EVALUATION OF A DECOUPLED COMPUTER ARCHITECTURE
AND
THE DESIGN OF A VECTOR EXTENSION

by
Honesty Cheng Young

Computer Sciences Technical Report #603

July 1985

EVALUATION OF A DECOUPLED COMPUTER ARCHITECTURE
AND
THE DESIGN OF A VECTOR EXTENSION
by

HONESTY CHENG YOUNG

Computer Sciences Department
University of Wisconsin-Madison
Madison, W1 353706

May 1985

to my Parents
for their love, faith, support,
encouragement, and inspiration

to my wife
for her love, patience,
sacrifice, and support

ABSTRACT

To meet increasing demands for computing power, systems must exploit paral-
lelism at all levels. A balance between the processing speeds of a machine’s subsys-
tems is critical for overall system performance. A high performance system must
have a fast scalar mode as well as a vector mode which reduces the fraction of work

that the scalar mode must process.

PIPE (Parallel Instructions and Pipelined Execution) is a very high perfor-
mance computer architecture intended for a heavily pipelined VLSI implementation.
The primary goal of the PIPE architecture is fast execution of scalar programs.
PIPE has several novel features in order to meet this goal. These features include
architectural gqueues which reduce the effective memory accessing delay; a prepare-
to-branch instruction which decreases the penalty incurred by branches; and decou-

pled execution mode which increases the instruction initiation rate.

In this study, a compiler (for a subset of Pascal) has been developed to evaluate
the effectiveness of these architectural features. A code scheduler takes advantage
of the architectural queues and the prepare-to-branch instruction. Software pipelin-
ing (which can prefetch operands across loop boundaries) also takes advantage of
these features. A code generator generates two instruction streams (of sequential

tasks), that run on the two processors required for PIPE’s decoupled mode.

A queue-based vector extension is proposed. This extension has the following
characteristics: (1) two level control used to support out-of-order instruction initia-
tion, (2) multiple classes of registers, (3) a very short vector start-up time (one clock
period), (4) branch instructions used only for implementing high level language
control structures, (5) elements of a queue may be read repeatedly, and (6) easily

vectorizable property.

We demonstrate that the original PIPE architecture supports fast execution of

scalar programs, and that the vector extension facilitates vectorization.

iv

TABLE OF CONTENTS

ABSTRACT ...

1.

2.

3.

4.

Introductionocoveviiiiin....

...

...

1.1. The Demand for High Performance Systemscoooaein.

1.2. Terminology
1.3. Research Goal and Plan
1.4. Thesis Organization
Related Workooovenn.
2.1. Decoupled Architectures ...
2.2. Code Scheduling Methods .
2.3. Vector Supercomputers
The PIPE Architecture
3.1. Load/Store Instructions
3.2. Branch Instructions
The Code Scheduler

4.1. The PIPE Pascal Compiler

...

...

...

...

...

...

...

...

...

...

...

...

4.2. Code Scheduler for the Intermediate Language

4.2.1. The Algorithm

4.2.2. Examples

...

...

4.3. Code Scheduler at the Machine Code Level ...,

4.4. One-Level Code Scheduling

..

11

14

16

18

23

23

32

33

40

TR 011 o R G
4.6. Simulation Studies B RRSSTTRERPRRIIE

5. Software PIPEIININGoiiiiiiiiiii i e
5.1. Software Pipelining Resultscoooiiiiiiiiiiii

6. Code Generation for Decoupled Mode ...t
6.1. Code Generation Methods for Decoupled Mode
6.2. Simulation Results

7. The Design of a Vector EXtensioncooiiiiiiiiiiiiiiiiii.,
7.1. Motivation for Vector Instructionsccoiiiiiiiiiiiiiiiiiieann.
7.2. Desired FEAUTeSuuviieieiiiiiiiiiiiiir et iaiiaeeaeaiiiieeneaaeaaanes
7.3, IMPIEMENTALONciinttitit ittt naineaans
7.3.1. Two-Level Controliiiiiiiiiiiiiiii e
7.3.2. QUEUE REZISIETSeoiiiiiiiii ittt
7.3.3. Vector Load/Storeceveiriiiiiiiiiiiiiiiiiii e
7.3.4. Mask REZISIETScoiiriiiiiiit i
7.3.5. Comparison INSITUCHONSoviiiiiiiiiiiie e
7.3.6. Vector Editing INSUCHONScooiiiviiiiiiiiiiiiii i

7.4. Performance Evaluationcccoooiiiiiiiiiiiiiiiiiii e
7.5. Intrinsic FUNCHONS ... ittt e
7.6, SUMMATY .. .ottt ittt e e et ee sttt e e eeiaaas
I @6) 1 [ol 1113 o) 1 1S PR e

REFERENCES .. o i et

vi

43

44

50

57

59

59

61

65

67

69

72

72

74

79

80

80

81

82

85

86

88

91

3.1.

4.1.

4.2.

7.1.

7.2.

LIST OF FIGURES

PIPE: A Decoupled Architecture

The WDG of Example 4.1

.......................................

.......................................

Relative Performance for Different LDQ Sizesccooviviiiiiiinaan....

The Organization of a Processor with Two Functional Units

The Organization of a Queue Register

vii

.......................................

15

39

48

71

75

4.1.

4.2.

4.3.

4.4.

5.1

6.1.

6.2.

7.1.

7.2.

LIST OF TABLES

Relative Performance Gain by Adding the LDQ and the PBR Instruc-

tions to Bare PIPE Machinecooooiiiiiiii i
Relative Speedup Due to the LDQ Onlycoooiviiiiiiininnin .
Relative Performance for Different LDQ Sizecooviieiioniin
The Dynamic Branch Count Distribution
. The Speedup of Software Pipelined Code
Performance Simulation Results for Decoupled Mode
Performance Simulation Results of All Features

Timing Chart for Livermore Loop 12

Execution Time (of One Iteration) of Five Livermore Loops

viii

..............

44

46

47

58

62

64

74

84

ACKNOWLEDGEMENTS

1 am indebted to Professor James. R. Goodman, my advisor and committee
chairman, for his invaluable support, guidance, and encouragement in all aspects of
my research, as well as his precious assistance in improving my technical writing
skills. 1 would like to thank the members of my committee, Professors Michael J.
Carey, Charles N. Fischer, Andrew R. Pleszkun, Marvin H. Solomon, James E.

Smith, and Mary K. Vernon for their extremely helpful comments and suggestions.

Thanks are also due to members in the PIPE group. In particular, M.A. Hol-
liday, J.-T. Hsieh, and P.B. Schechter who developed the dataflow analyzer, the

PIPE performance simulator, and the PIPE functional interpreter, respectively.

I wish to express my deepest gratitude to the members of my family for their
support throughout my graduate studies; especially to my wife, Emma, who sacri-

ficed so much to make this dream become reality.

This work was supported by National Science Foundation under Grant MCS-

8202952 and MCS-8105904.

Chapter 1

Introduction

1.1. The Demand for High Performance Systems

The computing requirements for solving all kinds of problems are increasing
rapidly. In order to get high computing power, systems must exploit parallelism at
all levels. It is well known [Amdahl67] [Rudsinksi77] [Bucher83] [Worlton84] that
for a system with two processing speed modes, the effective execution speed is lim-
ited by the slower mode, unless the fraction of workload that has to be done in this
mode is nominal. Put differently, a good balance between different processing
speeds is critical to the overall system performance. In the numerical supercom-
puter environment, the high-speed mode corresponds to vector operations, the low-
speed mode to scalar instructions. We must push the limits on both ends to meet
ever-increasing computing requirements. An ideal high performance system must
not only have a fast scalar mode, but also a vector mode that reduces the fraction of
work that must be processed in the scalar mode. The latter can be achieved by

architectural innovations which facilitate the vectorization of most array operations.

Pipelining has been used to build processors with a fast scalar mode for quite
some time [Kogge81]. The performance of a pipelined machine, however, is often
limited by memory accessing, conditional branching, and the Flynn bottleneck.
Flynn [Flynn66] observed that there is always some point in the instruction
fetch/decode path through which instructions pass at the maximum rate of one per
clock period. A survey of commercially available high performance computer sys-

tems (e.g., Cray-1 [Russell78], Cyber 205 [Lincoln82]) supports this observation.

A new computer architecture, called PIPE (Parallel Instructions and Pipelined
Execution) [Smith83] [Craig83] [Goodman85] is a VLSl-oriented, high perfor-
mance architecture project at the University of Wisconsin-Madison. The primary
goal of the PIPE architecture is fast execution of sequential programs. Architectural
data queues are included in the PIPE architecture to reduce the influence of delay
due to ac;essing memory. The prepare-wo-branch (PBR) instruction is a mechanism

to decrease the penalty incurred by branches.

In order to achieve a high instruction issue rate, the major design principle of
PIPE is simple issue conditions: only a few simple conditions must be checked to
initiate an instruction. The instruction itself (e.g., floating point multiplication),
however, may take several clock periods to complete. The PIPE architecture goes
one step further, attaining a higher instruction initiating rate by allowing two
cooperative instruction streams of a sequential task to run on two processors. Thus,
the bandwidth of the instruction initiating rate is doubled by having two instruction

issue units on the system--one on each processor.

1.2. Terminology

A computer architecture includes: (a) the specification and design of the com-
ponents (building blocks) of a computer system, (b) the interactions between the
components, and (c) the evaluation of the entire system or its components. An
architecture that has multiple processors running multiple instruction streams of a
sequential single task is called a decoupled architecture [Smith84]. The decoupled
architecture we are interested in is one that separates a task into two parts: operand
access and algorithmic computation. The instruction stream associated with
operands access, termed the access instruction Stream, Tuns on amn access processor
(A-processor or AP). On the other hand, the algorithmic computation instruction

stream, termed the execute instruction Siream, TUNS ON an execute processor (E-

processor or EP). The execution mode of running two instruction streams on two
processors is called the Access/Execute (AE) mode or the decoupled mode, while its
counterpart (if it exists), which runs one stream on a single processor, is called the

Single Processor (SP) mode or the single mode.

Code scheduling is a special kind of code motion. It is useful only for architec-
tures with simultaneous operations, such as pipelined processors or multiple func-
tional unit systems. The function of code scheduling is to define a semantically
equivalent code sequence by reordering instructions. Its purpose is to utilize the
parallelism provided by the underlying hardware, avoiding unnecessary resource

conflicts in order to reduce the running time of compiled programs.

Vectorization is the task performed by a compiler to recognize parallelism lost
in the use of sequential programming languages. Vector computers can process
streams of elements, rather than a few simple operands, within a single instruction.
The vector startup time is the execution time difference between using a vector
instruction to process an array of length one and processing the same itern with

scalar instructions.

1.3. Research Goal and Plan

The goal of this work is to evaluate the effectiveness of PIPE’s novel features
in supporting a fast scalar mode, and to design an extension which provides short
vector startup time and furnishes the capability of vectorizing most array-oriented

programs to improve the total system performance.

A new architectural feature is efficacious if (a) the "loaded version” of the
architecture provides a reasonable performance gain over its "bare version” coun-
terpart (an equivalent architecture without this special feature); (b) with reasonable
effort, an optimizing compiler can be constructed to utilize the special feature; and

(c) it can be implemented for a reasonable cost. In this study, we will use the

comparison between the loaded version and the bare version as the measurement.

A compiler for a subset of Pascal has been developed to evaluate aspects of the
PIPE architecture. A code scheduler is used to reshape the compiled code to take
advantage of the data queues and the prepare-to-branch instruction. Software pipe-
lining [Charlesworth81] (also known as loop folding [Weiss84a]) is a technique to

schedule the code sequence of the inner-most loops by rearranging the code across

basic block! boundaries. The scheduling methods described in this thesis are appli-
cable to most register-register pipelined architectures by simply changing the cost

table.

The potential speedup for decoupled mode execution has been shown by using
hand-writien code [Smith84] [Hsieh84]. The Pascal compiler for PIPE is capable
of generating the aforementioned two instruction streams automatically. The
methods of generating the decoupled code are explained. The benchmark programs
used are the first 14 Livermore loops [McMahon72] [Riganati84] and a few

procedure-call intensive programs.

Many array-oriented programs cannot be vectorized, parily because the under-
lying vector computers do not provide the adequate primitive instructions to generate
vector code for many commonly seen vector operations, such as vector inner pro-
duct. The major goal of the proposed two level control, queue-based vector exten-
sion is to ease the task of the vectorization of array-oriented programs. Some limita-

tions of the original PIPE architecture are also eliminated.

1 A basic block is a.code sequence with no jumps in, except at the beginning,
and no jumps out, except at the end [Aho77].

1.4. Thesis Organization

In chapter 2, we compare some decoupled architectures, delineate the heuris-
tics used for scheduling methods, and contrast second generation vector supercom-

puters [Kozdrowicki80] with the Cray-1.

PIPE is the underlying architecture of this research. In chapter 3, we describe
the interesting features of the PIPE architecture and their rationales. In the subse-
quent two chapters, we emphasize the code scheduling methods used to utilize
PIPE’s novel features. The effectiveness of the scheduling methods is demonstrated
by running a set of benchmark programs. The time complexity of the scheduling

methods is also discussed.

In chapter 6, the code generation method for the decoupled mode is explained.

The speedup of the compiled code is compared with that of the hand-written code.

In chapter 7, we point out some of PIPE’s limitations. A vector extension is
suggested, which makes more array-oriented operations vectorizable. Meanwhile,
this extension also remedies most limitations of the original PIPE architecture. We
conclude this thesis in chapter 8. Possible directions for future research are also

outlined.

Chapter 2

Related Work

In this chapter, work is presented that relates to the work that will be discussed
in subsequent chapters. In section 2.1, we compare several decoupled architec-
tures. In section 2.2, we discuss some scheduling methods. In section 2.3, we
contrast the special vector processing features of state-of-the-art vector supercomput-

ers and point out some of the limitations.

2.1. Decoupled Architectures

The major common feature among different decoupled architectures is the par-
titioning of multiple units. Some earlier high performance systems (e.g., IBM
360/91 [Anderson67] decouple instruction fetch/decode (I-unit) from their execu-
tion (E-unit). The execution unit may consist of multiple functional units [Thorn-
ton70] or a pipelined processor or the combination of both (i.e., multiple pipelined
functional units [Anderson67] [Cray82]). The introduction of decoupled architec-
tures reveals a new level of parallelism by using multiple units executing multiple

instruction streams for a single task.

The CSPI MAP-200 [Cohler81] is the first commercial machine which
enhances the I-unit/E-unit decoupling by running two instruction streams on two
processors--one for data access and the other for execution. Each processor can
proceed at its own pace without waiting for another processor to complete its task.
Queues provide elastic coupling [Cohler81] between processors. Branch synchroni-
zation is done by setting/clearing corresponding flags between processors. A third
memory transfer controller is included in the system. The memory transfer con-

troller, however, does not execute a user program stream. It simply surveys the

6

status of various queues and does memory operations as promptly as possible. The
memory transfer controller gives the read operation priority; requiring software

solutions to prevent some memory hazards.

A class of DAE (decoupled access/execute) computer architectures has been
proposed by Smith [Smith84]. Different organizations to implement a decoupled
computer architecture are compared. Branch queues are included between proces-
sors to pass branch outcomes; allowing one processor to run several branches ahead
of the other. Thus, instead of setting and clearing flags, synchronization between
processors is provided by the branch queues. Memory conflicts are resolved by a

hardware associative search on the address queues.

The SMA (Structured Memory Access) [Pleszkun82] [Pleszkun83] also has
two processors. All memory requests, including instructions, are generated and
controlled by one processor. Except for the loop mode, the two processors in the
SMA are similar to the l-unit/E-unit decoupling described earlier in this section.
During loop mode, however, two instruction steams run asynchronously on two
processors. The memory access processor of the SMA also has several sophisti-
cated mechanisms to generate addresses efficiently and to make fewer memory

references.

The FOM (Fortran Optimized Machine) [Brantley§82] [Brantley83] is a proces-
sor with multiple functional units. The instruction decode/issue is done in two
stages. The high level instruction dispatch unit sends instructions to the instruction
queues of the appropriate function units. Instructions decode/execute independently
in their individual units. Therefore, instructions that use different functional units
may be initiated out of the order that they passed the instruction dispatch unit.

Architectural FIFO queues are used for communications between units.

The VLIW (Very Long Instruction Word) machine [Fisher84b], which has
multiple CPUs, pushes the decoupling even farther, by issuing more than two
instructions, running on multiple processors, every clock period. lIts function is
similar to a horizontal microcode engine. However, there are no queues in the
VLIW computer. The operations on different processors are executed synchro-

nously.

The SDP (Synchronous Distributed Processor) [Shively82] uses multiple
microprocessors to implement two subunit functions in addition to the 1/O unit.
Interlocks are enforced by operand queues between two subprocessors{ The
instructions and data for the arithmetic unit are supplied by the index arithmetic
unit. Hence, the arithmetic unit works like an attached processor, and the index

arithmetic unit works like a host.

Among the decoupled architectures described above, the MAP-200, the Mark
1A, and the SDP are working machines, while the DAE, the SMA, the FOM, and

the VLIW are paper machines at the time of this writing.

Many commercially available attached processors (e.g., AP-120B [Charles-
worth81], FPS-164 [Charlesworth81], IBM 3838 [IBM76], and MATP
[Datawest79]) also have some of the characteristics of decoupled architecture, except

that there is normally one instruction stream.

The PIPE (Parallel Instructions and Pipelined Execution) [Smith83] [Craig83]
[Goodmang85] is a VLSI experimental processor proposed at the University of
Wisconsin-Madison. Its novel features include (a) architectural queues, (b) gen-
eralized delayed branch, (c) branch target registers, and (d) identical processors
which imply the possibility of several execution modes. We will describe the

relevant information about the PIPE architecture in the next chapter.

