for any two communication events (by the
definition of well-ordered and the definition of deterministic).
Since the order of all communication events is deterministic,
there are no multi-event timing errors (by definition of multi-

event timing error).

A program has no mulii-event timing errors iff each of its

processes has no multi-event timing error.
Proof

For a multi-event timing error to occur there must be two com-
munication events in the same process whose relative order
varies (by definition of multi-event timing error). If a program
has no multi-event timing error then no such process exists. If
none of a program’s processes contains a multi-event timing
error then the program cannot, since the error has to be in a

process.

A process is well-ordered if it uses only blocking communication
and specific, private channels (implies a deterministic match).
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Proof

For conflict between two communication events to arise, the
events have to have the possibility of occurring in either order.
Blocking communication guarantees that each activity will occur
as an atornic unit so the relative order between communication
events in different activities is determined by the relative order of
their requests. Request-request conflict can only occur if the
receive requests can match more than one send. Receive
requests that specify specific, private channels have only one
possible send as a match (a deterministic match). Therefore, no
conflicts can occur, so the relative order of occurrence of all
communication events in the process is deterministic. There-
fore, by definition of well-ordered, the process is well-ordered.

With the above lemmas we can now discuss methods of preventing multi-
event timing errors. One way to prevent multi-event timing errors is through the

use of remote procedure call.

Theorem #5: A process cannot have a multi-event timing error if the only
method of communication used by the process is the client end

of remote procedure call.
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Proof

Remote procedure call is actually a send followed immediately
by a blocking receive on a specific private channel. Therefore,
by lemma #4 and lemma #6, a process that only uses remote

procedure call can have no mulii-event timing errors.

Though the use of remote procedure call can potentially degrade parallel-
ism, it will avoid the possibility of timing errors involving the process making the
remote procedure call for the communication events involved in the remote pro-

cedure call.

We can also use the above lemmas to show that if a distributed program is
restricted to using blocking communication on specific private channels, then it

can have no timing errors.

Theorem #6:  Using blocking communication and deterministic match (which
means no receive(any)) guarantees a program is free of timing

€rrors.

Proof

(1) single-event timing errors cannot occur (by theorem #2)
(2) each process is well-ordered (by lemma #6)

(3) therefore, no process has a multi-event timing error (by
lemma #4)
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(4) therefore, the program has no multi-event timing errors (by
lemma #5)

(5) With no single-event and no multi-event timing errors, the
program has no timing errors.

We have shown that all timing errors can be prevented by the use of block-
ing communication on specific, private channels. These restrictions can, how-
ever, degrade performance of a program by diminishing the amount of parallel-

ism between its processes.

Relaxing Restrictions

To prevent timing errors we have placed restrictions on the characteristics
allowed for both communication channels and communication events. There
are, however, instances where timing errors are prevented with some of these

restrictions relaxed.

One restriction that we can relax is the requirement of blocking communica-
tion. We have shown that single-event timing errors can be prevented without
requiring blocking communication by insisting no event uses a communication
event’s space during the lifetime of the communication event’s activity. Similarly,
while allowing non-blocking communication, we can prevent multi-event timing

errors by insisting that no two activities, sharing space, have intersecting life-
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times. To insure lifetimes of space-sharing activities do not intersect, we make

the restriction that deterministic report must be used.

Theorem #7:

Multi-event timing errors cannot occur if only deterministic
match is used (no receive(any) or wail(any)) and activities with

intersecting lifetimes do not share space.
Proof

By the definition of multi-event timing error, for a multi-event
timing error to occur, communication events must share space
and be able to occur in either order. If the lifetimes of two
activities do not intersect then their relative order is determined
by the order of their requests, which is deterministic. If the
lifetimes of two activities do intersect then they have no space in
common. In either case, multi-event timing errors cannot

occur.

Another restriction we can relax is deterministic match. A process using

non-deterministic match for report can handle events as they occur instead of

having to wail for each one individually. This flexibility allows a server to have

greater throughput in handling requests and prevents one client from blocking a

server by failing to receive a message. However, if the maich for a report is

non-deterministic, control of the process can be affected. The report might cause

different sections of the process to execute depending on which request the report
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matches (See figure 2.5). If we can guarantee that the behavior of the program
does not depend on which section executes, then we can prevent multi-event tim-

ing errors while still allowing this non-determinism.

We will use the following definitions to deal with processes containing this

non-determinism.

O Section:
A section of a process is a dynamically contiguous group of one or more
staterments.

The Wait can match either Receive. This match will determine which
part of the if statement executes.

Receive(X, bufl);
Receive(Y, buf2);

return code : = Wait(any);
if return code.who = X then

else

endif

Figure 2.5: Non-deterministic report affects control
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If A and B are sections then we use AB to mean the execution of section A

immediately followed by the execution of section B.

1 Independent:
Let VO be the set of variables in state SO' If the channels used for commun-

ication requests and reports in section A are different from those in section
B, then consecutive sections A and B are independent iff, for any reachable
state SO that immediately precedes the execution (in either order) of the two

sections A and B, a unique state S  is reached after this execution of the two
sections and we can produce 4 disjoint sets of variables V,, V,, Vyand V,
where V, U V, UV,uUV, = V such that

(1) The value of all ve V, are referenced (used or changed)

only in section A

(2) The value of all ve V, are referenced only in section B

(3) The values of all v e V5 are unchanged in sections A and
B.

(4) The values of all v e V, are changed on their first refer-

ence in both sections A and B.

When sections are independent they cannot interfere with each other. The

variables in V, and V, are only referenced in one section, sO their use cannot
affect the other section. The variables in V, are read-only variables and there-

fore their use in one section cannot affect the behavior in the other section. The

variables in V, are changed before they are read, so their values at the start of
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either section do not affect behavior.

O Independent Report:
Let X and Y be two activities. If the section that report(X) causes to execute
is independent from the section report(Y) causes to execute and the state
arrived at after their execution is independent of the order in which the sec-
tions execute, then we say report(X) and report(Y) are independent reports.

Example

Receive(A, bufferl);
Receive(B, buffer2);

fori:= 1,2 do
case Wait(Any)
A: compute with bufferl;
B: compute with buffer2;
end case;

end;

If cases A and B are independent sections then the two reports are indepen-
dent.

The concept of independent sections is important for showing situations
where report with non-deterministic match cannot lead to multi-event timing
errors. In this situation a process can potentially achieve greater parallelism.
With the above definitions we can now show requirements for the safe use of

report with non-deterministic match.
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Theorem #8:  There is no report-report conflict with independent reports.
Proof

For a multi-event timing error to occur involving two reports,
the behavior that occurs because of the occurrence of one report
must affect the behavior that occurs because of the other report.
Neither of the above can happen for independent reports.

There are instances where non-deterministic send-receive maich
(receive(any)) does not lead to request-request conflict. These situations occur
when the behavior of the process depends on what is received instead of where in
the code it is received and the sections where this behavior takes place are

independent. To illustrate this point we use the following two examples.

In the first example there is receive-receive conflict because the behavior of

the process depends on where in the code the message is received.

BlockReceive(any, bufferl);

find sum of values in bufferl;
BlockReceive(any, buffer2);

find product of values in buffer2;

In the next example there is no receive-receive conflict because the behavior
of the process depends on what is received and the sections where this behavior

takes place are independent.
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BlockReceive(any, bufferl);
if sender = A then Aaction;
else Baction;
BlockReceive(any, buffer2);
if sender = A then Aaction;
else Baction;

Procedures Aaction and Baction are independent.

We use the following definitions to prove these situations are free of

request-request conflict.

0 Connected:
Let Send S match Receive R and let Receive R match Report T, then we

say S and T are connected and we call T the connection of S.

0O Action:
Let S be a send activity and let T be the connection of S, then action(S) is

the section that report(T) causes to execute.

Theorem #9: Let process P contain two receive requests R1 and R2 that might
be in conflict. Let S1 and S2 be the only two send activities that
can match R1 and R2 such that each send matches exactly one
of the receives. There is no request-request conflict for R1 and
R2 if action(S1) and action(S2) are deterministic and if the con-
nection of S1 and the connection of S2 are independent reports.
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Proof

P’s behavior is the same no matter which send matches which
receive. Since the behavior does not change, the order of the
receive requests does not lead to a multi-event timing error so
there is no request-request conflict.

In this section we have shown how the choice of communication primatives
can lead to preventing or allowing multi-event timing errors. We refer to the
table in figure 2.6 as we summarize our findings here. The table shows choices
in three dimensions, blocking or non-blocking communication; buffering or
non-buffering in the communication subsystem; and deterministic send-receive
match, deterministic wait match, both or neither. For buffering in the communi-
cation subsystem we assume the sender of a message is blocked until the com-

munication subsystem has a copy of the message.
Making the following choices can prevent the possibility of multi-event tim-
ing errors.
A and B:
With blocking communication and deterministic match there can be no
time-dependent behavior therefore, no timing errors (by theorem #6).

C: If synchronous report is combined with these choices there are no asynchro-

nous communication events. Therefore, a process that only uses these
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BLOCKING NON-BLOCKING
DETERMINISTIC BUFF NON-BUFF BUFF NON-BUFF
MATCH
ALL A B C E
SEND-RCV Y Y D F
REPORT XA XB XC XE
NONE Y Y XD XF

A-F, XA-XF: cases where multi-event timing errors can be prevented
Y: undefined cases

Figure 2.6: Preventing Multi-Event Timing Errors

features is well-ordered and has no multi-event timing errors (lemma #4).
Combined with asynchronous report, these features allow multi-event timing
errors 1o occur since report-report conflicts, report-completion conflicts and
request-report conflicts can occur. Adding the requirement that activities
with intersecting lifetimes do not share space guaraniees that no multi-event

timing errors can occur (theorem #7).

D: This case is similar to case C excepl non-deterministic report makes report-
report conflicts possible. If synchronous reports are independent then

report-report conflicts are avoided (theorem #8).
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E: This case is like case C except that non-buffering in the communication sub-
system admits the possibility of completion-request, completion-completion
and completion-report conflicts. Requiring that no space is shared between

intersecting activities guarantees that multi-event timing errors cannot occur

(theorem #7).

F:- This case is like case E but, as in case D, for a process to prevent multi-
event timing errors while using only synchronous report care has to be

taken that the process only uses independent repors.

XA Each of these cases allows non-deterministic send-receive match. To
prevent multi-event timing errors while using the features in these sections
the precautions discussed for the corresponding section (Xn corresponds to
n) have to be followed. In addition, the actions of all sends that might con-

flict have to be deterministic and independent.

Case Y cannot occur since there are conflicting semantics in the choices of
non-deterministic match for report and blocking communication. Blocking com-
munication uses implicit report which must maich the specific request on which

the process blocked.

Determining whether lifetimes intersect is difficult when asynchronous
report is used. Since an activity’s lifetime is contained in the activity’s extended

lifetime, substituting ‘‘extended lifetime’” for ‘lifetime’” in the theorems proved
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in this chapter creates stronger conditions for guaranteeing no timing errors.

As we have shown in this section, all timing errors can be prevented by
proper system design and proper use of language constructs for communication.
We will discuss the implications of preventing timing errors in chapter 5. There
are, however, reasons for not using the methods advocated in this section. If we
are not going to prevent timing errors then we must at least detect their

occurrence.

Detecting Timing Errors

Techniques that prévent timing errors can cause loss of parallelism and
potential deadlock. The use of blocking communication in systems such as Char-
lotte can exact a large cost in decreased parallelism. In the time it takes to send a
message and get back the acknowledgement, even when the receiver is ready, a
process can execute on the order of 6000 instructions. If the receiver is not

ready then the cost is higher.

If systems such as Charlotte allowed only blocking communication, a
deadlock problem might occur. A server process, such as the fileserver, might
be blocked forever by an incorrectly written user process that failed to do a
required send or receive. If this happened, no other process would be able to

use the fileserver. Though there are ways to avoid this problem without using
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non-blocking communication, they involve the overhead of more processes; one
way would be to have a dedicated server for each user. This solution would
increase the number of processes in a system and may degrade performance if
the system is not able to cope with a large number of processes. Since we do not
always want to use techniques that prevent timing errors, we need other tech-

niques that will allow us to detect timing errors when they occur.

