$\mathcal{C}^{\infty} ext{-}\mathsf{REGULARITY}$  FOR THE POROUS MEDIUM EQUATION

bу

K. Hollig and H.-O. Kreiss

Computer Sciences Technical Report #600

June 1985

# UNIVERSITY OF WISCONSIN-MADISON COMPUTER SCIENCES DEPARTMENT

## $C^{\infty}$ -REGULARITY FOR THE POROUS MEDIUM EQUATION

K. Höllig and H.-O. Kreiss

Technical Report #600 June 1985

#### ABSTRACT

The equation

$$u_t = (u^m)_{xx}, \ x \in \mathbb{R}, \ t > 0$$
  
 $u(\cdot, 0) = u_0$ 

with m>1 models the expansion of a gas or liquid with initial density  $u_0$  in a one dimensional porous medium. Denote by  $t\to s_\pm(t)$  the vertical boundaries of the support of u. Caffarelli and Friedman have shown that  $s_\pm\in C^1(t_\pm,\infty)$  where  $t_\pm:=\sup\{t:s_\pm(t)=s_\pm(0)\}$  is the waiting time. Using their result we prove that

$$s_{\pm} \in C^{\infty}(t_{\pm}, \infty).$$

Moreover, we show that the pressure  $v := u^{m-1}$  is infinitely differentiable up to the free boundaries  $s_{\pm}$  after the waiting time. Our proof is based on a priori estimates in weighted norms which reflect the regularizing effect near the free boundaries.

AMS (MOS) Subject Classifications: 35K55, 35R35

Key Words: parabolic, degenerate, free boundary, regularity

## $C^{\infty}$ -REGULARITY FOR THE POROUS MEDIUM EQUATION

K. Höllig and H.-O. Kreiss

### 1. Introduction. We consider the porous medium equation

$$u_t - (u^m)_{xx} = 0, \ x \in \mathbb{R}, \ t > 0,$$
  
 $u(\cdot, 0) = u_0$  (1)

for m > 1 and continuous positive initial data  $u_0$  with connected compact support.

It is well known [3,9,10] that problem (1) has a unique weak solution and that the support of  $u(\cdot,t)$  remains bounded for all t, i.e.

$$\operatorname{supp} u(\cdot,t) = [r(t),s(t)].$$

The curves r, s are Lipschitz continuous [7], but in general not  $C^1$ . As was first observed by Aronson [1] r' (and similarly s') can have a jump for t equal to

$$t_r := \sup\{t : r(t) = r(0)\}.$$

Caffarelli and Friedman [4] proved that a classical solution of problem (1) exists up to the free boundaries for  $t > \max(t_r, t_s)$ . By considering the equation for  $v := u^{m-1}$  (cf. (2.1) below) they showed that

- (i)  $v_t, v_x, v_{xx}$  are continuous on the set  $\Omega_{ au} := \{(x,t): r(t) \leq x < s(t), \; t > t_r\}$
- (ii)  $r \in C^1(t_r, \infty)$
- (iii)  $r'(t) = -\frac{m}{m-1}v_x(r(t),t), t > t_r.$

The corresponding statement holds for the right free boundary s. In particular, the functions in (i) are continuous on the closed support of u if

$$v_0'(r(0)) \ v_0'(s(0)) \neq 0$$
 (2)

where  $v_0 := v(\cdot, 0)$ . With the aid of an interesting idea of Gurtin, McCamy and Socolovsky [5] it has been recently shown [6] that  $r \in C^{\infty}(0, T]$  if  $v_0$  is sufficiently smooth, (2) holds and T is sufficiently small. However, this method does not yield regularity of v.

In this paper we obtain the following optimal regularity result.

**Theorem.** 
$$v \in C^{\infty}(\Omega_{\tau}), \ r \in C^{\infty}(t_r, \infty).$$

Our approach is different from the method in [6]; it is based on the smoothing effect of the porous medium equation in a neighborhood of the free boundaries. We prove in section 2 the following a priori estimate.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and the National Science Foundation under Grant No. DMS-8351187.