2.2. Code Scheduling Methods

The purpose of code scheduling is to create a semantically equivalent code
sequence that minimizes total execution time. It is known [Uliman75] [Abdel-
Wahab76) [Garey79] [Hennessy83] that code scheduling is an NP-complete prob-
lem. Normally, heuristics are used to get suboptimal solutions. The steps in code
scheduling are: (a) perform dependency analysis, (b) keep a list of instructions
ready to be issued, and (c) pick an instruction from the ready-list. Different archi-
tectures may have different structural dependencies. Hence, part of the dependency
analysis is a processor dependent activity. The major difference among scheduling
methods lies in the heuristics used to select an instruction from the ready-list. A
branch-and-bound algorithm, which has exponential worst-case performance, can
achieve the optimal solution [Gonzalez77]. In practice, however, it is too expensive
to use the branch-and-bound method. The heuristic used by Hennessy and Gross
[Hennessy83] is to choose the node farthest from the root (i.e., the end of the basic
block). Their hope is that the node farthest from the root is on the critical path.
The worst case time complexity of their scheduling algorithm is Om*%), where n is
the size of the current basic block in terms of number of instructions. Their algo-
rithm does software interlocking by inserting NOPs whenever necessary. Another
heuristic used by Wood [Woo0d78] is to choose the node with the most descendants
(direct or indirect). Adam, Chandy, and Dickson [Adam74] have compared,
through extensive simulations, the performance of five heuristics used in an unres-

tricted environment. The heuristics studied are:
(1) HLFET (Highest Levels First with Estimated Times),
(2) HLFNET (Highest Levels First with no Estimated Times),

(3) RANDOM,

10

(4) SCFET (Smallest Colevels First with Estimated Times),
(5) SCFNET (Smallest Colevels First with No Estimated Time).

They concluded that the accuracy under their test cases is ordered: HLFET,
HLFNET, SCFNET, Random, and SCFET. The idea behind HLFET (Highest
Levels First with Estimated Times) is to issue the node with the longest-path. The
method used by Hennessy and Gross [Hennessy83] is a variaton of HLFNET. A
compiler [Thorlin67] for the 6600 uses a version of HLFET as its heuristic. The

heuristic used in this thesis is a modified HLFET.

Loop unrolling [Dongarra79] is a technique to increase the size of the basic
block of a loop. It is a routine practice on some supercomputers [Cray85]. Fisher
[Fisher81] proposed "trace scheduling” to reorder code across basic block boun-
daries (including loop unrolling), which, in some sense, is a way to increase the
size of basic blocks. Rau and Glaeser [Rau81] explain some optimal scheduling
methods for limited programs under their polycyclic architecture which avoid many

resource conflicts by providing delay elements in the interconnection network.

The optimization of delayed branch [Patterson81] [Patterson82] [Hennessy81]
is a special form of code scheduling. It is done by moving instruction(s) to the loca-
tions following a delayed branch instruction. In RISC, the movement of code to
follow a delayed branch is done by a peephole optimizer [Patterson8l]. In MIPS,
Gross [Gross82] considered moving an instruction not only within the basic block,

but also from the two possible branch targets.

The scheduling methods described in chapters 4 and 5 are used to utilize some

special architectural features provided by the underlying PIPE architecture.

11

2.3. Vector Supercomputers

The second generation of vector supercomputers2 [Kozdrowicki80] began when
Cray Research, Inc., announced the Cray-1 [Russell78]. We will describe the
Cray-1 [Cray82] in some detail and contrast features in other vector supercomputers

with those of the Cray-1.

In addition to two classes of general purpose scalar registers and their backup
counterparts, the Cray-1 has eight vector registers. With the “chaining” of pipe-
lined functional units, scalar temporary results are used immediately after they
become available. The vector chaining, however, is limited by the "chain slot
time,” when the reservation on a destination vector register is lifted for one clock
period. Below is an example to explain the chaining in the vector mode of Cray-1.
Given two vector instructions, Vop; and Vop,, where Vop, uses the results gen-
erated by Vop;. If all other issue conditions of Vop, are met before the chain slot
time of Vop;, Vop, can be issued at the chain slot time of Vop;. Otherwise, Vop,
cannot be issued until Vop; is completed. A vector store instruction is blocked
from chain slot execution. If speed control is in effect (speed control is caused by
systematic memory bank conflicts), a vector read cannot chain. Chaining can hap-
pen only during the chain slot time because only one component counter is associ-
ated with each vector register. When a vector register serves as both source and
destination register, its component counter is not updated until the first result is
written to the vector register. That is, chaining is a synchronous operation--a result
operand must be generated every clock period and that operand must be used
immediately after it has been computed. All twelve functional units, which perform

twelve different operations, are fully pipelined and some of them are shared by the

2 The two major first generation vector supercomputers are the CDC Star-100
[CDC73] and the TI-ASC [Watson72].

12

scalar and the vector portions of the machine. The startup time for vector opera-
tions is nominal. For typical operations, vectors of length of three or fewer run fas-
ter in scalar mode, while those of four elements or more run faster in vector mode.
Vector performance, however, is often bounded by the memory bandwidth because
there is one port between the CPU and the memory system. Elements of an array
can be loaded with a constant stride apart, while elements of sparse vectors must be
accessed and processed by scalar mode instructions. Each vector register has sixty-
four elements. A vector longer than sixty-four entries must be split into several

smaller ones to fit into the vector registers.

The Cray X-MP series [Cray85] is the successor of the Cray-1. The major
differences between the Cray X-MP and the Cray-1 are described below. Multiple
CPUs are included in the Cray X-MP series, so another dimension of parallelism
(i.e., multi-tasking) is possible. Shared registers are included between CPUs.
Three memory ports are provided for vector operations. Thus, two load operations
and one store operation can occur simultaneously. The software, however, must
prevent memory overlap hazard conditions caused by concurrent block reads/writes.
The "hardware automatic chaining” feature allows chaining to happen any time
after the element 0 of the result arrives at the destination vector registers. The flexi-
ble chaining is achieved by using two pointers (component counters) with each vec-
tor register. More loops may be vectorizable because gather/scatter can be used to

handle sparse vectors.

The Cyber 205 [Lincoln82] is a memory-memory VeClor processor where two
adjacent elements of a vector must be in consecutive memory locations to avoid the
complexity of detecting possible memory bank conflicts. Elements of non-unit stride
apart have to be moved to consecutive locations using special vector editing instruc-
tions. On the other hand, the vector length can be as long as 64K elements. Vari-

ous vector macro instructions are in the instruction set in order to cover many

13

- hard-to-vectorize operations, such as vector inner product and maximum function.
A family of sparse vector instructions is included to handle sparse vectors. Scalar
chaining is done by using a special data path (called shortstop) between the output
and input areas of the scalar arithmetic unit. Vector chaining is accomplished by
configuring the data interchange to connect the input and output "trunks” (buses) to

the appropriate processing unit.

The Facom VP-200 [Miaru83] is furnished with a relatively complete family of
vector editing instructions. 1t not only provides gather/scatter instructions, but also
the indirect vector loads/stores. The vector registers are dynamically reconfigurable
in the sense that choices range from many small vector registers to a few large

ones, which gives flexibility for vector register allocation.

All vector data on the S-810 [Nagashima84] have a "data valid” signal for each
element. An element synchronizing circuit, belonging to each functional unit,
detects the availability of the needed vector elements. This one data valid signal per
element scheme accomplishes chaining between instructions with different (and
even irregular) execution times. In particular, memory accessing activities and

CPU operations can be chained together.

The primary limitations of the commercially available supercomputers are the

following.

(1) The vector registers are used by the vector instructions only. Thus, it is

impossible to use elements of a vector register by several scalar instructions.

(2) The instruction set must include many vector macros to capture most hard-to-

vectorize operations, such as inner product.

The vector extension described in chapter 7 includes some of the properties of the
commercially available vector supercomputers. This extension also remedies the

two limitations just mentoned.

Chapter 3

The PIPE Architecture

In this chapter, we briefly describe the relevant details of the PIPE architecture
to make this thesis self-contained. A more complete description is available else-

where [Smith83] [Craig83] [Goodman85].

PIPE uses two identical co-processors that communicate via hardware queues
(see Figure 3.1). Each of PIPE’s processors is capable of executing an entire pro-
gram by itself (in SP--single processor--mode), or the two processors may work
together on a program (in access/execute mode). The instruction set for PIPE in
SP mode is comparable in style to the CDC-6600 [Thornton70], with the addition of
the architectural queues and the prepare-to-branch instruction (to be covered in
later sections). The tasks run on the two processors are quite different, so that a
viable system would almost certainly have two, quite different processors for the two
functions. Under the decoupled execution mode, two identical processors are used
for several reasons. This approach considerably reduced the work involved in
building such a system; but more importantly, it provided us a way 1o evaluate the
effectiveness of the decoupled approach (e.g., the performance of the AE mode can
be compared with that of the SP mode). We will first define the single processor

architecture, and then the extensions necessary to support decoupled operation.

One decision that was made early in the design was that pipeline interlocks
should be in hardware. This is in contrast to the MIPS project [Hennessy81],
where the interlocks internal to the CPU are in software. By designing an architec-
ture for pipelining implementation, we assure that nearly all interlocks involve

register use, and that.they. can be resolved al one point'in the instruction pipeline

14

15

M CU
I
HLA L-ﬂiSAQq'J LEiLAQ HISA <J
—> LDOH ti SDO: LD l—: SDO!
1-C 1-C
I-U FUs [1-U FUs [®
GPR > GPR Ly
A A
BR(¥F —> BR:
AP EP
Terms:

LAQ: Load Address Queue
LDQ: Load Data Queue

SAQ: Store Address Queue
SDQ: Store Data Queue

I-C: Instruction Cache

1-U: lssue Unit

GPR: General Purpose Registers
FUs: Function Units

BRQ: Branch Queue

MCU: Memory Control Unit

Figure 3.1. PIPE: A Decoupled Architecture.

with relatively simple logic. In other words, it is possible to generate code with
software interlocks for non-memory activities [Hennessy83], but we feel that it is
not necessary to do so; hardware interlocks in a well-designed architecture are

straightforward to implement.

16

3.1. Load/Store Instructions

The interface between a processor and the memory subsystem is a set of archi-
tectural queues: the Load Address Queue (LAQ), the Load Data Queue (LDQ), the
Store Address Queue (SAQ), and the Store Data Queue (SDQ). When a LOAD
instruction is executed, the specified address is put on the Load Address Queue.
The requested operand will be returned via the Load Data Queue as its last element.
An additional instruction is needed to move an operand to one of the general pur-
pose registers if the compiler decides to keep that operand in a register. A STORE
operation is accomplished by the following two primitive instructions: (1) the store
address is put on the Store Address Queue, and (2) the data is put on the Store Data
Queue. The order of these two instructions is irrelevant, and other instructions
may occur between them, including multiple instances of the first instruction. Hav-
ing a Store Address Queue makes code scheduling more flexible than in conven-
tional architectures, because a STORE instruction can be issued before the
corresponding result has been computed. In most conventional architectures, the
STORE instruction cannot be issued until the evaluation of the result has been com-

pleted.

Among all the queues, the Load Data Queue is of particular interest. In gen-
eral, the execution time of a memory reference instruction (LOAD/STORE) is
longer than that of a register-register instruction. 1In particular, the delay due to a
load in a pipelined computer has great influence on the performance of the entire
system. The LDQ is a mechanism for separating the request of an operand (i.e.,
the LOAD instruction) from its use, thus reducing the urgency of memory read
operations. Throughout this thesis, the LOAD instruction is used to represent

memory accessing operations, and the LDQ 1is used to indicate relevant queues,

- -whenever appropriate. The LDQ has the following advantages:

(1

(2)

(3)

(4)

(5)

(6)

17

1t serves as a window between the CPU and the memory system. One can
view the LDQ as a queue of registers in addition to the general purpose regis-

ters.

There is no need to allocate registers for use-once operands. The use-once
operands are taken out of the LDQ directly. In many programming environ-
ments, most operands are used either once or repeatedly. A smart compiler
should allocate registers only for the latter type of operands. An additional

move instruction is needed for operands which are allocated registers.

Data can be requested several cycles before it is needed. The code scheduler
can reorder the code to overlap the data transmission and access time with the
execution of other instructions. This overlap is achieved by moving instruc-

tions between the LOAD instruction and the instruction that uses the operand.

It is more flexible for the code scheduler to schedule the code when the LDQ
is present than when the scheduling is limited 10 a set of general purpose regis-
ters. There is no data dependence, at the regisier lever, between use-once
operands (except that they must be fetched in the order they are used). The
same variable for different iterations can be fetched without register conflicts.
The software pipelining mechanism, to be described in chapter 5, is an

automatic way of prefetching operands across basic block boundaries.

The slowness and irregularity of memory accesses can be hidden, and bursts of

memory requests can be smoothed out.

At issue time, LOADs need not reserve an input path to the register file. Ordi-
narily, this path is reserved, at instruction issue time, for use during the clock
period when the instruction is completed. LOAD instructions pose a problem,
however, because they may have unpredicatable completion times due to varia-

tions in memory access time. Hence, they either need their own path into the

18

register file (which then must be able to handle two writes [to the register file]
simultaneously), or they must reserve the result path later in their execution,
when the time of the data’s arrival from memory has been determined. The
LDQ provides a dedicated path for load data (which do not go into the register
file except when an instruction specifically moves them there), so we can

resolve interlocks during the one-clock-period instruction-issue time.

The major disadvantage of the LDQ is that processor deadlock is possible for a
queue of finite length. The code scheduler must guarantee a deadlock-free code

sequence. Also, twice-used variables are relatively expensive.

These architectural queues serve as elastic coupling between processors during
the decoupled execution mode. An alternative LOAD instruction makes a memory
request in one processor (normally, the A-processor), and the data is placed in the
LDQ of the other processor (normally, the E-processor). Similarly, a store address
generated by an alternative STORE instruction is paired with an operand from the

other processor’s SDQ.

3.2. Branch Instructions

In a pipelined architecture employing condition codes, many instructions may
be in process at the same time, so careful bookkeeping is necessary 1o assure that
the most recent condition code values are used in determining a conditional branch
(e.g., [Anderson67]). In PIPE, the instruction set includes a set of conditional
branch instructions that explicitly test the sign and value of a register. Thus, one
may consider that either PIPE has no condition codes, or PIPE has one condition
code for each register; but PIPE does not have a shared condition code register.
Thus, the hazard conditions of testing/setting the condition code are converted into
testing hazard conditions when reading/writing ‘the general purpose registers.

Hazards on the registers have to be detected anyway.

19

In general, a branch instruction can be subdivided into three parts:
(1) Calculate the branch target address.
(2) Determine the branch outcome.
(3) Transfer control (if branch is taken).

One of the major goals in designing a CPU pipeline is to ensure a steady flow
of instructions to the issue logic [Lee84]. It is well known [Anderson67]
[Schorr71] [Flynn72] [Riseman72] [Smith81] [Lee84] that in a highly parallel com-
puter system, branch instructions generally break the smooth flow of instruction
fetching and execution. This results in delay, because a successful branch (a
branch that is taken) changes the location of instruction feiches, and because the
issuing of instructions must often wait until conditional branch decisions are made.
Even an unsuccessful branch (a branch not taken) or an unconditional branch usu-

ally interrupts the smooth flow of instructions.

PIPE was defined to allow the separation of these three parts. The first part is
actually performed by a separate instruction so that it can be moved outside a loop.
The branch target address is stored in a branch register via a move instruction. (In
PIPE, in addition to the genefa] purpose registers, there is a set of branch registers.
The branch registers are used to hold the branch targets.) The last two parts are a
single instruction, but the effects are separated in time. The prepare-to-branch
(PBR) instruction decides the branch outcome and specifies a delay (in terms of
number of subsequent instruction parcels1 to be issued) before transfer of control(.
The number of instruction parcels that should be executed unconditionally after a
PBR is specified by a field of the PBR instruction (called the branch count (BC)

field). The transfer of control occurs after BC instruction parcels following the

1 For the current-implementation, an instruction parcel is a 16-bit quantity. In-
structions are one or two parcels.

20

PBR have been issued. We insert a pseudo-instruction, XBR (denotes the eXit
point of the BRanch instruction), at the assembly language level to indicate the exit
point. That is, the transfer of control for a successful branch takes place at the
XBR. The prepare-to-branch instruction is simply a generalized form of the
delayed branch (or branch with execution) used in many machine organizations
(e.g., 801 [Radin82], MIPS [Hennessy81], RISC [Patterson81] [Patterson82]). In
the IBM 801 [Radin82], no instructions will be unconditionally executed after a
normal branch instruction. Iis issue logic, however, always initiates the instruction
that has been placed immediately after a branch with execute instruction. Thus, the
801 permits the flexibility of allowing up to one instruction to be unconditionally

executed after a branch instruction.

One of the reasons that the 801, RISC, and MIPS do not include larger branch
delays may be that there are few stages in their execution pipelines. Short pipelines
imply that branch instructions finish in very few clock periods--possibly one. The
execution time of a (successful) branch instruction is the time from the issuing of
that instruction to the issuing of the first instruction from the branch target. When
there is only one stage in the pipeline (the special case of a non-pipelined machine),
a branch delay of zero is always optimal because a branch instruction finishes in the
same clock period it is issued. In PIPE, however, several clock periods are
required to complete a prepare-to-branch instruction. This is due to PIPE’s fast
clock rate and (relatively) long pipelines. (For comparison, the execution time in
the Cray-1 for a successful branch ranges from 5 clock periods (branch address is
in a buffer) to 14 clock periods (branch address is not in a buffer) given that two
parcels of the branch instruction are in the same instruction buffer [Cray82].)
Two instructions, called the subject instructions, are always executed after a branch
_instruction in FOM [Brantley82]. . The: branch :instruction in FOM indicates that

there are cases where more than one useful instruction can be moved to the

21

locations after a branch instruction.

(1)

(2)

(3)

(4)

The advantages of the PBR instructon are:

It is a mechanism to separate the branch decision from the transfer of control.
Thus, it is possible to do guaranteed pre-decoding in the sense that the pre-
decoded instructions are always executed. In the case of an instruction cache

miss, the cache controller can do guaranteed (cache) prefetching.

There is no penalty on the program size in using this generalized delayed
branch. That is, it is never necessary to insert NOPs after the PBR instruc-
tion. For some architectures with a delayed branch (e.g., RISC-1 [Patter-
son81]), the number of instructions that must be executed after a delayed jump
is fixed. Under certain circumstances, NOPs have to be inserted after the

delayed jump instructions.
The hardware will not fetch instructions that will not be executed.

Most branch targets, stored in the branch registers, are loop invariants. Thus,
standard optimization techniques [Aho77] can be used to move the calculation
of branch targets and assignment of (loop-invariant) branch registers out of the

loops.

For decoupled execution, the two processors must make the same decision on

corresponding branches. To assure this, PIPE has two sets of branch instructions:

internal branches that determine instruction execution only for the processor in

which they are executed, and external branches that behave just like internal ones,

but that also notify the other processor of the branch outcome, via a branch queue.

Both processors also have a "prepare-to-branch-from-queue” instruction that checks

the head of the branch queue (which is loaded by the other processor by executing

an external branch) to see if a branch should be taken.

22

PIPE does not have a single instruction for call or return; rather, it provides
several primitives from which a compiler may generate code specialized for any par-
ticular language or situation. In particular, PIPE uses the (unconditional) prepare-

to-branch instruction for both call and return.