To detect any program error we need to detect the program’s unacceptable
behavior. To detect errors, we have to define behavior that is always unaccept-
able. One such behavior is premature use of message buffers, as in example 1.1
and example 1.2. By using tags, in a method similar to that used in NIL
[Stro83], we are able to detect premature use of message buffers. A buffer is
marked either free or pending; it is initially free. A send or a receive causes the
buffer to be marked as pending. At completion, the buffer is again marked as
free. An exception occurs for a process that either tries to receive into a buffer
or tries to use a buffer where a receive is pending. Similarly, if after requesting
a send, a process tries to change the contents of the send buffer marked pending,
an exception is raised. A process is allowed to initiate multiple sends from the

same buffer. The buffer is marked free after notification for all of the sends.
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Theorem #10: A program that uses tagged buffers can detect all single-event

timing errors.
Proof

The use of tagged buffers will detect all intersections of the use
of space by a communication event and all other events. By
theorem #1, these intersections are symptoms of all single-event
timing errors. Therefore, the use of tagged buffers will detect
all single-event timing errors.

There are problems with using tagged buffers in systems such as Charlotte
where any variable, array, or record can be used as an input or output buffer.
The tagged buffer technique is not free. Additional space has to be provided to
mark each data item, and there is added overhead of checking tags on every vari-
able access. A system could be implemented where the microcode would do this
checking.

Another incorrect behavior we can detect in distributed programs is devia-
tion from a protocol. The reason for not following a correct protocol can be that
the program was written incorrectly or that there is a timing error (as in example
1.5). Other researchers [Baia83, Bate81, Rose85] have discussed ways for speci-
fying correct communication behavior. The communication subsystem can then

compare this description with the program’s actual behavior and trap if there is a
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discrepancy. This method will detect protocol errors and allow the user to search
for the causes with a tool similar to TAP (described in the next chapter). There
are drawbacks, however; the added checking degrades performance and the

specification of the protocol is difficult to write.

Other multi-event timing errors can be detected by the processes themselves
when improper conditions arise. This detection is accomplished through user-
generated runtime checks testing for inconsistencies in the program. Failing a
check causes the program to trap, allowing the user to search for the cause of the

detected error.

To detect errors in a process, deviant behavior must be defined for that pro-
cess. Some of the techniques presented in this section can be used in general
situations but detection of many errors depends on the goal of the program and

can only be accomplished with help from the programmer.
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2.2 Misorderings

It is possible for ordering errors to be deterministic. In this section we dis-
cuss errors called misorderings (see figure 2.1). We start out with the following

definitions.

O Depend:
We say a message M depends on an event j if j comes before the sending of

M in the partial ordering (j — Send(M)).

O Most Recent Ancestor:
We say an event e is the most recent ancestor of a message M with respect
to a process P (¢ = MRApR(M)) if event e is in £(P), M depends on e, and

there is no event f in £(P), € — f, such that M depends on f.
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O Misorder:
Given any two messages M, and M, received by process A with

€, = MRAp(M)), €, = MRAP(MZ),“ and e, = ©,, if A receives M, before
A receives M, then we say A has a misordering and the receipt of M, and

M2 is misordered.

Example

A sends a message to B and later sends a message to C. After receiving the
message from A, C does some computations of its own and sends the results
to D. After D receives the information from C, it receives some information

from B.

D has a misordering since
MRA,(4) —> MRA , (3).
The receipt of messages 3 and 4 is misordered.
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O Safe Program:
We say a program is safe iff it is impossible for a misordering to occur. If a

program is not safe we say it is unsafe.

Example

A sends a message to B, then sends a message to C. C blocks until it
receives the message from B then blocks until it receives a message from A.
B sends a message to D, blocks until D has received it, then sends a mes-
sage to C. Finally, C sends to D.

Only C and D can have a misordering since they are the only
processes that receive more than one message. For C, MRAA(4)

— MRA,(2). Since C must receive message 4 first there can be no
misordering at C. For D, MRAA(3) - MRAA(S) and MRAB(B)
— MRAR(5). Since D must receive message 3 first there is no

misordering at D. Since there are no potential misorderings this is a
safe program.
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O Safe Process:
We say a process is safe iff it is impossible for a misordering to occur with

messages received by that process. If a process is not safe we say it is

unsafe.

Example

A is safe; D is unsafe.
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O Fatal:
We say a program is fatal if a misordering must occur.

Example
A sends a message to B, then sends a message to C. E sends a message to
C, then sends a message to B. After receiving both values, B and C send

messages to D. No matter in which order D receives the information from

B and C a misordering will occur.
b 2
For D,

MRAL(i) - MRAL() and MRA,(j) — MRA , (i) or
MRAL(j) - MRAg(i) and MRA, (i) - MRA,(j).
In either case D is misordered with respect to messages i and j.
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O Dangerous:
If a program is neither safe nor fatal we say the program is dangerous.

Example

A sends a message to B, then sends a message to C. After receiving a mes-
sage from A, B and C each send a message to D. If D receives the infor-
mation from C before it receives the information from B a misordering will
occur. If the message from B arrives first then no misordering will occur.

If message i arrives before message j then there is no misordering.

O QOut-of-order Timing Error:
An out-of-order timing error is a multi-event timing error where two or

more messages are misordered.

Example

GDH (example 1.4)
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Using the above definitions we can state the following lemmas and theorems:

Lemma #7:

Theorem #11:

Theorem #12:

A program is safe iff all of its processes are safe.
Proof

Since an unsafe program must have at least one unsafe process,
having all of its processes safe makes a program safe.

A safe program contains no out-of-order timing errors.
Proof

A program with an out-of-order timing error must contain a
misordering. A safe program contains no misorderings and
therefore, contains no out-of-order timing errors.

Unsafe programs allow out-of-order timing errors.
Proof

From the converse of definition of safe program we see that in
an unsafe program it is possible for misorderings to occur. If a
timing errors results from one of these misorderings then an
out-of-order timing error will have occurred. Whether these
errors do occur depends on the contents of the messages and
whether, in the case of dangerous programs, misorderings actu-

ally do occur.
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There are two important points to remember here. The first is that not all
misorderings are errors. For example, a server gathering numbers to add is not
concerned with the order in which they arrive (the threat of overflow notwith-
standing). The second important point is that not all misorderings that are errors
are timing errors. If the misordering error always happens then it is not a timing
error. Fatal programs may differ in which misordering they hit but there will

always be a misordering.

Detecting Misorderings

We can detect misorderings by using a variation of Lamport’s logical clocks

[Lamp78]. We call the following the vector detection method.

Each process keeps a count of the number of messages it has sent so far.
Each process keeps a vector containing the highest count it has heard of concern-
ing each of the processes in its program. When sending a message, each process
includes a copy of its vector. When a message is received by a process the vector
in the message (V) is compared with the vector stored locally. Each element in
the local vector is increased to the value of the corresponding element in V if the
new element is greater than the stored one. If any received element is less than
the corresponding stored element then a misordering has occurred. This misord-

ering may or may not lead to an error in the program. The process can then
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fail, print a warning, or go on depending on how the programmer sets up the

program.

Theorem #13: The vector detection method will find all misorderings.
Proof

Given two messages, Ml and M,, received at some process, B,
with e, being the last event depended on by M| in some process
A and with e, being the last event depended on by M, in pro-
cess A. Suppose a misordering occurs. This means either, (1)
M,-> M, and ¢ —> e, or 2) M;-»> M, and e, > €.
Without loss of generality we will assume (1). The i" com-
ponent of M,’s vector must contain a value corresponding to e,
and the i component of M,’s vector must contain a value
corresponding to e,. Since e, —> €, the corresponding value
in M,’s vector is less than the corresponding value in M,’s vec-

tor. Therefore the misordering will be reflected in the values
contained in the vectors.

Preventing Misorderings

In non-fatal programs, the possibility of misorderings can be eliminated
while still allowing non-blocking communication. To accomplish this, the
operating system uses the partial ordering found in timing graphs to guarantee

that a program is safe. This is done using a variation of the vector detection
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method which we will call the vector prevention method.

Each process keeps a count of messages sent and a vector of known values
of the other processes as in the vector detection method. When a message is
received by a process the vector in the message (called V) is sent to all other
processes (o see if they have elements in their stored vectors that are less than the
corresponding elements in V. If no process has such an element then the origi-
nal message is accepted. Each element in the local vector is increased to the
value of the corresponding element in V. If any process questioned has an ele-
ment less than the corresponding value of V then acceptance of the message is

delayed.

Theorem #14: The vector prevention method will prevent all misorderings.

Proof

Since the vector detection method will find all misorderings
(theorem #13), and no messages will be accepted if any stored
element of any vector in any process in the program could cause
a misordering to be detected, then no misorderings will be
detectable by the vector detection method and therefore no

misorderings will occur.

The vector prevention method will guarantee that no misorderings occur.

However, deadlock will occur in fatal programs and can occur in dangerous and
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Message, is sent to C, message, is sent to B. and then message, is

sent to D. D will ask the other processes for their vectors and discover
C has an earlier number in its vecior for A than is contained in the
message from B. Therefore the message from B will be delayed forever
since there are no other messages to update the local vector values.

Figure 2.7: Deadlock with the vector prevention method

even safe programs, as shown in figure 2.7. Even if deadlock did not occur, the

overhead of checking vectors and sending extra messages makes this method

impractical to use.
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2.3 Uses For Time-Dependent Behavior

Processes can have time-dependent behavior without having timing errors.

A server process, such as a terminal handler, might converse with many
user processes. The work done for these processes (output to the terminal) will
depend on the order in which the server receives requests. This is acceptable as
long as no incorrect work can be done. (There is no incorrect way the informa-

tion can be displayed on the shared terminal.)

A programmer might want a program to perform differently due to time-
dependent behavior in the same way that many programs perform differently by
using random numbers. Random numbers can be generated by time-dependent
behavior and the use of random numbers can be replaced by time-dependent
behavior. A random-number generator might derive its values from the
sequence of messages it receives. Allowing time-dependent behavior might make
it possible to produce a truly random sequence of values. Alternatively, this
non-determinism can replace the use of random numbers. Applications that
formerly used random numbers might use time-dependent behavior to affect their

course of action.

Time-dependent behavior is not always undesirable. A programmer who

wants time dependent behavior in a program can purposely use the constructs



that lead to timing errors.
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Chapter 3

Finding Causes of Timing Errors

We have implemented a tool, called TAP, to help the user find the causes of
detected timing errors. The implementation was done on the Charlotte [Fink83a]
operating system. The first part of this chapter is a description of Charlotte. The

last part of the chapter is a description of TAP.

3.1 Charlotte

Charlotie is a distributed operating system that provides a powerful interpro-
cess communication mechanism employing duplex links to facilitate distributed
applications. A link is a bound communication channel between two processes
upon which messages can be sent, received, awaited, or canceled. Processes
may acquire new links, destroy their end of the link, or enclose their end as part
of an outgoing message. Thus a link is a dynamic capability-like entity that per-

mits only the holder access to its communication resource.

Overview

The idea of using links for interprocess communication was introduced in
the Demos operating system [Bask77]. Charlotie has enhanced the idea in

several ways. First, a Charlotte link is a duplex communication channel, while a
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Demos link allows traffic in only one direction. Both holders of a Charlotte link
have equal rights to use, move, or destroy it. Moreover, they can do so simul-
taneously, independently from each other. In addition, Charlotte does not buffer
messages between processes. When both processes are in the same machine,
Charlotte copies the data directly from one user’s addressing space to another.
This decision places the burden of buffer management on the programmer, not
the kernel. Experience with Arachne, a predecessor of Charlotie, shows that

buffer management at the kernel level can lead to complex deadlock [Fink81].

For applications requiring the transfer of lérge amounts of data, Charlotte
eliminates the constraint on message size. Since buffers are allocated out of user
address space, large transfers present no difficulties for the kernel implementa-
tion. However, Charlotte does provide a small cache of buffers purely for effi-
ciency. The cache stores messages arriving from the network that do not match

a pending Receive.

The ability to cancel is unique to Charlotte. It is important in pipeline pro-
tocols. Later stages of the pipeline can send control requests to earlier stages.

Those earlier stages cancel their current work and service the control request.

Posting a Send or Receive is synchronous, but completion is asynchronous.
Charlotte provides several facilities for dealing with this asynchrony. First, a

process may explicitly wait for a Send or Receive to finish. Second, a process
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may poll the completion status of a Send or Receive. Third, a process may con-
vert the completion event into an interrupt. (This third facility has not been

implemented due to semantic clashes with other features.)

Communication

Charlotte provides five major operations on links. Their descriptions are

detailed elsewhere [Fink83a, Arts84]. We summarize their main features here.

Send(transmission link, buffer, buffer size, enclosed link)
initiates a transfer of data from the indicated buffer along the indicated link.
The operation remains in progress until its completion is reported by the
Wait system call. An end of a link may be enclosed in the message. If

Send should fail, the enclosed link, if any, is restored to the sender.

