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ITERATIVE METHODS OF SOLUTION FOR

COMPLEMENTARITY PROBLEMS

by Pudukkottai K. Subramanian
under the supervision of Professor Olvi Mangasarian
ABSTRACT

Many problems in optimization theory such as linear programming,
quadratic programming and problems arising in diverse areas such as eco-
nomic equilibria , electronic circuit simulation and free boundary problems
can be formulated as complementarity problems. It is well known that where
the matrices involved are large sparse matrices, the usual pivoting methods
are not very efficient and sometimes even fail. This thesis is a contribution
to the ongoing research in the area of iterative methods for the solution of
linear and nonlinear complementarity problems.

We begin by considering complementarity problems where the operators
are montone and consider their Tihonov regularizations. We obtain bounds
for the solutions of the perturbed problems and in particular, estimates for
the rate of growth of these solutions. In the case of linear complementarity
problems with positive semidefinite matrices. these results reduce the solu-
tion of the LCP to the solution of a sequence of positive definite symmetric

quadratic programs. We propose SOR (successive overrelaxation) algorithms



to solve these subproblems.

In the case of complementarity problems with nonempty interior, we
show that given any preassigned feasibility tolerance our algorithm solves
the problem by solving a Tihonov regularization problem for a single value
of the parameter.

We consider monotone complementarity problems as fixed point prob-
lems. We prove convergence of iterative algorithms which find fixed points
of carefully constructed projection maps using summability methods.

Since the solution of the nonlinear complementarity problem is equiva-
lent to the solution of a system of nonlinear equations, we develop damped
Gauss-Newton methods which under appropriate hypotheses solve this sys-
tem with a local quadratic convergence rate. We present computational
results which show that the use of SOR methods in conjunction with the

Gauss-Newton methods is computationally effective.
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CHAPTER 1

INTRODUCTION

1. The Complementarity Problem

Let R™ be the n-dimensional real linear space and let F' be a mapping from
R" to K™ . The complementarity problem consists in finding an z € NG (if
it exists) such that F(z) € R% and < z, F(z) > = 0 where R} is the non-
negative orthant of R™, i.e., R% = {(z1,...,2p) : ;2 0)}. When F is an
affine function and is of the form F(z) = Mz + g, where M is an n X n real
matrix and ¢ € R”, the complementarity problem is referred to as the Linear
Complementarity Problem and is denoted by LCP(M,q) . When F is not
affine, the complementarity problem is referred to simply as the Nonlinear
Complementarity Problem and we shall write NLCP(F) in this case. This

thesis is concerned with iterative methods for the solution of such problems.

2. Sources of complementarity problems

The complementarity problem arises in many situations. Its primary sources
are equilibrium problems (both economic and physical) as well as necessary

optimality conditions for mathematical programming problems.



We give below some well known instances of complementarity problems.
For proofs of our statements regarding the first two examples, we refer the

reader to [Cottle & Dantzig, 1968] and for the third to [Mangasarian, 1969 .

2.1 Symmetric Dual Linear Programs

Consider the linear program (LP),

LP: min ¢Tz

subject to Az >b, >0
and its dual (DLP),
DLP: max b7y

subject to ATy <e, y>0

where A is an m x n matrix, and ¢ and b are given vectors in ®" and R™
respectively. Solvability of either program, and hence of both, is equivalent

to the solvability of the LCP(M,g) where

0 - AT c
M = and g =
A 0 —b

It is well known that z = (Z, §) in R™ x R™ solves the LCP(M, ) if and

only if Z solves LP and § solves DLP.

2.2 Quadratic Program

Let D be a positive semidefinite symmetric n »x n matrix and let A, b, and ¢

be as in (2.1) above. The quadratic program (QP)

QP: min ¢Tz %xT.Dm

subject to Az >b, 20



is solvable if and only if the LC P(M,q) with

D ~ AT c
M = and q =
A 0 b

is solvable. If z = (Z, §) in ®" x R™ is the solution of LCP(M,g), then T

solves QP.

2.3 Convex Program
Let f: R™ — R and let g : R — R™ be differentiable convex functions on
R™. Consider the convex program

min f(z) subject to g(z) <0, 2> 0.

Let L(z,u) = f(z) + uTg(z) be the Lagrangian. The Karush- Kuhn-Tucker

conditions for this program [Mangasarian, 1969)] are :

v=V.L(z,u) =Vf(z)+ uwTVg(z) >0

y=—-V,L(z,u)=—g(z) >0

(KKT) : >0, u>0
zTv =0
uTy:-O

If any of the standard constraint qualifications are satisfied, then for each
solution of the convex program, the KKT conditions are satisfiable. Thus

the KK T conditions are equivalent to the nonlinear complementarity problem

NLCP(F) with

z = & éR“”"m s F(Z) =

T ( VIL(:c,u)

~ V. L(z,u)



2.4 Other sources of complementarity problems

Complementarity problems occur in the numerical solution of partial differ-
ential equations (where the underlying matrices are often large and sparse)
[Cottle, 1977], [Cottle, Golub, Sacher, 1978]. They also occur in the Christo-
pherson method for solving free boundary problems in journal bearings
[Cryer, 1969], in the simulation of electronic circuits [v. Bokhoven, 1980},
price models in commodity future markets [J. C. Cheng, 1975], energy mod-

els, e. g., the Project Independence Evaluation System (PIES) [Hogan, 1975].

3. Methods of solution for complementarity problems

In the case of the linear complementarity problem, numerical methods of
solution are essentially of two types: direct methods and iterative methods.
The former are based on the process of pivoting on the elements of the
underlying matrix. Typically, direct methods terminate in a finite number of
steps. In contrast, iterative methods produce an infinite sequence of iterates

which converge to a solution.

The best known direct methods are those of Lemke [1965] and Cottle &
Dantzig [1968]. These methods are known to be efficient when the matrices
are not large , are dense and have nice characteristics e.g., copositive plus,
principal positive minors etc. However, for large systems (which is often the
case in applications), when the matrices are sparse these methods may be

ineffective in terms of storage requirements and speed. Also the sparsity



of the matrices is lost after a few iterations unless special techniques are
employed. Examples of large size matrices are known where the pivoting
methods fail to produce a solution [Mangasarian, 1984].

Tterative methods are particularly advantageous for large scale sparse
problems and can be conveniently stored. Sparsity is preserved and since no
matrix inversion occurs, iterates are computed fairly easily. The real disad-
vantage is the large number of iterates often required to meet a termination
criterion.

Tterative methods, often using a relaxation procedure, such as successive
overrelaxation (SOR) methods have been proposed by several authors for the
case when the underlying matrix M is symmetric. In this case, the LCP is the

equivalent of the Karush-Kuhn-Tucker conditions for the quadratic program
. 1 T T .
mmf(x):-z—:r, Mz + ¢’z subjectto >0

and f serves as a descent function. Well known amongst these are the meth-
ods of Cryer [1971], Cottle et al [1978] and Mangasarian [1977]. In partic-
ular, Mangasarian’s algorithm includes many existing algorithms as special
cases. Ahn [1981] has shown that Mangasarian’s algorithm converges for
special classes of non-symmetric matrices (H-matrices).

When LCP(M,q) is solvable, it has a vertex solution. Utilizing this fact,
Mangasarian [1976, 1978, 1979] studied the possibility of solving an LCP
as a linear program. Shiau [1983] has proposed solving an LCP as a finite

sequence of linear programs.
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Methods of solution for nonlinear complementarity problems are in-
evitably iterative in nature. A solution of NLCP(F) for F continuous is

also a fixed point of the map
z — (z- F(:I:))+ := min {0, z— F(z)}

where z, is the projection of £ on ®% . Thus the best known methods
exploit this property. Well known amongst these are the simpilicial division
methods due to Scarf [1967, 1973], Todd [1976], Eaves [1972].
If F is differentiable, given the point z) , we can consider the lineariza-
tion Li(F) of F at zx :
Li(F)z = F(zx) + VF(zi)(z — zx)
= F(zy) — VF(zx)zk + VF(zi)z

where VF(zj) is the Jacobian of F' at z . Hence if we let
M, = VF(z), gr = F(zx) — VF(z)zk,

we get a sequence {zy} of iterates such that £y, solves LCP(My, gx) . Us-
ing results from the theory of generalized equations as developed by Robinson
(1976, 1978, 1979, 1982], Josephy [1979] has shown that under suitable hy-
potheses, the iterates converge locally to a solution z* of NLCP(F), thus
reducing NLC P(F) to a sequence of LCPs. He has used this method in par-
ticular to solve Hogan’s PIES model (Hogan[1975]) using Lemke’s algorithm

to solve the resulting LCPs.



4. Methods proposed in this thesis

In Chapter 2 we shall consider monotone operators F : ®* — R", that
is operators F such that < F(z) — F(y), = —y >> 0 for all z, y in R™.
When F = Mz + g, this is equivalent to having positive semidefinite M .
Under suitable conditions, NLCP(F.), where F, = F + €l is the Tihonov
regularization of F, has a unique solution z. ([Brézis, 1973), [Karamardian,
1972]). If NLCP(F) has a solution, then as ¢ | 0, z. converges to the least

two-norm solution Z of NLC P(F), that is
z = argmin{||z|| : z solves NLCP(F)}

where || || is the two-norm on R". We shall establish growth rates for z.
from which the above known results follow as corollaries.

The above results are used in Chapter 3 to consider LCP(M, g) when
M is positive semidefinite. We shall formulate the problem as a dual ezact
penalty function problem [Han & Mangasarian, 1983]. We propose SOR al-
gorithms to solve LCP(M + €I, g) for ¢ > 0 and this reduces LCP(M, q)
to a sequence of LCPs to be solved by the above SOR procedure. In par-
ticular, when the feasible set of LCP(M, g) has a nonempty interior, we
show how LCP(M, g) can be solved to any preassigned tolerance by solving
LCP(M +e¢l, q) for asingle e > 0.

In Chapter 4, we consider positive semidefinite M and fixed point meth-

ods. Using carefully selected sequences ap, and €, and a summability matrix



B, we show that the iterates
In+1 = (xn - an(Mfl:n + EnTp + Q))+

are bounded if and only if LCP(M,gq) is solvable and in this case, the B-
transform B({zn}) converges to a solution of LCP(M, g). As an interesting
corollary we develop a similar algorithm to solve NLC'P (F) when F is mono-
tone and satisfies a distributed Slater constraint qualification as defined by
Mangasarian and McLinden [1984]. In this setting these authors have shown
that NLC P(F) is solvable. |

The fixed point methods of Chapter 4, by their global nature, are slow
and particularly so near a solution point. Thus their utility is essentially in
the generation of suitable starting points for fast converging Newton- like
methods. We consider one such method in Chapter 5. It has been shown
by Mangasarian [1976] that the general NLCP(F) is equivalent to system
of nonlinear equations. We consider a damped Gauss-Newton procedure to
solve such a system. When NLCP(F) has a nondegenerate solution 2 such
that VF(z) has nonsingular principal minors then this algorithm, under
suitable conditions, converges locally quadratically to z .

The Gauss-Newton method is particularly useful in conjunction with the
SOR and fixed point algorithms of the previous chapters leading to the notion
of poly algorithms. The thesis concludes with a report on our computational
experience with the above algorithms and with some suggestions for further

research.