Chapter 4

The Code Scheduler

4.1. The PIPE Pascal Compiler

Currently, there is one high level language compiler for the PIPE architecture.

The source language is a subset of Pascal. (The major unimplemented features are

formal procedures, and "goto out of procedure.”) The compiler has five phases.

Phase one generates intermediate language (IL) in quintuple form, which is the

quadruple form [Aho77] augmented with a fifth attribute-tuple. The atiributes are

used to keep track of the original high level language structures. Phase two per-

forms data flow optimizations [Aho77] on the IL. Phase three schedules the IL.

Phase four generates machine code. Phase five does the machine code level

scheduling to take advantage of the architectural queues and the prepare-to-branch

instruction.

We do two-level scheduling for the following reasons:

There are fewer structural dependencies at the IL level than at the machine
code level. Since we assume an infinite number of pseudo registers at the IL
level, all pseudo registers are assigned at most once. (We shall see in chapter
5 that the software pipelining method duplicates some of the code within the
body of a loop. If we do software pipelining at the IL level, a given pseudo
register may be systematically assigned more than once in different basic
blocks.) Thus, read-after-write (RAW) and write-after-read (WAR) hazards

due to register allocation are deferred until register binding time. The register

_ allocation algorithm can. take the variable- hazards into account and allocate

registers accordingly.

23

24

(2)

The time complexities are ()(nlogn)+ and O(n) for scheduling methods at the
IL level and the machine code level, respectively. The time complexity of
one-level machine code scheduling is O(n?) (see section 4.4). Under the
two-level scheduling scheme, the sequence of operand requests is reordered at
the IL level. Thus, there is no need to change the order of memory-accessing

instructions at the machine code level.

Although the IL was designed with the PIPE architecture in mind, the novel

features of PIPE are not expressed explicitly. The code generated by the front-end,

however, must meet the following criteria to allow effective scheduling of the IL.

()

(2)

(3)

The branch condition has to be in a pseudo register. That is, the branch con-
dition is computed before the branch instruction itself. Thus, it is possible to

separate the evaluation of the branch condition from the branch instruction.

The index to access an array element has to be in a pseudo register, rather
than in a program variable. Thus, it is possible to separate the index calcula-

tion from the array element accessing.

If any of the source operands of an arithmetic/logic operation are in memory,
the destination must be in a pseudo register to facilitate the scheduling of
memory accessing operations. (That is, the compiler won’t generate memory-
memory arithmetic/logic expressions.) An additional MOVE intermediate
language statement moves the contents from the pseudo register to its memory

location.

A complex (high level language) expression is subdivided into multiple simple

IL instructions; each of them is either a binary or a unary operation. Thus,

independent complex expressions may be scheduled to execute in an interleaved

" Base 2 logarithm is used through out this thesis.

25

fashion. The code scheduler at the 1L level makes a simple assumption about real
variables (as opposed to pseudo registers): that one object is not referenced by two
or more different names. We also assume that an array, not each element of an
array, is an object. Thus, we treat A[i] and A[j] as the same object, regardless of
the relationship between i and j. That is, we ignore the aliasing problem for the
purpose of this study. Some of the restrictions mentoned above can be lifted by
using sophisticated algorithms, such as the disambiguator described by Fisher, et

al. [Fisher84a].

4.2. Code Scheduler for the Intermediate Language

The code scheduling method used at the IL level is explained in this section.
This scheduling method is similar to that at the machine level. We show the func-

tion of the scheduler by an example.

4.2.1. The Algorithm

Definition 4.1. A weighted dependency graph (WDG) G = {V,E,T,C} is a
weight directed acyclic graph where (a) Vis a set of vertices corresponding to
instructions, (b) E 1s a sel of edges expressing data/control dependencies
between pairs of vertices, (€) T'is a function mapping from E to a set of non-
negative integers, and (d) C is another function mapping from V to a set of

non-negative integers.
m]

We will use the terms *‘vertex’’ and ‘‘the instruction represented by that vertex’’
interchangeably, when the meaning is clear from the context. The edges are the
different dependencies (to be defined later) between vertices. An edge e;ji is the k-

th dependency from vertex v; 10 Vj. If there is an edge €;jk pointing from vertex v;

to vertex v; the value Z;j associated with the edge is the time! from the issuing of v;

! This is an estimated time. It is very difficult, if not impossible, to get the ac-
tual execution time of each instruction because of some asynchronous operations
(e.g., memory bank conflicts, cache misses).

26

till the k-th dependency of v; has been lifted. Note that it is possible to have more
than one edge between a pair of vertices. Each edge represents a different depen-
dency, and the costs with these edges may vary. All dependency edges point for-
ward in the sense that a given instruction depends only on instructions that appear
earlier in the textual order. The cumulative cost ¢; associated with the vertex v; is

the minimum amount of tme from the issuing of v; to the end of the WDG.

Definition 4.2. Given two vertices (instructions) v; and vj in a weighted

dependency graph, and v; precedes v; in the original sequence.

(1) V; is RAR (read-after-read) dependent on v; iff both instructions get values
from the same object.

(2) V; is RAW (read-after-write) dependent on v; iff v; assigns a value to an
object and v; gets a value from the same object.

(3) V; is WAR (write-after-read) dependent on v; iff v; assigns a value to an
object and v; gets a value from the same object.

(4) V; is WAW (write-after-write) dependent on v; iff both instructions assign
values to the same object.

(5) V; is CON (control) dependent on v; iff v; must precede v; logically.
m]

The objects at the 1L level, such as variables in a program and pseudo registers, are
independent of the organization of the processor. The objects at the machi‘ne code
level, however, are processor resources, such as registers, queues and the memory
system. 1t is relatively difficult to distinguish one arbitrary memory element from
another at the machine code level. Hence, the memory system, rather than the ele-
ments of the memory system, is considered a single object. This constraint will not
affect the code quality reordered by the machine level scheduler because the 1L

scheduler has put all memory references in the proper order.

For a basic block which ends with a branch, the branch has to be the last
instruction, even after the scheduling. Thus, there are control dependencies
between all other instructions in such a basic block and branch. In other words, a
control transfer point induces a control dependency between instructions before and

after it. As mentioned before, we introduce a pseudo instruction XBR as a place

27

holder for the -exit point of the prepare-to-branch instruction. At the machine
language level, all other instructions within the same basic block are CON depen-
dent on the XBR pseudo instruction (not the PBR instruction). Thus, no instruc-
tions will be moved to follow the XBR instruction. Instructions, however, may be
moved to follow the PBR. In fact, one of the purposes of the machine code

scheduler is to move suitable instructions to follow the PBR instruction.

RAR and WAW dependencies are for the machine code scheduling method
only, for the reasons explained below. In general, an object can be read many
times and still hold the same value. Hence, the order of reading from that object is
irrelevant. Therefore, RAR does not exist between objects at the IL level. There is
at least one exception in that if the object is a queue, the order of reading is impor-
tant. Suppose both v; and v; read from the same queue and v; precedes v;. Then
v; gets the first element of that queue where v; gets the second one. The effect is
different if we exchange the order of v; and v;. The same argument holds for
WAW hazard on writing to a queue. If an object at the IL level is assigned twice
without being used between the two assignments, the first assignment is useless,
hence is removed (by the compiler). That is, the WAW hazard does not exist at the
IL level, either. Consequently, we don’t have to check for RAR and WAW depen-

dencies for scheduling done at the 1L level.

We mentioned in chapter 2 that code scheduling is NP-complete. Thus,
heuristics are used in developing the following algorithms. In algorithm 4.1, we

outline the code scheduling method at the IL (intermediate language) level.

Algorithm 4.1. Intermediate Language Code Scheduling.

foreach basic block do
(4-1-1) build a data/control dependency graph;
(4-1-2) assign cosl to each instruction in reversed topological sort
order;
(4-1-3) issue instructions according to weighted topological sort
order,

od;

28

The steps in algorithm 4.1 are explained by the following three algorithms.

Algorithm 4.2. Build Data/Control Dependency Graph.
foreach instruction in the original textual order do

(4-2-1) add a vertex corresponding to this instruction to the depen-

dency graph;

(4-2-2) forall objects the current instruction defines (writes to) do
(4-2-2-1) add a WAR edge from the last previous instruction
that uses (reads) the object to the current instruction;

(4-2-2-2) assign a cost to the edge;

od;

(4-2-3) forall objects the current instruction uses (reads from) do
(4-2-3-1) add a RAW edge from the last previous instrucuon
that defines (writes) the object to the current instruction;
(4-2-3-2) assign a cost to the edge;

od;

(4-2-4) if the last instruction of the current basic block is a branch

instruction then
(4-2-4-1) add a CON edge from the current instruction to the
branch instruction;

fi;

od;
0

The following lemmas state some facts about the algorithms shown above. These

lemmas will be used to prove some theorems of the code scheduling method.

Lemma 4.1. There is a one-to-one correspondence between input instructions
and vertices of the dependency graph.

Proof. From statement (4-2-1).
0

Lemma 4.2. All dependencies, at the IL level, are included in the dependency
graph constructed by Algorithm 4.2.

Proof. From Definition 4.2 and statement (4-2-2), (4-2-3), and (4-2-4).
0

For the discussion of this section, we assume the current basic block size is n.

That is, there are # instructions in the current basic block.

Lemma 4.3.. The time complexity of Algorithm 4.2 is linear in the size of
input.

29

Proof. Since an instruction defines only a (small) finite number of objects, the
maximal number of objects an instruction can define is dependent on the
design of the instruction set but independent of the input program size. Let
* the maximum numbers of objects that can be defined and used by an instruc-
tion be D and U, respectively. Thus, statement (4-2-2) is executed at most
D-U times per iteration. Similarly, statement (4-2-3) is executed at most D-U
times per iteration. Statement (4-2-4) is executed once per iteration. A
scheme similar to hashing can be used to find the last previous definition (use)
of an object in constant time. Let C; be the time required to find the last pre-
vious define (use). Therefore, the running time of Algorithm 4.2 is bounded
by (2-D-U-Cs+ C,.)'n, where C, is the time to add a control dependency. In

other words, the time complexity of Algorithm 4.1 is O(n).
O

For practical purposes, the values of D and U are small. In a typical three-
address form, the values for D and U are 1 and 2, respectively. Thus, D-U is still

a very small number.

Algorithm 4.3. Assign Cost to a Dependency Graph.
{ The cumulative cost of an instruction v; is designated by C(v;). }
(4-3-1) foreach instruction v; do
(4-3-1-1) C(v;)-0;
od;
(4-3-2) do the topological sort;
(4-3-3) foreach instruction v; in the reversed topological sort order do
(4-3-3-1) foreach edge ¢;; pointing out from v; to v; with cost
T(e;;) do
(4'3'3*1-1) C(vl-)wMa.x.’Z(C(vi),C(vj)—F T(elj)) ;
{ Max2 returns the larger one of its two arguments }
od;
od;
O

The reason we use the reversed topological sort order is that the cumulative
costs of instructions that depend on v; are evaluated before we compute the cumula-
tive cost of v; . In other words, in statement (4-3-3-1-1), C(vj) is known and will

not be changed when we are calculatng C(v;).

Lemma 4.4. The time complexity of Algorithm 4.3 is linear in the size of
input.

Proof. Statement (4-3-1) is executed n times. Except for the branch instruc-
tions, there are at most D-U edges pointing to any vertex. There are n—1

30

edges pointing to the branch instruction. Therefore, there are at most
((n—1)-D-U)+ (n—1) edges in the WDG. The time to do the topological sort
on the WDG is O(| |V |+ | E|] |), hence O(n) [Knuth73a]. The time to exe-
cute statement (4-3-3-1-1) is constant and statement (4-3-3-1-1) is executed at
most ((n—1)-D-U)+(n—1) times. (Recall that (n—1)-D-U)+(n—1) is the
number of edges in the WDG.) Thus, the time complexity of (4-3-3) is also
O(n). Therefore, the time complexity of Algorithm 4.3 is linear in the size of
input.

o

Definition 4.3. A leader of a WDG in a topological sort is a vertex with no
predecessors. That is, either this vertex does not depend on any other vertices,

or all its predecessors have been removed (issued).
0

Definition 4.4. A weighted topological sort order of a WDG is topological sort
order subject to the following constraint. ¥; and v; are two vertices, if v; pre-
cedes v;, then C(v))zC(v)), where Cis the cumulative cost function of a ver-

tex.
O

Algorithm 4.4. 1ssue Instructions by Weighted Topological Sort Order.
(4-4-1) calculate the leader set;
(4-4-2) repeat
(4-4-2-1) pick up an instruction (v;) from the leader set with max-
imum cumulative cost;
(4-4-2-2) issue v;;
(4-4-2-3) remove v, from the leader set;
(4-4-2-4) insert new leaders to the leader set;
until the leader set is empty;
(4-4-3) if some instructions have not been issued then
(4-4-3-1) error condition;
fi;
0

The error condition, (i.e., statement (4-4-3)) should not happen at the IL level,

because the original input is a legal sequence.

Lemma 4.5. The time complexity of Algorithm 4.4 is O(nlogn).

Proof. The data structure used for the leader-set is an AVL tree [Knuth73b],
which has O(logm) time complexity to insert, -delete, and find the maximal
element, where m is the size of the AVL tree. The size of the leader set is no

--bigger than n-and each -vertex (instruction) is put-on the leader set only once.

Similarly, a vertex is Temoved from the set only once. Thus, each of the state-
ments (4-4-2-1), (4-4-2-3) and (4-4-2-4) is executed, at most, n times. The

31

original leader set can be built with time complexity O(rnlogn). Therefore, the

time complexity of Algorithm 4.4 is O(nlogn).
o

Lemma 4.6. 1f Algorithm 4.4 terminates successfully, there is a one-to-one
correspondence between vertices of the WDG and the output instructions. In
other words, the output instructions are a permutation of vertices of the WDG.

Proof. If Algorithm 4.4 terminates successfully, then all vertices have been
issued. On the other hand, instructions issued by Algorithm 4.4 are members

of the leader set which is constructed from vertices of the WDG.
O

Lemma 4.7. All dependencies represented by the WDG are preserved in the
output instruction stream.

Proof. From the properties of topological sort.

Theorem 4.1. The time complexity of Algorithm 4.1 is O(nlogn).

Proof. From Lemma 4.2, 4.3, and 4.4, the time complexity for one iteration
of the loop in Algorithm 4.1 is O(nlogn). Let n; be the size of the i-th basic
block and N be the size of input program. That is

N = S h;
i
Thus, the time complexity of Algorithm 4.1 is
O(s n;logn;)= O(s n;logN) = O(NlogN)
i i

O

Definition 4.5. For two code sequences, C; and C;, C; is said to be semanti-
cally equivalent to C; iff C; is a permutation of C; and all dependencies in G

are preserved in C;.
]

Theorem 4.2. The scheduled code (the output of Algorithm 4.1) Cgy s
semantically equivalent to the original code (the input to Algorithm 4.1) Ci.

Proof.

If-part:

[C,p, is a permutation of C;,] From Lemma 4.1 and Lemma 4.6.

[All dependencies in Cj, are preserved in Cgy]: From Lemma 4.2 and
Lemma 4.7.

Only-if-part: Similar to that of the if-part by introducing comparable lemmas.

32

4.2.2. Examples

For the discussion of examples in this thesis, we assume the following timing

for the relevant functions.

Function Time (clock periods)

Load from Memory 6
Store to Memory

Branch (taken)

Integer Add

Floating Point Add

Floating Point Multiplication
Load Branch Register

— BN = N

1t may take more than one clock period for an operand to be written to the memory
system. As far as the issue logic is concerned, however, a store operation does not
cause any subsequent instructions to be blocked owing to data dependency. For a
successful branch, the time for a branch is the number of clock periods required
from the issue time of the branch instruction to the issue time of the first instruction
of the branch target. We also assume that the issue logic is capable of issuing one
instruction every clock period, providing there are no dependencies between instruc-

tions.

The primary purpose of the IL level code scheduling is to arrange all memory
accessing instructions (LOADs/STORESs) in the desired order. The compiler keeps
enough semantic information at the IL level to distinguish one object (variable) from
another. The entire array, rather then elements of an array is considered as one
object. We do not intend to include many architectural features within the IL. In
particular, the concepts of prepare-to-branch and data queues.are not delineated.

~We shall see in the next section that-the code scheduler at the machine code level

takes advantage of these special architectural features.

4.3. Code Scheduler at the Machine Code Level

The algorithm used for the machine code level scheduler is similar to that used
in the IL level scheduler. The major differences are (a) all objects are processor
resources, such as registers; (b) RAR and WAW hazards are used to enforced the
first-in-first-out (FIFO) order of queues for the reasons explained earlier; and (c) an
additional restriction (described below) is imposed for a queue-filling instruction (an
instruction that puts an element on a queue) to become a leader, viz., this queue-
filling instruction should not overflow the queue. The last difference guarantees
that the scheduled code is deadlock-free. 1t is, however, possible to have an error
condition at the machine code level because of different assumptions about queue
sizes. For instance, the code scheduler may not be able to find a code sequence for
queue size of one, if the original code is generated assuming queue size of two.
The functions of the machine code scheduler are: (1) to utilize the architectural
queues; (2) to utilize the prepare-to-branch instruction; (3) to enforce the FIFO
nature of the queues; and (4) to guarantee a deadlock free code for queues of finite
size. From the different constraints at the machine code level, we have the follow-

ing lemma and theorem.

Lemma 4.8. The time complexity of Algorithm 4 at the machine level is linear
in the size of input.

Proof. The number of elements in a leader-set, for the scheduling method at
the machine code level, is dependent on the number of objects (thus processor
resources) in the system but independent of the input program size. Thus, the
size of the leader-set in Algorithm 4.4 is bounded by a constant which depends
only on the processor organization. Therefore, it takes constant time to insert
an element, delete an element, and find the maximal element from the leader
set. We have to do the insert/delete/find operations at most n time in Algo-
rithm 4. Hence, the time complexity of Algorithm 4 is linear in the size of
input program.

o

34

Theorem 4.3. The time complexity of scheduling method used at the machine
language level is linear in the size of the input program.