Receive(transmission link, buffer, buffer size)
allows a message to be received on the indicated link and placed in the
buffer. The link identifier AllLinks permits the acceptance of a message on
any link held by that process. Receive on AllLinks may not coexist with
Receive on a specific link because it may cause inconsistency (from user
point of view) in choosing the buffer for arriving messages. If the buffer is
not large enough to hold the entire message, as much as fits is placed in the

buffer and the tail is lost. In all cases both the sender and the receiver are
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notified via the completion event (discussed shortly) how much data was

accepted.

Wait(transmission link, direction): completion event
queries the result of a previous communication request. The direction may
be incoming (Receive), outgoing (Send), or both, on a specific link or any
link. An event descriptor is returned by the kernel. It contains the matched
link, direction, completion code, number of bytes transmitted, and whether
a new link was acquired. The user may choose to be blocked until the

operation completes or to continue immediately.

Cancel(transmission link, direction)
requests cancellation of a Send or a Receive operation on the specified link.
Cancel returns an error when the operation does not exist, and failure when
the operation has progressed beyond the point where the kernel can stop it.
This call blocks the process until the kernel is able to report success or

failure.

Destroy(link)
requests that the given link be closed. Destroy always succeeds unless the
link does not exist or is being transferred. This call will abort all outstand-
ing Send or Receive requests on that link. It blocks the user until any

necessary cooperation by the other kernel has completed. The process at
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the remote end will get a failure code from any call related to that link.
That end is reclaimed once a remote process invokes Destroy on its end. A

request to destroy a link being transferred is an error.
Implementation

Charlotte is implemented on the Crystal multicomputer [DeWi84]. It
resides above a communication package called the Nugget [Cook83], which pro-
vides a reliable transmission service. Charlotie’s kernels (one per machine)
implement the abstractions of processes and links. In order to provide the facili-
ties described earlier, kernels communicate with each other through a low-level
communication protocol. Significant events for this protocol include messages

received from remote kernels and requests from local processes.

One of the design decisions for the Charlotte operating system is to keep the
kernel, which will reside on the each node machine, efficient, concise, and
easily implemented. As a result the kernel provides only those services essential
to the entire system, such as inter-process communication and process control.
All other services are implemented through utility processes, which wait for
requests coming from client links. These utility processes include the kernjob,

starter, fileserver, connector, command interpreter, and terminal handler.

The kernjob

The kernjob is a utility process that is always resident on every node. It acts
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as a representative on its node for programs that need special actions locally.
In particular, the starter controlling a node may reside on a different node.
It uses the kernjob’s ability to make and control processes. A control link is
a special link through which the holder can exercise control over a process
associated with the link. Control links are implemented by links to the
kernjob and by kernel calls only allowed by the kernjob. To exercise con-
trol over another process the kernjob provides the following services to the
holder of the control link: peek, get information from the process’s address
space; poke, change the values stored in the process’s address space;
inspire, start the process executing; expire, kill the process; suspend,
suspend the process; resume, continue the suspended process; and gethis-
tory, return the address of the process’s communication history. Another
service provided along control links is signal, the controlled process can
send a signal (an integer) to the holder of the control link. All these ser-
vices are accomplished through the privileged kernel calls allowed only for

the kernjob.

starter
The Starter is a utility process that manages the creation of new child
processes for the clients. One Starter may control more than one node. To

start a process, the client must have a link to a Starter. The clients send the
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request to the Starter with a file name from which a new process is to be
created. If the Starter succeeds in starting the child, according to the
request of the user, a control link, an umbsilical link or both the links will be
returned to the client as an enclosure in a message. With the request of both
links, the control link will go first and umbilical link goes next. The control
link allows a parent to exercise some degree of control over its child. The
umbilical link usually is the link from the newly created process to its

parent.

fileserver

The fileserver provides services to manipulate a file. Any client that needs
to read or write files communicates directly with the fileserver after acquir-
ing a link to it from the switchboard. Since Unix files are used in the
implementation, the operations are identical to those available under Unix:

open, read, write, create, and seek.

switchboard

The Switchboard is a utility process designed to allow other processes to find
each other and to exchange links. It allows a server process to register a
link under a given character string name, and it allows a client process to

locate a registered server and obtain a link to it.
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The connector

The

The connector is a tool to establish initial links in a group of processes. Itis
implemented as a free-standing utility registered with the switchboard. A
program that wishes to initiate a connection episode (usually a command
interpreter, but in general any top-level entity in a group of processes) will
be called a "parent”, and the members of the newly connected group will be
called "children”. To start a connection episode, thc parent should first
have a description file in which all the child processes and their inter-
connections are defined. Then the parent needs to send a request with its
description file name to the connector. For most of top-level users which
only have the interface with the Charlotte command interpreter there is a
Charlotte command to invoke a connection episode with the description file

name as an argument.

command interpreter

Part of Charlotte initialization is to start a command interpreter processes.
The command interpreter prompts the user when ready to execute a com-
mand. The user may type the name of an executable file with arguments.
There is also a ‘‘connect’”> command, with which a user can invoke a con-
nection session to a group of processes defined in a description file given by

the user as the command argument.
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The terminal handler
Another utility process provided is the terminal handler. The terminal
handler for a node talks to the user through the console terminal. Processes

on any node can connect to any terminal handler to interact with the user.

Charlotte is intended as a vehicle for large-scale distributed computation.
Distributed applications can be programmed for Charlotte in several languages.
The simplest interface is to use the communication primitives directly from a pro-
gram written in C or Modula. The kernel of Charlotte and most utility processes
are fully operational. Work is progressing in enhancing its programming

environment and in implementing a process migration facility.

3.2 TAP

In chapter 2 we discussed reasons for not using the mechanisms to prevent
timing errors and we discussed ways to detect timing errors. Here we introduce
a tool, TAP, that a programmer can use to find the causes of timing errors that
have been detected. We have not implemented a detection mechanism other than
normal exception handling; all other detection must originate within the user’s
program. To help the user find the causes of timing errors we exploit the partial
ordering of events implicit in timing graphs as mentioned in Chapter 1. Our goal

is to use a history-saving mechanism to collect enough information at funtime to
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construct the timing graph if needed. This information is stored in the process’s
communication history and used by an interactive tool, called TAP, which
traverses the graph, showing the programmer the order in which events
occurred. The programmer can then look at this ordering to find the events that

occurred in an unacceptable order.

There are two main problems involved in finding the cause of a timing
error. First, we never know when a timing error might occur. Second, chang-
ing a program to help discover the cause of a timing error changes the relative
timings and therefore might mask or unmask timing errors. To solve these prob-
lems we advocate keeping the history-saving mechanism active at all times. The
final version of a program is, therefore, the same as the debug version. We feel
that the history-saving mechanism is like subscript checking; they both have a
cost but they are both worth doing most of the time. Because the history-saving
mechanism is always active, performance degradation must be minimal. A user
can disable this mechanism if a speed up of the program is desired. The tool

described here requires the history-saving mechanism.

In the rest of this section we will discuss the tool (TAP) we developed, the

details of implementation, and obstacles to building an effective tool.
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The tool (TAP)

TAP is a tool similar to a postmortem debugger and is the user interface for
examination of the timing graphs. With TAP, a user can look at the information
at the current node in the timing graph or move along an edge to another node.
The new node then becomes the current node. For ease of use, TAP provides
commands to let the user skip to nodes not joined by an edge to the current node.
TAP has control links to all of the user’s processes and, therefore, can get at all

of the information stored in the process’s communication history.

A copy of TAP is loaded with the user’s program and is given the control
link for each user process by the connector. After initialization, TAP blocks,
waiting to be activated. It can be activated by the user typing a special break
character to the terminal handler or by a signal from a user process over its con-

trol link.

When TAP is activated it suspends all user processes to which it has control
links and waits for orders from the user. With TAP, the user can step through
the timing graph reflected in the saved communication histories to see the order
in which events occurred and the contents of messages. This information should
help the user find the cause of timing errors that have occurred. Examples of

TAP commands are shown in figure 3.1.
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- continue user program (quit TAP)

- halt user program

- next record in this history

- go to the other end of this message

- previous record in this history

- quit

- reset pointer to most recent entry

- status: look at communication history

- who: show nickname of current process
- Next record in history on this link

- Previous record in history on this link

- Repeat last search (n, p, s, N, P, R)

- who: show nickname and link information for all processes
- Repeat last search (n, p, s, N, P, R)

£XUVZELY LT OITO

Figure 3.1: Examples of TAP commands

TAP can be used to find non-timing errors that manifest themselves in mes-
sages. In a system like Charlotte, the content of messages is input to the receiv-
ing process and output from the sending process. If a process does not ade-
quately handle some input, then looking at the communication history can show
the programmer both where in the code the input was received and what the
input contained. For example, in a case statement if there is no case for a partic-
ular value received in a message, then that value will be in the communication
history and the programmer will not have to supply a print statement to reflect the

bad value. Similarly, looking at the messages sent by a process can clue the pro-
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grammer both that possible errors exist and where in the program they might be
in the same way that printed output can give similar clues. Traditional debuggers
can provide access to the same information using breakpointing and displaying
variables but the processes in question would have to be recompiled to support

debugging and the program would have to be rerun.

We say message A is the cause of message B if the input of A to a process
leads to that process producing B. After finding an error in a program, for
example the sending of an incorrect message, the programmer can use TAP to
find the cause of the error. We can look at the conversations in which a process
is engaged to see if the contents of previous messages might have caused the
observed deviant behavior. This is similar to Miller’s [Mill85] use of causality to

identify commonly traveled paths in server processes.

Examples of the use of TAP and the results of experiments done with TAP

are shown in chapter 4.

Implementation

Changes to the runtime support

The Charlotte operating system is written in Modula using the UW-Modula
compiler [Fink83b]. For this research, it is assumed that user programs are also

written in Modula and are compiled by the UW-Modula compiler. Programs
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writlen in other languages could benefit from TAP with modification to their run-
time support. The startup code was modified to notify the kernel of the address
of the user process’s communication history. To maintain transparency while
allowing user processes to activate TAP, the Modula runtime was also changed to
catch exceptions (such as an attempt to divide by zero) and to notify TAP of the
exception by sending a signal over the control link. Also included in the runtime

are user-callable procedures to notify TAP of the process’s user-defined name.

Changes to operating system

Charlotte was changed in many ways. First the kernel was altered to keep a
record of all request, completion, and report events. To accomplish this goal, a
system call was added to allow the user process {0 pass its communication-history
address to the kernel. Whenever a communication request, completion or report
occurs, the kernel saves information in this communication area for TAP. The
information saved by the kernel includes: the type of event (send, receive and so
on), a walkback of the process’s stack at the time the event actually occurred, the
local and remote link numbers associated with the event, the machine and pro-
cess at the other end of the link, a count of this type of event on this link, and the

first twelve bytes of the message.
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Second, the kernjob was modified to allow signals on control links so a pro-
cess can let its parent (TAP) know when an exception occurs. New requests
were added for control links to help TAP in its work. These new requests
include: get the address of the process’s communication history and get the
process’s machine number and process identifier. New system calls were added
to the kernel to help the kernjob perform these tasks. TAP uses other kernjob
requests that were already in existence, these requests include: suspend the pro-

cess, resume the process, and peek at a memory location.

Third, the connector was changed to start TAP, give it the control links to

the user’s processes, and connect it to a terminal handler.

Finally, the terminal handler was modified to talk to TAP when a special
break character was hit. A user can be interacting with the application program

and on noticing an error switch to TAP by hitting the break ('B) key.

Unimplemented Features

TAP was created to investigate the use of timing graphs in finding timing
errors in distributed programs. We did not deal with many other problems in
distributed debugging. A usable distributed debugger should provide all of the
features of a traditional debugger as well as features needed to handle problems

arising in a distributed environment. These traditional features, such as break-
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points, single stepping, and the ability to look at current values of the program’s

variables, were not provided here.

We also did not investigate the issue of user interface. For a distributed
environment, a debugger might provide windows so that the user can concentrate

on various areas of activity without being burdened with too much information.

On a system like Charlotte, a debugger might display the user’s program in
graphical form with the processes as nodes and the links as edges between the
nodes. The debugger could use the saved information in the communication his-
tory and display the communication activity on this graph. Whenever a message
is sent, the debugger could display the message moving along the edge of the
graph. The user could watch this display and quickly get a global view of the
interaction between processes. The debugger could also provide the means to
zoom in on a section of the graph to concentrate on the interactions within a sub-

set of the processes.

Another graphical form in which the debugger might display the saved
information is as the timing graph. Given a global view of the timing graph and
the ability to zoom in on particular areas of the graph might provide the user with
a view of the stored information that would be more effective in finding errors.
The user might be able to recognize proper and improper patierns of communica-

tion from a global view that would not be evident just stepping through the timing
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graph.