5. Notions and Notations

As indicated earlier, we shall be principally concerned with real finite dimen-

sional spaces, and real matrices and vectors. In particular:

(i)
(i)

R™ stands for the space of of real ordered n-tuples.

All vectors are column vectors. Given a vector z, we shall denote its
it* component by z;. We say = > 0 if one has z; > 0 for all 2. For
a given scalar A, we define (A\); = max {0, A}. If z € R", we write

z, for the vector whose ith

component is (z;) 4.

Superscripts are used to distinguish between vectors, e.g., z', z? etc.
For z,y € R", z7 indicates the transpose of z, zTy their inner
product. Occasionally the superscript T will be suppressed and we
also use < , > for the inner product to improve clarity.

All matrices are indicated by upper case letters A, B, C etc. The
i** row of A is indicated by A4; and we write A ; to indicate the gth
column. The (z, j)”‘ element of A is indicated by A;;. The transpose
of A is denoted by AT. The symbol I indicates the identity matrix
of appropriate dimension while e shall indicate a vector of all ones
of appropriate dimension.

Real \;*a,lued functions defined on subsets of R™ are denoted by f,
g, h etc., and we write V[ and VZf(z) to indicate the gradient

vector and the Hessian matrix at the point z. If F' is an operator,

F : ®" — R™, we shall write VF to indicate the m x n Jacobian



(vii)

(viii)

(xi)

10

matrix at the point z. For the most part, we prefer to use upper
case letters F, G, etc., to indicate operators.

Forz € ®", ||z|| = {zTz}¥? is the standard Euclidean norm.
When the norm is induced by a positive definite symmetric matrix
G, we write || z || for {zTGz}!/2.

If K is a closed convex set in R", given = € R" we write Px(z) for

the projection of z on K, that is
Px(z) = argmin{||z—z]|: z € K}.

Given NLCP(F), we shall write S(F) for its feasible set and S(F)
for its solution set that is,

S(F) = {z € R} : F(z) € R}
S(F) = {z € §(F) :< z,F(z) >= 0}.
In the case of LCP(M,q) we denote these sets by S(M,q) and
S(M, q) respectively.
We use the notation a.b.c to refer to subsection b.c (or a displayed
equation) in section b of Chapter a. Within the same chapter, the
chapter number will be omitted. We indicate bibliographic refer-
ences by author’s name and year of publication, e.g., [Mangasarian,
1969]. All references are arranged alphabetically and chronologically
for each author.

Finally, the end of the proof of an assertion is indicated by i.
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CHAPTER 2

MONOTONE OPERATORS

AND TIHONOV REGULARIZATION

1. Introduction

In this chapter we shall be concerned with operators F : " — R™ which
are monotone and their Tthonov regularization, F + eI for € > 0. In this
case NLCP(F + €I) has a unique solution z(e) and we study the growth
rate of ||z(¢)||. Our prinicpal result, Theorem 5.1, sharpens some results
due to Brézis [1973] which are given for a multifunction on a Hilbert space.
Although our results are all couched in an R™ setting, they are all extendable
with minor modifications to the more general setting considered by Brézis.

Our main reference throughout this chapter shall be [Auslender, 1976].

2. Definition. Let D C R". An operator F: D — R is said to be

monotone on D 1if
<F(z)-F(y), z—y>> 0 Vz,ye D

It is said to be strictly monotone if the above inequality holds strictly. We

say F is strongly monotone on D with modulus « if

<F(z)-F(y), z—-y> 2 aiz - y|*? Vz,ye D.
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When D = R™ we simply say monotone, strictly monotone, strongly mon-

tone etc.

3. Examples of monotone operators.

We consider in this section examples of monotone operators. For proofs
of our assertions regarding examples (3.1) and (3.2) we refer the reader to
[Auslender, 1976], pages 118 and 40-41 respectively. The proof for example

(3.3) may be found e.g., in [Mangasarian and McLinden, 1985].

3.1 Projection on a closed convex set.

Let C be a nonempty closed convex set in ®". Then the projection operator

P defined on R™ by
P:z — Pg(z):=argmin{|jz —z|: z € C}
is monotone.

3.2 Derivatives of convex functions

Let f be a convex function on the convex set D C R" , thatis, f: D — R

and satisfies
FOz + (1-Ny) < Af(z)+ (1~ A)fly) Yz, ye D.

If f is finite and differentiable on D with gradient V f(z) then F(z) = V f(z)

is monotone on D. If f is strongly convex on D, that is, 36 > 0 such that
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for all z, y in D we have

FAz+ (1= Ay) <M () + (1= N f(y) = 6x(1 = M|z -yl
then F(z) is strongly monotone on D.

3.3 Convex Programs

Consider the convex program 1.2.2 of Chapter 1 :
min f(z) subject to g¢(z) <0, >0

where f : " — R, g : R — R™ are differentiable and convex. The
Karush-Kuhn-Tucker optimality conditions for this problem are equivlant to

NLCP(F),
T V:L(z,u)
z= e ®R™™ F(z) =
u ~VuL(z,u)

L(z,u) = f(z) + uTg(z) being the standard Lagrangian. Then F(z) is

monotone.

3.4 Affine operators

Let F(z) = Mz + g, M being positive semidefinite real n x n matrix, that
is, zTMz > O for all z € R". Then F(z) is monotone. If M is positive

definite, that is, 3 A, 4 > 0 such that

)\HZI‘H2 < zTMz < ,uH:r:H2
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then F(z) is strongly monotone.

4. Variational inequalities
We shall find it convenient in the sequel to consider complementarity prob-

lems as variational inequalities:

4.1 Definition. Let D C %™, F:D — R™. The variational inequality prob-

lem consists in finding z, € D, if it ezists, such that

< F(z,), t—2,>2> 0 Vz € D.

In this case we say that z, solves the variational inequality

(VD) : <F(z),z—2>2> 0 VzeD.

Although many problems can be cast as variational inequality problems,
our interest in them stems from the following well known proposition (see

e.g., |[Karamardian, 1972]).

4.2 Proposition. Let F:R" — R™. Then z, solves NLCP(F) if and only

if z, solves (VI).

Proof

If z, solves NLCP(F), then z, > 0, F(2,) > 0 and < zo, F(z,) > = 0.
Hence,

< F(z,), t—2,>=< F(z2,), 2> 2> 0 vV € R7.
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Conversely, if z, solves (VI), taking z = 0 and = = 2z, successively we
get < z,, F(z,) > = 0.Fori=1,...,n take z = 2, +¢; where e; is the unit
vector with 1 in the i** place, 0 elsewhere then (F(zo))i > 0forl1<t<n.

By definition, z, > O. i

4.3 Definition. Let C be a closed convez set in R", and let F: R™ — R™.

We say F is hemicontinuous on C iof for all z, y € C, the map
A — <FAz+{1-XNy), z—y>

is continuous on the interval [0, 1].

4.4 Proposition. Let C be a closed conver set contained in D and let

F:D — R™ be monotone and hemicontinuous on C. Then
< F(z%), (z—2")> =2 0 vz € C

if and only if

<F(z), (z—2")> > O Vz € C. (4.5)

Further, Z, = {z*: z* solves (4.5)} is closed and convez.

Proof

See Auslender [1976, page 121] . §
Suppose F is affine and monotone, that is, F(z) = Mz + ¢ with M

positive semidefinite. It is well known that if the feasible set

S(M, ¢) = {z > 0: Mz +q >0}
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is nonempty, then LCP(M, q) is solvable [Eaves, 1971]. This is no longer
the case even for continuous nonlinear monotone mappings. For a counter
example, see [Megiddo, 1977] (this example also appears in [ Garcia, 1977]).
However, if F satisfies some growth conditions defined below then NLC P(F)
is solvable. Alternately, if F' satifies a regularity condition such as the dis-
tributed Slater constraint qualification [Mangasarian and McLinden, 1985],

then again the result is true.

4.6 Definition. Let C C D be a nonempty closed convez set and assume
F:D — R". We say F is coercive (strongly coercive) if there exist v, €

C, X € R positive such that
veC v > A = F(v)lv—-v,) >0

(respectively,

F(v)(v — vo)

v e C, |v| = c0 = T

— +00).
The proof of the following Theorem may be found in [Auslender, 1976].

4.7 Theorem. Let F : R® — R" be a monotone operator, coercive and
hemiconintuous on R". Then NLCP(F) is solvable and if F is strongly

coercive, then it has a unique solution.
We now define the Tthonov regularization of an operator.

4.8 Definition. Let F : R — R™ and let € > 0. The Tihonov regular-

ization F. of F is defined by Fc(z) = F(z) +ex.
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If F: ®™ — R" is monotone and hemicontinuous, then F; is also hemi-
continuous and strongly monotone with modulus of monotonicity at least ¢.
It is immediate that F. is strongly coercive. Thus we get the following useful

corollary to Theorem 4.7.

4.9 Corollary. Let F : ®" — R™ be monotone and hemicontinuous. Then

Ve > 0, there ezists a unique z(e) (called e-approzimant or simply approzi-

mant), which solves NLCP(F).

5. Properties of approximants

In this section we shall prove the main theorem of this chapter on the growth

rate of e-approximants.

5.1 Theorem. Let F : R™ — R™ be a monotone operator which s hemicon-
tinuous on R™. Let {e,} be a sequence of positive reals such thate, | 0. Let
F, = F + €, I be the Tihonov regularization of F and let =, be the unique

solution of NLCP(Fy). Let m > n and assume that F(0) 72 0. Then

a) el > el

b)  emllemll <enllel

) Mzm—2zall* < {(en—em)/(en+em)} - {llzml® — llzall?}
d) < Ty T2 > 2 (Emllzal® + enflzall*)/ (em + €n)

Let § = {z:z solves NLCP(F)}. Then

e) sup{||zn|} < o= 2, — T = P:(0) <= S # 0.
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Proof

‘From Proposition 4.2, it follows that
< Fulzm), 2—2m>2 0 Vz € RY.

By taking z = z,,

< Fr(zm), Tn—zm > = 0. (5.2)

Likewise,

< Fpl(zn), Tm —2n > > 0,

which we rewrite as
< —Fp(zn), Tn —zZm > 2> 0. (5.3)
Adding (5.2) and (5.3) we get
< Fou(zm) — Fa(zn), Tn—zm > 2 0.
Hence remembering that Fp, = F +¢em 1,
< F(zm) + €mTm — F(zn) — €nTn, Tn —2m > 2 0.
From the monotonicity of F this yields
< EmIm — EnTny Tn — Em > > < F(zn) = F(Zm), Tnh —Zm > 2 0,
that is,

Em < T — Lny Tp — T > + (Em —€n) < Tpy, Tn—Tm > 2 0.



By assumption m > n so that e,, < €,. We now have
(En = €m) < Tns Tm — Tn > 2 Em||Tm — z, || 2.
By Cauchy-Schwarz inequality,

En — Em

- lzallllzm — znll = lzm — anZ-

We shall prove (a) shortly so that z,, # z,. Hence

iz_s;“;imnznu > ||em = zall 2 llzmll = llzall

and

enllznll > emllzml-

This proves (b).

Next we prove (c). Obviously,
I2mll? = lzm = all® + l22]* + 2 < T = Ty 20 >

so that from (5.4) we now get

26m

ol > = 2l + el + { 22 Hom = el

En m

Hence,

ol = laal? 2 {252 Al = ).

En m

This establishes (c).