Proof. From Lemma 4.3, 4.4, 4.8, and superposition.
]

The weighted topological sort method described in Algorithm 4.4 does not take
the Flynn limit [Flynn66] [Smith84] [Goodman85] into account. Consequently,
there are cases where many independent instructions are crowded waiting to be
issued near the end of a basic block. This clusiering of instructions results in
unnecessarily prolonged execution time due to the Flynn limit. A simple scenario
of this situation follows. Suppose there are five independent instructions with
cumulative costs of two, and the cumulative costs of any other instructions are
larger than two. Hence, the aforementioned instructions will be the last ones to be
issued according to Algorithm 4.4. The relative issuing order of these five instruc-
tions, however, is unimportant. As mentioned above, the cumulative cost of a given
instruction is the least time (in terms of clock periods) from issuing of that instruc-
tion to the end of the basic block. Thus, the best case is to finish the basic block
two clock periods after issuing any of these five instructions. The underlying
hardware, confined by the Flynn limit, requires 6 clock periods to complete all five
instructions, which is 4 clock periods longer than we would like it to be. Some of
these five instructions can be issued earlier if a slightly different scheduling method

15 used.

We introduce a modified scheduling method to take the Flynn limit into
account. The basic idea behind the modified weighted topological sort order is
explained here. Consider two consecutive instructions in the weighted topological
sort order with cumulative costs of n and n—k(k=1), respectively. It is possible to
issue k—1 other instructions, between these two instructions, from the leader set
without increasing the .total execution time of the basic block. In other wordé, k-1

free time slots are available to issue instructions with smaller cumulative costs

35

without execution time penalty. We then introduce another attribute to an instruc-
tion, called the earliest issue time (EIT). As the name suggests, the earliest issue
time of an instruction indicates the earliest possible issue time of that instruction
given the issue times and execution times of all instructions it depends on. Consider
three instructions, v;, Vi and v, and the following conditions: (a) v, depends on
both v; and v;; (b) the execution times of v; and v; are T; and Tj, respectively; and
(c) v; and v; are issued at if; and it;, respectively. The EIT of v, denoted as EIT,
is set w0 max2((it+ T;),(it;+T;)). That is, the underlying hardware interlock
mechanism will block the issue of v, until EIT,. When an instruction is issued, the
EITs of all it successor instructions will be updated accordingly.‘ The EITs of dif-
ferent instructions are used in Algorithm 4.6 (SN issue) to decide which instruc-
tions can be issued slightly out of the weighted topological sort order without
increasing the total execution time. The modified topological sort order, which
takes into consideration the bandwidth of the issue logic, is detailed in Algorithm

4.54.5.

Algorithm 4.5. lssue Instructions by Modified Weighted Topological Sort
Order.
(4-5-1) calculate the leader set with the earliest issue time being zero;
(4-5-2) pcc - O; { previous cumulative cost }
(4-5-3) c cc — 0; { current cumulative cost }
(4-5-4) repeat
(4-5-4-1) pick up an instruction (v;) from the leader set with maxi-
mal cumulative cost;
(4-5-4-2) pcc ~ c cc;
(4-5-4-3) c cc - C(v;); { the cumulative cost of v; }
(4-5-4-4) if (p cc—c cc) = 2 then
(4-5-4-4-1) SN issue (p.cc—ccc— 1, v;);
else
(4-5-4-4-2) issue v;;
(4-5-4-4-3) update the EITs of all successor instructions of v;;
(4-5-4-4-4) remove v; from the leader set;
(4-5-4-4-5) insert new leaders to the leader set;
fi; ‘
until the leader set is empty;
(4-5-5) if some instructions have not been issued then

36

(4-5-5-1) error condition;
fi;
]

SN issue issues at most 7 instructions out of the weighted topological sort order in

the n free time slots introduced by dependencies.

Algorithm 4.6. SN issue (n : integer; v : veriex),
{ issuing at most ‘‘n’’ instructions, other than ‘‘v,’’ according to the EIT }
{ “*v>> must be in the leader set }
(4-6-1) while (n > 0) and (|leader set| > 1) do
(4-6-1-1) pick up an instruction (v;) from the leader set with maxi-
mal EIT; ’
(4-6-1-2) if EIT, > EIT, then
return;
{ no instruction can be issued earlier than v can }
(4-6-1-3) if (vj # v) then
(4-6-1-3-1) issue v;;
(4-6-1-3-2) update the EITs of all successor instructions of Vis
(4-6-1-3-3) remove v; from the leader set;
(4-6-1-3-4) c cc - C(vj); { cumulative cost of v; }
(4-6-1-3-5) n - n — 1;
(4-6-1-3-6) insert new leaders to the leader set;
fi;
od;
0

In Algorithm 4.6, when the size of the leader set is equal to one, the only ele-

b4

ment remaining in the leader set is the argument ‘‘v.’

Many variations of SN issue are possible. We will not discuss alternative ver-
sions of SN issue in this thesis. The Flynn limit applies only to the hardware
instruction issue unit. Thus, we have to apply this modified method to the machine
code level scheduler alone. The bounded leader set assumption, used in Lemma

4.8, still holds. Therefore, we have the following theorem.

Theorem 4.4. The time complexity of the modified Algorithm 4.4 at the
machine code level is linear in the size of input.

~ Proof. The proof is similar to that of Lemma 4.8 and Theorem 4.3.

37

With the exception of the result bus (the bus that sends the result to the register
file), the pipeline in the PIPE architecture is almost linear in the sense that new
operands can be put into the pipe every clock period in the absence of a result bus
conflict. The result bus is used at the end of an instruction that sends the computed
value to the register file. Thus, two instructions with different execution times may
want to use the result bus at the same time. In PIPE, this conflict is detected by
hardware, and subsequent instructions will be blocked to avoid result bus conflict.
Two possible hardware solutions, which can alleviate the delay due o a result bus
conflict, are described below. The first method is including multiple result buses.
The second method uses the issue logic to detect the result bus conflicts at program
execution time and inserts delays whenever necessary. This is similar to a scheme
proposed by Patel and Davidson [Patel76]. Normally, a bus conflict will block the
issuing of an instruction for one clock period. Thus, the delay due to a result bus
conflict with a simple blockage scheme is relatively smaller for long pipelines (pipe-
lines with many stages) than in the case of short pipelines. The detection of possi-
ble result bus conflicts at code scheduling time, however, can be used to break the
tie when two instructions in the leader set have the same cumulative costs. That is,
when two instructions in the leader set have the same cumulative cost, the one that
does not cause a result bus conflict with previous instructions should be taken out of

the leader set (i.e., issued) first.

We will demonstrate the function of code scheduling by an example.

Example 4.1. We will use the following example [Hwang84] in chapters 4 and
5:

DO 999 I = 1, 1000
999 Y1) = F) X Y(I-1) + G(I)

This loop is hard to vectorize on some supercomputers because of the first

order linear recurrence. Some notations used in the IL are outlined below: (a)

%Rn stands. for the n-th pseudo register at the IL level; (b) x[y] denotes an
_access to array x with offset y. The compiled IL before scheduling is:

38

MOV %R4,1000,, /* loop bound
MOV %R2,y-1[%R1],,M /* Y(0)
LOOP
MULF %R3,{[%R1], %R2, /¥ FO)XY(-1)
ADDF %R2,%R3,g[%R1], [* ...+G()
MOV y[%R1], %R2,, /* store the result
ADDI %R1,%R1,1, /* increment loop count
BRLE %R1,%R4,LOOP, /* check loop bound

The code generated from the above IL is:

RO ~ 1000 /* loop bound
BRO - LOOP /* branch target
LDQ - Rl1,y-1 /* load Y(0)
R3 - LDQ /* move Y(0) to R3
LOOP
S1 LDQ - RI, f /* load F(I)
S2 R2 - LDQ xfR3 /*FI)xY()
S3 LDQ - Rl, g /* load G(I)
S4 SAQ - Rl,y /* addr of Y(I)
S5 R3 - R24fLDQ /*...+G()
S6 SDQ - R3 /¥ value for Y(I)
S7 R1 - PRI +1 /* increment loop count
S8 R4 - R1 —=RO /* test bound
S9 PBRLE R4, BRO, 0 /* branch back
S10 XBR

The issue time and the completion time of the above code sequence are:

Statement Issue Completion

Number Time Time
S1 0 6
S2 6 10
S3 7 13
S4 8 9
S5 13 17
S6 17 18
S7 18 19
S8 19 20
S9 20 *26

As a convention .used in this thesis, the number following an asterisk in the
completion-time- column indicates the effective execution time (in terms of
clock periods) per iteration. Since the loop is so simple, the scheduling
method at the IL level will not change the order of memory accessing

39

instructions. The WDG of the machine code is shown in Figure 4.1. The
number associated with an edge (in boldface) is the execution time (in terms of
clock periods) of that particular instruction, where the number of an instruc-
tion (in italic) is the number of clock periods from the issuing of that instruc-
tion to the end of the basic block. The scheduled code of the machine code is

LOOP
S1 LDQ - RIf
S3 LDQ - Rl g

S4 SAQ - Rly
S7 Rl -~ RI1+1

S8 R4 -~ Rl1-RO
S9 PBRLE R4, BRO, 2
2 R2 -~ LDQ xfR3
S5 R3 - R2+fLDQ
S6 SDQ - R3

SI0 XBR

S2 cannot be issued until 6 clock periods after S1 has been issued. Though
S7, S8 and S9 have smaller cumulative costs than that of S2, they (S7, S8 and

15 11

Figure 4.1. The WDG of Example 4.1.

40

S9) are moved to the locations before S2 by SN issue. The issue time and
completion time of the code sequence are

Statement Issue Completion

Number Time Time
Sl 0 6
S3 1 7
S4 2 3
S7 3 4
S8 4 5
S9 5 11
S2 6 10
S5 10 14
S6 14 *15

It takes 15 clock periods to execute one iteration of the loop.

4.4. One-Level Code Scheduling

As long as the high level language is available, the two-level scheduling
methods proposed are applicable. If we must schedule an assembly language pro-
gram to take advantage of architectural features, a more expensive (in the sense of
execution time) scheduling method must be used. The expense comes from the
reordering of memory accessing instructions without deadlock. Since the compiler
does not keep enough semantic informétion at the machine code level, the scheduler
will only schedule the order of LOADs between two consecutive STOREs. A single
level scheduling method is described below. For simplicity of discussion, we will
only elucidate the scheduling of load instructions and instructions that consume
operands from the LDQ. Without loss of generality, we assume that a given
instruction takes either no operands or exactly m operands from the LDQ. We will
use gueue-draining instructions to refer to instructions that take operands from the
LDQ. The-corresponding load instructions are termed: queue-filling instructions.

We. enumerate all queue-draining instructions from D; to D,. Similarly, queue-

41

filling instructions associated with D; are numbered from F;j to Fj,. Thatis, Fj;
loads the j-th operand for the i-th queue-draining instruction. In order to enforce
the FIFO nature of the queues without leading to deadlock, all queue-draining
instructions have to be strung together by appropriate RAR dependency links. The
corresponding queue-filling instructions are chained by suitable WAW dependency
links. The FIFO nature is enforced by finding a total order of all queue-draining
instructions. The corresponding queue-filling instructions are arranged accord-
ingly. The goal of finding this total order is to minimize the execution time of a

basic block subject to the system time constraints and dependencies.

Definition 4.6. A queue-draining instruction and its queue-filling instructions
form a FD-unit. Thatis, F;; Fip - - - Fy, and D; form the i-th FD-unit of a
basic block.

O

We observe the following:

(1) Since a queue-draining instruction takes m consecutive elements from the
LDQ, queue-filling instructions from the same FD-unit do not intermix with

queue-filling instructions from any other FD-units.

(2) The total order of queue-filling instructions of the ith FD-unit is
Fi1 Fip, * + * Fyy. In other words, operands used by a given queue-draining

instruction are always requested in the desired order.

Thus, the total order of all FD-units leads to the total order of queue-draining
instructions as well as that of queue-filling instructions. The cost of the i-th FD-
unit is the cumulative cost of D;. That is, the minimum cumulative cost within that

FD-unit. The following algorithm finds the total order of all FD-units.

Definition 4.7. Let Mj; M3 ...,M;,, be members of a FD-unit FD; and
M;1 Mj3 ..., M;y, be members of a FD-unit FD;. FD; is dependent on FD;
iff- there exist a x-and-a y, and Mj, is in FD; and M;, is in FD;, such that M;,
transitively depends (i.e., directly or indirectly depends) on M;.. A coalesced
transitive closure among FD-units is formed by the dependency relations

42

among-all FD-units.

Algorithm 4.7. Find the Total Order of All FD-units.
(4-7-1) find the transitive closure of the WDG;
(4-7-2) find the coalesced transitive closure among all FD-units;
(4-7-3) build the FD-WDG according to the coalesced transitive closure;
{ the FD-WDG consists of all FD-units }

(4-7-4) do weighted topological sort on the FD-WDG;
]

The output order from Algorithm 4.7 is a legal total order among all FD-units.
If FD; and FD; are two adjacent FD-units according to the total order and FD;

proceeds FD;, the following dependencies are added to the original WDG.
(1) Add a WAW link between Fj,, and Fjj.
(2) Add a RAR link between D; and D;.

This algorithm can always find a legal total order among FD-units, because the ori-
ginal text order is a legal one.

Theorem 4.5. The time complexity of Algorithm 4.7 is o(n?).

Proof. Since there are O(n) edges for a WDG of n vertices, the algorithm of
finding the transitive closure for use with sparse relations [Hunt77] applies.
The transitive closure of the or1g1na1 WDG can be computed with time com-
plexity of O(n?). The size of any given FD-unit is bounded by a small con-
stant. Thus, the dependency between any two FD-units can be computed in
constant time. There are, al most, O(n) FD-units for a basic block of size n.
Therefore, the dependency relations among all pair of FD-units (ie., the
coalesced transitive closure) can be computed with time co 2p]e)uty of O(n)-
The FD-WDG can also be built with time complexity of O(n*). The weighted
topological sort can be done in tlme complexity O(nlogn). Hence, the time

complexity of Algorithm 4.7 is o(n?).
o

The scheduling method of Algorithm 4.9 moves appropriate instructions,
according to their cumulative costs, between the PBR and XBR, subject to depen-
dencies and system constraints. It does not move as many as possible. There is no
execution tir'ne penalty, however, because instructions not moved are issued on

cycles where following instruction could not be issued anyway. The same argument

43

holds for the queue-filling/draining instructions.

The branch count field of the PBR instruction should be updated in accordance
with the number of instruction parcels being moved between the PBR and the XBR.

This updating is done by the assembler.

4.5. Remarks

In AE mode of PIPE (the decoupled mode), the access processor (AP) calcu-
lates aili memory addresses and initiates all memory references for both processors.
The execute processor (EP) does all algorithmic computations. Since the IL does
not know different execution modes of PIPE, we don’t have to introduce a new
scheduling method at the IL level for different execution modes. The scheduling
method, for the AE mode, at the machine code level is similar to that for the SP
mode, except that the scheduler for the AE mode has to look at two instruction

streams at the same time to avoid deadlock.

All code scheduling methods discussed so far are applied to one basic block at a
time. Sometimes, there are not many instructions within a small basic block. It is
obvious that code scheduling can be more effective for large basic blocks than for
small ones. One example of an inherently small basic block comes from the high
level language while-statement, in that the evaluation of the Boolean expression
associated with the while-statement forms a small basic block. However, it is possi-
ble for a compiler to convert a while-statement into an ifstatement followed by a
repeat-until-statement with proper adjustment to the Boolean expression, which
reduces the number of small basic blocks. This while-statement example demon-
strates that a compiler can do necessary transformations to make other optimization
methods (in this case, code scheduling) more effective. In the next chapter, we will

introduce a-method which does code scheduling across the-basic-block boundary.

44

4.6. Simulation Studies

In this section, we show some experimental results concerning the effective-
ness of the code scheduling methods in utilizing the data queues and the prepare-

to-branch instruction during the single mode execution of the PIPE architecture.

A functional interpreter and a performance simulator have been built to evalu-
ate the performance of the PIPE architecture. Our measurement method is to com-
pare the performance of the current PIPE architecture with that of a ‘‘bare

PIPE.”” By ‘‘bare PIPE,”” we mean the PIPE architecture with the degenerate

Table 4.1. Relative Performance Gain by Adding the LDQ and the PBR In-
structions to the Bare PIPE Machine.

Programs Bare Loaded Speed
PIPE PIPE Up
(cycles) (cycles)
ACK 715 539 1.33
FACT 952 663 1.44
HEAP 1918 1609 1.19
LLL1 1412 811 1.74
LLL2 22617 15820 1.43
LLL3 28015 23015 1.22
LLL4 24492 21913 1.12
LLL5 29976 17987 1.67
LLL6 36642 21324 1.72
LLL7 22452 9853 2.28
LLLS 21568 17965 1.20
LLLY9 17612 7812 2.25
LLLIO 29712 20813 1.43
LLL11 26985 20990 1.29
LLLI2 26985 20990 1.29
LLLI13 43660 30348 1.44
LLL14 37512 28363 1.32

45

case for each special feature: in particular, the LDQ size is 1, and the branch count
field is always O (i.e., no instructions are moved to follow the PBR instruction).
We use the fourteen Livermore loops [McMahon72] [Riganati84], two highly
recursive programs--ACK (Ackermann function with arguments 1,1) and FACT
(calculate the factorial of 5 by using recursive calls), and one sorting

program--HEAP (heap sort).

Though it is impractical to build a very large on-chip instruction cache for the
fabrication technology available to universities, we assume a large, fully-associative

instruction cache with block size of eight parcels. The instruction cache is much

Table 4.2. Speedup Due to the LDQ Only.

Programs Bare Loaded Average Speed
PIPE P1PE Load Dist. Up
(cycles) (cycles)
ACK 715 544 7.55 1.31
FACT 952 663 8.04 1.44
HEAP 1918 1623 4.56 1.18
LLL1 1412 812 8.40 1.74
LLL2 22617 17416 5.40 1.30
LLL3 28015 28015 15.67 1.00
LLL4 24492 24459 10.00 1.00
LLLS 29976 18321 7.39 1.64
LLL6 36642 22656 10.67 1.62
LLL7 22452 10332 12.11 2.17
LLLS8 21568 18048 12.65 1.20
LLLY 17612 8212 14.15 2.14
LLL10 29712 21312 15.67 1.39
LLLI11 26985 22989 7.18 1.17
LLL12 26985 22989 11.00 1.17
LLLI13 43660 30860 11.00 1.41
LLL14 37512 29112 7.33 1.29

46

larger than any of the programs tested. Therefore, we may consider the size of the
instruction cache to be infinite. Thus, when a line (cache block) is referenced for
the first time, an instruction cache miss occurs. All subsequent execution of the

instructions within the same line (block) will not cause any further cache misses.

In table 4.1, we present the performance gain by adding the LDQ and PBR
instruction to the bare PIPE. The speed-up column is the ratio of ‘‘the bare PIPE”’
column to ‘‘the loaded PIPE”’ column. The speed-up ranges from 1.12 (LLL4) to
2.28 (LLL7). The mean and variance of the speed-up are 1.49 and 0.33, respec-

tively. In table 4.2, we show the relative speed-up owing to the LDQ alone. The

Table 4.3. Relative Performance for Different LDQ Size.