Currently up to 100 messages are saved in a process’s communication his-
tory. Storage for the communication history adds 6488 bytes to the user’s data
area. Though saving 100 messages has proven useful, it is possible to save the
entire user communication history by writing the buffer out to disk before
overwriting any information. This technique was not tried partly because the
added overhead would not be insignificant. When the communication history is
full, a process could suspend itself and send a message to TAP. TAP could then
issue a Peek to grab the entire history, continue the process, and write the his-
tory to disk. Every time a communication history is full there would be five extra
messages (notify TAP, peek, get the results of the peek, continue the process,
and send the message to the fileserver to write out the buffer) and the extra over-
head of having TAP run. Since for each message activity three events are stored
in the communication history (request, completion and report), the number of
message activities needed to fill a history is one third the number of slots avail-
able in the history. Two processes communicating only with each other would
record the same amount of information. Their histories would both become full
at the same time and both would be written to disk. With this method, the mes-
sage overhead is 10/((size of history)/3) or 30% in the case of a history size of

100. There is also the overhead of having TAP run and the lost time while the
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each process is suspended.

TAP, as developed, is only useful for programs run from a terminal. Pro-
grams run baich, not connected to a terminal, would not benefit from TAP.
TAP could be modified so that, upon receiving a signal from a user process,
TAP would suspend all user processes and save their images in disk files. The
user could later use TAP to inspect the saved files to investigate the cause of the

program’s failure.

Examples of the use of TAP to find program errors are shown in the next

chapter.

Obstacles

There are obstacles that can potentially limit the effectiveness of the
approach described here. One obstacle is the size of main memory. Since this
size is finite, only a finite amount of information can be kept in the communica-
tion history. Once the space allotted for this history fills, old information is lost

as newer information arrives.

Another obstacle is the difficulty in suspending all processes at the same
instant. Many messages might be exchanged between processes from the time an
error is discovered until all processes have suspended. Communication events

occurring before an error discovery are probably more meaningful to finding the
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error than are communication events occurring after the error discovery. If the
space allocated for the communication history is too small then meaningful infor-

mation could be lost before all processes are suspended.

Another obstacle in Charlotte [Fink83a] is the difficulty in knowing the
exact moment a communication event occurs. Charlotte runs on top of a low
level communication subsystem. The time Charlotte finds out a message has
arrived or gives a message to the communication subsystem to be delivered may
not be the actual time the event occurs. Therefore, the order in which Charlotte
thinks events occur may not be accurate. For example (see figure 3.2), after a
process makes a send request, Charlotte might pass a pointer to this message to
the Nugget and record a send completion in the process’s history. The Nugget
might then delay in delivering the message out of the user’s address space to the

remote machine. If the user modifies the message between the time Charlotte

Send(X, buf);
— Charlotte thinks the send completes here

Change buf;
—~ the send actually completes here

Figure 3.2: Charlotte’s misconception of when a send occurs
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records the send completion and the time the lower level actually sends the mes-
sage, then a timing error will occur but the error will not be reflected in the
communication history. A more conservative recording of send completion can
be achieved by recording the completion when the Nugget notifys Charlotte that

the message has been sent.

Another obstacle to deal with is the time needed to coliect the information
for the communication history. This time is significant and, if too large, can

make using the history saving mechanism unattractive.

The final obstacle, common to many source level debuggers, is the reorder-
ing of machine level instructions by the optimizing compiler. To show the rela-
tive order of all events, the program counter (PC) is recorded for all communica-
tion events. This value can later be compared with the addresses of the machine
instructions that correspond to source level instructions in the appropriate pro-
cess. The source level instruction nearest the recorded PC can be determined to
find the relative order between communication events and local events. If the
code for a process is optimized, then knowing the PC of a communication event
and a local event’s source level statement will not necessarily show the actual

order of occurrence between the events.

Despite these obstacles, using the communication-history mechanism with

TAP is an effective method for finding the causes of timing errors.
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Chapter 4

The Experiments

In this chapter we discuss the results of using TAP. At the end of this
chapter we discuss the impact that keeping the communication history has on a

running program.

To gauge the usefulness of TAP as a debugging tool various experiments
were run to see how easily TAP could be used to find the causes of timing
errors. The problems considered include a synchronization error (as discussed
in example 1.5), requesting two receives into the same buffer (a combination of
example 1.1 and example 1.2), and arrival of messages in an unexpected order

(as discussed in example 1.4).

4.1 Synchronization

The problem

To test the usefulness of TAP in finding synchronization bugs, a version of
dining philosophers was written that had the potential of becoming unsynchron-
ized. Ten user processes were created, five philosophers and five forks. The
algorithm used called for each odd philosopher to attempt to pick up its left fork

before picking up its right fork. The even philosophers picked up the right fork
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first. To pick up a fork, a philosopher sends a ‘‘get’”” message o the fork. The
fork then replies ‘‘yes’” or ‘‘no.”” The philosopher would repeatedly send the
request to the fork until a ‘‘yes’” message was returned or until starvation
occurred. To return a fork, a philosopher would send a ‘‘free’” message to the
fork. The fork would respond with ‘‘yes’ if it accepted the return or ‘‘no’” if
the philosopher had not been granted the fork. At starvation, a philosopher

retrns any forks he has obtained and, after a short wait, begins again to try and

get both forks.

The error in the philosopher process is in the following code where the phi-
losopher attempts to obtain a fork.
while (not starved) and (Receive(fork) < > ’yes’) do
Send(fork, ’get’);
Check(starved);
end;
if not starved then Use Fork;
else Starve;
The problem arises when the philosopher starves; the logical expression in the
*while’ siatement short circuits and does not do the Receive. The fork, on the
other hand, has answered the previous request. This answer will be received
after the philosopher is rejuvenated and tries again to obtain the fork. Once the
fork has been granted the philosopher will not know it since he is one message

behind. The subsequent request will cause an error since the requester has

already been granted the fork. This interaction can be seen in figure 4.1.
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A - Philosopher 4 starves and fails to receive the reply from Fork 4
B - Philosopher 4 receives the previous "No" instead of the "Yes”
C - ERROR: Fork 4 receives "Get” from the holder of the fork
(Dotted lines indicate some intervening events have been omitted)

Figure 4.1: a portion of the dining philosopher’s timing graph
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This error is a timing error because it will only show up under certain tim-
ings between the processes. Specifically, the fork process is doing a non-
deterministic receive (receive(any)) to get requests from the philosophers. This
allows various orderings between the requests of the philosopher who gets the
fork and later returns it and the other philosopher who keeps requesting the fork.
This variability in ordering leads to a timing error since the actions of the con-
flicting sends are not independent. Without this non-determinism the philoso-
phers would always hit the error or never hit the error. With the non-

determinism the error is only occasionally hit.

Finding the Cause

The error was detected by a fork process (in the experiment, Fork4). Using
TAP the fork’s history was examined and the offending philosopher (Philo4) was
discovered (see figure 4.”. Checking the philosopher’s communication history
revealed that two requests for the fork were sent without an intervening receive
request to find out if the fork was granted. Knowing the line number in the
code from where the requests were made led to finding the bug. The interaction

with TAP is detailed in Appendix A.
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4.2 Use of One Buffer for Two Receives

The problem

For the second experiment we ran a program made up of three processes A,
B and C. Process A named the same buffer for two receive requests, one for a
message from B and one for a message from C (See figure 4.2). Process A then
waited for the first message to arrive. The message was supposed to contain four
identical integers. After dealing with the first message A waited for the second

and ignored it.

Finding the Cause

Process A detected the error itself. After receiving an array of four integers
it tested them twice (lines 7 & 12) to verify they were identical (see figure 4.2).
When it turned out they differed the process signaled TAP. Using TAP we
found that the messages process A received completed at three points in the code.
Two of those points were the points A waited for the receive to complete (lines 5
and 16) and no errors occurred when the receives completed at these points.
The third receive completed between the two waits (line 12), overwrote the infor-
mation being used by the process, and led to the error. The interaction with

TAP is detailed in Appendix B.
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D i =1

) while i < 1000 do

3) err := Receive(b,adr(msg),size(msg));

4) err := Receive(c,adr(msg),size(msg));

5) err := Wait(ALL LINKS, Received, result);

6) num = msg[l];

7) if (msg[2] <> num) or (msg[3] <> num) or

8) (msg[4] <> num) then

9) SignalParent(1); dummy  := Suspend(-1);
10) end;

1) num = msg[l];

12) if (msg[2] <> num) or (msg[3] <> num) or
13) (msg[4] <> num) then

14) SignalParent(1); dummy  := Suspend(-1);
15) end;

16) err := Wait(ALL LINKS, Received, result);
17 inc(i);

18) end; (* while ¥)

Figure 4.2: process A expects 2 receives in the same buffer (msg)

4.3 Unexpected Order

The problem

The third experiment tested the usefulness of TAP to help detect errors
caused by messages arriving in an unexpected order. For this experiment we
wrote a program that consists of four processes, an accumulator process and

three worker processes. The accumulator process issues a Receive(Any) in a
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loop, gets values from the other processes and adds their values to a global total.
This total is initialized to 10 and it is an error for the value to fall below 0. The
three worker processes send the values -6, -4, and 10 to the accumulator,
exchange messages with each other and send their values to the accumulator
again. It was hoped that the exchange of messages between the worker processes
would synchronize them between rounds to prevent any one of them from getting
o far ahead of the others. This synchronization attempt failed. An error

occurred causing the accumulator’s value to fall to -6.

Finding the Cause

The accumulator process detected the error (see figure 4.3). Using TAP
showed the accumulator received the values -6, -4 and -6 from worker, worker3
and worker, respectively without receiving a value from worker,. The synchron-

ization did not keep the workers close enough together. The interaction with

TAP is detailed in Appendix C.

4.4 The Impact of Keeping a Communication History

Six programs were run to measure the performance degradation attributable
to the history-keeping mechanism. For all programs the system time was

recorded before and after loops which contained nothing except communication
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X - With non-blocking send Worker 1 proceeds without waiting for Worker 2

Figure 4.3: the timing graph for the accumulator/worker problem
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activity, necessary work to sort out what communication activity to do next, and

loop overhead.

The amount of time taken for non-communication activity

accounts for less than The complete results for the first two programs are sum-

merized in the table in figure 4.4. Results of all of the tests are summerized in

the table in figure 4.5. The follow are descriptions of the programs that were

run.

(1) A program was run consisting of a two processes on one machine, a pro-

ducer and a consumer.

The producer sent the same 100 byte message

10,000 times to the consumer. This program was run under three different

versions of Charlotte.

Version 1 is Charlotte without the history mechan-

ism: version 2 is Charlotte with the history mechanism present but disabled;

version 3 is Charlotte with the history mechanism active. As can be seen

Time per
Activity(in ms)

20.3

20.7

25.2

29.5

30.9

33.0

Location

Same Machine
Same Machine
Same Machine
Different Machine
Different Machine
Different Machine

Version

No history mechanism (version 1)
History mechanism inactive (version 2)
History mechanism active (version 3)
No history mechanism (version 1)
History mechanism inactive (version 2)
History mechanism active (version 3)

Figure 4.4: Times for Communication
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NH HA NH/HA
1) Producer/Consumer - same machine 20.3 25.2 .806
2) Producer/Consumer - different machines 29.5 34.1 .865
3) 1 Producer - 2 Consumers 24.7 27.2 .908
4) 1 Producer - 3 Consumers 24.8 27.3 .908
5) 2 process conversation 29.0 29.7 .976
6) Client - Server 28.7 31.5 911

[HA] - History-saving-mechanism active
[NH] - No history-saving-mechanism

Times in milliseconds per communication activity

Figure 4.5: degradation due to keeping a message history

from the tables, the presence of the history mechanism causes a slight
degradation of performance and an active history mechanism can drop per-
formance to 80% of the time taken for communication within a machine.
We feel that this program suffers the most performance degradation since

both processes are delayed by the other’s extra communication overhead.

(2) The same program was run with the producer and the consumer on dif-

ferent machines. Degradation of performance due to the history mechanism



(3)

(4)

(5)
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was less here than the degradation on one machine. Here performance
dropped to 86% of the time taken for the same program with no history sav-

ing mechanism.

This program consisted of three processes on different processors. One pro-
cess (the producer) sent a message to the other two processes (consumers)
then entered a loop. In the loop the producer waited for any send to com-
plete, then sent another message to the corresponding consumer. Since
blocking communication was not used, some of the overhead of recording
information in the communication history occurred in parallel with other
events. Here performance only dropped to 91% of the time taken for the

same program with no history saving mechanism.