19

(5.4)
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We now prove (a). Observe that m > n implies that z,, # zn.
To see this, suppose the contrary and write z,, = z, = z. Then z solves

NLCP(F;) for i = m, n so that
< F(z)+emz, z>= 0

and

< F(z)+epz,z>=0

which imply < emz — €pz, £ > = 0. Since ¢, < &, we must have
z = 0. But F.(z) > 0, so that we must have F(0) > 0 contradicting
our hypothesis. Hence ||z, — z»]| > 0 and clearly (a) follows from (c).

To prove (d), we have from (c) that

En — &
Joml? =2 < 2, 20> Hoal? < { ZZE2 (o  an?)
n m

which implies that

2&.m
2<z >> T iz |2
no Em 2= €n+6m” | et em

2¢€
"z |

or

Em”xm”2 +€nH""nHz
Em t+ €n -

< Loy, Tp > 2
This proves (d).
Finally we prove (e).

We start by showing that {lixnll} bounded = =z, converges to an el-

ement of S. From (a), since {llz,]|} is strictly increasing, sup |[z,| =
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lim ||z,||. Taking m > n and letting m, n — oo, it follows from (c) that {z,}

is Cauchy. Hence z, converges. Let z, — £. Since z, solves NLCP(F,),
Zn 2 0, Fn(xn) > 0, < zp, Fn(zn)>: 0

which implies

so that £ € S.
On the other hand, if § # 0, let 2 be any arbitrary element of S.

Assume that n is arbitrary but fixed. By Proposition (4.2),
< Fp(zn), z2—2,>2> 0 Vz € RY.
Take z = 2 to get
< F(z,) + €nZn, 2— 2o, > > 0. (5.5)
Since z solves NLC P(F), by Proposition (4.4),
<F(z), z-2>2> 0 Vz e RY.

Taking z = z,

< F(zn), zn— 2> 2> 0. (5.6)

€p < ITp, 2—Tp>2> 0 (5.7)
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so that < zn, 2 > > ||zn||?. Hence ||z,|| < ||2|, that is, sup, ||z.[ is
bounded proving the converse.

It remains only to show that if z, — & then £ = Pz(0). But from
(5.7) we have < £, 2— £ > > 0 and since Z was an arbitrary element of S

it follows that £ = P35(0). This completes the proof. i

5.8 Remarks

1. Parts (a) and (e) of Theorem 5.1 are known when F is a multifunction on
a Hilbert space H. For a proof using the theory of Yosida approximations,
see [Brézis, 1974], who also proves a ';V'eaker form of (c).

2. We shall find Theorem 5.1 useful in the next chapter. In particular,
part (e) is used in developing successive overrelaxation (SOR) algorithms for
LCP(M,q) when M is positive semidefinite. We shall use part (b) in finding

e — approzimate solutions satisfying preassigned tolerances.
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CHAPTER 3

DUAL EXACT PENALTY FORMULATION

1. Introduction

In this chapter we shall be concerned with LCP(M, g¢) when the matrix
M is positive semidefinite. Following [Han & Mangasarian, 1983], we first
consider a dual exact penalty formulation for LC P(M, ¢) when M is positive
definite, thus reducing the resulting problem to a maximization problem
over the non-negative orthant. A modification of an SOR procedure due to
Mangasarian [1977] is proposed to solve this maximization problem. When
M is only semidefinite, we consider the Tihonov regularization M +¢e,1 of

M for a sequence of positive reals e, | 0 and solve the resulting sequence

{LC’P(‘M +enl, q)} by the above procedure.

When M is positive semidefinite and the interior int S(M, q) of the
feasible set S(M, g) is nonempty, we show using Theorem 1.5.1 that for
any preassigned tolerance &, we can find approximate solutions by solving

LCP(M + &I, q) for a specific € > 0 depending-on 6.

2. Dual exact penalty for LCP(M, q)

We begin with the following definition.
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2.1 Definition. Given the nonlinear program (NLP),

minimize f(z)
(NLP) :
subject to g(z) < O

where f : R* — R and g : R® — R™, we say that (T, ©) € R" X N™ s

a Karush-Kuhn-Tucker (KKT) point for (NLP) if
Vi(z) + a0(z) = 0

(2.2)
g(z) < 0, ug(z) =0, v > 0.
In this case, T is called a stationary point of (NLP).
Let M be positive semidefinite and let us rewrite LCP(M, q) as
minimize f(z)=<1z, Mz+q¢>
subject to Mz +g¢ > 0 (2.3)

x > 0.

In this case f(z) and the constraints are convex so that the Wolfe Dual for

LCP(M, q) is the program [Mangasarian, 1969],

maximize L(z, u, v)
subject to V_ L(z,u,v)=0 (2.4)
>0, v>0
where L(z, u) = f(z) — vT(Mz + q) — z7v is the standard Lagrangian and

V.L(z, u, v) its gradient with respect to z. We rewrite (2.4) fully as

maximize z(Mz+gq)—u(Mz+q) - zv
subject to (M +MT)z+¢—-MTu—-v=0 (2.5)

u> 0, v> 0.
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The dual ezact penalty function problem associated with (2.3) is the
penalty function problem associated with (2.5), namely,

maximize D(z, u, v)
(2.6)
subject to (u,v) > 0

where
D(z,u,v) :=z(Mz+q)—u(Mz+q)—vz— %II(M+MT)1:+q—MTu-z)[]2,

~ being the penalty parameter [Han and Mangasarian, 1983]. We use the
term ezact penalty expressedly (as against exterior penalty) since, as pointed
out by the above mentioned authors, the optimal Lagrange multiplier associ-
ated with the equality constraints of the Wolfe dual (2.5) is zero under certain
natural conditions (to be explored further later) and .hence the parameter
remains finite.

We first show that the stationary points of (2.6) are of particular interest

to us.

2.7 Theorem. Assume that M is positive semidefinite and that either (i)
4 =0or(ii)y # 0and1/y ¢ spectrum (M+MT). Then every stationary

point (z, u, v) of (2.6) solves LCP(M,q).
Proof
By definition, z is a stationary point of the program

min 0(z, u)
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if for some ¢ > 0, (z, u, £) is a KKT point satisfying

V.L(z,u, &) =0

VuL(z,u, &) =0

where L(z, u, £) = 0(z, u) — £u. These conditions translate into

Vb(z,u) =0, Vib(z,u) >0, uV,l(z,u)=0, u>0.

Using the above facts and noting that (2.6) is a maximization problem, we

find that (z, u, v) is a stationary point for (2.6) if and only if

V.:D(z,u,v) = 0
VuD(z,u,v) < 0
V.D(z,u,v) <0
uV,D(z,u,v) = 0

vV,D(z,u,v) = 0

Hence (z, u, v) is a stationary point if and only if
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VD= (I-~4(M+M")((M+MT)z+q-M"u-v)=0,
VoD =—(Mz+q)+yM((M +MT)z + ¢ - MTu—v) <0,
VoD=—-z+~4(M+MT)z+q-M"u—-v) <0,

uV,D =0, vV,D =0, (u,v) > 0.

By our hypothesis on ~, these conditions reduce to

(M+MT)z+g-MTu—-v =0,
—(Mz+g) <0, —z <0,
u(—(Mz+4q)) =0, v(-z) =0,

v >0, v > 0

Hence,

) M+MT)z+qg = MTu+v
(i) vz = u(Mz+gq) =0 (2.8)

(iii) z>0,u>0,v>0, Mz+qg2> 0

It follows from (i) that
Mz+q = MT(u—1z)+v.

Multiplying this equation by u and z successively and using (ii) we get

0 = u(Mz+4q) = uMT(u~z)+ uv

£(Mz+gq) = sMT(u - z2)
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Subtracting and using (iii) and the fact M is positive semidefinite we finally

get

0> —z(Mz+¢q)—uw = (u—z)MT(u—2z) > 0.

Hence

z(Mz+¢q) =0, £ > 0, Mz+gq > 0,
that is z solves LCP(M, q). |

2.0 Lemma. Let M be positive definite, p the smallest eigenvalue of (M +
MT). If p > 1/~ then the Hessian V2D of D(z, u, v) in (2.6) is negative

definite and symmetric.

Proof

Let us define
z=(z,u, v)T and B=(M+MT —-MT -1

SO fcha,t Bz = (M +MT)z — MTu —v and the expression for D now becomes
D(z) = z(Mz +q) — u(Mz + q) — vz — :27- 1Bz + ¢||*.

Thus
Bz +gq

VD(z) = (—(Mx+q)) — ~BT(Bz + q),

-z
and hence

M+MT -MT -1
ViD(z) = -M 0 o} -+BTB

-1 0 0
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= A — yBTB say. Clearly V2D is symmetric, while
2T Dz
=2TAz—~-2TBTB:
=<z, (Bz — Mz - z) > —7- HBZHZ
= 2zMz — 2cMTu — 2zv — 4||Bz|?

= —2zMz + 2z{(M + MT)z — MTu — v} — 4| Bz|?

< —p-|lz)® +2ljzll - | B=|l - 7] B=]?

= —p{||zl|? = (2/p)lzll | B2l + | B2]?/6} + (3 - )| BZ|?
= —p{llll - (1/p)I1B=II}" - (v — L)I|B=|*)

< 0

since yp < 1. Hence V2D is negative definite. ]

2.10 Theorem. Let M be positive definite and p the smallest eigenvalue of
(M +MT). Suppose v > 1/p. Then the (unigque) solution (z(7), v(7) of the

program

. b 2
m + 2|Mz +q - 2.1
i {zod g IMz g -l (2.11)

solves LCP(M, q) with v(y) = Mz(y) + ¢

Proof

From Theorem 2.7, every stationary point of (2.6) solves LCP(M, q),
which, since M is positive definite, has a unique solution Z. Now D(z,u,v) is

strictly concave (Lemma 2.9) so that (2.6) has at most one stationary point
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satisfying the conditions (2.8). However, (2.8) is satisfied if we take u =  so
that any stationary point of (2.6) must satisfy v = z also.
Hence we can simplify (2.6) to obtain (2.11). Finally, letting z = T and

v =MZT+ ¢in (2.11) we see that

. 7 2
0 < =||M - <
< (zr,Itl;l)r_lzo {zv+ 2]] z+g—v|l*’} <0

so that (£, MZT + q) solves (2.11) uniquely. |
We note that (2.11) was also considered by Eijndhoven [1985].

2.12 Corollary. Let M be positive semidefinite and {€,} a sequence of

positive reals such that €, | 0. Assume that S(M, q) ts not empty. Then

. 1 2
(Irile)go {enzv + -2-|I(M +e D)z +g—v|*} (2.13)

has a sequence of solutions {z(c,), v(en)} such that z(e,) — T and v(e,) —

M7 + q where T is the least two-norm solution of LCP(M, q).

Proof

For any €, > 0, M, (:= M + e,I) is positive definite. The smallest eigen-
value of M,, + M,T is at least 2¢,,. Now use Theorem 2.10. The convergence

of z(e,) follows from Theorem 1.5.1 (e). §

2.14 Preassigned tolerance

Suppose that M is positive semidefinite with int S(M, ¢) not empty. When

an approximate solution satisfying a preassigned tolerance would suffice, it
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is sufficient to solve (2.13) for a single ¢ > 0. We make this precise in the

following Proposition.

