CONVERGENCE OF CARDINAL SERIES

by

Carl de Boor, Klaus Höllig and Sherman Riemenschneider

Computer Sciences Technical Report #604

June 1985

UNIVERSITY OF WISCONSIN-MADISON COMPUTER SCIENCES DEPARTMENT

CONVERGENCE OF CARDINAL SERIES

Carl de Boor¹, Klaus Höllig^{1,2} and Sherman Riemenschneider³

Computer Sciences Technical Report # 604

Abstract. The result of this paper is a generalization of our characterization of the limits of multivariate cardinal splines. Let M_n denote the *n*-fold convolution of a compactly supported function $M \in L_2(\mathbf{R}^d)$ and denote by

$$S_n:=\{\sum_{j\in {f Z}^d}c(j)M_n(\cdot-j):c\in l_2({f Z}^d)\}$$

the span of the translates of M_n . We prove that there exists a set Ω with $vol_d(\Omega) = (2\pi)^d$ such that for any $f \in L_2(\mathbf{R}^d)$,

$$dist(f, S_n) \to 0$$
 as $n \to \infty$,

if and only if the support of the Fourier transform of f is contained in $\bar{\Omega}$.

AMS (MOS) Subject Classifications: 41A63, 41A30, 42B99 key words: multivariate, cardinal series, convergence, Fourier transform

⁽¹⁾ Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

⁽²⁾ Supported by International Business Machines Corporation and National Science Foundation Grant No. DMS-8351187.

⁽³⁾ Supported by NSERC Canada through Grant # A 7687.

Convergence of Cardinal Series

Carl de Boor⁽¹⁾, Klaus Höllig^(1,2) and Sherman Riemenschneider⁽³⁾

1. Introduction. We extract the essential features of our earlier arguments [1-4] concerning the limits of box-splines as their degree tends to infinity. Somewhat surprisingly, the resulting discussion, although covering a more general situation, is very much shorter.

We start with a compactly supported (nonzero) L_2 -function M on \mathbf{R}^d for which the Fourier transform

$$\hat{M}(\xi) := \int M(x) \exp{(-ix\xi)} dx$$

satisfies

$$|\hat{M}(\xi)| = O(|\xi|^{-1}), \ |\xi| \to \infty.$$
 (1)

With

$$M_n := M * \cdots * M$$

denoting the n-fold convolution of M, we consider approximation in L_2 from the span

$$S_n := \{ \sum_{j \in {f Z}^d} c(j) M_n(\cdot - j) \; : \; c \in l_2({f Z}^d) \}$$

of the integer translates of M_n . We wish to characterize the class

$$S_{\infty}:=\{f\in L_2(\mathbf{R}^d)\ :\ \lim_{n o\infty}dist(f,S_n)=0\}.$$

For this we introduce the set

$$\Omega:=\{\xi\in\mathbf{R}^d: |\hat{M}(\xi+2\pi j)|<|\hat{M}(\xi)|,\,\,j\in\mathbf{Z}^dackslash 0\}$$

and establish the following

Proposition. Ω is a fundamental domain, i.e.

$$egin{aligned} \Omega \cap \left(\Omega + 2\pi j
ight) &= \emptyset, \ j
eq 0 \ \cup_j \left(ar{\Omega} + 2\pi j
ight) &= \mathbf{R}^d. \end{aligned}$$

The class S_{∞} consists of functions of exponential type characterized by the set Ω .

Theorem. $f \in S_{\infty}$ iff $supp \hat{f} \subset \bar{\Omega}$.

- (1) Sponsored by the United States Army under Contract No. DAAG29-80-C-0041
- (2) Supported by International Business Machines Corporation and National Science Foundation Grant No. DMS-8351187
- (3) Supported by NSERC Canada through Grant #A 7687

2. Proof of the Proposition. The assumption (1) implies that for any positive C,

$$\#\{j \ : \ |\hat{M}(\xi + 2\pi j)| \ge C\} < \infty.$$
 (2)

Let

$$D:=\{\xi\in\mathbf{R}^d\ :\ \hat{M}(\xi)\neq 0\}.$$

On D, the quotient

$$a_j(\xi) := \hat{M}(\xi + 2\pi j)/\hat{M}(\xi)$$

is well defined. In particular,

$$\Omega = \{ \xi \in \mathbf{R}^d \ : \ |a_j(\xi)| < 1 ext{ for } j \in \mathbf{Z}^d ackslash 0 \}.$$

Lemma. For all $\xi \in \mathbf{R}^d$ there is $j \in \mathbf{Z}^d$ such that $\xi + 2\pi j \in \bar{\Omega}$.

Proof. Since \hat{M} is an entire function, it is sufficient to prove this for $\xi \in D$. The set

$$J(\xi) := \{ j \in {f Z}^d \ : \ |\hat{M}(\xi + 2\pi j)| = \sup_k |\hat{M}(\xi + 2\pi k)| \}$$

is finite and nonempty, by (2). Hence we are done unless $\#J(\xi') > 1$ for all ξ' in some neighborhood of ξ . In this case at least one of the real analytic functions

$$f_j - f_{j'}$$

with

$$f_k := |\hat{M}(\cdot + 2\pi k)|^2$$

vanishes on some open set, hence must vanish identically. But this implies that

$$|\hat{M}| = |\hat{M}(\cdot + 2\pi r)|$$

for $r := j - j' \neq 0$, contradicting (1).