This program was identical to the previous one except there were three con-

sumers. The results were the same as in the previous example.

This program consisted of two processes on different machines engaged in a
conversation. Each process requested both a send to and a receive from the
other then entered a loop where they would wait for either activity to com-
plete before rerequesting the completed activity. There was almost no per-

formance degradation here since both processes recorded the necessary his-

tory information when they would otherwise have been waiting.
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(6) Consisting of two processes on separate machines, the final program fol-
Jowed a client-server model of communication. The client process blocked
sending a message to the server then blocked after a receive request to get
the reply. The server blocked on a receive request from the client then
blocked on a send request to the client. The performance dropped to 91%

of the time taken for the same program with no history saving mechanism.

The last four programs were only run with their processes on separate
machines because, running on the same machine, their results would have been
the same as for the first program since no parallelism is gained from running on

the same processor.

These measurements are for communication activity only. A distributed
program that does nothing but communicate would have its performance dropped
as much as 20%. Programs that communicate little would suffer a much smaller

degradation in performance since only communication activity is affected.
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Chapter 5

Suggestions

In chapter 2 we have characterized ordering errors and shown necessary
conditions for their occurrences. Based on these findings we will now make
suggestions for writing distributed programs, designing languages for distributed

programming, and writing operating systems for distributed programming.

5.1 Suggestions for Writing Distributed Programs

In section 2.1 we showed that all timing errors can be prevented by the use
of proper programming techniques and system design. We also showed that this
prevention had a cost in loss of parallelism and flexibility. A programmer writing
a distributed program should consider the needs of the program being written and
only deviate from the techniques for preventing timing errors if it is important to

the program.
When writing distributed programs, a programmer should attempt to adhere
to the following six points.

(1) Avoid asynchronous completion. The use of asynchronous completion
allows single-event timing errors to occur. As shown in chapter 2, either

blocking communication or buffering in the communication subsystem




(2)

(3)
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prevents asynchronous completion. The latter allows more parallelism but if
the system being used does not provide a proper buffering mechanism then

blocking communication should be used.

Use specific request and report on private channels. The use of
specific request and report on private channels guarantees that all matches
are deterministic, thereby avoiding many multi-event timing errors. The
use of both receive(any) and wait(any) leads to non-deterministic match and

should be avoided.

Avoid asynchronous report. If non-blocking communication is being
used, then use blocking report (wait) instead of interrupt report. With inter-
rupt report not only is the buffer used for communication open to conflict
but so are all of the variables referenced in the interrupt routine. Indepen-
dent sections would be hard to establish since there is no point (other than
the end of the process) by which we can say completion and report have

occurred.

Avoid polling. If non-blocking communication is being used, then use
blocking report (wait) instead of polling. As with interrupt report, with pol-
ling we cannot always determine the exact limits as to where completion can
occur. Without knowing these limits it is difficult to establish independent

sections.
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(5) Limit the sections of the program in which timing errors might occur.
If the other points cannot always be followed, then limit the sections of each
process in which timing errors can occur. Since timing errors can only
occur in sections of a program where asynchronous communication events
can occur, these are the sections that should be limited. Following this
advice is helpful for two reasons. First, the program can be manually

scanned o see the effect time-dependent behavior will have. Second, if a

BlockReceive();
BlockSend();
Receive(X); = e s ooonoom oo
Receive(Y);
This is the only section

. in which
Wait(Any); timing errors can occur.
Wait(ANy); = smmemmmmeeemmmmmmesseesmmseooooooooooosseoossoeoes
BlockSend();

BlockReceive();

Figure 5.1: limited section where timing errors can occur
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timing error does occur then the programmer has a limited area of the pro-
gram to check to find the cause of the error. For example, see figure 5.1.
If blocking communication is used except in the section shown then timing

errors can only occur in this section.

(6) Share as little space as possible. Each channel or communication
request should use a personal buffer. This buffer should only be used by
other events that are affected by or that affect communication. Examples
include events that fill the buffer to prepare for a send or events that use the

information in the buffer after a receive.

By following the first four points, it is possible for a programmer to avoid
timing errors. By following the last two points timing errors that cannot be
avoided will be contained, thereby making debugging a manageable task. If the
programmer structures the program’s processes correctly, then for each process,
regions can be isolated in which timing errors can occur. For example, nonin-
dependent sections A and B can be analyzed by the user to find the cause of the

nonindependence. The user can then either
(1) restructure the process to make the sections independent (if possible)
(2) put in checks to catch unwanted situations

(3) use blocking communication to force the desirable order for the sections
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(4) or leave the process alone if the nonindependence is acceptable (for
instance, both sections add the received value to a global total whose final

value is used after both sections have executed).

5.2 Suggestions for Languages for Distributed Computing

A language for distributed computing should allow the programmer to easily
write timing-error-free programs. To accomplish this goal, synchronous comple-
tion and deterministic match should be provided. However, a language and a
compiler for distributed computing should provide much more than these
features. With the right data types and language constructs, a compiler can

check a program not using these features to insure timing errors cannot occur.

The tagged buffer method of timing error detection, described in chapter 2,
can be implemented by the compiler to detect situations where some timing
errors can occur. The programmer can be informed of these situations and even
told in which statements the errors might occur. In NIL [Stro83], the compiler
provides tags for variables and gives a compile-time error message if communica-

tion buffers could be used before completion is guaranteed to have occurred.

A language could also provide the programmer with a mechanism to
describe sections believed to be independent. The compiler could then check for

this independence and warn the programmer when independence is in question.
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Runtime checks could also be provided to discover independence violations. An
example of a language construct to declare sections independent is shown in fig-

ure 5.2.

Another language construct that would help a programmer avoid timing
errors is suggested by Scott in his language LYNX [Scot84]. LYNX, a language
for writing distributed programs, provides differeni threads of control in each
process. Variables can be shared between threads of control or can be local to a

particular thread. Assuming the programmer uses a different thread of control

Independent Sections begin
guard section 1:
Action for section 1
guard section 2:
Action for section 2
end Independent Sections

Independent sections are contained in a block of code delimited by the state-
ments ‘‘Independent Sections begin’’ and ‘‘end Independent Sections.”” Each
section has a guard, which is a logical expression, and an associated action.
Once the block of code is entered each section will be executed exactly once be-
fore the block is exited. The order in which the sections are executed is unde-
fined but a section can only execute if its guard is ‘‘true.”

Figure 5.2: Independent sections
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for each channel, then if no variable is shared between threads, or if the use of
every shared variable is independent of the order of events between threads, then

no multi-event timing errors can occur.

This use of threads can be modeled with independent sections as shown in
figure 5.2. Each thread is divided into subthreads and switching between threads
can only occur at subthread boundaries. A process would contain an indepen-
dent section for each subthread and a guard for each section would contain a
boolean set to ‘‘true’’ by the preceding subthread. A compiler for this LYNX-
like language could warn the programmer if shared variables are used in such a
way as to permit multi-event timing errors. All variables shared between threads

would have to be read-only, write-before-read or unused in each section.

The use of a LYNX-like language does not prohibit the user from writing
programs open to timing errors but it structures the program to reflect the intent
of the programmer and makes writing timing-error free programs an easier
chore. The programming language is the programmer’s vehicle for expressing
the program’s desired behavior. For communication on a multicomputer, a
language should reflect the positive traits of the underlying system 10 the user,
mask the undesirable traits and create the missing necessary traits. With help
from a programming language, writing efficient timing-error-free programs can

be a manageable task.
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5.3 Suggestions for Distributed Operating Systems

An operating system for distributed processing on a multicomputer should
have the facilities to allow a programmer to write timing-error-free programs and
guarantee that the time-dependent nature of the information it keeps for a process
is reflected back to the process appropriately. These facilities allow a process to
control the order in which it handles events. To accomplish the goal of providing
these facilities, such an operating system should guarantee that messages sent
from process A to process B on channel C are delivered in the order sent. When
a receive request can match more than one send request, the operating system
should guarantee the receive request maiches the first send whose message
arrives at the receiving processor. Similarly, if there is a choice of events to

report (as in wail(any)) then the earliest locally-known event should be reported.

Other facilities such an operating system should provide include those that
would potentially give a program more parallelism. These facilities include run-
time tagged buffers and message buffering in the communication subsystem. As
described in chapter 2, tagged buffers, monitored by the microcode, would allow
a program lo detect all single-event and some multi-event timing errors without
having to use blocking communication. Similarly, as described in chapter 2,
message buffering in the communication subsystem would allow a process to

avoid timing errors without blocking for receive and only blocking for send until
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the message is copied to the local communication subsystem. This added copying
has a cost but there would be a benefit since the applications processes would
then be free to execute. Both runtime tagged buffers and buffering in the com-
munication subsystem permit greater parallelism than does blocking communica-
tion. Proper use of buffering prevents all timing errors while the use of tags

detects many timing errors.

An operating system for distributed processing on a multicomputer should
also help the user debug distributed programs. To this end, the operating system
should keep a trace of the communication between processes and provide an easy
way for the user to get at the saved information. One such way would be to pro-
vide system calls which allow a process to examine the communication history of
another process. The operating system should also provide an efficient way to
obtain information concerning the user processes, such as the identity of com-
munication channels in use or a walk-back through the user’s stack. These
facilities allow a tool such as TAP to be developed and provide an efficient way to

gather the information needed by the tool.
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Chapter 6

Conclusion
6.1 Summary

This research has investigated ordering errors in distributed programs with

an emphasis in five areas.

Characterization of communication

In chapter 1 we characterized communication between distributed processes
in three ways. First, we decomposed communication activities into their subparts
(communication events) and focused on request, completion, and report.
Second, we discussed the different dimensions of blocking communication.

Third, we characterized communication channels.

Characterization of timing errors

in the first part of chapter 2 we focused on timing errors. We separated
timing errors into two types, single-event timing errors and multi-event timing
errors. We used our model of communication 1o show necessary conditions for
each type of timing error. These are asynchronous communication events and
shared space for single-event timing errors and non-deterministic order of

occurrence and shared space for multi-event timing errors. We then showed
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ways to prevent the occurrence of timing errors by ensuring at least one neces-
sary condition was violated for each type of timing error. We discussed reasons

for not preventing timing errors and techniques for detecting their occurrences.

Characterization of misorderings

In the latter part of chapter 2 we focused on another ordering error, misord-
erings. We defined misorderings, showed examples of them, showed how they
can be detected using the vector detection method, and showed how they can be

prevented using the vector prevention method.

Development of a methodology for finding causes of timing errors

In chapter 1 we described timing graphs and showed how the partial order-
ing of events inherent in the timing graphs can be exploited to discover the cause

of detected timing errors.

Implementation of a tool based on that methodology.

In the last part of chapter 3 we described TAP, a tool we have implemented.
TAP uses the ideas about timing graphs to help the user find the cause of timing
errors. In chapter 4 we describe the results of the experiments we conducted

using TAP.
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6.2 Ideas for Future Research

In this thesis we have characterized ordering errors and shown necessary
conditions for their occurrences. Future research in this area should concentrate
in four areas: expanding the theory to cover more communication primatives,

language design, timing-error detection, and user interface.
Expanded Theory

The theory of detecting and preventing timing errors can be expanded to
include other communication primitives such as broadcast (send to many) and
cancel (telling the communication subsystem not to do the requested action if it
has not yet been done). Broadcast almost fits the model now but it has many
completion phases. The addition of cancel to the model would introduce new
areas of conflict outside of a process’s address space and would add complexity to

determining request-report matches.
Language Issues

Future research on programming languages for distributed computing
should provide the means for programs to exploit the parallelism available on a
multi-computer while still avoiding timing errors. An area to concentrate on is
methods for automatically guaranteeing sections are independent. Such a method

might come from code optimization techniques such as those using data flow
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analysis [Aho79]. The idea of independence can also be expanded to include the
mutual use of variables in different sections of code such that the behavior of the
program is acceptable no matter in which order the sections execute. This ver-
sion of independence depends on the semantics of the program and would be

much more difficult to automate.
Timing Error Detection

As stated earlier, timing-error detection is difficult because it depends on the
system knowing when the program’s behavior is wrong. In chapter 1 we men-
tioned some techniques that have been developed to specify the expected behavior

of a program. More research needs to be done in this area.