2.15 Theorem. Let 6 > 0 be a preassigned tolerance. Assume that M 1s
positive semidefinite and that int S(M, q) # 0. Then there ezists€ > 0 such

that Ve, 0 < e <E, the unigue solution z(e) of LCP(M +el, q) satisfies

z(e) > 0, |lw(e) —w(e)s]] < 6 and |<z(e), wle) >| <6

where w(e) = Mz(e) + q.

Proof

From the last Corollary, z(e) solves (2.13) with &, = €, v(e) = w(e) +ez(e).
It is known that int S(M, q) # 0 => S(M, q) is bounded. For a proof see
[Mangasarian, 1982], where this is shown for the more general case when M

is copositive plus, that is,
(i) z>0= zMz >0 (ii) zMz =0 = Mz =0.

Hence 3K > 1 such that ||[S(M, ¢)]| < K (to find K one can use the
bounds obtained by Mangasarian and McLinden [1985] by solving a single
linear program if necessary). Now choose € = 6/K?2.

For any €, from (2.13) we have
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Hence,
z()w(e)l = ellz(e)li* < Kellz(e)|

< Kefjz(e)]]
< K?-8/K*
=6,
from Theorem 1.5.1 (b). Also since w(g) 4 is the closest point to w(e) in R7,

we have
w(e) — w(e) ]| < Jlw(e) — v(e)|| = € - [z(e)]]

_ _ 6
<& s@)l < 5 K

This completes our proof. §

3. SOR Algorithms

The solution of LCP(M, q) when M is a positive semidefinite matrix reduces
to the solution of a sequence of subproblems of the type (2.13). We consider
in this section iterative procedures to solve these subproblems.

Let € > 0 and write N = M +¢el. Let z = (z, v)T € 3?3_". The

objective function ¢(z) in (2.13) can then be written as
1 2
plz) =€ezv+ é-H.Nz +q - |

We then have
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and

) NTN el -NT
Vielz) = (51 - N I )

Hence (2.13) is simply a quadratic program with a symmetric positive definite
Hessian (Lemma 2.9). Thus we need to consider iterative procedures to solve

problems of the type

. 1
min flz):= 5% Mz + gz (3.1)

where M is positive definite and symmetric. For simplicity, we assume that
M is sizen x nand ¢ € R™.

Cryer [1971] has proposed the following successive overrelaxation algo-

rithm (SOR) to solve (3.1)

3.2 Cryer’s Algorithm

(1) Let 0 < w < 2, and M positive definite symmetric.
(2) Let z° > 0 be any arbitrary starting point.

(3) For k > 0 given z* | determine zk+1 as follows: Having

k+1 k+1 .
L ARAEEE S S
let,
o k+1 k+1 _k k
5'7—-(113] ’...,xj ,$J.+1,...,$n)_
Then

2 = (b, —w- Dy (VAE) )
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where D is the diagonal of M.
Cryer has shown that the iterates {z*} converge to the unique solution of
(3.1). This algorithm, however, is a special case of a more general class of

algorithms due to Mangasarian [1977, Algorithm 2.1].

3.3 Mangasarian’s Algorithm

(1) Let z° >0 and M symmetric.
(2) For k > 0, having z* determine z**?! from

$k+1 :A{$k~WEk(MIk+q+Kk($k+l“$k))} +(1"A)xk
‘ +

where 0 < A <1, w >0, {E*} and {K*} are bounded sequences
of n x n matrices with each E* being a positive diagonal matrix
satisfying E* > ol for some a > 0 and such that for some v > 0

we have

vT{wBY) 7+ KF - 2y > q)? (3.4)

for all k and for all y € R™.
Mangasarian has shown that f(z*) > f(z**!) and that every accumulation
point of =¥ , if there exists one, solves LCP(M, ¢). When M is positive
definite, the level sets {z : f(z) < f(:cO)} are compact, and in this case
z* converges to the (unique) solution of LCP(M, g¢). It is easy to see that

Cryer’s algorithm follows from (3.3) by taking A = 1, E* = D, the diagonal

of M and K* = L the strict lower triangular part of M with 0 <w < 2.
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4. Modified Mangasarian Algorithm (MSOR)
In this section we shall consider a modified form of Algorithm (3.3) providing
at the same time, perhaps, a simplified proof of Mangasarian’s convergence
theorem.
(1) Let zY > 0 be arbitrary and M symmetric.

(2) For k > 0, having z*, determine z* from

2k = }\{kawEk(M:ck+q+Kk(zk - xk))}++ (1- /\)zk

where the sequences of matrices {E*} and {K*} satisfy all the re-
quirements of Algorithm (3.3),0 <A <1, w > 0.

(3) Choose 51 > 0 such that f(z*) > f(z**1).

Theorem 4.2. Assume that =* is an accumulation point of {z*} . Then z*

solves LCP(M, q).

Proof

As in the proof of [Mangasarian, 1977, Theorm 2.1], we have
F(z*) = f(eHY) 2 fe¥) - () = AR - 5P 2 0

Suppose now that 3{k;} such that % — z* and Eki — E*. It is easy to

see that
flah) = fzh+) = f(zh) - f(e5T)

> |2k — k|
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ki

By continuity of f the left hand side goes to 0 in the limit so that z% —z

0. Since K*i is bounded, this implies that

z* = lim zM = Az* —wE*(Mz* +4q)), + (1= A)z"

J—00

and by [Mangasarian, 1977, Lemma 2.1], z* solves LCP(M, g). |

5. Implementation of MSOR

We shall now consider the implementation of MSOR to solve (3.1) and more
generally the case when M is symmetric and positive semidefinite. Assume
that the point z* is given and define d¥, the direction at the point z* to be

2% — zk. A convenient choice for the point z**! is given by z* + o d* where
o = arg min{f(a:k +o0d®) :zF + od* >0, 0> 0}.

It is easy to see that d¥ = 0 <= z¥* solves LCP(M, gq). Indeed, the
proof of Theorem 4.2 essentially rests on the fact that the sequence d* has a
subsequence d¥ — 0. We assume in the following that d* +# 0.

Consider first the case when M is positive definite. Then [|d*||ps # O.
Define

—zk
)

e i e dk < 0}

where B = oo if d¥ > 0. Also the unconstrained minimum of f(z* + od¥)

occurs at the point given by

d
0= E;f(zk + odF) = d* (M (z* + 0d*) + ¢)
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that is at the point

—d*(Mz* 1
mk+skdk where s = ( P ,,Tq)
1d* ]34
It is now easy to see that the stepsize o for our choice of zF*1 is given by

oy = min(Bk, Sk).

When M is only positive semidefinite, it is possible that d*MdF = 0,
that is, Md*F = 0 so that sx = co. In this case ox = Sk provided that By is
finite. If B = oo, that is, d¥ > 0 then f(z) is unbounded in (3.1). Thus in
this case the algorithm terminates. We note that the iterates {z*} need not
have any accumulation point in general when M is only positive semidefinite.

Thus for purposes of implementation, MSOR can be described as follows.
Let M be positive semidefinite and symmetric. Let A, w, {K*} and E* be
as in MSOR.

(1) Let z° > 0.

(2) For k > 0, given z*, define

2k = A{:ck —wE¥(Mz* + g+ K*(zF - $k))}+ + (1 = N)zF,

dr = 2F — z*.

(3) If d¥ = 0 stop; z* is optimal.
(4) 1f Md* =0 and d* > 0 stop; problem has no solution.
(5) If d¥ # 0, let

ﬁk:min{—— :df < 0}.

*‘Q‘l S}
B
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(6) If Md* # 0, let
. = ——alk(M:r’c + q)
k d*MdF

(7) Set ox = min(Bk, $k), okt = ok 4 ordk.

6. Remarks

The above algorithm was implemented as follows. We chose A = 1, w =
1.8, K¥* = L where L is the strict lower triangular part of M. Also, E* was
chosen to be E, where E;; = Dy, for D;; > 0 else E;; = 1. We found the
algorithm to be robust and fast. For positive definite symmetric matrices of
size 40x 40, the problems were usually solved in about .05 seconds. As is to
be expected, the algorithm is much faster than Cryer’s algorithm. We shall

present a more detailed report in Chapter 6.
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CHAPTER 4

FIXED POINT METHODS

1. Introduction

In this chapter we shall be concerned with NLCP(F) when F is monotone
and with LCP(M, ¢) when M is positive semidefinite. Since a fixed point T
of the map z +— (z — F(:c))+ solves NLCP(F) we shall consider iterative
methods such that the iterates converge to such a fixed point.

We shall also consider summability methods to solve LCP(M, ¢) , when
M is positive semidefinite. We shall construct a sequence of iterates which
is shown to be bounded if and only if LCP(M, q) is solvable. In this case, a
(summability) matrix transform of these iterates is shown to converge to a
solution of LCP(M, q).

As an interesting corollary, we consider the case of N LCP(F) where
F is monotone and satisfies the distributed Slater constraint qualification of
Mangasarian & McLinden [1985]. In this case, these authors have established
that NLCP(F) is solvable. We shall show that the matrix transform of the

iterates constructed as above converges to a solution.

2. Fixed point methods

We begin this section with the well known notion of a contraction mapping.
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2.1 Definition. Let P : D C R — R™ . We say P is Lipschitzian with

modulus I > 0 if
|P(z) - P(y)l < Lllz—yll Ve, y €D,

When L < 1 (L < 1) we say P is non-ezpansive (contractive) .
The following Theorem is classical; see e.g., [Ortega and Rheinboldt,

1970, page 120].

2.2 Theorem. (Banach’s contraction mapping princple). Let P: D C
R" — R |, Dy a closed subset of D and such that PDg = {P(:z:) iz €
Do} C Do. If P is a contraction mapping on Do with modulus L, then P has
a unique fized point T in Do. Further, for any point z° in Do, the sequence
{z*} where z*+1 = P(z*), converges to T with the“’followz'ng linear rate :

k+1 _ =
e

The content of the following Proposition is well known. We state it in
following form for later use and furnish a proof for the sake of completeness.
2.3 Proposition. Let F: D C R™" — R™ be monotone and Lipschitzian
with modulus L. Suppose that e > 0, a > 0 and ea < 1. Then the

projection map IP defined by

P(z) = {:c—-a(F(a:) +sa:)}+, r €D

is also Lipschitzian with modulus k(a) = /(1-ae)?+ (al)? If a <

2¢/+v/e% + L?, then PP is a contraction and k attains its minimum value

kmin(e) = L/ L2+ €2 for oa=¢/L*+ ¢
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Proof

We have
1P (z) - PWI* = I{z - a(P(z) +ez)}, — ¥~ a(Fly) +ev) ).

< |z - a(F(z) +ex)} — {y—a(Fl) + ey) 1 1I*
ince projection on R is non-expansive. Hence,
P (z) - P)]* < iz —v)(1 - ea) — a(F(z) - FW)I®
e — g2 (1~ ae)® + oIF(z) - Fy)l|®
201 - ag)(z ~ ) (Fla) - Fw)-

Since e < land < F(z) - Fly),z—-y>2 0 from the monotonicity of F,
IP(c) - PII* < liz- g2 {(1—ee)’ + (eL)*}.

The other claims about k(a) are easy to verify. B

2.4 Theorem. Let F : R — R" be monotone and Lipschitzian with
modulus L. Let {en} be a sequence of positive reals, €xn 1 0. Forn=1, 2,-
let

P,(z) = {z — an(F(z) + enzs)}+

and form=1, 2, and z € R™ let

P (z) =Pro---0Pn (z) = z(n,m).