**Proposition 1.** Let u be a solution of (1) for which  $v \in C^{\infty}(\Omega_{\tau})$  and assume that

$$s(0) - r(0) < \kappa^{-1}$$

$$\kappa < v'_{0}(r(0)), |v'_{0}| < \kappa^{-1}$$

$$|v'_{0}(r(0) + y) - v'_{0}(r(0))| < \lambda(y), y \le \kappa,$$
(3)

where  $\kappa$  is a positive constant and  $\lambda$  is a smooth function with  $\lambda(0) = 0$ ,  $\lambda' \geq 0$ . Then, for any  $k \in \mathbb{N}$ , there exist positive constants  $\delta, T, A$  such that

$$|r|_{k,|T/2,T|} + |v|_{k,\Omega(\delta,T)} \leq A \tag{4}$$

where  $\Omega(\delta,T):=\{(x,t): r(t)\leq x\leq r(t)+\delta,T/2\leq t\leq T\}$  and  $|\cdot|_{k,\Omega}$  denotes the norm on  $W_{\infty}^k(\Omega)$ . The constants  $\delta,T,A$  depend on  $\kappa,\lambda,k$ ; in addition, T,A depend on  $|v_0|_{2k+4,[r(0)+\delta/2,r(0)+\kappa]}$ .

In section 3 we show existence of smooth solutions for smooth data.

**Proposition 2.** If  $v_0 \in C^{\infty}(\operatorname{supp} v_0)$  and (2) holds, then  $v \in C^{\infty}(\operatorname{supp} v)$  and  $r \in C^{\infty}(0, \infty)$ .

The Theorem follows from Propositions 1,2 by an approximation argument. Assume that  $\bar{u}$  is a solution of problem (1). By the result of Caffarelli and Friedman, (i)-(iii) are valid for  $\bar{v}$  and  $\bar{\tau}$ . Let  $t_{\bar{\tau}} < t_1 < t_2$ . For any  $\tau \in [t_1, t_2]$ ,  $v_0 := \bar{v}(\cdot, \tau)$  satisfies the assumptions (3) of Proposition 1 with a constant  $\kappa$  and a modulus of continuity  $\lambda$  which depend on  $\bar{v}, t_1, t_2$  but not on  $\tau$ . For each (fixed)  $\tau$  we approximate  $v_0$  by a sequence of smooth functions  $v_{0,j} \in C^{\infty}(\sup v_0)$  for which (3) remains uniformly valid and which converge to  $v_0$  in  $L_{\infty}(\sup v_0)$ . In addition we require that (2) holds for  $v_{0,j}$  and

$$supp v_{0,j} = supp v_0 
v_{0,j}(x) > 0, \ r(0) < x < s(0), 
sup |v_{0,j}|_{2k+4,[r(0)+\delta/2,r(0)+\kappa]} < \infty.$$
(5)

Let  $(v_j)^{1/(m-1)}$  denote the solutions of (1) with initial data  $u_0 = (v_{0,j})^{1/(m-1)}$ . By Proposition 2,  $v_j \in C^{\infty}(\sup v_j)$ . Moreover, the conclusion (4) of Proposition 1 is valid for  $v_j$  and the corresponding left free boundary  $r_j$ , uniformly in j. Passing to the limit  $j \to \infty$  it follows that

$$egin{aligned} r \in W_{\infty}^{\,k}[ au + T/2, au + T] \ v \in W_{\infty}^{\,k}(\{(x,t): r(t) \leq x \leq r(t) + \delta, \; au + T/2 \leq t \leq au + T\}). \end{aligned}$$

Since  $k \in \mathbb{N}$ ,  $\tau \in [t_1, t_2]$  were arbitrary and in the interior of supp v the regularity is known, the Theorem follows.

2. A priori estimates. Troughout this section we assume that u is a solution of (1.1) for which v satisfies the assumptions of Proposition 1. Substituting  $u = v^{1/(m-1)}$  in (1.1) we obtain

$$v_t - mvv_{xx} - nv_x^2 = 0$$

$$v(\cdot, 0) = v_0$$
(1)

where n := 1/(m-1). The change of variables

$$y = x - r(t), \ v(x,t) = w(y,t)$$

transforms the left free boundary to the vertical axis  $\{y=0\}$ . Since by (iii)

$$y_t = -r'(t) = nw_v(0,t)$$

the problem for w is

$$w_t - mww_{yy} - nw_y^2 + nw_y(0,\cdot)w_y = 0$$
  
 $w(\cdot,0) = w_0 := v_0(\cdot + r(0)).$  (2)

For the proof of Proposition 1 it is sufficient to show that

$$|\partial_y^j w|_{0,[0,\delta] \times [T/2,T]} \le A', \ j \le 2k.$$
 (3)

We need several auxiliary Lemmas.

**Lemma 1.**  $\int_0^{\delta} f(y)^2 dy \leq c_1 \int_0^{\delta} y^2 (\delta^{-2} f(y)^2 + f'(y)^2) dy.$ 

**Proof.** By scaling we may assume that  $\delta = 1$ . Then,

$$\int_0^1 f^2 = f(1)^2 - 2 \int_0^1 y f f'$$

$$\leq f(1)^2 + 1/2 \int f^2 + 2 \int y^2 (f')^2,$$

where the first term on the right hand side can be estimated by the standard Sobolev inequality.