More research is also needed in the area of implementing some of these
detection ideas. As in the case of recording the communication history, any
timing-error detection mechanism will have to be active all of the time. For
these techniques to be useful they have to have a minimal impact on the execu-

tion of the program.
User Interface

The user interface to TAP is poor. Research is needed to find ways to make
the user’s debugging task more efficient. For example, the user might benefit
from an overview of the communication. Displaying a large section of the timing

graph might help. Another useful feature might be an analysis of the programs
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communication patterns by the debugger. Areas where the communication pat-

terns change might be areas following timing errors.
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Chapter 7

APPENDICIES

This section contains the transcripts of the three debugging sessions discussed in Chapter 4.
The boldface type following prompts is the response tot he promt. Prompts with no response use
the default value enclosed in brackets ([]). Comments have been added in boldface type in the

right margins.

7.1 Appendix A

The following is the transcript of the session where the dining philosopher program was
run.
Charlotte(vax), Version 2.5.1 (new nugget), Fri Mar 29 11:50:54 CST 1985
Please give your Configuration File name: /tmp/ajg
charlotte 1= > cd dp2
charlotte 2= > connect C
TAP: going to work An error has been detected by process #9
Distress signal from process #9

[HALT] Command: s Look at process #9’s history
[10] Which Process? (Enter logical process id): 9

[01 Local link number (O for any):

[0] remote link number (0 for any):

[0] remote machine number (0 for any):

[0] remote process number (O for any):

[0] link count (O for any):

[any] Message Type: ([a]ny,[s]nd,{r]ec,[d]es,[R]wait,[S]wait,reqre[c],reqse[n]):
[backward] Direction to search ([florward, [b]ackward, [s]ame, [rleverse):

found at 44

WAIT ON SEND: count = 26,

foc link rem link rem_mach rem proc
21 28 1 6
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PC walkback = b21 c49 2d9 led3 0 0 0

[STATUS] Command: p

found at 43
Saved infois F o r Kk # 4 G E T
70 111 114 107 32 35 52 44 32 71 69 84

SEND: count = 26,
loc link rem link rem_mach rem proc
21 28 1 6

PC walkback = bl4 c49 2d9 led3 0 0 0

Last message sent was an error message
[HISTPREV] Command: p

found at 42
Saved infois F o r k # 4 G ET
70111 114 107 32 35 52 44 32 71 69 84
REQUEST SEND: count = 25,
foc link rem_link rem mach rem proc
21 28 1 6
PC walkback = bl4 49 2d9 led3 0 0 0

[HISTPREV] Command:

found at 41
WAIT ON SEND: count = 25,
foc link rem_link rem mach rem proc
21 28 1 6
PC walkback = b21 ¢49 If7 led3 0 0 0

[HISTPREV] Command:
found at 40

Saved infois F o r k # 4 W o r
70 111 114 107 32 35 52 44 32 87111114

SEND: count = 25,
loc link rem link rem mach rem proc
21 28 1 6

PC walkback = bl4 ¢49 1f7 led3 0 0 0

[HISTPREV] Command:

found at 39
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Saved infois F o r k # 4 W o r
70 111 114 107 32 35 52 44 32 87111114
REQUEST SEND: count = 24,
loc link rem link rem_mach rem proc
21 28 1 6
PC walkback = bl4 49 If7 led3 0 0 0

[HISTPREV] Command:

found at 38
WAIT ON RECEIVE: count = 9,
foc link rem_link rem _mach rem proc
13 12 3 3
PC walkback = 161 led3 134 led3 0 0 0
The process on the other end of this link is:
Process #4 is: Philo4, System id is 3

[HISTPREV] Command:
Message received before error detection was a "get”
found at 37 request from Philo 4
Note this is at location #37 in communication history
Saved infois g
103 0003 0003010

RECEIVE: count = 9,
loc link rem link rem _mach rem proc
13 12 3 3

PC walkback = 154 led3 134 led3 0 0 0
The process on the other end of this link is:
Process #4 is: Philo4, System id is 3

[HISTPREV] Command: o Go to matching send
Looking for system process 3
Process #4 is: Philo4, System id is 3

found at 74 Matching send at 74 in Philo4’s communication history

Saved infois g n
103110 1 0 0 0 0 0 2 0 2 O

SEND: count = 9,
loc link rem link rem_mach rem proc
12 13 4 5

PC walkback = 36f 724 204f O O O 0
The process on the other end of this link is:
Process #9 is: Fork4, System id is 5
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[OTHEREND] Command: n

found at 75
WAIT ON SEND: count = 9,
loc link rem link rem mach rem proc
12 13 4 5
PC walkback = 37c¢ 724 204f O 0 0 0
The process on the other end of this link is:
Process #9 is: Fork4, System id is 5

[HISTNEXT] Command:

found at 76
Saved infois n
1101 0 00 002010 1!

REQUEST RECEIVE: count = 7,
loc link rem Jink rem_mach rem proc

12 i3 4 5
PC walkback = 195 333 724 204f O 0 0
The process on the other end of this link is:
Process #9 is: Fork4, System id is 5

[HISTNEXT] Command:

Response to request is a "yes” from Fork4
found at 77 BUT Fork4 signalled an error instead of responding??
Saved infois y

121 000 00201011
RECEIVE: count = §,
foc link rem link rem mach rem proc
12 13 4 5
PC walkback = 195 333 724 204f O O O
The process on the other end of this fink is:
Process #9 is: Fork4, System id is 5

[HISTNEXT] Command: o return to Fork4 to see where
Looking for system process 5 response was issued
Process #9 is: Fork4, System id is 5

found at 22 Response recorded at 22 in communication history
Saved infois y This is before request was received
121 0 0 0 0 0 0 0 2 010
SEND: count = 8§,
foc link rem link rem mach rem proc
13 12 3 3

PC walkback = 3e4 led3 1f7 led3 0 0 0
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The process on the other end of this link is:
Process #4 is: Philo4, System id is 3

The next 8 pages detail more evidence that the pattern
of communication is not synchronized

[OTHEREND] Command: p

found at 21
Saved infois vy
121 0 0 00000 2010

REQUEST SEND: count = 7,
foc link rem link rem_mach rem proc

13 12 3 3
PC walkback = 3e4 led3 1f7 led3 0 0 0
The process on the other end of this link is:
Process #4 is: Philo4, System id is 3

[HISTPREV] Command:

found at 20
WAIT ON SEND: count = 7,
foc link rem_link rem mach rem_proc
13 12 3 3
PC walkback = 368 led3 0 0 0 0 0
The process on the other end of this link is:
Process #4 is: Philo4, System id is 3

[HISTPREV] Command:

found at 19
WAIT ON SEND: count = 21,
foc link rem_link rem_mach rem proc
21 28 1 6
PC walkback = b2l c49 17 led3 0 0 0

[HISTPREV] Command:
found at 18

Saved infois F o r k # 4 W o r
70 111 114 107 32 35 52 44 32 87111114

SEND: count = 21,
foc link rem link rem mach rem proc
21 28 1 6

PC walkback = bld4 ¢49 1f7 led3 0 0 0
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[HISTPREV] Comimand:

found at 17
Saved infois F o r k # 4 W o r
70 111 114 107 32 35 52 44 32 87111114
REQUEST SEND: count = 20,
loc link rem link rem mach rem_proc
21 28 1 6
PC walkback = bl4 c49 If7 led3 0 0 0

[HISTPREV] Command:

found at 16
WAIT ON RECEIVE: count = §,
loc link rem link rem mach rem proc
13 12 3 3
PC walkback = 161 led3 134 led3 0o 0 ©
The process on the other end of this link is:
Process #4 is: Philo4, System id is 3

[HISTPREV] Command:
found at 15

Saved infois g
103000 3 0003010

RECEIVE: count = §,
loc link rem link rem mach rem _proc
13 12 3 3

PC walkback = 154 led3 led3 0 0 0 0
The process on the other end of this link is:
Process #4 is: Philo4, System id is 3

[HISTPREV] Command: o
Looking for system process 3
Process #4 is: Philo4, System id is 3

found at 68
Saved infois g n
103110 1 0 0 0 0 0 2 0 2 O

SEND: count = §,
loc link rem link rem mach rem proc
12 13 4 5

PC walkback = 36f 724 204f O O 0 0
The process on the other end of this link is:
Process #9 is: Fork4, System id is 5




[OTHEREND] Command: n

found at 69
WAIT ON SEND: count = §,
foc link rem link rem_mach rem proc
12 13 4 5
PC walkback = 37¢c 724 204f 0 0 0
The process on the other end of this link is:
Process #9 is: Fork4, System id is 5

[HISTNEXT] Command:

found at 70
Saved infois n
1101 00 0002 01 01
REQUEST RECEIVE: count = 0,
loc link rem link rem_mach rem proc
12 13 4 5
PC walkback = 195 333 724 204f O 0
The process on the other end of this link is:
Process #9 is: Fork4, System id is 5

[HISTNEXT] Command:
found at 71

Saved infois n
110 1. 0 0 0 002 01 01

RECEIVE: count = 7,
loc link rem link rem mach rem proc
12 13 4 5

PC walkback = 195 333 724 204f O 0
The process on the other end of this link is:
Process #9 is: Fork4, System id is 5

[HISTNEXT] Command: o
Looking for system process 5
Process #9 is: Fork4, System id is 5

found at 0
Saved infois n
110 00 0000O0O0C2C010

SEND: count = 7,
loc link rem link rem_mach rem proc
13 12 3 3

PC walkback = 3e4 led3d 0 O 0 0
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The process on the other end of this link is:
Process #4 is: Philo4, System id is 3

[OTHEREND] Command: p

found at 100
Saved infois n
110 0 0000002010

REQUEST SEND: count = 6,
loc link rem link rem mach rem_proc

13 12 3 3
PC walkback = 3e4 led3 0 0 0 0 0
The process on the other end of this link is:
Process #4 is: Philo4, System id is 3

[HISTPREV] Command:

found at 99
WAIT ON SEND: count = 6,
foc link rem link rem mach rem proc
13 12 3 3
PC walkback = 368 led3 0 0 0 0 0
The process on the other end of this link is:
Process #4 is: Philo4, System id is 3

[HISTPREV] Command:

found at 98
WAIT ON SEND: count = 17,
loc link rem link rem mach rem proc
21 28 1 6
PC walkback = b2l c49 1f7 led3 0 0 0

[HISTPREV] Command:
found at 97

Saved infois F o r Kk # 4 , W o r
70 111 114 107 32 35 52 44 32 87 111 114

SEND: count = 17,
loc link rem link rem mach rem proc
21 28 1 6

PC walkback = bl4 c¢49 1f7 led3 0 0 0
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[HISTPREV] Command:

found at 96
Saved infois F o r k ¥ 4 W o r
70 111 114 107 32 35 52 44 32 87111 114
REQUEST SEND: count = 16,
loc link rem link rem_mach rem proc
21 28 1 6
PC walkback = bl4 ¢49 1f7 led3 0 O 0

[HISTPREV] Command:

found at 95
WAIT ON RECEIVE: count =7,
loc link rem link rem mach rem proc
13 12 3 3
PC walkback = 161 led3 0 O 0 O 0
The process on the other end of this link is:
Process #4 is: Philo4, System id is 3

[HISTPREV] Command:
found at 94

Saved infois g
1030 0020002010

RECEIVE: count = 7,
foc link rem link rem mach rem proc
13 12 3 3

PC walkback = 154 led3 0 0 0 0 0
The process on the other end of this link is:
Process #4 is: Philo4, System id is 3

[HISTPREV] Command: o
Looking for system process 3
Process #4 is: Philo4, System id is 3

found at 62
Saved infois g n
103110 1 0 0 0 0 0 2 0 1 O

SEND: count = 7,
loc link rem_link rem mach rem proc
12 13 4 5

PC walkback = 28b 724 204f O O O O
The process on the other end of this link is:
Process #9 is: Fork4, System id is 5



[OTHEREND] Command: n

found at 63

WAIT ON SEND: count = 7,

loc link rem link rem_mach rem proc
12 13 4 5

PC walkback = 298 724 204f 0

The process on the other end of this link is:

Process #9 is: Fork4, System id is 5

[HISTNEXT] Command:

found at 64
Saved infois n
1101 0 0 0 0 0 20
REQUEST RECEIVE: count = 5,
loc link rem link rem mach rem proc
12 13 4 5
PC walkback = 195 333 724 204f

The process on the other end of this link is:

Process #9 is: Fork4, System id is 5

[HISTNEXT] Command:

found at 65
Saved infois n
110 1 0 0000 20

RECEIVE: count = 6,
loc link rem link rem_mach rem _proc
12 13 4 5

PC walkback = 195 333 724 204f

The process on the other end of this link is:

Process #9 is: Fork4, System id is 5

[HISTNEXT] Command: o
Looking for system process 5
Process #9 is: Fork4, System id is 5

found at 90
Saved infois n
110 0 0 0 0 0 0 0 2

SEND: count = 6,
loc link rem link rem_mach rem proc
13 12 3 3

PC walkback = 3e4 led3 0 0
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The process on the other end of this link is:
Process #4 is: Philo4, System id is 3