Programs | LDQ size
1 2 3 4 6 ©

ACK 715 635 595 579 555 539
FACT 952 802 742 718 682 663
HEAP 1918 1633 1623 1619 1613 1609
LLLI1 1412 1071 971 831 811 811
LLL2 22617 21820 20220 17420 16020 15820
LLL3 28015 27015 23015 23015 23015 23015
LLL4 24492 23941 21913 21913 21913 21913
LLL5 20976 24981 17987 17987 17987 17987
LLL6 36642 26652 21324 21324 21324 21324
LLL7 22452 14533 10933 10453 9853 9853
LLL8 21568 21045 19205 18285 17965 17965
LLLO 17612 13712 11812 8912 8112 7812
LLL10 29712 20813 20813 20813 20813 20813
LLLI1 26985 20990 20990 20990 20990 20990
L1.L12 26985 20990 20990 20990 20990 20990
LLL13 43660 30988 30348 30348 30348 30348
LLL14 37512 30613 29413 28363 28363 28363

The numbers are execution time in terms of clock periods.

47

load distance is the number of instruction parcels between the instruction that loads
the operand and the instruction that takes ﬂ'1at particular operand out of the LDQ.
The average load distance is also included in table 4.2. 1In table 4.3, we show the
relative performance (with respect to an infinite LDQ) of different LDQ sizes. In

table 4.4, we list the dynamic branch count distribution.
From this experiment, we make the following observations.

(1) Comparing tables 4.1 and 4.2, we conclude that most of the speed-up is due to

the LDQ.

Table 4.4. The Dynamic Branch Count Distribution.

Programs | Branch

Count

(BO)

Mean Median
ACK 2.23 0
FACT 2.23 4
HEAP 1.79 0
LLL1 0.10 0
LLL2 3.49 3
LLL3 4.00 4
LLL4 4.00 4
LLLS 2.00 2
LLL6 3.99 4
LILL7 2.99 3
LLL8 5.51 6
LLLYS 4.97 5
LLL10 2.99 3
LLL11 1.00 1
LLL12 1.00 1
LLLI3 3.98 4
LLL14 1.01 1

The numbers for the branch count field are in terms of instruction parcels.

48

(2) From table 4.3, we conclude that the performance gains, due to the LDQ,
level off when the LDQ size is about 6. (This, of course, is dependent on
memory access time. We ran the same set of benchmark programs and found
out that the performance levels off when the queue size is about the memory

access time [in terms of clock periods].) The relative performance of these

1.251
R
e
1
a
£
i 1.001
v
e
P
e
r
£ 0.751
(o]
r
m
a
n
C
e 0.507
0.25 - - ' -
1 2 4 8 16

LDQ Size

This figure is constructed using the numbers in Table 4.4.

Figure 4.2. Relative Performance for Different LDQ Sizes.

(3)

(4)

49

programs for different LDQ sizes is shown in Figure 4.1, where the y-axis is
the the relative performance with respect to an infinite LDQ. (The curves

correspond to the benchmark programs and we drop the labels intentionally.)

From tables 4.1 and 4.2, we can calculate that the performance gain due to the
PBR instruction alone is not as good as that due to the LDQ alone. This can
be explained by the following: (a) For a computer with relatively simple
instructions, branch instructions occur less frequenty than load instructions;
(b) since a relatively large instruction cache is used, it takes only a few cycles
to complete a branch instruction, even if the branch count field is zero, and (c)
there are not always enough instructions to follow the PBR instruction if we do
the assembly language level code scheduling within a basic block. Other possi-

bilities of doing code scheduling are discussed in chapter 8.

From table 4.4, we learn that the average branch count for all the benchmark
programs is 2.79 with variance 1.48. The number of instructions that can be
moved after a branch instructon depends on (a) the algorithm(s) used to
schedule the code; and (b) the nature of the instruction set. From tables 4.1
and 4.2, we calculate that the average speedup owing to the PBR alone is about
10%. Though our algorithm is not as aggressive as that used with MIPS
[Gross82], our results are comparable to theirs. We have shown that the gen-
eralized delayed branch is worthwhile for a reduced instruction set computer
such as PIPE. Simple algorithms, such as the code scheduler described in this
chapter, can be used to take advantage of the generalized delayed branch.
Exotic algorithms, such as software pipelining (to be described in the next

chapter), can make even better use of the PBR instruction.

Chapter §

Software Pipelining

Software pipelining [Charlesworth81] is the deliberate partitioning of a program
loop, carried out by the compiler, into load/computation/store sequences. This
allows the overlapping of the execution of these operations in a fashion similar to
hardware pipelining. The effect of software pipelining is to increase the throughput
of the hardware pipeline. This is accomplished by anticipating operand requests and

overlapping their access time with computations on previously fetched operands.

Essentially, the function of code scheduling is to identify the critical path in the
data dependency graph, and to reorder the code sequence in order to overlap the
operations of non-critical paths with the ones in the critical path. On the other
hand, the function of software pipelining is to reshape the dependency graph by
reconstructing the body of a loop in order to form a shorter critical path. The con-
trol dependency (i.e., the branch instruction) is placed in the most appropriate loca-

tion, and is often overlapped with some data dependencies.

The idea of software pipelining can be explained by an example. Consider the

following code segment:

fori:= 1to Max do

begin
Load;;
Computation,;
Storei;

end;

The space-time diagram of this loop is:

51

(The x-axis is the time axis where the y-axis is the space axis. L, G, and S
stand for Load, Computation, and Store, respectively.)

There are three ‘‘stages’’ in the loop shown above. There are data dependencies

between Load; and Computation;, as well as between Computation; and Store;. Con-

sequently, there are ‘‘bubbles’ in the hardware pipeline. That is, some stages in

the pipeline are not filled with useful work. An equivalent code sequence is:

Load];
Computation, ;
Loadz;

for i := 2 to Max—1 do
Storei_l;
Computation,;
Loadi + 1

od;
Storey .15
Computationy,._;
StoreM s

For the next space-time diagram, we ignore the time 10 issue instructions (i.e., only
the execution time of instructions are shown). The space-time diagram for the new

sequence looks like this:

52

Lip | L Lt
CGi1 |G | G
S | S Si+1

There may be fewer data dependencies in the latter code sequence. Thus, the effi-
ciency of the issue unit for the latter code sequence is higher. Consequently, the

execution time of this particular loop can be reduced.

In PIPE, the only windows between CPU and the memory sysiem are the
architectural queues. These queues make it easier to do software pipelining because
registers need not be allocated for loads and stores. Also, with queues, it is possible
to load the data several iterations ahead of time (if it is beneficial to do so). This
software pipelining technique can be applied to either the IL level or the machine
level. Some semantic information, such as the loop boundary, may have to be kept

around to simplify the job of software pipelining.

The following symbols are used for the discussion of the algorithms described
in this section. Assume there are M, instructions in the body of the loop, M of
which are unrelated to loop control. That is, there are M;—M instructions which
are used for loop control. Let §;; be the i-th instruction from the j-th iteration of
the loop.

Definition 5.1. Momentous instructions within a loop are instructions other than

the loop control ones.
]

Definition 5.2. The n-th order unrolled sequence is a sequence of momentous

instructions formed by unrolling the body of a loop n times.
i

Definition 5.3. The cost of a code sequence is the time-between the issuing of

the first instruction in that sequence and the completion of the last one.
i

53

Definition 5.4. The core of a scheduled n-th order unrolled sequence is a code
sequence that satisfies the following conditions.
(1) For all 1=i=< M, there exists a unique j such that §;; is in the sequence.
(2) For all code sequences that satisfy condition (1), choose the one with
minimum cost.
O

We will explain the software pipelining algorithm below.

Algorithm 5.1. Software Pipelining.
(5-1-1) get the n-th order unrolled sequence;
(5-1-2) do code scheduling;
(5-1-3) find the core;
(5-1-4) reconstruct the loop;

The way to find the core is explained by the following algorithm.

Algorithm 5.2. Find the core.
foreach instruction S;; do
(5-2-1) find a sequence, starting with S;;, that satisfies condition (1)
of a core or end-of-input-stream,
(5-2-2) if end-of-input-stream then
(5-2-2-1) exit;
else
{ call this sequence Q;; |
(5-2-2-2) calculate the cost of Q;;;
(5-2-2-3) if Q;; has the minimum cost up 1o this point then
(5-2-2-3-1) record @;;;
fi;
od;
{ the last recorded @;; is the core found by this algorithm }
o

For practical purposes, the degree of unrolling (the value of n) should be at
least two to make software pipelining more effective than simple scheduling method.
It is easy to see that a core can always be found as long as the degree of unrolling is

no less than one.

Lemma 5.1. The time complexity of Algorithm 2 is 0(n?).

Proof. There are n-M instructions in the n-th order unrolled sequence, where
nis the degree of unrolling. Normally, the degree of unrolling (i.e., the value
of n) is a.small constant (e.g., 3), and is independent of M. Thus, statement
(5-2-1) is executed O(M) tmes. Similarly, statement (5-2-2) is executed

54

O(M) times. Statement (5-2-2-2) and (5-2-2-3) can be done in constant time.
Consequently, the ime complexity of Algorithm 2 is O(M?).
O

Algorithm 5.3. Reconstruct the loop.
(5-3-1) put all instructions before the core before the body of the newly
constructed loop;
(5-3-2) put all instructions after the core after the body of the newly con-
structed loop;
(5-3-3) adjust loop bounds;
(5-3-4) add loop control instructions back;

Lemma 5.2. The time complexity of Algorithm 3 is constant.

Proof. Trivial.
O

Theorem 5.1. The time complexity of Software Pipelining is O(M?), where M
is the number of momentous instructions within the loop.

Proof. It takes constant time to do the following two operations: (a) to get the
n-th order unrolled sequence; and (b) to reconstruct the loop (Lemma 5.2).
The time complexity of code scheduling is no worse than O(MlogM)
(Theorems 4.1 and 4.3). From Lemma 5.9, the time complexity of finding
the core is O(M?). Therefore, the time complexity of the Software Pipelining
algorithm is O(M?) .

]

The software pipelining algorithm can be applied to both the IL level and the

machine code level. In either case, the time complexity is O(M?).

With minor modification, this software pipelining method can be applied to

loops where the number of iterations is not known at compile time (e.g., for-loops

having variables as loop bounds; while or repeat-until loops).

Example 5.1. The software pipelined code of Example 4.1 is:

LOOP
S1 SDQ - R3
S2 SAQ - Rl,y
S3 R2 - LDQ xfR3
S4 R1 - RI+1
S5 R4 - R1 —RO
Sé PBRLE R4, BRO, 5
S7 R3 - R2+fLDQ
S8 LDQ - R, f
S9 LDQ - Rl g
S10 XBR
The issue time and completion time are:

Statement Issue Completion

Number Time Time
S1 0 1
S2 1 2
S3 2 6
S4 3 4
S5 4 5
S6 5 *11
S7 6 10
S8 7 13
S9 8 14

55

Although S9 completes at time 14, the operand loaded by S9 will not be used

until S7 of the next iteration.

The effective speed of this loop is 11 clock

periods per iteration. If the memory load delay were much longer, the
software pipelining method could generate code to do operand prefetching two

or more iterations ahead.

O

The efficiencies of the issue unit (i.e., the issue rate) for the compiled

unscheduled code, the scheduled code, and the software pipelined code are 35%,

69%, and 82%, respectively. The efficiency of the issue unit is a good indication of

the throughput, hence, speed up. Thus, for this particular example, the speed-up

of software pipelining over straight forward scheduling is about 19%.

It is relatively difficult to do software pipelining on loops with if-statements,
because it is hard for the compiler (code scheduler) to know whether operands in
the if-part should be prefetched. The compiler, however, can at least prefetch
operands that are used to determined the Boolean condition of the if-statement. If
the true-ratio of the if-statement is known, the compiler can do appropriate prefetch-

ing accordingly. This is often the case, for example, in testing for error conditions.

Software pipelining has marginal performance effects on loops where the exe-
cution time of an iteration is much longer than that of a memory reference. Thus,
it is advisable to apply the software pipelining method only to loops where the execu-
tion time of an iteration is comparable with that of a memory reference. Intuitively,
it is beneficial only to do software pipelining on small loops. There may not be
many small loops in programs. A big loop may be split (by the compiler) into a few
smaller loops to fit the loop bodies into the hardware instruction buffer. In the
supercomputing environment, however, a relatively big loop may be divided into
vectorizable parts and non-vectorizable parts by applying high level language pro-
gram transformation techniques, such as the ones in Parafrase [Kuck80]. The
non-vectorizable parts of a big loop may consist of a few small loops intermixed with
some vectorizable loops which may also be small. The execution time of these
non-vectorizable loops tends to dominate the total execution time. Software pipelin-
ing is a good way to reduce the execution of the non-vectorizable small loop, hence,
total execution time. Because the software pipelining method is invoked only for
small loops, the quadratic execution time of the software pipelining algorithm will

not introduce excessive overhead to the entire scheduling process.

Loop unrolling is another method to speed up loops. The major difficulties of
loop unrolling are [Weiss84a] (a) -register allocation, and (b) code size of the loop.
The code size has. dramatic impact on the performance of .loops. When the code

size of a loop exceeds the hardware instruction buffer size, the system performance

57

degrades significantly, due to excessive instruction buffer misses. The software
pipelining method, on the other hand, does not affect the code size of a loop body
(though the preamble may be larger). Thus, software pipelined code does not have
optimization anomalies in that the execution time of the software pipelined code is
no longer than that of the original code. In the worst case, the software pipelined
code is the same as the original code. Since the execution time of each instruction
is used to guide software pipelining, the degree of prefetching (e.g., the number of
preload operands) is flexible in the sense that different loops may have different
degrees of prefetching. The five loop unrolling (software pipelining) methods dis-
cussed by Weiss [Weiss84a)] are just special cases of code sequences the software

pipelining method may produce.

5.1. Software Pipelining Results

In this section, some of the Livermore Loops are used as sample programs to

compare the performance of software pipelined code with scheduled code. The

loops used are loops 57, 6", 11, 13 and 14. These loop are chosen because their
tested performance on many state-of-the-art supercomputers (e.g., S-810, VP-200,
Cray 1, Cray X-MP) was below 20 MFLOPS! (million floating point operations per
second) [Riganati84]. In other words, the execution speed of these five loops dom-

inates the total system performance.

The performance comparison of the aforementioned loops is shown in 5.1. As
we pointed out earlier that it takes six clock periods (o do a memory load. If the

memory load time were much longer, the software pipelining method might preload

T In the original Livermore loops, loops 5 and 6 are unrolled three times. For
the discussion of this section, however, we used the version without the unrolling.

! 1n most cases, the performance was below 10 MFLOPS.

58

Table 5.1. The Speedup of Software Pipelined Code.

scheduled software speed

loops pipelined up
5 26 24 1.08
6 26 24 1.08
11 9 6 1.33
13 47 39 1.21
14 54 44 1.23

operands multiple iterations ahead of time. Thus, software pipelining is more effec-
tive when the memory access time is longer. With minor modification, software
pipelining is also applicable to while-loops where the number of iteration is not a

compile time constant.

Chapter 6

Code Generation for Decoupled Mode

Decoupled architectures, such as PIPE, divide the instruction stream into two
parts: addressing and algorithmic computing. The two parts are put on separate
processors. Previous studies [Smith84] [Hsieh84] about different decoupled archi-
tectures used hand-written benchmark programs to evaluate performance. In this
chapter, we describe the methods the compiler uses to generate code for the AE
mode of PIPE. Although the compiler does not generate as good a code as hand-
written code, we compare the performance of a compiled decoupled code with a
compiled single mode code to demonstrate the speedup attained by using high level
languages. The only optimization used in running these benchmark programs is
code schedulingz. The compilers for both the single mode and the decoupled mode
share many modules. Only the code generating phase employs different routines.
We expect similar speedup on both execution modes by applying other optimization

methods, such as common subexpression elimination.

We will first describe the methods used in generating code for the decoupled

mode. Then, we will show the simulation results of the compiled code.

6.1. Code Generation Methods for Decoupled Mode

The basic structure of the Pascal compiler has been discussed in chapter 4. In
this section, we emphasize the code generation methods for the decoupled mode.

As we mentioned before, the idea behind a decoupled architecture is that one pro-

2 Since software pipelining favors smaller loops, we do not use it in running
these programs.

59

60

cessor (the A-Processor) runs ahead and loads operands before they are needed by
the other processor (the E-processor). Thus, all memory accessing instructions are
generated on the A-processor. Consequently, address calculations are also done on
the A-processor. The A-processor must make as many branch decisions as possible
to run ahead of the E-processor. In the current implementation, the A-processor
makes all branch decisions. Thus, all expressions participating in a branch decision
are evaluated on the A-processor. In short, the A-processor generates code to do

the following:

(1) Address calculation.

(2) Branch determination.

(3) Memory accessing (i.e., load/store instructions).

To retain the source language level structures to aid the code generation (both
for the single mode and the decoupled mode), several pseudo instructions are
included in the intermediate language. The characteristic of an intermediate
language statement, such as an expression associated with a branch decision, is
denoted by a fifth tple of the IL statement; the attribute tuple. The attributes tell

the code generator to generate code for expressions on the appropriate processor.

In the front-end of the compiler, a binary flag, called inBranchExp, is turned
on at the beginning of a Boolean expression for a control structure (e.g., if-
statement). This flag is turned off when the Boolean expression has been com-
pletely compiled. Intermediate language statements which are generated with the
"inBranchExp” flag on have an attribute saying so. On the other hand, the array
index calculation may be nested (e.g., a[b[i]]). Thus, a counter, called 1dxDepth,
is incremented at the beginning of each index evaluation (i.e., encounter a "".
This counter is decremented when an. index. calculation has been compiled (i.e.,

encounter a "]"). The IdxDepth-has an initial value of zero. An attribute associ-

61

ated with the index calculation is appended to each intermediate language statement

generated with a positive ldxDepth.

The generation of load/store instructions for real variables (as opposed to
pseudo registers), which are allocated in memory, does not pose many problems for
the code generator. The alternative load is generated in the A-processor for an
operand which is used by the E-processor. Similarly, the alternative store is used to
store a result computed by the E-processor. If the operand is a pseudo register,
there are three cases that the code generator must consider. Case 1, the pseudo
register is mapped into a memory location, which is the same as accessing a
memory operand. Case 2, the pseudo register is in a real register of the processor
which needs that operand: the code generator simply uses the real register. Case 3,
the pseudo register is in a real register of the wrong processor: in this case, two
memory accessing operations have to be done to convey the requested value to the
correct processor. Case 3 comes from the use of shared variables. Because of the
shared variable problem, it is not always beneficial to allocate a register for a vari-
able. This situation makes register allocation more complex than for the single pro-

Ccessor casec.