**Lemma 2.**  $\sup_{0 \le y \le \delta} |yf(y)^2| \le c_2 \int_0^{\delta} y^2 (\delta^{-2} f(y)^2 + f'(y)^2) dy$ .

**Proof.** Again, by scaling, let  $\delta = 1$ . Then,

$$egin{align} zf(z)^2 &= f(1)^2 &- \int_z^1 f(y)^2 + 2yf(y)f'(y) \; \mathrm{dy} \ &\leq f(1)^2 \; + \; 2\int f^2 \; + \; \int y^2(f')^2, \end{split}$$

and the Lemma follows from Lemma 1 and the standard Sobolev inequality.

**Lemma 3.** Let  $Q(\delta,T):=[0,\delta]\times[0,T],\ \partial Q:=[0,\delta]\times\{0\}\cup\{\delta\}\times[0,T]$  and assume that  $p:=\min_{\partial Q}w_y>0$ . Then

$$\min_{\partial Q} w_y \leq \min_{Q} w_y \leq \max_{Q} w_y \leq \max_{\partial Q} w_y.$$

**Proof.** Set  $\eta(t) := (p - \epsilon) \exp(-\epsilon t)$  with  $0 < \epsilon < p$ . We differentiate (2) with respect to y and subtract  $\eta' + \epsilon \eta = 0$ . This yields

$$[w_{yt} - \eta_t] + [-mww_{yyy}] + [((-m-2n)w_y + nw_y(0,\cdot))w_{yy}] + [-\epsilon\eta] = 0.$$

Assume that  $w_y( ilde{y}, ilde{t})=\eta( ilde{t})$  where

$$\widetilde{t}:=\sup\{t: w_y(\cdot,t)>\eta(t)\}.$$

If  $(\tilde{y}, \tilde{t}) \in Q \setminus \partial Q$  all terms in square brackets are nonpositive. Since  $\eta \neq 0$  this is not possible, i.e. we must have  $\eta < w_y$  on Q. Letting  $\epsilon \to 0$  proves the first inequality of the Lemma and the last inequality is proved similarly.

**Lemma 4.** If  $2\delta < \kappa$ ,  $\lambda(2\delta) < \kappa/4$ , then there exist constants T and  $c_3$  which depend on  $\kappa, \delta, k, |v_0|_{2k+4, [\delta/2, \kappa]}$  such that

$$\max_{Q(\delta,T)} w_y - \min_{Q(\delta,T)} w_y \le 4\lambda(\delta) 
\kappa/2 \le w_y(y,t) \le 2\kappa^{-1}, \ (y,t) \in Q(\delta,T), 
|\partial_t^{\nu} \partial_y^{\mu} w(\delta,t)| \le c_3, \ 2\nu + \mu \le 2k + 3, \ t \le T.$$
(4)

**Proof.** The maximum principle is valid for problem (1.1), i.e.  $u_0^- \le u_0^+$  implies that  $u^- \le u^+$  and  $r^- \ge r^+$ . By (1.3) and our assumption on  $\delta$ ,

$$v_0'(y)>3\kappa/4,\;y-r(0)\leq 2\delta.$$

Using this and (1.3),

$$v_0^- := \max\{0, (y-r(0))(r(0)+2\delta-y)/2\} \le v_0 \le \ \max\{0, (y-r(0))(r(0)+4\kappa^{-1}-y)\} =: v_0^+.$$

For the solutions of (1.1) with initial data  $u_0^{\pm} = (v_0^{\pm})^{1/(m-1)}$  the assertions (i)-(iii) are valid with  $t_r = 0$ . Therefore, by the above comparison principle,

$$c < v(y,t) < c^{-1} \ - c^{-1}t < r(t) - r(0) < -ct$$

if  $\delta/2 \leq y \leq 3\delta/2, \ t \leq 1$ . The constant c depends on  $\delta, k$ . We choose  $T' \leq 1$  so that

$$|r(t)-r(0)|<\delta/4,\ t\leq T',$$

which also yields

$$c < w(y,t) < c^{-1}$$
 if  $3\delta/4 \le y \le 5\delta/4$ ,  $t \le T'$ .

On the rectangle  $[3\delta/4, 5\delta/4] \times [0, T']$  the problem (2) is nondegenerate and the last inequality in (4) follows from parabolic regularity theory if  $T \leq T'$  [8]. We set  $T := \min\{T', \lambda(\delta)/c_3\}$ . Then

$$|w_y(\delta,t)-w_y(\delta,t')| \leq rac{\lambda(\delta)}{c_3}|w_{yt}(\delta,t'')| \leq \lambda(\delta)$$

which yields the first two inequalities for  $(y,t) \in \partial Q$  and therefore, in view of Lemma 3, also for  $(y,t) \in Q$ .