[OTHEREND] Command: p

found at §9
Saved infois  n
110 0 0000002010

REQUEST SEND: count = 5,
loc link rem link rem mach rem proc

13 12 3 3
PC walkback = 3e4 led3 0 0 0 0 0
The process on the other end of this link is:
Process #4 is: Philo4, System id is 3

[HISTPREV] Command:

found at 88
WAIT ON SEND: count = 5,
loc link rem link rem mach rem proc
13 12 3 3
PC walkback = 368 led3 0 0 0 0 0
The process on the other end of this link is:
Process #4 is: Philo4, System id is 3

[BISTPREV] Command:

found at 87
WAIT ON SEND: count = 15,
loc link rem link rem mach rem proc
21 28 1 6
PC walkback = b2l c49 17 led3 0 0 0

[HISTPREV] Command:
found at 86

Saved infois F o r k # 4 W o r
70 111 114 107 32 35 52 44 32 87111114

SEND: count = 15,
loc link rem link rem _mach rem proc
21 28 1 6

PC walkback = Dbl4 ¢49 117 led3 0 0 0

131



132

[HISTPREV] Command:

found at 85
Saved infois F o r k # 4 W o r
70 111 114 107 32 35 52 44 32 87111114
REQUEST SEND: count = 14,
loc link rem link rem_mach rem proc
21 28 1 6
PC walkback = bl4 ¢49 1f7 led3 0 0 O

{HISTPREV] Command:

found at 84
WAIT ON RECEIVE: count = 6,
loc fink rem link rem mach rem proc
13 12 3 3
PC walkback = 161 led3 0 0 0 0o 0
The process on the other end of this link is:
Process #4 is: Philo4, System id is 3

[HISTPREV] Command:
found at 83

Saved infois ¢
103 0002 0002010

RECEIVE: count = 6,
loc link rem link rem mach rem proc
13 12 3 3

PC walkback = 154 led3 0 0 0 0 0
The process on the other end of this link is:
Process #4 is: Philo4, System id is 3

[HISTPREV] Command: o
Looking for system process 3
Process #4 is: Philo4, System id is 3

found at 53
Saved infois g n
103110 1 0 0 0 0 0 2 0 2 0

SEND: count = 0,
loc link rem link rem mach rem proc
12 13 4 5

PC walkback = 36f 724 204f O O O O
The process on the other end of this fink is:
Process #9 is: Fork4, System id is 5
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[HISTPREV] Command: s

[4] Which Process? (Enter logical process id):

[0] Local link number (0 for any): 12

[0] remote link number (0 for any):

{0} remote machine number (0 for any):

{0] remote process number (O for any):

[0] link count (O for any): 7

fany] Message Type: ([alny,[sInd,[r]ec,[d]es,[R]wait,[S]wait,reqre[c],reqse[n]): s
[backward] Direction to search ([florward, [blackward, [slame, [r]everse):

found at 62
Saved infois g n
103110 1 0 0 0 0 0 2 01 0

SEND: count = 7,
loc link rem link rem_mach rem proc
12 13 4 5

PC walkback = 28b 724 204t 0 0 0 0
The process on the other end of this link is:
Process #9 is: Fork4, System id is 5

the send request below is requesting the fork from
Fork4 but this philesopher never read the previous
message from Forkd, since the fork has been granted
this next request is an error

[STATUS] Command: p

found at 61
Saved infois g n
103110 1 0 0 0 0 0 2 0 1 O

REQUEST SEND: count = 6,
loc link rem link rem_mach rem proc

12 13 4 5
PC walkback = 28b 724 204f 0 0 0 0
The process on the other end of this link is:
Process #9 is: Fork4, System id is 5

[HISTPREV] Command:

found at 60
WAIT ON SEND: count = 5,
loc link rem link rem_mach rem proc
19 23 1 6
PC walkback = ¢9d dc5 701 204f O 0 0



{HISTPREV] Command:

found at 59

Saved infois P 4 g et tion g f
80 52 32 103 101 116 116 105 110 103 32 102
SEND: count = 5,
loc link rem link rem_mach rem proc
19 23 1 6

PC walkback = ¢90 dc5 701 204f 0 0 0

[HISTPREV] Command:

found at 58
Saved infois P 4 g e ttin g f
80 52 32 103 101 116 116 105 110 103 32 102
REQUEST SEND: count = 4,
foc link rem link rem mach rem proc
19 23 1 6
PC walkback = ¢90 dc5 701 204f O 0 0

[HISTPREV] Command:

found at 57
WAIT ON SEND: count = 4,
loc link rem_link rem mach rem proc
19 23 i 6
PC walkback = ¢9d dc5 12b 749 204f 0 0

{HISTPREV] Command:

found at 56
Saved infois P 4 t h in king

80 52 32 116 104 105 110 107 105 110 103 10

SEND: count = 4,
loc link rem fink rem_mach rem proc
19 23 i 6

PC walkback = ¢90 dc5 12b 749 204f 0 0

[HISTPREV] Command:

found at 55
Saved infois P 4 thinking
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80 52 32116 104 105 110 107 105 110103 10
REQUEST SEND: count = 3,
loc link rem link rem_mach rem proc
19 23 1 6
PC walkback = 90 dc5 12b 749 204f O 0

[HISTPREV] Command:

found at 54
WAIT ON SEND: count = 6,
loc link rem link rem_mach rem proc
12 13 4 5
PC walkback = 37c¢ 724 204f O 0 0 0
The process on the other end of this link is:
Process #9 is: Fork4, System id is 5

the send below (#53) requests a fork but the philosopher
never makes a receive request to get the reply

[HISTPREV] Command:
found at 53

Saved infois g n
103110 1 0 0 0 0 0 2 0 2 O

SEND: count = 6,
loc link rem link rem mach rem proc
12 13 4 5

PC walkback = 36f 724 204f O 0 0 0
The process on the other end of this link is:
Process #9 is: Fork4, System id is 5

[HISTPREV] Command: g
charlotte 3= >
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With the above information we can see that Philo4d made two consecutive requests to
Forkd without looking at the intervening response until later. Knowing where in the
philosopher’s code the sends come from helps us limit our search for the cause of the

problem. The walkback shows the send request was made when the PC = 36f.

procedure GetFork (forklink : Linkld; var timeout: integer) : boolean;
begin
024e msg.Action := GET,;

0256 retcode ;= Wait(Send(forklink, adr(msg), size(msg), NOLINK), Sent, result);

0297 if retcode < SUCCESS then
029f sprintf(Printstring, "Philo%d: error on GET, retcode= %d ",
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rank, retcode);

02be Print(Printstring);

02d9 SignalParent(2);

02ea dummy := Suspend(-1);

end;

0306 while (timeout > 0) and (not GetAns(forklink)) do

0332 msg.Action 1= GET;

033a retcode := Wait(Send(forklink, adr(msg), size(msg), NOLINK),
Sent, result);

037b if retcode < SUCCESS then

0383 sprintf(Printstring, "Philo%d: error on GET #2, retcode=%d ",
rank, retcode);

03a2 Print(Printstring);

03bd SignalParent(3);

03ce dummy := Suspend(-1);

end;
03ea timeout := timeout - 1;

end; (* while *)
0319 if timeout > 0 then
0401 GetFork := true
0407 else GetFork := false end;
end GetFork;




137

7.2 Appendix B

The following is a transcript of the session for the process which did two receives into the
same buffer.

Charlotte(vax), Version 2.5.1 (new nugget), Fri Mar 29 11:50:54 CST 1985

% 1: Please give your Configuration File name: /tmp/ajg

charlotte 1 => cd rev2

charlotte 2= > connect A the program is started here

The error is detected and reported here
3: Z> num = 2, msg[1] = 1002, msg[2] = 1002, msg[3] = 1002, msg[4] = 1002
TAP: going to work

Distress signal from process #1

[HALT] Command: s

[-1] Which Process? (Enter logical process id): 1

[0] Local link number (O for any):

[0] remote link number (O for any):

[0] remote machine number (0 for any):

[0] remote process number (O for any):

{01 link count (O for any):

[any] Message Type: ([alny,[sInd,[r]ec,[d]es,[R]wait,[S]wait, reqre[c], regse[n]): r

[backward] Direction to search ([florward, [blackward, [s]lame, [r]everse):
The following is a look at the messages received
by process 1 (Named AAA)

found at 28
Saved info is
22 3 0 0-22 3 0 0-22 3 00

RECEIVE: count = 2, PC = 244
loc link rem link rem mach rem_proc
8 33 2 8

PC walkback = 7cl 89 244 1b73 0 O O
The process on the other end of this link is:
Process #3 is: CCC, System id is 8

[REPEAT] Command:
found at 23
Saved info is
2000200020200
RECEIVE: count = 2, PC = 127
loc link rem link rem mach rem proc
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1 1 4 3
PC walkback = 127 1b73 0 0 0 0 0
The process on the other end of this link is:
Process #2 is: BBB, System id is 3
[REPEAT] Command:
found at 20
Saved info is

23 3 0 0-23 3 0023 3 00

RECEIVE: count = 1, PC = 2ed
foc link rem link rem mach rem_proc

8 33 2 8
PC walkback = 2ed 1b73 0 0 0 0 0
The process on the other end of this link is:
Process #3 is: CCC, System id is 8
[REPEAT] Command:
found at 15
Saved info is

1 00010001 00O00O0

RECEIVE: count = 1, PC = 167
loc link rem_link rem_mach rem proc

1 1 4 3
PC walkback = 167 1b73 0 0 0 0 0
The process on the other end of this link is:
Process #2 is: BBB, System id is 3
[REPEAT] Command:
found at 6
Saved info is

2 0009 00000O0O00O0

RECEIVE: count = 3,
loc link rem link rem mach rem proc

4 30 2 5
PC walkback = ¢94 0 0 0 0 0 0

[REPEAT] Command: W

proc valid first wrap dir histadr histpntr mach

1 T F F B 3856 33 3 3
2 T T F F 38048 21 4 3
3 T T F F 38076 21 2 8

sid name
AAA
BBB
ccc




139

[REPEAT] Command: q

charlotie 4= >

PC

00d5
00e0
00e7
0102
0126
0l4a
0leo
0171
0198

01¢9
0le0
Oled

0201
021a
0225
023c
0263

0294
02ab
02b8

02cc
02ec

Statement

module main;

begin
Setup;
i

When the messages were received the PC was at 244, 127, 2ed
and 167. As can be seen from the section of code below with
corresponding addresses, all but the last receive occurred with a
wail. The last receive occurred while the process was using
buffer and led to the error.

Process AAA

l.

while i < 1000 do

err
err
err
num:

I

I

Receive(b,adr(msg),size(msg));
Receive(c,adr(msg),size(msg));
Wait(ALL_LINKS ,Received,result);
msg[l];

if (msg[2] <> num) or (msg[3] <> num) or (msg{4] <> num) then
sprintf(printmsg,

"Y> num = %d, msg[l] = %d, msg[2} = %d, msg[3] = %d,
msg[4] = %d0, num, msg[ldj, msg[2], msg[3], msg[4]);

Print(printmsg);
SignalParent(1);
dummy := Suspend(-1);

end;

sprintf(printmsg,” first num = %d0, num);

num = msg[l];

Print(printmsg);

if (msg[2] <> num) or (msg[3] <> num) or (msg[4] < > num) then
sprintf(printmsg,

“Z> num = %d, msg[l] = %d, msg[2] = %d, msg[3] = %d,
msg[4] = %d0, num, msg[l], msg[2], msg[3], msg[4]);

Print(printmsg);
SignalParent(l);
dummy := Suspend(-1);

end;
err
inc(i);

Wait(ALL_LINKS,Received Jresult);

end; (* while *)

end main.
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7.3 Appendix C
The following is a transcript of the debugging session for the program which had a process
(global) receiving values from three other process, one value from each per round. Somehow
global received values which indicated one process had gotien two rounds ahead of another.
Charlotte(vax), Version 2.5.1 (new nugget), Fri Mar 29 11:50:54 CST 1985
%1: Please give your Configuration File name: /tmp/ajg
charlotte 1 => cd round
charlotte 6= > connect A
: Global: 20 rounds done
- Global: 20 rounds done
: Global: 20 rounds done

- Global: 20 rounds done
- Global: underflow error, i = 36, total = -6 Error detected here

LW LI W W

TAP: going to work
Distress signal from process #1

[HALT] Command: W Who is everybody?