NEBASENEE e
m times
Suppose further that
En L
527 E%L + L2a n L2 n 6721’ n n( n)

e

00

g

[
PR At
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Forn=1,2, """ let T" be defined by

=" = g(n,m), where \z(n,m+ 1) - z(n,m)|| < On-

Then the sequence {\\E"\\} ;s bounded if and only i NLCP(F) 1s solvable
on of NLCP(F) -

_» T, the least two-norm solutt

and in this case, Tn

Proof :
From Proposition 23, Ppisa contraction with modulus k, < L. By the

contraction mapping principle, given any z°,

lim P, — 2" P, (z") = 2"

j—ro00

I) uniquely. Since, by definition,

Note that z™ solves NLCP(F +¢n

P, (x(n,m)) = z(n, m+1)

we have

5, > llzlrom+1) = z(n,m)ll > llz(nm) = ) = Ye(mm 1)~ 2"l

and

|(n,m+ 1)~ 27 = [ Palz(n,m) = Pzl < Kn- le(n,m) = 2"

it follows that

5, > llz(m,m +1) = £(rom)ll = (1 kn) jz(n,m) — 2"l
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and that

From Theorem 1.5.1 (d) our conclusions about {z"} follow. i
We remark that the last Theorem is a two-step process in the sense that
for a given &,, the contraction IP, is iterated m times until z(n,m) is close
enough to the solution z" of NLCP(F + €,). One then takes a smaller
e, and the process repeats. Our aim now is to prove convergence for an
algorithm which combines both steps into a single step. We shall need the

following notions from the theory of Summability.

2.5 Definition. An infinite matriz A = (Aq), &, 7 =1, 2,--+, 15 said to be
convergence preserving if for any sequence {z,}, the sequence {yn} defined
by

[e0]
Yn = ZA,U'.’L']‘ (2.6)
—

is well defined and limz, = limy,. We call {yn} the A-transform of {z,}
and write y, = A ({:z;n})
The following Theorem is classical. Its proof may be found for instance
in [Peyerimhoff, 1969].
2.7 Theorem. (O. Toeptlitz). Aninfinite matriz A = (Ai), 1, 5=1,2,--
is convergence preserving if and only if
(1) Z;’i_l |A;j| = o exists,

{0,} is bounded,
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(2) limi(3°52; Ay) =1,
(3) limi A;; =0.
We are now ready to prove the principal theorem of this chapter.
2.8 Theorem. Let M be a positive semidefinite matriz. Assume that that

the sequences {&,} and {€,} of positive reals are such that

oo

E a, diverges,

n=1

cOo

E &“i converges,

n=1 (2.9)

oo

E GrEn, converges and

n=1

— — n

en <1, pp=— l 0.
€n

Suppose that k is the smallest positive integer satisfying

1
20, +2p, < Lim= ——— 2.10).
P P 1+ ”Mll ( )

Let B = (Bij) be the infinite matriz whose nt" row B, is defined by

—a—l_*.k az+k an+k
B, = RLLALELL APt A AR § IR
n Sn ] Sn 9 ? Sn 3 )

where S, = Z?zl @; k- Let z° = 0 and having z™, determine "1 from
In+1 == {(1 - En+k5n+k)x" - an+k(.M.'En + Q)}+ (2]1)

Let {y"} be the B-transform of {z™}, that is

n 1 - —
y" = ‘S:(Zaﬂkx]) (2.12).

i=1
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Then S(M, q) # 0 <> {z™} is bounded. When this condition holds,

y" — y* € S(M, q).

Proof

Assume that k satisfies (2.10). For notational convenience, we shall write
Opn = Qnik: En = Entk and pn = Ppi-
Obviuosly, the sequences {a,}, {e,} and {p,} also satisfy the conditions
(2.13). We shall write
Fr=Mz+gq, For=Fz+e,r.
Thus we can write (2.11) in the form

2™ = {(1 — anen)z™ — anFz"} (2.13).

+
We first assume that {z™} is bounded and show that in this case y™ —
y* € S§(M, q) so that S(M, ¢) # 0.
Assume then that {z™} is bounded. Clearly, 3K; > 0 and K > 0

such that
HmnH § Kh

| Frz™| = [[Mz" + g+ enr’™|,
< (T4 M) - g™+ gl
< (1 +IM]) - K1 + |iq]

= KQ.
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Let = € R" be arbitrary but fixed. Then from (2.13) we have

2"+ = z|? = || (2" ~ an(Faz™)), - =l

< Hz™ = ) — an(Fz™ + snx")]|2

< (=" - 2)|* - 2aa(Fz™)(a" — 2)

— 2anpez™ (2™ — ) + @2 K2 (2.14)
Since M is positive semidefinite we also have
(Fz™)(z™ — z) > (Fz)(z" — z).

Let

Kj = sup "] - [|lz™ — z|l.

From (2.14) we now get
20 (Fz)(z" — ) < ||z — z||® = |z"V" = z||® + 206, K3 + o2K2.

Summing this from 1 to k we obtain
k k k
2(Fz) Z on(z"—z) < ||zt —z| 2= |lz*t -z P+ 2K, Z CnEnt K2 Z %
n=1 n=1 n=1
Divide this last inequality by Sk and let k¥ — oc. From the assumed prop-
erties in (2.9) of the sequences {a,}, {e,} and from the definition of {y"},

we now have

Iimkinf < Fz, = - y* > > 0.
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Since y™ is a convex combination of z', z%,---,z™ it follows that {z"}

bounded = {y"} is bounded. Hence {y"} has a limit point y* for which
<Fz,z-y > 2> 0.

Since z € R7 was arbitrary, y* solves LCP(M, q) . This completes our proof
hat

{z"} bounded == S(M,q) # 0.

Next we prove y"* — y~.
Since S(M, q) # @, choose z € S(M, q) arbitrary but fixed. By

Theorem 2.4.2, z satisfies
<Fz", z"—-2>2> 0 (2.15)

since z" > 0. From (2.13) and (2.15) we have

HInT]

— 2|2 < (2" — 2) — an(Fz" + enz™)|?
< J|lz™ = z||? — 20, (Fz™)(z™ — 2)

— 20nEq (g™ — 2) + 62 K3

IN

|z — 2||? + 2ane, |z™(z" = 2)| + L K3,

Define §,(z) by
Brn(z) = 2ane, |27 =™ ~ z|| + afl Kg‘ (2.16)
and we now have

2" = 2|* < Jjg" — 2||* + Bal2) (2.17).
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Let S denote S(M, ¢) and let

From (2.17) and the definition of 27,
lz™ = 222 < 2t = 2 < " - 2F + Ba(2).

Since Y, Bn(z) converges, by [Cheng, 1981, Lemma 2.2.12], we can conclude

that
|lz™ — 2"|| converges. (2.18)

By parallelogram law, for m > 0,

2m 0 = 2P = 2 = 2P 2 —

1
_ 4“zn+m _ _Z_(Zn + zn+m)!|2.
Since S is convex, (2" +2"t™)/2 € S. Also, z**™ is the closest point to

z"*+™ in S. Hence,
a4 < 22 € 2fam | 2 R (219)

Letting z = 2™ in (2.17) and noting that 2" is the closest point to z™ in
S, it follows that Bn(z") < Bn(z) . Now let z = z" in (2.17) and use

induction to get

n-+m

lz™™ = 2 < 2t -2+ ) Bi(z). m o> 0.
y=n
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Substitute this in (2.19) and we have

Hzn+m _ ZnH2 < ZHIn _ ZnH2
n-+m
— ot - 22 > Bi(z). (2.20)
j=n

;From (2.18) and the fact ) . fn(z) converges, we have by letting n,m —

oo in (2.20) that

"7 =2 — 0

so that {z"} is Cauchy. Since S is closed, 32z* € S such that 2" — 2*.
We shall now show that y™ — z* as well.

Since {y™} is also bounded, let y* be any of its limit points. Assume
that the subsequence y™ converges to y*. From our proof earlier, y* € S.

Observe that
2 = Pg(z?) = <z’ - Z,y"—2z> < 0. (2.21)
Multiply (2.21) by ajz and sum from j =1, 2,---, ny to get
g ) Nk )
(Lot o) Yo =) < o
=1 i=1

Divide the last inequality by S,r“ik to obtain

ng 1 < J = ! S )
y™ - DT gz—zajz- < 0. (2.22)
. 1 Eoj=1

T -
ko=

Notice however that

n 1 - )
e = g (L)
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is simply a subsequence of the B-transform of {z"}, that is of
{¢"} = B({="}).

Since B satisfies all the conditions of Theorem 2.7, it is a convergence pre-

n

serving matrix. However, z™ — 2z~ so that both £" and £™t also converge

to z*. If we take limits as k — oo in (2.22), we get

<yr—-z y-z><0

*

so that y* = z*. But y* was any arbiirary limit point of {y"}. Hence

n

y™ — 2z*. This completes our proof that

{z"} bounded = S(M,q) # 0 and y" — 2z* € S(M, q).

We now prove the converse, that is we shall assume that S(M, q) # 0
and show that {z"} is bounded.

Recall from (2.10) that k satisfies

VIR 2 < b= o

Hence there exists 0, 0 < o < 1/2 for which

1
V2 + Py < ~ = L
TR (1 +o)(1+ [M])

The function f(r),

,
r(1+0)(1+ IMI) + ilg]

f(r) ==
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is strictly increasing in [0, oo}, lim, f(r) = L. Thus 37 > 0 such that for

r > T,
\/2ﬁk+2ﬁk < f(7—’) < f('f’)
Since p, | 0 and p, ; = pn, Wwe have forall n > 0 and r > T,

V20n + 20, < f(F) < f(r). (2.23)

By assumption, S # 0. Let z = P5(0), that is z is the least two-norm

solution of LCP(M, g). Define
max (7, ~|2]) + 1
r= 7, —|lz .
el
QOur aim is to show that
HI’n_Z” < T, Vn _>_ 07

that is {z"} is bounded and this would complete our proof.
We use induction.
Forn =0, ||z°—z|| = lz]| < or < 1.

Suppose now that ||z" — z|| < r. Let un = ||z” — 2||. From (2.13),

i

H?z+1 HInH - 2”2

n

IN

llz™ — 2||* = 2anen 2™(z™ - 2)

— 20, (Fz™)(z" ~ 2) + @2 Fz™ + enz™||%. (2.24)
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Since z € S, (Fz™)(z™ — z) > 0. Also if 41 < ppn, we are done. So

assume fin.+7 > fin. From (2.24) we thus get

20me, 2™ (z™ — 2) < o2||Fz™ + e,2"||%,

that is
™z - 2) < %ﬁnpxn +enz|. (2.25)
Since
™| < |lz" = 2]l + | 2]
< r+or
= (1+o)r,
we have

IFz™ +enz™|| < [|Mz™ + g|| + enllz”]]
< Mz + llgll + 12"

< (15 o)r- (1+[[M]) + 4

f(r)
=: € say. (2.26)
From (2.25) we now get
z™(z" - 2) < %’352,
(z" — 2)(z" ~ 2) < ’12252 —2(z" - 2)
< 24z " -2
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Rewriting this last inequality,

Pr .
pr < —2ﬁ£2+mun,

whence

2/.1,31 — 2ropy — pr? < 0.