**Proof of Proposition 1.** Let  $0 = T_{-1} < T_0 < \ldots < T_{2k+1} = T/2$ . We prove by induction on l that for sufficiently small  $\delta$ ,

$$\max_{T_{l} \leq t \leq T} \int_{0}^{\delta} y \partial_{y}^{l+1} w(y,t)^{2} dy + \int_{T_{l}}^{T} \int_{0}^{\delta} y^{2} \partial_{y}^{l+2} w(y,t)^{2} dy dt \leq A''(l), \quad 0 \leq l \leq 2k+1. \quad (5)$$

The constants A'' depend on  $\kappa, \delta, \lambda, k, T_{\nu}, |v_0|_{2k+4, [\delta/2, \kappa]}$ . By Lemma 1,

$$egin{aligned} |\partial_y^j w(\cdot,t)^2|_{0,[0,\delta]} &\leq c_\delta \int_0^\delta \partial_y^j w(\cdot,t)^2 + \partial_y^{j+1} w(\cdot,t)^2 \ &\leq c_\delta c_1 \delta^{-2} (A''(j-1) + 2A''(j) + A''(j+1)) \end{aligned}$$

which shows that (5) implies (3).

Since w and  $w_y$  are bounded, inequality (5) is obviously valid for l=-1. We assume that (5) holds for l< j and set  $W_l(y,t):=\partial_y^{j+1}w(y,t+T_{j-1})$ . Differentiating (2) (j+1) times with respect to y and replacing t by  $t+T_{j-1}$  we obtain

$$(W_j)_t - mW_{-1}W_{j+2} - ((2n + (j+1)m)W_0 - nW_0(0,\cdot))W_{j+1} - \sum_{\substack{1 \le \nu \le \mu \le j \\ \nu + \mu = j+1}} c_{\nu\mu}W_{\nu}W_{\mu} = 0$$
 (6)

where  $c_{\nu\mu}$  are constants which depend on j. We multiply (6) by  $t^2yW_j$  and integrate over the interval  $[0, \delta]$ ,

$$\frac{1}{2} \left( \int_{0}^{\delta} t^{2} y W_{j}^{2} \, \mathrm{dy} \right)_{t} + m \int_{0}^{\delta} t^{2} y W_{-1} W_{j+1}^{2} \, \mathrm{dy} =$$

$$\int t y W_{j}^{2} + m t^{2} \delta W_{-1}(\delta, t) W_{j+1}(\delta, t) W_{j}(\delta, t) + m \int t^{2} (y W_{-1})_{y} W_{j+1} W_{j} + \int t^{2} y [(2n + (j+1)m) W_{0} - n W_{0}(0, \cdot)] W_{j+1} W_{j} + \sum c_{\nu\mu} \int t^{2} y W_{\nu} W_{\mu} W_{j}.$$

$$(7)$$

The third term on the right hand side of (7) equals

$$-mt^2(W_{-1}(\delta,t)+\delta W_0(\delta,t))W_j(\delta,t)^2/2+m\int t^2(W_0+yW_1/2)W_j^2.$$

Proceeding similarly with the fourth term on the right hand side and using (1.3) and (4) we deduce from (7) that

$$\frac{1}{2} \left( \int_{0}^{\delta} t^{2} y W_{j}^{2} \right)_{t} + \frac{m \kappa}{2} \int_{0}^{\delta} t^{2} y^{2} W_{j+1}^{2} \leq c_{4} c_{3}^{2} + \int t y W_{j}^{2} \\
- \int t^{2} \left[ -m W_{0} + (n + (j+1)m/2) W_{0} - \frac{n}{2} W_{0}(0, \cdot) \right] W_{j}^{2} \\
+ c_{5} \max_{\substack{1 \leq \nu \leq \mu \leq j \\ \nu + \mu = j+1}} \left| \int t^{2} y W_{\nu} W_{\mu} W_{j} \right| \tag{8}$$

where the constant  $c_4$  depends on  $\kappa$  and the constant  $c_5$  depends on j. We estimate each of the integrals appearing on the right hand side of (8) separately. By the definition of  $W_l$  and the induction hypothesis

$$\int_{0}^{\epsilon} ty W_{j}(y,t)^{2} dy \leq \epsilon \int t^{2} W_{j}(y,t)^{2} dy + \epsilon^{-1} \int y^{2} \partial_{y}^{j+1} w(y,t+T_{j-1})^{2} dy. \tag{9}$$