proc valid first wrap dir histadr histpntr mach sid name

1 T T T F 38700 78 4 6 global

2 T T T F 388l6 36 2 14 first

3 T T T F 38816 25 2 15 second

4 T T T F 38816 30 3 6 third

[HALT] Command: s error detected by process 1 so look at it

[-1] Which Process? (Enter logical process id): 1

[0] Local link number (0 for any):

[0] remote link number (0 for any):

[0] remote machine number (O for any):

[0] remote process number (0 for any):

[0] link count (O for any):

[any] Message Type: ([a]ny,[s]nd,[r]ec,[d]es,[R]wait,[S]wait,reqre[c],reqse[n]): r
[backward] Direction to search ([florward, [blackward, [s]ame, [rleverse):

Look at values received by process 1
found at 73 -6 from first
Saved info is
6 -1-1-1 00000000




RECEIVE: count = 93,

foc link rem link rem mach rem proc
13 36 2 14

PC walkback = 2 la3f 0 0

The process on the other end of this link is:
Process #2 is: first, System id is 14
[REPEAT] Command:

found at 71
Saved info is

6 -1-1-1 00000000

RECEIVE: count = 92,
loc link rem link rem mach rem proc

13 36 2 14
PC walkback =  f2 la3f 0 0
The process on the other end of this link is:
Process #2 is: first, System id is 14

[REPEAT] Command:

found at 69
Saved info is

-4-1-1-1 00000000

RECEIVE: count = 92,

loc link rem link rem_mach rem proc
18 13 3 6

PC walkback = {2 la3f 0 0

The process on the other end of this link is:
Process #4 is: third, System id is 6
[REPEAT] Command:

found at 67
Saved info is

6-1-1-1 00000000

RECEIVE: count = 91,

loc link rem link rem _mach rem proc
13 36 2 14

PC walkback = f2 la3f 0 0

The process on the other end of this link is:
Process #2 is: first, System id is 14

[REPEAT] Command:

0

0

0

0

0

0

0

0

0

0

0

0

-6 from first

-4 from third

-6 from first
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found at 65
Saved info 1s
4 -1 -1-1 00000

RECEIVE: count = 91,

foc link rem link rem mach rem _proc
18 13 3 6

PC walkback = d6 1a3f 0 0

The process on the other end of this link is:
Process #4 is: third, System id is 6
[REPEAT] Command:

found at 63
Saved info is

iI0 00000000000

000

0

RECEIVE: count = 91,
loc link rem link rem mach rem proc
17 70 2 15
PC walkback = f2 1a3f 0 0 O

The process on the other end of this link is:
Process #3 is: second, System id is 15
[REPEAT] Command:

found at 61
Saved info is

4--1-100000000

RECEIVE: count = 90,

loc link rem link rem mach rem proc
18 13 3 6

PC walkback = f2 ta3f O 0

The process on the other end of this link is:
Process #4 is: third, System id is 6
[REPEAT] Command:

found at 59
Saved info is

100 00000O0O0O0O0O

RECEIVE: count = 90,

loc link rem link rem mach rem proc
17 70 2 15

PC walkback = 2 1a3f 1b8 la3f

The process on the other end of this link is:

0

0

0

0

0
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-4 from third

10 from second

-4 frem third

10 from second




Process #3 is: second, System id is 15

[REPEAT] Command:

found at 57
Saved info is
6 -1-1-100000O0©O00O0

RECEIVE: count = 90,
loc link rem link rem mach rem proc
13 36 2 14
PC walkback = 2 1a3f 1b8 la3f 0 O

The process on the other end of this link is:
Process #2 is: first, System id is 14
[REPEAT]} Command:

found at 55
Saved info is

10000000O0O0CO0O0DO0

RECEIVE: count = 89,
loc link rem link rem mach rem proc
17 70 2 15
PC walkback = {2 la3f 0 0 0 0

The process on the other end of this link is:
Process #3 is: second, System id is 15

[REPEAT] Command:

found at 53
Saved info is
-6 -1-1-10000O0O0O0O0

RECEIVE: count = 89,
loc link rem link rem_mach rem proc
13 36 2 14
PC walkback = 2 la3f 0 O 0 O

The process on the other end of this link is:
Process #2 is: first, System id is 14

[REPEAT] Command:
found at 51

Saved info is
4 -1 -1-1000000°00
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-6 from first

10 from second

-6 from first

-4 from third
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RECEIVE: count = 89,
loc link rem link rem mach rem_proc
18 13 3 6
PC walkback = 2 1a3f O 0 0 0 0

The process on the other end of this link is:
Process #4 is: third, System id is 6

[REPEAT] Command:
found at 49 -6 from first

Saved info is
6 -1-1-1 00 000O0O0O0

RECEIVE: count = 88,
loc link rem_link rem mach rem proc
13 36 2 14
PC walkback = d6 la3t 0 0 O 0 0

The process on the other end of this link is:
Process #2 is: first, System id is 14

[REPEAT] Command:
found at 47 -4 from third

Saved info is
4-1-1-100000000O0

RECEIVE: count = 88,
loc link rem link rem mach rem proc
18 13 3 6
PC walkback = 2 la3f O 0 0 0 0

The process on the other end of this link is:
Process #4 is: third, System id is 6

[REPEAT] Command:
found at 45 10 from second

Saved info is
100000 0O0O0O0O0O0CO

RECEIVE: count = 88,
loc link rem link rem mach rem_proc
17 70 2 15
PC walkback = f2 1a3f 0 0 0 0 O

The process on the other end of this link is:
Process #3 is: second, System id is 15

[REPEAT] Command:




found at 43
Saved info is

4-1-1-100000000

RECEIVE: count = 87,

loc link rem link rem mach rem proc
18 13 3 6

PC walkback = f2 la3f 0 0

The process on the other end of this link is:
Process #4 is: third, System id is 6
[REPEAT] Command:

found at 41
Saved info is

100 000 0O0O0CO0O0O0O0

RECEIVE: count = 87,

loc link rem link rem mach rem proc
17 70 2 15

PC walkback = {2 la3f 0 0

The process on the other end of this link is:
Process #3 is: second, System id is 15
[REPEAT] Command:

found at 39
Saved info is

6-1-1-1 00000000

RECEIVE: count = 87,

loc link rem link rem mach rem proc
13 36 2 14

PC walkback = 2 1a3f 0 0

The process on the other end of this link is:
Process #2 is: first, System id is 14
[REPEAT] Command:

found at 37
Saved info is

100 0000O0O0GCO0O0OOCGO

RECEIVE: count = 86,
loc link rem link rem _mach rem proc
17 70 2 15
PC walkback = d6 1a3f 1b8 la3f
The process on the other end of this link is:

0

0

0

0

0

0

0
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-4 from third

10 from second

-6 from first

10 from second



Process #3 is: second, System id is 15

[REPEAT] Command:

found at 35 -6 from first

Saved info is
6 -1-1-1000000O0O0

RECEIVE: count = 86,
loc link rem link rem mach rem proc
13 36 2 14
PC walkback = f2 la3f 1b8 la3f 0 0 0

The process on the other end of this link is:
Process #2 is: first, System id is 14

[REPEAT] Command:

found at 33 -4 from third

Saved info is
4 -1-1-100000000¢0

RECEIVE: count = 86,
foc link rem link rem mach rem _proc
I8 13 3 6

PC walkback = 2 la3f O 0 0 0 0
The process on the other end of this link is:
Process #4 is: third, System id is 6

We can see the pattern of values received by
global is irregular

Process 2 (first) is the process that got ahead
Now let us look at first

[REPEAT] Command: s

(17 Which Process? (Enter logical process id): 2

[0] Local link number (0 for any):

[0] remote link number (0 for any):

[0] remote machine number (0 for any):

[0] remote process number (0 for any):

[0] link count (O for any):

[any] Message Type: ([a]ny,[s]nd,[r]ec,[d]es,[R]wait,[S]wait,r'eqre[c],reqse[n]): r
[backward] Direction to search ([florward, [blackward, [s]ame, [rleverse):

found at 27 Received synchronization message from third
Saved info is

1 00000O0O0O0CO0O0O
RECEIVE: count = 92,
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loc link rem link rem mach rem proc
40 17 3 6
PC walkback = 279 1b43 0 0 0 0 0
The process on the other end of this link is:
Process #4 is: third, System id is 6

[STATUS] Command: .
found at 21 Received synchronization message from third

Saved info is
1 00 000O0O0CO0O0OCOOQO0

RECEIVE: count = 91,
loc link rem link rem mach rem proc
40 17 3 6

PC walkback = 2¢5 1b43 0 0 0 0 0
The process on the other end of this link is:
Process #4 is: third, System id is 6

[REPEAT] Command: .
found at 12 Received synchronization message from third

Saved info is
1 00 0O0O0O0OO0O0OCO0O0O0OOQO0

RECEIVE: count = 90,
loc link rem link rem mach rem proc
40 17 3 6

PC walkback = 20a 1b43 0 0 0 0 0
The process on the other end of this link is:
Process #4 is: third, System id is 6

Go forward from here and see what the pattern
of communication looks like
[REPEAT] Command: n

found at 13
WAIT ON RECEIVE: count = 90,
loc link rem link rem mach rem proc
40 17 3 6
PC walkback = 20a 1b43 0 0 0 0 0
The process on the other end of this link is:
Process #4 is: third, System id is 6

[HISTNEXT] Command:
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found at 14
Saved info is
6-1-1-10000000G¢0

REQUEST SEND: count = 90,
loc link rem link rem mach rem_proc

36 13 4 6
PC walkback = 248 1b43 o 0 o 0 O
The process on the other end of this link is:
Process #1 is: global, System id is 6

[HISTNEXT] Command:
found at 15 Send -6 to global

Saved info is
6 -1-1-1 00000000

SEND: count = 91,
loc link rem link rem mach rem proc
36 i3 4 6

PC walkback = 248 1b43 0o 0 o o 0
The process on the other end of this link is:
Process #1 is: global, System id is 6

[HISTNEXT] Command:

found at 16
WAIT ON SEND: count = 91,
loc link rem link rem mach rem proc
36 13 4 6
PC walkback = 255 1b43 o 0 0o 0o O
The process on the other end of this link is:
Process #1 is: global, System id is 6

[HISTNEXT] Command:

found at 17
REQUEST RECEIVE: count = 90,
loc_link rem link rem mach rem proc
40 17 3 6
PC walkback = 279 1b43 0 O 0 O 0
The process on the other end of this link is:
Process #4 is: third, System id is 6

[HISTNEXT] Command:
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found at 18
WAIT ON SEND: count = 90,
loc link rem_link rem mach rem proc
74 717 2 15
PC walkback = 29a 1b43 0 0 0 0 0
The process on the other end of this link is:
Process #3 is: second, System id is 15

[HISTNEXT] Command:

found at 19 Send synchronization message to second
Saved info is
1 00000O0OO0O0OO

REQUEST SEND: count = 90,
loc link rem_link rem mach rem proc

74 77 2 15
PC walkback = 2c¢5 1b43 0 0 0 0 0
The process on the other end of this link is:
Process #3 is: second, System id is 15

[HISTNEXT] Command:
found at 20

Saved info is
1 0000 00O0O0O0O0O0

SEND: count = 91,
loc link rem link rem mach rem proc
74 77 2 15

PC walkback = 2¢5 1b43 0 0 0 0 0
The process on the other end of this link is:
Process #3 is: second, System id is 15

[HISTNEXT] Command:
found at 21 Received synchronization message from third

Saved info is
1 000 000O0O0CO0O0O0

RECEIVE: count = 91,
foc link rem link rem_mach rem proc
40 17 3 6

PC walkback = 2c¢5 1b43 0 0 0 0 0
The process on the other end of this link is:
Process #4 is: third, System id is 6
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[HISTNEXT] Command:

found at 22
WAIT ON RECEIVE: count = 91,
foc link rem link rem mach rem proc
40 17 3 6
PC walkback = 20a 1b43 0 0 0 0 0
The process on the other end of this link is:
Process #4 is: third, System id is 6

[HISTNEXT] Command:

found at 23 Send -6 to global
Saved info is
6-1-1-10000000G©O0

REQUEST SEND: count = 91,
loc link rem_link rem_mach rem proc

36 13 4 6
PC walkback = 248 1b43 0 0 0 0 0
The process on the other end of this link is:
Process #1 is: global, System id is 6

[HISTNEXT] Command: q

charlotte 7= >

The pattern of communication between first and the other processes shows that between
sending values to global first tries to synchronize with the other two processes. First tries to
receive a message from third and waits for it to complete. First also tries to send a message to
second but does not wait for the completion until the next round. By then it is too late; first is
too far ahead of second.
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