Since p, > 0, we must have

2rc + \/4r2o? + 8&2p,

Hn < 4
ro <270+2£\/2pn)
< =+
2 4
and finally
Pn < TO+ g— 2pn. (2.27)

Again from the definition of z"*! in (2.13),

pns1 = 2" = 2]
< [lz" = 2 = an(Faz™)|]
< Wp anHann”

< pn + Pné.a (228)

where we have used (2.26) and the fact an, < pn. If we use our estimate

of pn from (2.27) in (2.28) we get

& .
Unt1 < TO+ 5\/2971"?'an~



54

A

Substituting for ¢ from (2.26) and using (2.23) we finally get

(V 200 + Zﬂn) T
2

Hntr < TO +

f(r)
flr)
< TO*?‘T'};(“S
r
=rg+ -
2
< r

since ¢ < 1/2. Hence pny1 < r. This completes our induction and also

the proof of the Theorem. §

2.29 Remark
Our proof showing that {y™} converges by considering z" = Pg(z") is
patterned after [Baillon, 1975], who uses this technique to construct fixed

points of non-expansive maps. Notice also Baillon’s use of the Cesdro matriz

C where Cij = 1/1 for j < ¢, while C;; =0 for 5 > 1.

3. Application to NLCP(F)

We shall now show that the proof of Theorem 2.8 can be used to construct
a solution of NLCP(F) when F is monotone and satisfies some regularity
conditions. Qur reference for this section is [Mangasarian and McLinden,
1985].

3.1 Definition. Let F: D C R® — R™ . We say that F satisfies the
distributed Slater constrainst qualification (DSCQ) if there exist p points
21, z%,...,, 2P € D, nonnegative weights Xy, Ag, -+ Ap (Zj Aj = 1) such

that 2=73_; Ajz? >0 and =) Aw! > 0 where w! = F(27).

&
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Mangasarian and McLinden have proved the following Theorem.

3.2 Theorem. Let F: D C ™ — R" , R C D and suppose that F 1is

monotone and continuous on D . Assume that F satisfies (DSCQ). Let

where A;, 27, w!, 5 and W are as in (DSCQ). Then NLCP(F) is solvable
and has a solution z* such that wz* < w2+ v.
We shall now show that the technique used in the proof of Theorem 2.9

can be used to construct a solution of NLCP(F) guaranteed by Theorem
3.2.

3.3 Theorem. Assume that F satisfies the hypotheses of Theorem 3.2 and
let C be the compact convex set as defined in that Theorem. Let ¥ =0

and given z" find from ™!

2 = Po{z" -

Let B be the Césaro matriz with

3

L] =

1

i

J

and let {y™} = B({:c"}) . Then y" converges to a solution of NLCP(F) .

Proof

We shall give only a brief outline. Since {z"} and hence {y"} are both

bounded, {y"} has a limit point y*. One uses the monotonicity of F to
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show that

(F(y*, z—y*) > 0, vV € C.

Hence y* is a fixed point of the map z — Pc(z — F(z)). However, Man-
gasarian and McLinden show that any such fixed point satisfies wy* <
W2 + . Hence y* solves NLCP(F) . One can now show that y™ — y*

by considering the projection z" of z"® on S(F). }

3.4 Remark

From a computational point of view the fixed point methods in general, and
those considered in this chapter in particular, are not viable methods. They
are extremely slow and particularly so in the vicinity of a solution point since
the step sizes taken in such a vicinity are extremely small. Their slowness
in part is also due to the fact that they do not utilize special features of
the matrix M in the case of LCP(M, q). Their real utility is perhaps in
generating good starting points for fast Newton-type algorithms (we consider
one such algorithm in the next chapter). However, the SOR methods are
much faster than the fixed point methods even for generation of starting

points.
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CHAPTER 5

GAUSS-NEWTON METHODS

1. Introduction

The SOR methods of Chapter 3 and the fixed point methods of’Chapter 4
have the obvious advantage that the starting point can be any feasible point,
usually the origin. The iterates are also easily calculated, thus reducing the
cost of computation. Unfortunately, however, these methods are sometimes
slow and require fairly large number of iterates. This is especially true of the
fixed point methods which tend to slow down in the vicinity of a solution

point.

In this chapter, we shall consider a class of faster algorithms, which is
a version of the so called damped Gauss-Newton methods. We shall show
that under fairly simple conditions these algorithms exhibit local superlinear
convergence and under stronger hypotheses, local quadratic convergence.
However, like all Newton-type methods, the algorithm is computationally
expensive since one needs to solve a set of linear equations at each iteration
and one obtains quadratic convergence only if one is close to a solution
point. Nevertheless, as we shall see in the next chapter, this method used in

conjunction with the slower methods has proved computationally effective.
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2. Nonlinear equations and NLCP(F)

Our starting point for this chapter is the following Theorem due to Man-
gasarian [1976] which shows the equivalence of NLCP(F') to the solution of

a system of nonlinear equations.

2.1 Theorem. Let F: R" — R™ , 0 a strictly increasing function such
that §: R — R with 6(0) = 0. Then z* solves NLCP(F) if and only if z*

solves the system of nonlinear equations G;(z) =0¢=1,2--- n where
Gi(z) = 0(|Fi(z) — 2) — 0(Fi(2)) — 0(2:)

and F;(z) is the ith component of F(z).
We shall call G(z) the M-function associated with F'. Mangasarian
also proved the following corollary which we shall find particularly useful

later.

2.2 Corollary. Suppose that z* solves NLCP(F) . Assume further that
F s differentiable at z* ,
(1) z* is nondegenerate, that ts z* + F(z*) > 0,
(2) VF(z*), the Jacobian of F at z* has nonsingular principal minors
and

(3) 0 1is differentiable, strictly increasing such that

¢ > 0= 6'(¢)+6'(0) > 0.
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Then z* solves NLCP(F) and the Jacobian VG(z*) of G 1is nonsingular.

3. A Gauss-Newton algorithm

Let F: ®" — R®" and consider NLCP(F) . For the rest of this chapter
we shall assume that VF(z) exists and the function #(¢) in Theorem 2.1 is

taken to be 8(¢) = ¢|¢|. Let G(z) be the associated M-function. Define
1 2
o) = LG

We are going to develop an algorithm to minimize g, somewhat in the spirit
of least squares minimization. We note that z* solves G(z) =0 if and only
if it is a global minimizer of g. Also, if 2 is a critical point of ¢ and

VG(z*) is nonsingular, then G(2*) = 0 since
Vg(z*) = VG(2*)TG(z*).

In this case, from Theorem 2.1, z* solves NLCP(F) . Hence our aim is to
find algorithms to find critical points of g.

Given s € R" , let us linearize G about s and consider
1 2
gs(2) = 1G(s) + VG(s)(z - s)II"
Then the gradient Vg,(z) of g, is given by
Vge(z) = VG(5)T (G(s) + VG(s)(z — s))-
Hence the Hessian H.(z) of g. is given by

Hy(s) = VG(s)TVG(s) =: A, (3.1).
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We note that A, is positive semidefinite and symmetric.

3.2 Lemma, Let A > 0. For anyz € R", let A, = VG(z)TVG(z).

Suppose that Vg(z) # 0. Then the direction p given by
(Az + M)p = Vyg(z)

is an ascent direction for g. In particular, 3w > O such that g(z — wp) <

g(z).

Proof

There exist constants v > 0 and v > 0 such that
YIRl? < hTAh < v[h> YR € R
It follows that
(Y +A)RI? < RT(A; + ADR < (v+N)|RIP  Vh e R
Since Vg(z) # 0, p # 0. If we take h = p, we get
pTVg(z) = (v+Npll* > 0.

It follows that Vg(z)-p > 0 and hence [Ortega and Rheinboldt, 1970,

8.2.1] that p is an ascent direction for ¢. |

3.3 Damped Gauss-Newton Algorithm

The Lemma just proved leads us to consider the following algorithm.



61

(1) Let z° be given. Having z*, determine z*+1 as follows :
(2) If Vg(z*) =0, stop.
(3) If Vg(z*) # 0, define
Ar = VG(zX)TVG(z5),
Ak = g(z¥) and
pF = (Ag + M) "1 Vg(zF).
Let wy be the largest element in the set 0={1, 1/2,--- 1/2”,--.}

such that g(z* — wep®) < g(z¥). Set

gFtl = gF - wkpk.

3.4 Theorem. Let z° be given and let {z*} the sequence determined by
Algorithm 3.3. Assume that

(3.5) sup; ||[VG(zF)|| < oo and

(3.6) Vg(z) is Lipschitzian with modulus K on R™ .
Then either {z¥} terminates at a stationary point of g or else every limat

point of {z*}, if it ezists, is a stationary point of g.

Proof

The first assertion is obvious. Let 0 < 6 < 1. Let i be the smallest

eigenvalue of Ay. We claim that

wp > L’\—"-}g,—l’“—)—(l—é). (3.7)
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If

S 2(Ak + ve)(1 - 6)
K b

Wk

then (3.7) holds trivially. Assume, therefore, that

2(Ak + ’yk)(l - 6) .

W < e (3.8)
By our assumptions on Vg(z),
IVg(y) = Va(2)| < Klly-=|.
Hence [Ortega, 1972, p 144],
| ok kY ok K a0 k2
9(z* — wip®) = g(a¥) + Vg(eH)wrnt| < T -wEllpt”-
Hence for Vg(z¥) # 0 (or equivalently, p* # 0),
g(z*) — g(c* — wip")
K
> wi - V(z*)p* — = - willp*|?
K k12
— wk{(l ——5)Vg(zk)pk LUka “ +6Vg(.’l:k) 'Pk}
kK
= - ot TR K]y gt (e
[l 2(1-9)
Now by (3.5), 3y > 0 such that for all h € R™,
(v + ARl < RT(Ax + MeD)h < (v + Ax)[IRII%, (3.10a)
hI2 < RT(Ap+ M) R < 2 3.
LA < WA DT S R (00
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Take h = p* in (3.102) to get

R ph
W > Ak + k)

Now take h = Vg(z*) in (3.10b) to get

o IVa(=h)|I?
Vg(.’[:k)pk -~ m

Using (3.8) we now have that the square bracket in (3.9) is nonnegative and

hence from (3.9),

ky .k

g(z¥) — g(z* —wip®) > wrVg(z")p
bwi|[Vg(*)||?
(v+ k)

(3.11)

Hence (3.8) implies that g(z*) > g¢(z* ~ wip®). Since wy is the largest
w € 0 chosen to satisfy g(z*) > g(z* — wpk) , it follows that 2wy violates
(3.8) so that (3.7) holds. This proves our claim.

Assume now that z* is a limit point of {z*} and that z* — z*. From

(3.11) we have

g(z) — g(zF5+1) > g(zM) — g(z™F7)
Sn, | Tg(a4)|
()‘kj + ’7)
~— 0. ‘ (3.12)

If liminfwy, =0 then by (3.7),

0 = liminf A, = liminf g(z%) = limg(z") = g(<¥),
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that is G(z*) = 0 and hence Vg(z*) = 0. If, however, liminfwg; =
w* > 0, then from (3.12) and the continuity of Vg(z), |lg(z*)| = 0, that

is Vg(z*) = 0. This completes our proof. |

4. Local superlinear convergence

In this section we shall investigate situations under which conditions (3.5)
and (3.6) of Theorem (3.4) can be realized. We shall then prove that under
appropriate conditions, Algorithm (3.3) exhibits local superlinear conver-

gence. We begin with the notion of a locally Lipschitzian operator.