6.2. Simulation Results

We use the same set of benchmark programs described in chapter 4 to evaluate
the effectiveness of decoupled code generation. The speedup for the decoupled exe-

cution mode (compared with the best single mode code) is shown in Table 6.1.

Loops 11 and 12 do not experience any performance gain because they are
tight loops and their performance is bounded by the time to "execute” the branch
instruction. As we expected, the non-numerical programs do not get as large a
. speedup as most numerical- programs. In particular, the recursive programs do not

reveal a significant speedup. The reason for this is that the compiler uses a naive

62

Table 6.1. Performance Simulation Results for Decoupled Mode.

programs | loaded loaded speed

single decoupled up
PIPE PIPE
(cycles) (cycles)

ACK 539 502 1.07
FACT 663 659 1.01
HEAP 1609 1371 1.17

LLLI 811 558 1.45
LLL2 15820 13662 1.16
LLL3 | 23015 19020 1.21
LLL4 | 21913 15815 1.39
LLLS 17987 14327 1.26
LLL6 | 21324 18009 1.18
LLL7 9853 6742 1.46
LLLS 17965 14772 1.22
LLLY 7812 5320 1.47
LLL10 | 20813 11449 1.82

LLL11 20990 20992 1.00
LLL12 20990 20992 1.00

LLL13 30348 22164 1.37
LLL14 28363 18916 1.50

scheme to save/restore all registers during procedure calls which offsets some of the
benefits gained by decoupled mode execution. Note there are twice as many regis-
ters to be saved and therefore twice as many addresses to be generated by the A-
processor. For the fourteen Livermore loops, which are procedure-less programs,
the code is generated assuming enough registers on each processor so that no spil-

ling code is ever needed.

Comparing our results with studies done by others [Smith84] [Hsieh84], we

find that, in general, we.achieve a lower speedup. We offer the following reasons:

63

(1) Register allocation. Better register allocation, which keeps some global vari-
ables in registers, may help in balancing the load (i.e., the time required to

perform a function) on both processors.

(2) Underlying architecture. Different timing assumptions may lead to different
loads on both processors. Some advantages of the decoupled mode (e.g., possi-
bly hidden memory delay) may be taken care of by a carefully designed single
mode processor. In general, the single mode can take more advantage of the
PBR instruction than the decoupled mode can, because in most basic blocks,
more instructions may be placed after a PBR instruction in the single mode
than in the decoupled mode. The sizes of the blocks associated with procedure
prologue/epilogue are larger in the decoupled mode than in the single mode.
The PBR instruction, however, is well utilized in the prologue/epilogue blocks,
even in the single mode. Thus, during decoupled mode execution, the extra
instructions in the prologue/epilogue blocks do not take further advaniage of

the PBR instruction.

(3) Code scheduling. The decoupled mode provides the effect of dynamic code
scheduling. Some hand-coded programs concern more about the number of
instructions generated than the their order. In other words, those programs
are not well scheduled to take advantage of the underlying architecture. Poorly
scheduled code benefits more from the dynamic code scheduling capability pro-

vided by the decoupled execution mode than well scheduled code does.

Table 6.2 shows the speedup comparing the “loaded decoupled mode PIPE”
(i.e., the PIPE architecture with all aforementioned special features running in
decoupled mode) with the "bare single mode PIPE.” The speedup shown here is
the cumulative effect of all three special features (i.e., data queues, prepare-to-

branch instruction, and decoupled mode) introduced in PIPE.

64

Table 6.2. Performance Simulation Results of All Features.

program bare loaded speed
single decoupled up
PIPE PIPE
(cycles) (cycles)

ACK 715 502 1.42
FACT 952 659 1.44
HEAP 1918 1371 1.40

LLL1 1412 558 2.53
LLL2 22617 13662 1.66
LLL3 28015 19020 1.47
LLL4 24492 15815 1.55
LLLS 29976 14327 2.09
LLL6 36642 18009 2.03
LLL7 | 22452 6742 3.33
LLLS 21568 14772 1.46
LLLY 17612 5320 3.31
LLL10 29712 11449 2.60
LLL11 26985 20992 1.29
LLL12 26985 20992 1.29
LLL13 43660 22164 1.97
LLL14 37512 18916 1.98

(D

(2)

(3)

(4)

(5)

Chapter 7

The Design of a Vector Extension

The major limitations of the existing PIPE architecture are the following:

Each processor has only one queue in each queue class (e.g., there is only one
LDQ on each processor). There are application programs (e.g., sorting)
where multiple queues (in particular, multiple LDQs) are desirable. The sin-
gle queue scheme also implies that load/store instructions must be generated in
one processor during decoupled mode execution, which makes load balancing

between processors less flexible than does a multiple queue organization.

It does not provide vector processing capability. Thus, all operations must be
performed with scalar instructions, which makes the instruction issue unit a
noticeable bottleneck (i.e., the Flynn bottleneck). This particularly limits the

A-Processor from staying ahead of the E-processor.

In the decoupled mode, the values of shared variables have to be transmitted
via the memory system. Hence, the use of shared variables is extremely ineffi-

cient in terms of execution time.

Some instruction initiation blockages are due to the single result bus between

the functional units and registers.

It enforces the use of branch instructions to evaluate Boolean expressions. An
example of Boolean expression in the C language is "(a>b)?a:b”. As we
pointed earlier, branches break the instruction flow. Hence, we want to elim-
inate unnecessary branches. The contents comparison instruction described
later in this chapter can be used to evaluate Boolean expressions without using

branches.

[=2)
¥ 4]

66

(6) Each element of a queue can only be read once. A use-many-times operand
must be moved explicitly to a general purpose register if we don’t want to

reload it from the memory every time we use its value.

In this chapter, we propose an extension to the existing PIPE architecture to remedy
these limitations and to utilize the on-chip area by increasing the gate/pin ratio (i.e.,

use more gates without requiring more pins).

One of the limitations of VLSI is the number of available pins on a single chip.
As we mentioned above, pipelining and VLSI are a good match. VLSI provides us
with many transistors per single chip. Even simple pipelining (e.g., a pipeline that
consists of simple "instruction fetch,” "instruction decode,” and "execution” stages)
may not use up the available transistors. Some kind of instruction buffer (e.g.,
instruction cache) is included in VLSI processors to reduce the off-chip communi-
cation and to utilize the on-chip area. But the performance gain levels off when the
instruction buffer is larger than a certain limit [Smith82]. Thus, we do not want to
include an extremely large on-chip instruction buffer, either. On the other hand, it

may not be desirable to have an on-chip data cache for the following reasons:

(1) A local (on-chip) data cache introduces the data coherence problem in a mul-
tiprocessor environment. A decoupled architecture, which uses two proces-

sors, is a multiprocessor system.

(2) The use of a data cache for scientific applications is known to be of question-
able value [Axelrod83]. Registers (i.e., a programmer controllable cache) may

prove more effective than a simple data cache.

Most, if not all, current supercomputers have some kind of vector processing
capability, in additional to their powerful scalar units. We propose an extension to
the existing PIPE architecture, which includes.vector processing capability, to use

the on-chip area provided by advanced VLSI technology and -potentially enhance the

67

system performance without requiring more pins. The characteristics of this vector

extension are:

(1)
(2)
(3)

(4)

Multiple functional units are included, each of them highly pipelined.
Instruction initiation is done by two-level issue logic.
Multdple classes of registers are provided for different usage requirements.

There is a non-blocking interconnection between the functional units and dif-

ferent classes of registers.

It caters to the easily vectorizable property in that more array-oriented opera-
tions can be vectorized under this extension than many other state-of-the-art

vector supercomputers (e.g., Cray-1 [Cray82], Cyber 205 [Lincoln82]).

The function of these features will be explained in the subsequent sections. We will

concentrate on the desired features rather than the detailed instruction format or

implementation.

7.1.

Motivation for Vector Instructions

The major considerations behind the vector instructions are the following:

Flynn bottleneck. The performance of a computer system is sometimes limited
by the instruction initiation rate. An issue unit is capable of initating at most a
fixed number (normally, one) of instructions every clock period. If each
instruction does too simple an operation, this Flynn limit may become a
bottleneck. A decoupled architecture does increase the bandwidth of the
instruction issue capability by including multiple (two) issue units. Another
way of increasing the effective issue bandwidth is to include powerful instruc-
tions. Each powerful instruction is able to do many operations. Hence, issu-
ing one powerful instruction can achieve the same effect as issuing multiple

relatively simple ones. The issue condition of a powerful instruction, however,

68

does not have to be complex. The major goal of vector extension is to accom-
modate powerful instructions in the existing PIPE architecture. Each powerful
instruction (vector instruction) is just a repetition of a simple operation. These
augmented vector instructions still enjoy the simple issue condition property of

the original PIPE.

(2) Out-of-order execution. The floating point unit of the IBM 360/91
[Tomasulo67] and the scoreboard of the CDC 6600 [Thornton70] are examples
of hardware methods to achieve out-of-order execution. These methods were
abandoned because of the hardware complexity of implementing those algo-
rithms and because of the emergence of comparable software solutions [Thor-
lin67]. Out-of-order execution is an essential part of vector instructions
because of the drastically different execution time of vector instructions with
different vector length as well as the simultaneous execution of vector and
scalar instructions. The vector extension proposed in this study, however, pro-
vides out-of-order initiation of scalar instructions (almost) for free, in the sense
that a scalar instruction is just a special case of vector instruction. That is, a

scalar is just a vector of length one.

It is unreasonable to have several vector instructions compete for a single
ALU. In such a case, the throughput of the system would be limited by the ALU
regardless of the efficiency of the issue unit. Thus, for the discussion of this
chapter, we will consider a multiple functional unit system. Each function unit is
implemented by a linear (fully segmented) pipeline [Kogge81], which eliminates the
necessity of doing pipeline reorganization and avoids most structural hazards (colli-
sions). Each functional unit may either perform a single task (e.g., floating point
addition) or be capable of executing several operations. The features required to
support.: decoupled execution (e.g.,: alternate - load/store, .-external branch) are

included in the original PIPE. We only have to include corresponding alternate

69

loads/stores when we introduce new load/store instructions.

7.2. Desired Features

The desired vector properties include flexible memory-referencing instructions,
arithmetic/logic operations, vector editing instructions and the easily-vectorizable
properties. Regular arrays should be treated effectively, while sparse arrays must be
handled with reasonable efficiency. To avoid the overhead introduced by using
shared variables in AE mode, we suggest that all the registers be shared by all func-
tional units. We also want to be able to intermix vector instructions with scalar
ones. For example, vector A is loaded into a queue register by a vector load

instruction, but entries of A are consumed by different scalar instructions.

A vector instruction has the following format:

repeat n

inst,
The semantics of the above repeat statement are to execute inst n times, where inst
represents a simple scalar instruction. The length of a vector is specified by one of
the queue length (QL) registers and the “repeat” instruction selects the appropriate
queue length register. We will demonstraie in a later section that most vector
operations (e.g., inner product) can be realized by the combination of several repeat

statements.
Four sets of operand registers are included:

(1) Constant scalar registers. These registers are intended to be used in a read-
only fashion during normal program execution. They, however, are writable
just like ordinary registers except that the underlying hardware is not furnished
with interlocks to prevent possible hazards. Software methods, such as the one

proposed in MIPS [Hennessy81], should be used when writing to these

70

(2)

(3)

(4)

registers. Normally, the values of the constant registers are assigned in an ini-
tialization block near the beginning of a program execution. Their usages,
however, are in subsequent blocks. Here, the scheduling for constant registers
is a lot easier than the general case required by MIPS. The simplification of
interlocks may imply fast access. Constant registers also make the processor
easily scalable in the sense that the instruction format remains unchanged
when we change the data format. We only have to widen each individual con-
stant register when the data format becomes longer. As a side effect, the
existence of constant registers may also reduce processor-memory bus traffic.
That is, except for the initialization of constant registers, the constants need not

be loaded from the literal pool in the main memory.

Scalar registers. They are just like general purpose registers in most computer

architectures.

‘Queue registers. Queue registers are a set of registers, each of which is a

queue. We may view a queue register as an array of registers. Only limited
elements (i.e., the head and tail of the queue) are accessible from outside.
These queue registers will be completely specified in section 7.3.2. A queue
register is the hardware implementation of a "stream.” That is, operands in a

queue register must be accessed in a predetermined order.

Mask registers. Mask registers are similar to the queue registers in that they
are also implemented as queues. The major difference is that each element of

a mask register has only one bit.

Any one of the scalar registers or the queue registers can be used as a

destination/source register of memory accessing instructions. Hence, an additional

field is required in the load/store instructions to specify the corresponding

destination/source register. Figure 7.1.illustrates a processor with two functional

71

units. The memory interface is treated as one functional unit. In this chapter, we
will use %Cc, %Ss, %Qg, and %Mm to denote the c-th constant register, the s-th

scalar register, the g-th queue-register, and the m-th mask-register, respectively.

Ll C-R

S-R

F-U 1 — ‘J

—> 10_{i]|2I-.U]

Q-R

LY 4

=
~
Z

T —> F-U n —>

—— 10 _iil21U

Terms:

C-R: Constant Registers

S-R: Scalar Registers

Q-R: Queue Registers

M-R: Mask Registers

Q-L: Qurue Length Registers
1-C: Instruction Cache

INT: Interconnection Network
11-U: First Level Issue Unit
21-U: Second Level Issue Unit
1Q: Instruction Queue

F-Ui: the i-th Functional Unit

Figure 7.1. The Organization of a Processor with Two Functional Units.

72

The exact number of elements of a given register set is not included in this study.
We made no attempt to design an arbitrarily scalable processor. In other words, we
don’t intend to put an extremely large number of elements in a register file, nor do
we intend to include many of functional units. However, we do not exclude the
possibility of having multiple function units for the same operation (e.g., floating

point addition).

7.3. Implementation

The realization of some unconventional functions are explained in this section.

7.3.1. Two-Level Control

A two-level instruction initating scheme is adapted in this design. The two-
level issue logic units are termed the first level issue logic and the second level issue
Jogic, respectively. The first level issue logic decides branch outcomes and sends
non-branch instructions to the proper instruction queues which are associated with
the second level issue logic. For each functional unit, there is an instruction queue
and second level issue logic. Each second level instruction issue logic initiates
instructions in the order they were sent to the instruction queue (i.e., the original
program textual order). Instructions in different second level instruction queues,
however, may be initiated in a different order than that in which they passed the
first level issue logic. The second level issue logic checks for data availability and
issue instructions accordingly. The implication of this two-level initiating scheme is
that it takes two clock periods to issue a non-branch instruction. That is, the work
of instruction initiating is divided into two stages of the pipeline. However, this
scheme does not introduce extensive delay. The delay of the additional clock period
iin the decoding logic slows down a section of straight line code by at most one clock

period. Since. the branch decision is made by the first level issue logic, there is no

73

execution time penalty even across basic blocks, as long as the expressions that par-
ticipate in the branch decision are evaluated earlier, which can normally be done by
properly scheduling the code. Thus, in the best case, the penalty introduced by this
two-level control scheme is one clock period per program. The worst case penalty,
however, is one clock period per basic block. The first level issue unit sends a par-
tially decoded instruction to the instruction queue associated with the appropriate
function unit. In other words, the decoding is done in two stages (the first level
issue unit and the second level issue unit). If the instruction decoding time of the
original design determines the clock period, the two level decoding scheme may
imply a faster clock rate, because the instruction decoding is done in two pipeline
stages. The startup time of a vector instruction is just the time for the first level
issue logic to send a "repeat” statement to the appropriate second level issue logic,

which normally takes one clock period.

This two-level scheme does provide some out-of-order instruction initiation, for
the first level issue logic is blocked only because of either (1) a branch instruction,
which can be alleviated by the prepare-to-branch scheme, or (2) a full instruction
queue of the corresponding functional unit. The functionality of this proposed
scheme is similar to that of Tomasulo’s algorithm [Tomasulo67] except that instruc-
tions that use the same functional unit are executed in program order. Table 7.1
compares the performance of the two-level scheme with that of Tomasulo’s algo-
rithm using the example (written in CAL [Cray83]) given by Weiss [Weiss84b] to
compare different issue algorithms. In this example, the two-level scheme and the
Tomasulo’s algorithm perform equally well. The former, however, avoids the

potentially expensive associative search used in the Tomasulo’s algorithm.

74

Table 7.1. Timing Chart for Livermore Loop 12.

S5 TOO COPY T00 TO S5
Al S5 COPY S5 TO Al
S6 offl,Al LOAD S6 (ADDRESS INDEXED BY Al)
S1 off2,A1 LOAD S1 (ADDRESS INDEXED BY Al)
S4 S6-£S1 FLOATING DIFFERENCE OF S6 AND S1 TO S4
S3 S5+S7 INTEGER SUM OF S5 AND S7 TO S3
A2 BO02 COPY B02 TO A2
A0 A2+1 INTEGER SUM A2 AND 1 TO A0
Q3,A1 S4 STORE S4 (ADDRESS INDEXED BY Al) .
TOO S3 COPY S3 TO TOO
B02 A0 COPY A0 TO BO2
JAM 1 BRANCH TO LOOP ENTRY
Loop 12 Tomasulo’s Two-level
Algorithm Scheme
issue complete | first second complete
level level
1
S5 TOO 0 1 0 1 2
Al S5 1 2 1 2 3
S6 offl,Al 2 13 2 3 14
S1 off2,Al 3 14 3 4 15
S4 S6-fS1 4 20 4 15 21
S3 S5+S7 5 8 5 6 9
A2 BO02 6 7 6 7 8
A0 A2+1 7 9 7 8 10
Q3,A1 $4 8 21 8 9 10
TOO S3 9 10 9 10 11
B02 A0 10 11 10 11 12
JAM 1 11 *16 11 - *16

7.3.2. Queue Registers

Each queue register (see Figure 7.2) is implemented as an array of registers.