To finish the proof of the Proposition, assume that ξ and $\xi + 2\pi j$ are both in Ω . Then, the assumption $j \neq 0$ leads to the contradiction

$$|1>1/|\hat{M}(\xi+2\pi j)/\hat{M}(\xi)|=|\hat{M}(\xi+2\pi j-2\pi j)/\hat{M}(\xi+2\pi j)|>1.$$

3. Proof of the Theorem. We introduce the trigonometric polynomial

$$P_n(\xi) := \sum_j M_n(j) \exp\left(ij\xi
ight) = \sum_j \hat{M}_n(\xi+2\pi j) = \hat{M}_n(\xi) \sum_j (a_j(\xi))^n$$

with the last equality holding, at least, on D. For any $j \neq 0$ and $\xi \in \Omega$,

$$|a_j(\xi)| \le 1 - \epsilon(j, \xi) \tag{3.1}$$

for some positive $\epsilon(j, \xi)$, while, by (1) and (2),

$$|a_j(\xi)| \le 1/(1 + C|j|) \tag{3.2}$$

for some positive C uniformly for all but finitely many j. Consequently, for $\xi \in \Omega$,

$$P_n(\xi)/\hat{M}_n(\xi) = \sum_{j} (a_j(\xi))^n \to 1, \ n \to \infty, \tag{4}$$

and the convergence is uniform on compact subsets Ω_1 of Ω . This shows, in particular, that, for large enough n, P_n does not vanish on such Ω_1 .

(i) Assume that $f \in L_2$ and $supp \hat{f} \subset \bar{\Omega}$ and denote by χ the characteristic function of such a set Ω_1 . Since Ω is a fundamental domain, we can expand $\hat{f}\chi/P_n$ in a Fourier series,

$$(\hat{f}\chi/P_n)(\xi) = \sum_j c_n(j) \exp{(ij\xi)}, \; \xi \in \Omega,$$

with coefficients $c_n \in L_2$. This implies that

$$s_n := \sum_j c_n(j) M_n(\cdot - j) \in L_2.$$

Since \hat{f} vanishes outside $\bar{\Omega}$,

$$|\hat{f} - \hat{s}_n|_{L_2(\mathbf{R}^\mathbf{d})}^2 = |\hat{f} - \hat{s}_n|_{L_2(\Omega)}^2 + \sum_{j \neq 0} |\hat{s}_n(\cdot + 2\pi j)|_{L^2(\Omega)}^2.$$

The first term is estimated by

$$|\hat{f} - \hat{s}_n|_{L_2(\Omega)} \le |\hat{f} - \chi \hat{f}|_{L_2(\Omega)} + |\chi \hat{f} - \chi \hat{f} \hat{M}_n / P_n|_{L_2(\Omega)}.$$

The first norm on the right hand side is small if Ω_1 is chosen close to Ω . For fixed Ω_1 , the second norm is small by (4) if n is sufficiently large.

For the terms in the sum it follows from (2) and (3.*) that

$$|\hat{M}_n(\cdot + 2\pi j)(\hat{f}\chi/P_n)|_{L_2(\Omega)} = |(a_j)^n \hat{M}_n(\hat{f}\chi/P_n)|_{L_2(\Omega)} \ \le (|a_j|_{L_\infty(\Omega_1)})^n |\hat{M}_n/P_n|_{L_\infty(\Omega_1)} |\hat{f}|_{L_2(\Omega_1)} \to 0, \ n \to \infty.$$

(ii) Assume that $s_n = \sum_j c_n(j) M_n(\cdot - j)$ converges to f in L_2 . From

$$\hat{s}_n(\xi+2\pi j)=(a_j(\xi))^n\hat{s}_n(\xi),\;\xi\in D,$$

we see that for $j \neq 0$

$$|\hat{s}_n|_{L_2(\Omega_1+2\pi j)} \le (|a_j|_{L_\infty(\Omega_1)})^n |\hat{s}_n|_{L_2} \to 0.$$

It follows from (3.*) that, as an element of L_2 , \hat{f} vanishes off $\bar{\Omega}$.

REFERENCES

- C. de Boor and K. Höllig, B-splines from parallelepipeds, MRC TSR #2320 (1982),
 J. d'Anal. Math. 42 (1982/83), 99-115.
- [2] C. de Boor, K. Höllig and S. D. Riemenschneider, Convergence of bivariate cardinal interpolation, Constr. Approx. 1 (1985), 183-193.
- [3] C. de Boor, K. Höllig and S. D. Riemenschneider, Bivariate cardinal interpolation by splines on a three direction mesh, to appear in Illinois J. Math.
- [4] C. de Boor, K. Höllig and S. D. Riemenschneider, The limits of multivariate cardinal splines, Proc. Conf. on Multidimensional Constructive Function Theory, W. Schempp and K. Zeller eds., Oberwolfach 1985.
- [5] I. J. Schoenberg, Notes on spline functions. III, On the convergence of the interpolating cardinal splines as their degree tends to infinity, Israel J. Math. 16 (1973), 87-93.
- [6] I. J. Schoenberg, Cardinal spline interpolation, SIAM, Philadelphia (1973).