4.1 Definition. An operator F: R™ — R™ is said to be locally Lipschitzian
at a point z if 3K > 0 and a neighborhood N = N(z) of z such that F

ts Lipschitzian on N that is

IF@) - FQ)l € Kle-yll Vo, veN

and we write F € L(N).

4.2 Lemma. Let F: R" — R™ and consider NLCP(F) . Let G: R"™ —
R™ be the associated M-function, g(z) = ||G(z)||*/2. Suppose further that
VFi(z),i=1,2, - n is locally Lipschitzian at some point Z. Then 36 >

0 such that Vg is Lipschitzian on S, where

S=25(2,6)={z:|lz-z2|]| <6}
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Proof

Recall that forz =1,2,---n
Gile) = {Fi(2) - 22} — Fi(2)|Fi(2)]| - iz (4.
so that

VGi(z) = 2(Fi(2) — z) (VFi(2) — i)

— ZlFi(z)IVFi(Z) — 2|zile;. (4.4)

Since VFi(z) € L(S), it is continuous and so are VF(z), VGi(2) and
VG(z). Hence all these operators are bounded on S. This implies that
Fi(z), Gi(2) and G(z) € L(S).

Nowif A,B: D C ®" — R™ and A, B ¢ L(D), it is trivial that
A+ B € L(D). However, if A and B are also bounded on D, it follows
from the identity

| A(z) B(z) = A(y) B(y)

= L(Alz) + AW) (Bla) ~ B(w) + (B(z) + B(y)) (A(2) - AW
that AB € L(S). From (3.4) we now deduce that VGi(z) € L(S) and
hence that VG(z) € L(S). Similar considerations show that Vg(z) =
VG(2)TG(z) € L(S). |
4.5 Theorem. Let F: R" — R™ and consider NLCP(F) . Let G: R" —
R™ be the associated M-function. Let z* solve NLCP(F), VFi(z) be lo-

cally Lipschitzian at z*,1 < 1 < n. Assume that the hypotheses of Corol-
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lary (2.2) are satisfied. Then there ezists a neighborhood N(z*) such that if
2" € N(z*) then the sequence {z*} defined by Algorithm (8.8) satisfies :
(1) zF € N(2%), z* — 27,
(2) Conditions (3.5) and (3.6) of Theorem 3.4 hold and
(3) if K is the constant given by (3.6), v* the smallest eigenvalue of

VG(2*)TVG(z*) and 24* > K then z* — z* superlinearly.

Proof

By Corollary 2.2, VG(z*) is nonsingular and by Theorem 2.1, G(z*)=0.
Let w1, p2, -+ in be the eigenvalues of VG(2*), X = {u; : Re(u;) < 0}
where Re(u) denotes the real part of u. Let
min {~|p:|*/Re(p:) : pi € T}
" 4 oo, if D=0.

We can find 6 > 0 such that forall z € S=S(z*,6)={z: ||z~ 2*[| <
6}, we have g(z) = ||G(2)||?/2 < n and that Vg(z) is Lipschitzian with
modulus K on S (Lemma 4.2).

Let =% be in S. In Algorithm 3.3, 0 < wi < 1 by choice and since

A = g(:ck) < n, it follows that

Ak

0< w < 1, 0 <
‘ 2 — wg

< n.

Tt is a consequence of [Ortega and Rheinboldt, 10.2.3] that z*is a point of
attraction of {z*} and that ¥ — 2*. By Lemma 4.2 and our choice of S,

it is clear that (3.5) and (3.6) hold.
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Assume now that v* > K/2. Recall that wy is the largest element in
Q0 such that g(z* — wip*) < g(z*). We saw in the proof of Theorem 3.4
that
2(Ag + Vi)

w < T = g(z* - wp¥) < g(z").

Since Ax — 0, it follows that 2(Ax + vk)/K — 27* > 1 and hence that
wg — 1. Thus, Ay — 0, wy — 1 and by [Ortega and Rheinboldt, pl24]

that z* — z* superlinearly. §

5. Local quadratic convergence

Let z° be given. If we assume that VG(z) satisfies hypothesis stronger than
(3.6), we can modify Algorithm 3.3 so that the resulting iterates converge

locally quadratically.

5.1 Modified Gauss-Newton Algorithm

Consider the following algorithm in which the perturbation parameters Ag
are chosen slightly differently:
(1) Let z° be given. Having zF | define zF*! as follows:
(2) If Vg(z*) =0, stop.
(3) If Vg(z*) # 0, let
Ap = VG(z)TVG(5),

~r = smallest eigenvalue of Aj.
(4) Define the g by
j 0, if v > 0
Ak =
1 g(z*), otherwise .
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(5) Set p* = (Ax -+ Ael)"'Vg(zF).
(6) Let wy be the largest element in 0 = {1, 1/2, ---} such that
g(z* — wip®) < g(z*).
(7) Set zFt! = zF — wip®.
5.2 Theorem. Lei F:R" — R" and assume that z° is given. Let {z*}
be the sequence of iterates of Algorithm 5.1. Assume that :
(5.3) 0 < liminfy [[VG(z¥)|| < supy ||[VG(z*)|| < oo and
(5.4) Vg(z)1s Lipschitzian with modulus K on R™ .
Then either {z*} terminates at a stationary point of g, or else every limat

point of {a‘k} , if there exists one is a stationary point of g.

Proof

The proof is similar to that of Theorem 3.4 and so we give only an outline.
Let 0 <6 < 1.

Let ~x be the smallest eigenvalue of Ay . By (5.3), there exists v > 0
such that

vellR||* < RTAkh < AllA|?

for all h € R . As in Theorm 3.4 it is easy to show that

2(Ak +)(1 - 6)

wp < 7 = g(zF — wikp®) < g(zF),
(Ak +vE)(1 - 6)
W > K ,

Swiel|Vg(z*)|?
(Ak+7)

g(z*) — g(z* — wip®) > > 0.
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If * is a limit point of {z*} with z% — z*, one then shows that
w, - [[Vg(z™)|i — .

But

(1-9)
K

liminf wg;, >

liminf~vk, > 0
j J

by (5.3) so that

0 =lim [|Vg(z"|| = ||Vg(z*)||. B

(Note that unlike Theorem 3.4, Ay =0 for all k is possible so that A —
0 # Vg(z*) = 0. This is a consequence of our insistence that for points
sufficiently close to a nonsingular point, Ar + Ax/ must in fact be identical
to Ay, and hence Ax = 0.)

Corresponding to Theorem 4.5 we have the following result.

5.5 Theorem. Let F: R — R* , G: R — R™ the corresponding
M-function. Assume that z*solves NLCP(F) and that the conditions of
Corollary 2.2 hold. Assume further that VFi(z), 1 <1< n is locally Lips-
chitzian at z*. Then there exists a neighborhood N(z*) of z* such that if
2% € N(z*) then {z*} defined by Algorithm 5.1 satisfies :

(1) z* € N(z*), % — 2* superlinearly,

(2) Conditions (5.3) and (5.4) of Theorem 5.4 hold and

(3) if K is the constant given by (5.4), 7~ the smallest eigenvalue of

VG(z*)TVG(2*) and v* > K/2, then z* — z* quadratically.



70
Proof

By Corollary 2.2, VG(2*) is nonsingular and G(z*) = 0. Using Lemma 4.2
we can find 6 > 0 such that for all z in §:=5(2*,6) ={z: ||z— 2"} <
6, VG(z) is nonsingular and sup |[VG(z)|| is finite.
Let z¥ € S, k> 0. Then Ay is positive definite so that in Algorithm
51, vk > 0 and Ay = 0. Hence 0 < wg < 1, Ax = 0 for all k. By
[Ortega and Rheinboldt, 1970, 10.2.3], z*is a point of attraction for {z*}.
By [Ortega and Rheinboldt, 1970, p124], z*¥ — z* superlinearly. It is easy
to see that (5.3) and (5.4) hold.
Suppose now that v* > K/2. Notice that since Ay = 0, we have
gkt = zF — w47 V()
= ¥ — W VG(c)) T [VE (M) T) T VG (F) TG ()
= ¥ — W, VG (zF) 711G (z*).
One now shows exactly as in the proof of Theorm 4.5 that 2(Ax +vx)/K —
2v*/K > 1. Hence by our choice, for large k, wy = 1. Hence Algorithm 5.1
is simply the Newton process and since VG(z) is Lipschitzian in S (Lemma

4.2), it follws that % — z* quadratically. |

5.6 Remarks

1. In Algorithm 5.1, one can also take Ay = A > 0 whenever v, =0
and computationally this may be preferable.
2. The robustness of the algorithm depends strongly on ~*. If 4* is

very small, then it is possible that wy — 0 and the algorithm fails.
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3. Although the conditions of Corollary are only sufficient conditions,
the algorithms developed in this chapter failed to solve problems
in which none of those conditions were fulfilled indicating, perhaps,
the sharpness of those conditions. Nevertheless, many problems in
which the nondegeneracy condition failed were successfully solved.

We shall present a fuller report in the next chapter.
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CHAPTER 6

COMPUTATIONAL RESULTS

1. Introduction

In this chapter we shall report on our computational experience with the
various algorithms descirbed in this thesis. The reader may recall that in
Chapter 3 the solution of LCP(M, q) , when M is positive semidefinite, was
reduced to the solution of a sequence LCP(M +¢€,1, g) of LCPs for €, | 0.
We suggested two SOR algorithms for the solution of these subproblems,
Cryer’s algorithm [Cryer, 1971] and a modification of a more general algo-
rithm due to Mangasarian [1977]. For future reference we shall refer to these
as CSOR and MSOR respectively. |

In Chapter 4 we considered fixed point methods and two algorithms
to solve LCP(M, g), M positive semidefinite. A two-step algorithm was
given in Theorem 4.2.4 and a one-step algorithm in Theorem 4.2.8. Given a
sequence of €, | 0, in the two-step method one iterates until a point close
to the fixed point of the map z — (SI: — ap(Mz + g + anm))+ is obtained
and then a smaller €, is chosen. The step sizes o, are defined in terms of
€, . In the one-step method both ¢, and a, are changed at each iteration.
These two methods will be referred to as FP2 and FP1 respectively.

Finally in Chapter 5 we considered a damped Gauss-Newton method.

This algorithm is applicable to general nonlinear complementarity problems
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satisfying the requirements of Theorem 5.4.5 or Theorem 5.5.2. We shall call

this method as DGN.

We shall be comparing the performance of our algorithms against the
algorithm due to Lemke [1968] currently used widely. For brevity, this algo-

rithm will be simply called LEMKE.

2. Performance of algorithms

The two relaxation algorithms CSOR and MSOR are both robust and capa-
ble of handling large scale problems. Of these two, MSOR is decidedly sig-
nificantly faster and is applicable to a wide class of symmetric LCP(M,q).
However, both methods tend to slow down appreciably near solution points.

The fixed point methods FP2 and FP1 are both excruciatingly slow,
perhaps because they do not exploit any special features of the matrix M.
This is also true of the nonlinear version of FP1 (Theorem 4.3.2). Although
relatively fewer iterates are needed to satisfy a weak termination tolerance
(e.g.,1072), many hundreds of iterates are often needed to satisfy a stringent
tolerance (e.g., 1078).