- There is a valid bit associated- with each -element of the queue Tegister to indicate the

75

RCQ
WCQ
DAQ

Terms:

RCQ: Read-Control-Queue
WCQ: Write-Control-Queue
DAQ: Data-Available-Queue

Figure 7.2. The Organization of a Queue Register.

data availability of the designated element. Two pointers are associated with each
queue register (not shown in the figure). They point to the head and the tail of that
particular queue. These pointers are termed head-pointer, and tail-pointer, respec-
tively. A queue may have three possible states--Full, Empty, and Normal--which
can be checked by examining the appropriate valid bits. When a queue is full, an
attempt to put an operand onto that queue will be blocked. Similarly, reading from
an empty queue is also blocked. One of the advantages in having one valid bit per
element is that a queue register can temporarily hold a vector which is longer than
the queue size, as long as there are other instructions that take operands out of the
same queue register. This valid bit per element scheme also makes chaining more
flexible, because the speed of the consumer and the producer does not have to be
identical. That is, chaining can be performed in an asynchronous fashion. The
flexibility provided by the.valid bit scheme-is desirable in ‘the following scenario.

Suppose A4 and B are two back-to-back vector instructions and B follows 4. A1is a

76

vector load instruction with the stride being the number of memory banks. Thus, A4
cannot produce an operand every clock period, because of bank conflicts. B, on the
other hand, is a register-register vector instruction, which is capable of consuming
one element from a queue register every clock period. A simple scheme is to com-
plete A4 before initiating B, which leads to the non-overlapping execution of vector
instructions. Using the valid bit per element scheme, B can consume an operand
immediately after A has produced it. The total execution time under this scheme is
the execution time of 4 plus the time for B to process the last element. The saving
here can be significant if the the vector is long or if B is chained to anoiher vector
instruction C. A similar scheme is used by the Hitachi S-810 [Nagashima84] to
allow flexible chaining. This queue-based vector extension has the flavor of
dataflow machines [Dennis80] except that the issue logic checks for data available,
rather than the data availability "firing” the operation. Thus, function units can
operate in parallel as much as possible. We call this organization a control-driven
dataflow computer architecture. This control-driven dataflow scheme is more flexi-
ble than that of most traditional supercomputers in the sense that data availability is
checked on an element by element basis, even for vector operands. Hence, the
operation of chaining is more flexibility than in the case where data availability 1s
checked at the vector level. On the other hand, the overhead of the dataflow
approach [Gajski82] is avoided. This scheme supports complex data structures
(e.g., arrays) well, which have not been adopted successfully in a pure dataflow

fashion [Gajski82].

One of the characteristics of queues is that an element of a queue is discarded
after it has been read. There are cases in which we want to use an operand (a
scalar or a vector) more than once. Therefore, we include three access modes in
reading from a queue:.(1).destructive mode; (2) non-destructive mode; and (3) circu-

Jar mode. In destructive mode, a read operation removes the first element from the

77

queue register. In non-destructive mode, the first element of a queue remains after
a read operation. That is, a queue can be (non-destructively) read many times
while its contents are not changed. In circular mode, the entire queue remains
unchanged after each element has been accessed. Since a queue register is imple-
mented as an array of elements with two pointers, a different access mode simply
suggests a slightly different interpretation in updating the pointers. For example,
the circular mode is implemented by restoring the header pointer after the entire
vector has been read. Different access modes may be specified as part of the regis-
ter designator. In this chapter, we will use %Qn.D, %Qn.N, and %Qn.C to indi-
cate access mode to the n-th queue register being destructive, non-destructive, and
circular, respectively. (That is, the appended letter distinguishes the access
mode.) No access mode is specified if a queue register is used as the designation
register. One restriction of the circular mode is that a vector which is longer than
the size of a queue will not fit into one queue. The compiler has to split a long vec-

tor into several smaller ones if it chooses to employ the circular mode.

No hardware interlock mechanism is provided for the constant registers. The
scalar register is just a queue register of size one. The interlocks on the scalar
registers are similar to those on the queue registers. The mechanism to handle dif-
ferent data dependency hazards (RAW, WAR, WAW) for queue/mask registers is

relatively uniform and is described below. There are three queues (shift registers)

associated with each queue/mask register, one corresponding to the read! operation
(termed read-control-queue), the second corresponding to the write operation
(termed write-control-queue), and the third detecting write-after-write hazards
(termed data-available-queue). As we shall explain later in this chapter, the data-

available-queue is also used to facilitate data forwarding (chaining). The first level

1A read operation to a register is to get the value from the register.

78

issue logic puts the tag of the functional unit on the corresponding read/write-
control-queue. If that particular register is used more than once within a single
instruction (e.g., in the case where a register is used as both the source registers),
only one entry is put in the control-queue. The second level issue logic checks the
‘heads of the corresponding control-queues. When the heads of the relevant
control-queues match the functional unit, the issue logic of that functional unit can
check for other issue conditions. The data-available-queue is included with each
queue/mask register. The second level issue logic sets the proper entries of the
data-available-queue of the destination register, which is used to reveal when a
result is available. A rtead operation checks for the data-available-queue to employ
result forwarding (chaining) whenever possible. That is, when the first element of
the data-available-queue is set with a special tag, a result for that register will be
available in the next clock period. The control flag in the read-control-queue is
removed after the contents have been latched, which is normally done at instruction
issue time. In the case of a vector read, the control flag will not be removed from
the read-control-queue uniil the content of the last element has been latched else-
where. The corresponding write flag, however, is removed from the write-control-
queue when the last write operation has been issued. The synchronization of simul-
taneous write operations is done by the data-available-queue, which is explained by

the example below.

Example 7.1. An instruction I that uses % Qi as its destination register takes n
clock periods to complete. At instruction issue time, the (second level) issue

logic checks the n-th? entry in %Q/7’s data-available-queue. A busy n-th entry
(the n-th entry is set) indicates that an instruction which has been issued ear-
lier and uses %Qi as its destination register, will not be completed until at least
n clock periods later. When Iis ready to issue, the issue logic sets the first n
entries of the result shift register and puts a special tag on the n-th entry. This
special tag is checked by a subsequent instruction that uses the result generated
by I'to do proper operand forwarding. A special tag in the first element of the

2 The n-th element from the head of the queue.

79

data-available-queue means a result from this queue/mask register will be
available in the next clock period.
0

7.3.3. Vector Load/Store

Studies [Bucher83] [Matsuura84] have shown that the relative ratio of vector
load/store with unit stride, non-unit stride, and random access is about 70% : 20%
- 10%. Thus, the vector load/store instruction has to support accessing random ele-
ments of an array. A repeated load/store with autoincrement can be used to access
elements with a constant stride apart. A random access is normally represented by
an additional level of indirection. That is, the addresses of the needed elements are
put in another array. This random access is supported by the following two vector
instructions: (a) put addresses of needed elements onto a queue register (call it
%Qg); and (b) do a vector load using addresses in %Qg. An example of random

vector load is shown below:

Example 7.2. Suppose array A is a sparse array. The (absolute) addresses of
non-zero elements are stored in B, and there are n non-zero elements.
The following vector instructions are used to implement the required function:

repeat n
LOAD %Qx 0 B
/* load addresses to Q-reg x */
repeat n
LOAD %Qy 0 % Qx.D
/* load the desired elements to Q-reg y */

0

Simultaneous vector load/store operations may cause undesirable memory over-
lap hazard conditions (that is, read before write or write before read). One solution
for eliminating such hazards is to have a smart memory system examine for the
conflicts. Another way is to have the software detect the cases where the hazards

may .occur and assure sequential execution whenever necessary.

80

7.3.4. Mask Registers

There are cases when we want to do conditional vector operations, which may
correspond to the conditional statements within loops. This feature is normally sup-
ported by having some mask registers which are widely used in SIMD machines
[Cray82] [Lincoln82]. The entries of a mask register are either set to one or
cleared to zero. There are many mask registers, and frequenty used mask patterns
can be kept in a mask register. The mask register allocation is similar to that of the
branch registers (see chapter 3 for the function of the branch registers). As we will
explain shortly, these mask registers are also used in vector editing instructions
(e.g., gather, scatter). The contents of a mask register may be determined either by
the compiler or by executing a vector comparison instruction, which is the topic of

the next section.

7.3.5. Comparison Instructions

The contents of a mask register can be loaded by doing an element-by-element
vector comparison. Given two vectors A and B of length n, the result of the vector
comparison is stored in M. The semantics are that M ; gets the comparison result
of A; and B; . That is, the result of a comparison is treated as an ordinary
operand. We term such comparison a logical one in the sense the result of the
comparison, rather than one of the operands, is returned. This scheme is used by

some supercomputers (e.g., Cray-1) to set up a mask register.

An application of vector logical comparison is given below. The application is
to determine the zero entries in an array of floating point numbers. The value of an
entry is treated as zero if its floating point representation is less than a given thres-
hold value. Thus, a logical comparison of a queue (corresponding to the array) with
a threshold value scalar returns-a-mask which shows the . locations of non-zero

entries. The scalar counterpart is useful in evaluating Boolean expressions without

81

using branches. That is, logical instructions such as AND, rather than branches,
are used to evaluate complex Boolean expressions. Branches are needed only to
construct high level program structures. This approach of evaluating Boolean
expressions, however, may conflict with some language semantics, such as the

Boolean short-circuit evaluation [Logothetis81].

There are cases where one of the operands involved in the comparison, rather
than the logical comparison result, is needed. We propose another set of comparis-
ons called contents comparisons. One such example is the function of Max2 used in
the code scheduler. Max2 returns the bigger number of its two arguments, which
is exactly the semantics provided by the contents comparison. Having this com-
parison, functions such as the Max2 can be realized without using branch instruc-
tions. This corresponds to the if-expression in some programming languages. The
(vector) contents comparison is generally useful in coping with sorting-related prob-
lems. In a later section, we will sketch the steps of the merge sort algorithm by
using the contents comparison instruction. The accessing modes of the operands
participating in the contents comparison may depend on the comparison outcome

and are specified as part of the contents comparison instruction.

7.3.6. Vector Editing Instructions

Vector editing instructions are used for conditional vector operations, sparse
matrix computations, and other data editing applications. Examples of vector editing
instructions include gather/scatter (sometimes called compress/expand). Gathering
a vector A means that the elements of A, marked with 1s in the corresponding loca-
tions of the specified mask register, are copied into another vector B, where these
elements are stored in an order-preserved manner. Scattering a vector is the oppo-

site of gathering. An example.of gathering is shown below.

Example 7.3. This example explains the gather operation.

82

mask register 1 1 0 0 1 1
A A1 Ay A3z Ay As Ag
B A Ay, As Ag

(compressed A)
o

Different vector editing instructions can be realized by the repeat statements
(vector instructions) with slighdy different accessing modes (destructive, non-
destnictive, circular) described earlier. We made no attempt to completely specify
all vector editing instructions. In the above example, either the destructive mode or
the circular mode can be used, depending on whether the compiler decides to keep
the vector A in a register or not. It is also possible to include scalars within a vector
editing instruction. An example of value broadcasting is given below.

Example 7.4. In this example, we present the realization of the selective
broadcasting. An entry of the result vector B gets the value of S, provided the
corresponding mask bit is set. Otherwise, the corresponding entry in A is

assigned.

mask register 1 1 0 0 1 1

S (a scalar) S

A Ay Ay A3z Ay As Ag

B S S As Ay S S

In this example, either the destructive mode or the circular mode is applicable.

O

Merge (combining two vectors into one) and split (the opposite of merge) can be

carried out by two repeat-statements with proper adjustments to the mask register.

7.4. Performance Evaluation

The five Livermore loops (loops 5%, 6, 11, 13, 14) used to compare the

speedup of software pipelining are used again as sample programs to compare the

* In the original Livermore loops,-loops 5 and 6 are unrolied three times. For
the .discussion of this section, however, we-again used the version without the un-
rolling.

83

performance of the vector extension described in this chapter with the methods

described in the previous chapters.

Livermore loop 11 reads as:
do 11 k = 2, 1000
11 x(k) = x(k-1) + y(k)

The semi-vectorized code generated for the 11-th loop is shown below:

S1 ENTER % S1 Y /* addr of Y

S2 REPEAT 1000 /* load Ys

S3 LDLO % Q1 %S 1 1 /* auto inc load to % Q1

S4 MOVNFF %Q2 %Q1.D /* move X[1] := Y[1]

S5 REPEAT 999 /* do the computation

S6 ADDF % Q2 %Q2.C %Ql /* %Q2 in circular mode
S7 ENTER % S2 X /* addr of X

S8 REPEAT 1000 /* store Xs

S9 STLO %Q2.D %S2 1 /* auto inc store from %Q2

We assume an infinitely long queue register (i.e., %Q2) in generating this code
segment. In the steady state, one result will be generated every four clock periods,
which is the tifhe needed to do a floating point multiplication. The steady state exe-
cution speed is limited by the data dependencies imposed by the program. Because
the repeat statement applies to the above example successfully, we consider loop 11
as a vectorizable loop under this extension. The performance comparison of the

aforementioned loops is shown in Table 7.2.

For loops 5, and 6, the software pipelined code, the decoupled code, and the
vector code require the same execution time, which is limited by data-dependence.
The vectorized code does not generate results any faster. The advantage, however,
is that the first level controller is available to issue instructions following the loop.
For loop 11, the execution speed of non-vectorized code is limited by the execution

time of a branch instruction. On the other hand, the execution speed of vectorized

.. . . code is-bounded by-data-dependence.

84

Table 7.2. Execution Time (of One lteration) of Five Livermore Loops.

scheduled software decoupled vectorized
loops pipelined
5 26 24 24 24
6 26 24 24 24
11 9 6 6 5
13 47 39 40
14 54 44 50 11

For the vector performance of loops 13 and 14, we assume that the memory
systern does not cause any extra delay other than memory bank busy time. In other
words, we assume a memory system with an infinite number of banks and unlimited

memory ports, which may be overly optimistic. Except for the memory accessing

operations, we assume there is one functional unit for each distinct function®.

Under the assumption of such a memory system, the bottleneck is the floating-point
adder. It is also interesting to note that the decoupled mode for loops 13 and 14
runs slower than the well-scheduled software pipelined code because of the shared
variable problem. That is, there is some execution time penalty if a variable is com-
puted on one processor and will be used by another processor immediately after its
value has become known. This penalty comes from the fact that in the original
PIPE architecture, the value of a shared variable is passed via the memory system.
The vector extension described in this section does have the flavor of decoupled
architecture in that it uses multiple functional units. Since all registers in this
extension are shared among all functional units, there is no execution time penalty

if an operand is computed by one functional unit and will immediately be used by a

3 However, we:assume floating point addition andsubtraction share the same
functional unit.

85

different unit. As explained before, the result can even be bypassed using the data-

available-queue.

7.5. Intrinsic Functions

Some vector operations, such as vector sum (the summation of all elements in
a vector), are inherently difficult to vectorize. One possible way to cope with these
hard-to-vectorize operations is for the compiler to generate scalar instructions
[Cray82], which implies relatively low performance. Another possible approach is
to include a large set of vector macro instructions and hope that most hard-to-
vectorize operations are covered by the vector macros [Lincoln82]. In this exten-
sion, most vector macros can be composed by several of PIPE’s vector instructions.

We will show the realization of the following vector macros.

(1) Vector Sum.

We do the following steps to carry out the vector sum operation:

{ assume that VL has the vector length }

REPEAT VL
LD % Q1 vector

{ clear %S1 }

ENTER %S1 0

REPEAT VL
ADD %S1 %S1 %Q1.D

(2) Inner Product.
Inner product is an element-by-element vector multiplication followed by a vec-

tor sum.

(3) Linear recurrence.
Loop 11 of the Livermore loops (which has been shown in an earlier section)

- is an example of first order linear recurrence.

86

(4) Minimum/Maximum function
We can use a contents comparison of a stream and a scalar to get an extreme

value.

(5) Search.
We can use a logical comparison of a stream and a scalar followed by a mask
count instruction (which is just a repeated addition) to tell if a particular value

is in a given stream.

(6) Sorting.
We can use a contents comparison to merge two sorted streams. A sentinel
must be used at the end of each stream to guard against the case where all ele-
ments of a stream have been consumed. The above method is the well-known

merge sort.

We believe that most, if not all, programs can take advantage of this extension.
However, we need advanced compiler techniques to fully utilize the potential paral-

Jelism provided by this extension.

7.6. Summary

In this section, we summarize the suggested features in this vector extension to
amend the limitations of the original PIPE listed at the beginning of this chapter.
Multiple queues are included, each of which can be the destination of a load
instruction. During decoupled execution mode, the load instructions issued at dif-
ferent processors may choose mot use the same queue register as the destination
register. Thus, any processor can load operands for any other processor, which

provides the flexibility of doing better load balancing between processors.

This vector extension uses a simple vector instruction format, which implies

very short vector-startup time (one clock period). This simple format, however, is

87

very powerful to use in conjunction with the queue registers and different access
modes. As demonstrated earlier in this chapter, many array-oriented programs are
vectorizable under this extension. The memory is still needed to pass the values of
shared variables between processors in the decoupled mode. Shared variables in a
- single processor of this PIPE extension use the same sets of registers. The destina-
tion non-blocking interconnection network avoids the unnecessary result bus con-
flicts. With the advent of VLSI, it is generally believed that non-block interconnec-
tion networks can be built within a reasonable cost for the size of machine we are
designing. Branch instructions are needed only to carry out the high level language
control structures by introducing the logical/contents comparison. Elements of a

queue can be read repeatedly, provided an adequate access mode is specified.

The preliminary study suggests that this extension is a cost-effective way to
implement a processor for array-oriented programs. The major remaining problems
include (a) investigating its support for non-numerical applications; and (b) design-

ing compiler techniques to fully utilize the suggested features automatically.

Chapter 8

Conclusions

We have demonstrated the feasibility of using the LDQ to reduce the impact of
memory delay and of using the PBR instruction as a generalized delayed jump. A
simple code scheduler is capable of reordering the compiled code to take advantage
of these special features automatically. Software pipelining can take advantage of
the aforementioned features even further (in particular, the PBR instruction). The
degree of prefetching (i.e., the number of prefetches across the loop boundary) is
determined by the execution times of different pipes in a processor. Our scheduling
methods are applicable to most register-register pipelined architectures by simply
changing the cost table which shows the execution times and issue conditions of
instructions. The scheduling methods described in this paper will be less effective
for memory-memory pipelined processors. Incidentally, but not accidentally,
register-register architectures are prevalent among the scalar mode of most high
performance computers (e.g., Cray-1 [Russell78], Cyber 205 [Lincoln82]) for con-
trol simplicity and other reasons. Even in the 360/370 family, where upward com-
patibility is critical, the internal organization of some high-end pipelined processors
is of the register-register form (e.g., the floating point unit of the 360/91
[Tomasulo67]). Thus, we believe that queues and PBR instructions are compatible
with super-computers and that the scheduling methods described in this paper are
effective in utilizing special features available in PIPE. The code scheduling

methods described in this thesis are also applicable to the proposed extension.