For the class of problems for which it is applicable, the damped Gauss-
Newton algorithm DGN is quite robust. It was used successfully to solve
Colville test Problems 1 and 2 [Colville, 1968]. Problem 1 was solved in
6 iterations (2.1 seconds). Problem 2 considered to be more difficult was
solved in 13 iterations (5.1 seconds). Using Iterative Quadratic Programming

(IQP) [Garcia-Palamores and Mangasarian, 1976], we solved these problems
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(using LEMKE to solve the quadratic subproblems) in 0.5 seconds and 4.5
seconds respectively. DGN compares favorably in comparison with LEMKE
for positive definite LCPs. As we shall see later, these methods are faster

than the SOR methods for medium size problems (n = 35).

3. Test Problems

All the algorithms were tested on some interesting small LCPs such as the

following example due to Kostreva [1979] :

1 2 0 -1
M=1]0 1 2 g=1] -1
2 0 1 —1

The matrix M is positive semidefinite and positive definite on R7 . The

unique solution is

T
1 1 1Y
¥ = PO T ’ *:M* :07070T
z (3 3 3> w z* +g={ )

It is known that LEMKE cycles. In fact, for 0 < ¢ < .5, LEMKE cycles for
the problem LCP(M + €I, q).

All the other algorithms solved the above LC P(M, ¢) successfully start-

ing from the origin and the results are given in Table 3.1.
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TABLE 3.1 : KOSTREVA’S EXAMPLE

Algorithms Avg. No. CPU time
iterations (seconds)

CSOR 6 0.008
MSOR 4 0.003
FP2 82 0.090
FP1 141 0.180
DGN 4 0.010
LEMKE NA NA

Next the algorithms were tested on several randomly generated test
problems. Several problems of sizes n = 5, 10, 15, 25, 30, 40 respectively
were generated using MATLAB, an interactive matrix language program
which in turn uses LINPACK, a state of the art linear algebra programs.
The problems were designed as follows :

1. Generate the matrix M with each entry being a random number uni-
formly distributed in the interval [—1, 1]. Sparsity is built in by placing
nonzero elements in random positions in the matrix.

2. Find the eigenvalues of M + MT, perturb diagonals of M to make M

positive semidefinite.
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3. For each index 1, randomly choose one of z; and w; to be zero and the

other to be a random floating number in [0, 1000].

4. Define¢g=w — Mz.
All programs were written in Fortran 77 and tested on Vax 11-780 com-
puter under the virtual UNIX (Berkeley 4.2) operating system. All floating
point computations are in double precision providing about 16 figure decimal
accuracy.

Each problem was solved three times (when a given method succeeded)
and an average of the CPU times taken. For each problem size, we attempted
to solve 20 test problems. The tables to follow indicate the percentage of
the number of problems solved, the average number of iterations taken by
each method tested and the average CPU time in seconds. The fixed point
methods FP2 and FP1 were tested only problem size n=5 where they took
hundreds of iterations just to reach a tolerance of 10~2. It was therefore
decided not to attempt to solve larger size problems with these methods.

We have already mentioned that the SOR methods are initially quite
fast but slow down near solution points. On the other hand, DGN works best
in the vicinity of a solution point. Thus it is of interest to try a combination
of the two methods, using SOR to generate a good starting point for DGN.
Such algorithms are called polyalgorithms in the literature. We experimented
with one such algorithm, using MSOR until the iterates satisfy a tolerance
of 10~3 and using the output as the starting point for DGN. We refer to this

combination as POLY-MSOR. We observe that unlike DGN, performance
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of ordinary LEMKE is not influenced by the starting point being near a
solution point; thus polyalgorithms using LEMKE to complete the solution
need not be effective.

Our test results seem to suggest that LEMKE is particularly robust for
medium size problems, 25 < n < 35 and also faster than SOR algorithms
in each cases. However, for n < 15 or for n > 40, the SOR algorithms are
superior to LEMKE.

It must be noted that for positive semidefinite nonsymmetric matrices
M, LCP(M, q) was solved by CSOR and MSOR using Tihonov regulariza-
tion . Thus these methods essentially solve problems twice the size of M.
The Tihonov parameter £, was chosen as 10™™", the output z(en) = z, at
iteration n being the input for iteration n + 1. The iterations were stopped

as soomn as

|z (Mz, +q)| < 6, (Mz,+4q) — (Mz,+q)4|| < 6

for some tolerance 6. The tables to follow give the total number of iterations
to reach optimality, that is, # iterations = y_ N(n) where N(n) = number

of iterations to solve LCP(M + e,1, q).
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TABLE 3.2: PROBLEM SIZE n = 5
NO. of test problems = 20

Algorithms Percent. Avg. No. CPU time
solved iterations (seconds)

CSOR 100 400 0.2

MSOR 100 300 0.1

FP2 60 1800 1.2

FP1 53 2400 1.8

DGN 96 15 0.7

LEMKE 100 8 0.3

POLY-MSOR 96 295 0.7

3.3 Remarks

1. CSOR and MSOR have the disadvantage of having to solve a problem

of size 2n when M is not symmetric.

2. The problems in which DGN failed were those in which neither of

the conditions of Corollary 5.2.2 were fulfilled.

3. The SOR methods were usually faster. Notice that POLY-MSOR

was no more efficient than DGN. On the average 290 SOR iterations and 5

DGN iterates were needed to reach optimality.
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TABLE 3.4 : PROBLEM SIZE n = 15
NO. of test problems = 20

Algorithms Percent. Avg. No. CPU time
solved iterations (seconds)

CSOR 100 1500 0.8

MSOR 100 1000 0.6

DGN 93 25 2.0

LEMKE 100 12 0.4

POLY-MSOR 93 900 1.3

3.5 Remarks

1. LEMKE was faster than all the other algorithms. The maximum
number of iterations was 18.

2. DGN performed as fast as LEMKE when M was positive definite.

3. Notice that POLY-MSOR is faster than DGN. In most cases MSOR
reached a tolerance of 1072 in 890 iterations. The output at this stage was

used as starting point for DGN and optimality reached in an additional 10

DGN iterates.
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TABLE 3.6 : PROBLEM SIZE n = 25
NO. of test problems = 20

Algorithms Percent. Avg. No. CPU time
solved iterations (seconds)

CSOR 95 2600 1.35

MSOR 97 2000 0.85

DGN 60 40 3.00

LEMKE 95 25 0.60

POLY-MSOR 60 1500 1.50

3.7 Remarks

1. DGN failed to solve any problem in which both conditions of Corol-

lary 5.2.2 failed. However it solved problems in which only one of the condi-

tions was violated albeit being slow in such cases.

2. LEMKE was still faster than SOR methods. Our experience confirms

robustness of LEMKE for positive semidefinite M. It is known, however, that

for n ~ 25 and general M, LEMKE performs poorly [Shiau, 1983].

3. Problems solvable by DGN were also solved by MSOR and POLY-

MSOR.
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TABLE 3.8 : PROBLEM SIZE n = 40
NO. of test problems = 20

Algorithms Percent. Avg. No. CPU time
solved iterations (seconds)

CSOR 90 5000 2.5

MSOR 92 4200 1.5

DGN 50 70 7.0

LEMKE 95 48 6.3

POLY-MSOR 54 3000 1.0

3.9 Remarks

1. For problems with size n > 30, LEMKE was much slower than SOR
methods. In some it took as many as 10.5 seconds while these were solved
by MSOR in 1 second.

2. DGN was the slowest and failed when the nonsingular principal minbr
condition failed. Otherwise it was usually comparable to LEMKE.

3. POLY-MSOR was the fastest for problems solvable by DGN. It also
solved two which failed with DGN. Typically 90% of the iterations were

needed to reach an accuracy of 107% and the rest used in DGN.
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TABLE 3.10 : PROBLEM SIZE n = 40, M SYMMETRIC
NO. of test problems = 20

Algorithms Percent. Avg. No. CPU time
solved iterations (seconds)

MSOR 98 350 -0.05

LEMKE 90 50 6.50

3.11 Remarks

1. This table gives computational results for a class of LCP(M,q),
M randomly generated but positive semidefinite and symmetric. For these
problems, Tihonov regularization was not used and MSOR used directly. Our
computational results attest to the efficiency of MSOR vis-a-vis LEMKE for
large sparse problems. MSOR was remarkably fast and 60% of the problems
were solved within 100 iterations often in .01 sec.

2. In many problems LEMKE was terminated when the maximum num-

ber of iterations (200) or maximum time (10 seconds) were exceeded.
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4. Suggestions for further research

In this section we list several directions in which the results of this thesis
may be extended.

1. In Chapter 2, we considered least two-norm solutions of feasible
positive semidefinite LCP(M, q). We showed that for each € > 0,
the solution z(¢) of LCP(M +¢l, g) satisfies ||z(e)|| < ||z*|| where
£* is the least two-norm solution thus providing a lower bound for
| z*| . Tt would be of interest to find an upper bound for ||z*||. Such
bounds are known when int S(M, q) # 0 (see e.g., [Mangasarian,
1982).

2. In Chapter 3, dual exact penalty was used to transform positive
semidefinite LC P(M, q) into a sequence of positive definite symmet-
ric quadratic subprograms to be solved by SOR procedures. How-
ever, this introduces two difficulties, viz., (a) the subproblems are of
dimension 2n and (b) the presence of the matrix (M + &I, ¢)T (M +
el) in the subproblems possibly destroying sparsity structures of M
unless special procedures are implemented. The real advantage of
the dual exact penalty formulation is that it provides a strictly con-
vex descent function. Iterative procedures using perhaps the gap
function o(z) = zT(Mz + q) would be very useful.

3. The fixed point methods of Chapter 4, while mathematically pleasing
are not computationally effective. It is conjectured that the rate of

convergence is sublinear for FP1 while this is obvious for FP2 since
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the contraction constants for the latter tend to 1. We believe that
if the strong features of SOR procedures viz., (a) utilize relaxation
parameters w , (b) use of the lower triangular and diagonal matrices
etc., are used in the fixed point methods they would prove faster.
One would have to carefully modify the convergence proofs in this
case.

. The DGN algorithm of Chapter 5 seems to work efficiently in the
presence of nondegeneracy of the solution point although this in-
formation may not be available. Although convergence cannot be
guaranteed, problems in which the nondegeneracy condition fails
have been solved. In using DGN one has solve the system of linear
equations (Ay -+ Axl)p* = Vg(z*) (see Algorithm 5.3.3) to find the
direction p*. Since MSOR is particularly efficient in solving such
equations when the underlying matrix is positive definite and sym-
metric, it is expected that considerable time would be saved if these
equations are solved iteratively.

. Since NLCP(F) is equivalent to the system of equations G(z) =0,
it would be of interest to solve this system as a sequence of linear

equations by linearizing G(z) at z* ‘and solving
Lr(@)z = G(z%) + (z = 2X)VG(2F) = 0

to find z**!. The resulting subproblems can be solved conveniently

by using SOR procedures which are robust and fast. It may not be
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necessary to solve each subproblem fully and it is conjectured that
in the vicinity of a solution when the conditions of Theorem 5.5.2

are satisfied, quadratic convergence would occur.
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