The scheduling methods described above assume that all results computed by

instructions in a basic block are needed at the end of the basic block. This is true

88

89

only for a branch instruction where the instructions from the branch target cannot
be issued until the transfer control (the XBR point) completes (for a successful
branch). This assumption leads to the conclusion that all cumulative costs have
non-negative values. It is possible to consider the uses of an object in all its succes-
sor basic blocks. If an object 4 will not be used, in all its successor blocks, until at
least n clock periods later and it takes m clock periods to compute A4, the instruction
that computes 4 would have a cumulative cost of m— n, rather than m. If n>m,
the cumulative cost can have a negative value. This modified cumulative cost
reflects the urgency of objects across the basic block boundaries. The effects of this

modification are a subject for future research.

The code generator for the decoupled execution mode generates correct code
for the decoupled mode. A static strategy is used in deciding where an instruction

should go. That is, the code generated on A-processor does the following:
(1) Address calculation.

(2) Branch determination.

(3) Load/store instructions.

The proposed extension provides other alternatives for generating the code. The
investigation of compiler techniques to balance the load of the two processors

according to different applications would be intriguing.

As demonstrated in chapter 7, many programs which must be executed in the
slow mode on most supercomputers can be executed in the fast mode of the pro-
posed extension. However, compiler techniques that recognize parallelism within
sequential programming languages and take advantage of the underlying architec-
tural features, are yet to be developed. One may also look into new programming
langpag_es which facilitate .the-compilation. for the control-driven dataflow architec-

tre.

90

We conclude that the data queues, the prepare-to-branch instruction, and the

decoupled execution mode of the PIPE architecture are useful features. Compilers

can be constructed to take advantage of these features effectively. The performance

of the PIPE architecture can be substantially enhanced by introducing the vector

extension.

(1)

(2)

(3)

“4)

Some related research topics are outlined below:

Register allocation. The interaction between the code scheduling and register
allocation is worth studying. A new strategy is needed to allocate shared-
variables in the decoupled code. Sometimes, a shared variable assigned to a
register might degrade the entire system performance. Register allocation for
special registers (e.g., branch registers in the original PIPE, the queue regis-

ters in the PIPE extension) is also imporiant.

Different configurations for decoupled mode. One alternative configuration is
to use multiple AP’s and/or multiple EP’s for a sequential task. Another func-
tional arrangement is to put multiple AP’s and EP’s together to build a multi-

processor system where each node is a PIPE machine or its extension.

Procedure call/return. lt is important to support fast procedure call/return for
non-numerical applications. The original PIPE architecture provides two sets
of general purpose registers as a degenerated sliding window scheme used in
RISC [Patterson81] [Patterson82]. It worth studying the effectiveness of the

two-set-register scheme in supporting fast procedure call/return.

Languages/Algorithms. New languages which express some architectural
features explicitly may simplify the task of generating efficient code. Different
algorithms may take advantage of the system configuration and result in fast

execution.

REFERENCES

[Abdel-Wahab76] Abdel-Wahab, H.M., Scheduling with Applications to Register
Allocation and Deadlock Problems, Doctoral Thesis, Department of Electrical
Engineering, University of Waterloo, Waterloo, Ontario.

[Adam74] Adam, Thomas L., K.M. Chandy, and J.R. Dickson “‘A Comparison
of List Schedules for Parallel Processing Systems,”’ Communication of ACM
17, 12, pp. 685-690, December, 1974.

[Aho77] Aho, Alfred V., and Jeffrey D. Ullman, Principles of Compiler Design,
Addison-Wesley, Reading, Mass., 1977.

[Amdahl67] Amdahl, Gene, ‘‘The Validity of the Single-Processor Approach to
Achieving Large-Scale Computing Capabilities,”” Proceedings, AFIPS Spring
Joint Computer Conference, pp. 483-485, April 1967.

[Anderson67] Anderson, D.W., F.J. Sparacio, and R.M. Tomasulo, ‘‘The IMB
System/360 Model 91: Machine Philosophy and Instruction-Handling,”” IBM
Journal of Research & Development, 11, 1, pp. 8-24, January 1967.

[Axelrod83] Axelrod, T.S., P.F. Dubois, and P.G. Eltgroth, ““A Simulator for
MIMD Performance Prediction--Application to the S-1 Mark 11A Multiproces-
sor,”’ Proceedings, 1983 International Conference on Parallel Processing, pp.
350-357, August, 1983.

[Brantley82] Brantley, William C., and Joseph Weiss, “‘FOM: A Fortran Optim-
ized Machine--A High Performance, High Level Language Machine,”” IBM
Research Report RC 9640 (#40815) March 1982.

[Brantley83] Brantley, William C., and Joseph Weiss, ‘‘Organization and Archi-
tecture Trade-offs in FOM,”’ IEEE International Workshop on Computer Systems
Organization, pp. 139-143, March 1983.

[Bucher83] Bucher, Ingrid Y., ‘“The Computational Speed of Supercomputers,’’
Proceedings, ACM Sigmetrics Conference on Measurement and Modeling of Com-
puter Systems, pp. 151-165, August 1983.

[CDC73] Control Data Corporation, Control Data STAR-100 Features Manual, St.
Paul, MN., pub. no. 60425500, October, 1973.

[Charlesworth81] Charlesworth, Alan E., ‘*An Approach to Scientific Array Pro-
cessing: The Architectural Design of the AP-120B/FPS-164 Family,”’ IEEE
Computer 14, 9, pp. 18-27, September 1981.

[Cohler81] Cohler, Edmund. U., and James. E. Storer, “‘Functionally Parallel
Architecture for Array Processors,”’ IEEE Computer 14, 9, pp. 28-36, Sep-
tember 1981.

91

92

[Craig83] Craig, Gary L., James R. Goodman, Randy H. Katz, Andrew R.
Pleszkun, Kishore Ramachandran, John Sayah, and James E. Smith, ‘‘PIPE:
A High Performance VLSI Processor Implementation,”” University of
Wisconsin-Madison, Computer Sciences Department Technical Report # 513, Sep-
tember 1983.

[Cray82] Cray Research, Inc. Cray-1 Computer Systems S Series Mainframe
Reference Manual (HR-0029), 1982.

[Cray83] Cray Research, Inc., Cray-1 and Cray X-MP Computer Systems, CAL
Assembler Version 1 Reference Manual, SR-0000, 1983.

[Cray85] Cray Research, Inc., Advanced Large-scale and High-Speed Multiproces-
sor System for Scientific Applications, Cray X-MP-4 Series, 1985.

[Datawest79] Datawest Corp., Real Time Series of Microprogrammable Array
Transform Processors, Prod. Bulletin Series B, 1979.

[Dennis80] Dennis, Jack B., “‘Data Flow Supercomputers,’’ IEEE Computer 13,
11, pp. 48-56, November, 1980.

[Dongarra79] Dongarra, J.J., and A.R. Jinds, ‘“‘Unrolling Loops in Fortran,”
Software Practice and Experience 9, 3, pp. 219-226, March 1979.

[Fisher81] Fisher, Joseph A., ““Trace Scheduling: A Technique for Global Micro-
code Compaction,”’ IEEE Transactions on Computers C-30, 7, pp. 478-490,
July, 1981.

[Fisher84a] Fisher, Joseph A., John R. Ellis, John C. Ruttenberg, and Alexandru
Nicolau, ‘‘Parallel Processing: A Smart Compiler and a Dumb Machine,”’
Proceedings, ACM SIGPLAN’84 Symposium on Compiler Construction, pp. 7-47,
June 1984.

[Fisher84b] Fisher, Joseph A., ““The VLIW Machine: A Multiprocessor for Com-
piling Scientific Code,”” IEEE Computer 17, 7, pp 45-53, July, 1984.

[Flynn66] Flynn, Michael 1., ““Very High-Speed Computing Systems,”’ Proceed-
ings of the IEEE 54, 12, pp. 1901-1909, December 1966.

[Flynn72] Flynn, Michael J., ‘‘Some Computer Organizations and Their Effec-
tiveness,”” IEEE Transactions on Computers C-21, 9, pp. 948-960, September
1972.

[Gajski82] Gajski, D.D., D.A. Padua, D.J. Kuck, and R.H. Kuhn, **A Second
Opinion on Data Flow Machines and Languages,”’ IEEE Computer 15, 2, pp.
58-70, February, 1982.

[Garey79] Garey, Michael R., and David S. Johnson, Computers and Intractability,
A Guide to the Theory of NP-Completeness, W.H. Freeman and Company,
1979.

[Gonzalez77] . Gonzalez, Mario J. Jr., “‘Deterministic Processor Scheduling,’’
ACM Computing Survey 9, 3, pp. 173-204, September, 1977.

93

[Goodman85] Goodman, James R., Jian-tu Hsieh, Koujuch Liou, Andrew R.
Pleszkun, P.B. Schechter, and Honesty C. Young, ““PIPE: a Decoupled
Architecture for VLSI,”’ to appear Proceedings, the 12th International Sympo-
sium on Computer Architecture, June, 1985.

[Gross82] Gross, Thomas R., and John L. Hennessy, ‘‘Optimizing Delayed
Branches’’, Proceedings, 15th Annual Workshop on Microprogramming, pp.
114-120, October 1982.

[Hennessy81] Hennessy, John, Norman Jouppi, Forest Baskett, and John Gill,
“MIPS: A VLSI Processor Architecture,”’” Technical Report No. 223, Com-
puter Systems Laboratory, Sunford University, November 1981.

[Hennessy83] Hennessy, John, and Thomas Gross, ‘‘Postpass Code Optimization
of Pipeline Constraints,”” ACM Transactions on Programming Languages and
Systems 5, 3, pp. 422-448, July 1983.

[Hsieh84] Hsieh, Jian-tu, Andrew R. Pleszkun, and James R. Goodman, ‘‘Per-
formance Evaluation of the PIPE Computer Architecture,”” University of
Wisconsin-Madison, Computer Sciences Department Technical Report #5606,
November, 1984.

[Hunt77] Hunt, H.B. 11, T.G. Szymanski, and J.D. Ullman, ‘‘Operations on
Sparse Relations,”” Communication of ACM 20, 2, pp. 171-176, March 1977.

[Hwang84] Hwang, Kai, and Fayé A. Briggs, Computer Architecture and Parallel
Processing, McGraw-Hill Book Company, 1984.

[IBM76] IBM Corp., IBM 3838 Array Processor Functional Characteristics,
October, 1976.

[Knuth73a] Knuth, Donald E., The Art of Computer Programming. Volume 1: Fun-
damental Algorithms, 2nd Ed., Addison-Wesley Publishing Company, pp.
258-268, 1973.

[Knuth73b] Knuth, Donald E., The Art of Computer Programming. Volume 3: Sort-
ing and Searching, 2nd printing, Addison-Wesley Publishing Company, pp.
451-471, 1973.

[Kogge81] Kogge, Peter M. The Architecture of Pipelined Computers, McGraw-
Hill, New York, 1981.

[Kozdrowicki80] Kozdrowicki, Edward W., and Douglas J. Theis, ‘‘Second Gen-
eration of Vector Supercomputers,”” IEEE Computer 13, 11, pp. 71-83,
November, 1980.

[Kuck80] Kuck, David J., Robert H. Kuhn, Bruce Leasure, and Michael Wolfe,
““The Structure of an Advanced Retargetable Vectorizer,”’” Proceedings, IEEE
COMPSAC, pp. 709-715, October 1980.

[Lee84] Lee, Johnny:K.-F., and-Alan Jay Smith, ‘‘Branch Prediction Strategies
. and Branch Target Buffer Design,”” IEEE Computer 17, 1, pp. 6-22, January
1984.

94

[Lincoln82] -Lincoln, Neil R., “Technology and Design Tradeoffs in the Creation
of a Modern Supercomputer,’” IEEE Transactions on Computers C-31, 5, pp-
349-362, May 1982.

[Logothetis81] Logothetis, George, and Prateek Mishra, ‘‘Compiling Short-Circuit
Boolean Expressions in One Pass,” Software Practice and Experience 11, pp.
1197-1241, 1981.

[Matsurra84] Matsurra, Toshihiko, Sachio Kamiya, and Masaaki Takiuchi,
“‘Design Concept of the Facom VP Based on Extensive Analysis of Applica-
tions,”’ Proceedings, International Conference on Computer Design: VLSI in
Computers, pp. 232-237, October, 1984.

[McMahon72] McMahon, F.H., ‘‘Fortran CPU performance Analysis,”’
Lawrence Livermore Laboratories, 1972.

[Miura83] Miura, Kenichi, and Keiichiro Uchida, “FACOM Vector Processor
System:VP-100/VP-200,”’ Proceedings, NATO Advanced Research Workshop on
High Speed Computing, West Germany, June 1983, reprinted in IEEE, Tutoriol
Supercomputers: Design and Applications, Kai Hwang (Ed.), pp. 59-73,
August, 1984.

[Nagashima84] Nagashima, Shigeo, and Yasuhiro Inagami, ‘‘Design Considera-
tion for a High-Speed Vector Processor: The HITACHI S-810,”" Proceedings,
IEEE International Conference on Computer Design: VLSI in Computers, pPp-
238-243, October, 1984.

[Patel76] Patel, Janak H., and Edward S. Davidson, ‘‘lmproving the Throughput
of a Pipeline by Insertion of Delays,” Proceedings, IEEE/ACM the Third
Annual International Symposium on Computer Architecture, pp. 159-163, 1976.

[Patterson81] Patterson, David A., and Carlo H. Séquin, “RISC I: A Reduced
Instruction Set VLSI Computer,”” Proceedings, IEEE/ACM the Eight Annual
International Symposium Computer Architecture, pp. 443-457, April 1981.

[Patterson82] Patterson, David A., and Carlo H. Séquin, ‘A VLSI RISC,”” IEEE
Computer, 15, 9, pp. 8-21, September 1982.

[Pleszkun82] Pleszkun, Andrew R., “‘A Structured Memory Access Architec-
ture,”” Computer Systems Group Report CSG-10, Coordinate Science Labora-
tory, University of Illinois, Urbana, October, 1982.

[Pleszkun83] Pleszkun, Andrew R., and Edward S. Davison, "A Structured
Memory Access Architecture,” Proceedings, IEEE International Conference on
Parallel-Processing, pp. 461-471, August 1983.

[Radin82] Radin, George, ‘‘The 801 Minicomputer,”’ ASPLOS SIGARCH Com-
puter News, 10, March 1982. Reprinted in IBM Journal of Research and
Development 27, 3, pp. 39-47, May 1983.

[Rau81] -B. Ramakrishna Rau, and -Christopher D. Glaeser, ‘‘Some Scheduling
Techniques and an Easily- Schedulable Horizontal ‘Architecture for High

95

Performance Scientific Computing,”” Proceedings, 14th Annual Workshop on
Microprogramming, pp. 183-198, October 1981.

[Riganati84] Riganati, John P., and Paul B. Schneck, ‘‘Supercomputing,’’ IEEE
Computer 17, 10, pp. 97-113, October, 1984.

[Riseman72] Riseman, Edward M., and Caxton C. Foster, ‘‘The Inhibition of
Potential Parallelism by Conditional Jumps,”’ IEEE Transactions on Computers
C-21, 12, pp. 1405-1411, December 1972.

[Rudsinski77] Rudsinski, L., and J. Worlton, ““The Impact of Scalar Performance
on Vector and Parallel Processors’’, Proceedings, the Symposium on High Speed
Computer and Algorithm Organization, pp. 451-452, April 1977.

[Russell78] Russell, Richard M., ‘‘The Cray-1 Computer System,”’ Communica-
tions of ACM 21, 1, pp. 63-72, January 1978.

[Schorr71] Schorr, H., ‘‘Design Principles for a High-Performance System,’’
Proceedings, Symposium on Compulers and Automata, April, 1971.

[Shively82] Shively, Richard R., ‘‘Architecture of a Programmable Digital Signal
Processor,”’ IEEE Transactions on Computers C-31, 1, pp. 16-22, January,
1982.

[Smith81] Smith, James E., ‘A Study of Branch Prediction Strategies,’’ Proceed-
ings, IEEE/ACM the Eighth Annual International Symposium on Computer Archi-
tecture, pp. 135-142, May 1981.

[Smith82] Smith, Alan Jay, ‘‘Cache Memories,”” ACM Computing Surveys 14, 3,
pp 473-530, September, 1982.

[Smith83] Smith, James. E., Andrew R. Pleszkun, Randy H. Katz, and James R.
Goodman, ‘‘PIPE: A High Performance VLSI Architecture,”” Proceeding,
IEEE International Workshop on Computer Systems Organization, pp. 131-138,
March 1983. Also available as University of Wisconsin-Madison Computer Sci-
ences Department Technical Report # 512, Seplember, 1983.

[Smith84] Smith, James E. ‘‘Decoupled Access/Execute Computer Architec-
ture,”” ACM Transactions on Computer Systems 2, 4, pp. 289-308, November
1984.

[Thorlin67] Throlin, J.F. ‘‘Code Generation for P1E (Parallel Instruction Execu-
tion) Computers,’”’ Proceedings ,AFIPS Spring Joint Computer Conference, pp.
641-643, April, 1967.

[Thornton70] Thornton, J. E., Design of a Computer, The Control Data 6600,
Scott, Foresman and Co., Glenview, IlI. 1970.

[Tomasulo67] Tomasulo, R. M., ‘‘An Efficient Algorithm for Exploiting Multple
Arithmetic Units,”” IBM Journal of Research and Development 11, 1, pp.25-33,
~January 1967.

[Ullman75] Ullman, J.D. ‘‘NP-complete Scheduling Problems,’’ J. Comput.

96

Syst. Sci. 10, 3, pp. 84-393, June, 1975.

[Watson72] Watson, W.J., «“The TI ASC: A Highly Modular and Flexible Super
Computer Architecture,” Proceedings, AFIPS Fall Joint Computer Conference
41, pt. 1, pp. 221-228, 1972.

[Weiss84a] Weiss, Shlomo, ““Very High Performance Scalar Processing,’’ Techn-
ical Report ECE-84-22, Electrical and Computer Engineering Department,
University of Wisconsin-Madison, September 1984.

[Weiss84b] Weiss, Shlomo, and James R. Smith, ‘‘Instruction lssue Logic in
Pipelined Supercomputers,’’ IEEE Transactions on Computers C-33, 11, pp.
10133-1022, November, 1984.

[Wood78] Wood, Graham, ““On the Packing of Micro-instruction Words,”’
Proceedings, 11th Annual Workshop on Microprogramming, pp. 51-55,
December 1978.

[Worlton84] Worlton, Jack, ‘‘Understanding Supercomputer Benchmarks,’’ Data-
mation, pp. 121-130, September, 1984.