By (4),  $|W_0(y,t) - W_0(0,t)| \le 4\lambda(\delta)$  and  $\kappa/2 < W_0(0,t) < 2\kappa^{-1}$ . Therefore the term in square brackets in the second integral on the right hand side of (8) can be estimated by

$$[\ldots] \ge egin{cases} -c_6', & ext{if } j=0 \ n\kappa/4 - c_6'\lambda(\delta), & ext{if } j>0 \ \ge n\kappa/4 - c_6\lambda(\delta) - \max(0,1-j)c_6 \end{cases}$$
 (10)

where  $c_0$  depends on  $j, \kappa$ . Finally we estimate  $|\int t^2 y W_{\nu} W_{\mu} W_j|$ . Set  $\tilde{W}_0(y,t) := W_0(y,t) - W_0(0,t)$ . Integrating by parts and using (4) it follows that

$$|\int t^{2}yW_{1}W_{j}^{2}| \leq t^{2}\delta\tilde{W}_{0}(\delta,t)W_{j}(\delta,t)^{2}| + |\int t^{2}\tilde{W}_{0}W_{j}^{2}| + 2|\int t^{2}y\tilde{W}_{0}W_{j}W_{j+1}| \leq 4\lambda(\delta)c_{3}^{2} + 8\lambda(\delta)\int t^{2}W_{j}^{2} + 8\lambda(\delta)\int t^{2}y^{2}W_{j+1}^{2}$$
(11)

if  $\delta, t \leq 1$ . We have

$$|\int t^2 y W_{\nu} W_{\mu} W_j| \leq \epsilon \int t^2 W_j^2 + \epsilon^{-1} B_{\nu\mu}(t)$$
(12)

where  $B_{\nu\mu}(t) := \int t^2 y^2 W_{\nu}^2 W_{\mu}^2$ . If  $\nu \leq \mu < j$  it follows from Lemma 2 that

$$egin{aligned} B_{
u\mu}(t) & \leq t^2ig(\max_{0\leq y\leq \delta}|yW_
u(y,t)^2|ig) imesig(\int_0^\delta yW_\mu(y,t)^2\;\mathrm{dy}ig)\ & \leq c_2\delta^{-2}ig(\int y^2(W_
u^2+W_{
u+1}^2)ig) imesig(\int yW_\mu^2ig). \end{aligned}$$

Therefore, using the induction hypothesis,

$$\int_0^{T-T_{\tau-1}} B_{\nu\mu}(t) \, \mathrm{d}t \le c_2 \delta^{-2} (A''(\nu-1) + A''(\nu)) \times A''(\mu) \le c_7 A''(j-1)^2. \tag{13}$$

Combining the estimates (9-12) it follows from (8) that

$$\frac{1}{2} \left( \int t^{2} y W_{j}^{2} \right)_{t} + \frac{m\kappa}{2} \int t^{2} y^{2} W_{j+1}^{2} \leq c_{4} c_{3}^{2} + \epsilon \int t^{2} W_{j}^{2} + \epsilon^{-1} b(t) 
- (n\kappa/4 - c_{6}\lambda(\delta) - \max(0, 1 - j)c_{6}) \int t^{2} W_{j}^{2} 
+ c_{5} \left( 4\lambda(\delta) c_{3}^{2} + 8\lambda(\delta) \int t^{2} W_{j}^{2} + 8\lambda(\delta) \int t^{2} y^{2} W_{j+1}^{2} \right) 
+ c_{5} \left( \epsilon \int t^{2} W_{j}^{2} + \epsilon^{-1} \max_{\substack{1 \leq \nu \leq \mu < j \\ \nu + \mu = j+1}} B_{\nu\mu}(t) \right)$$
(14)

where  $b(t)=\int y^2\partial_y^{j+1}w(y,t+T_{j-1})^2$  dy. We choose  $\delta,\epsilon$  so that

$$egin{aligned} &8c_5\lambda(\delta) \leq rac{m\kappa}{4} \ &\epsilon + c_6\lambda(\delta) + 8c_5\lambda(\delta) + c_5\epsilon \leq n\kappa/4. \end{aligned}$$

Then we obtain from (14) that

$$egin{aligned} &rac{1}{2}ig(\int t^2yW_j^2ig)_t \ + \ rac{m\kappa}{4}\int t^2y^2W_{j+1}^2 \ & \ c_4c_3^2 \ + \ \epsilon^{-1}b(t) \ & \ + c_6\max(0,1-j)\int t^2W_j^2 \ & \ + c_5\epsilon^{-1}\max B_{
u\mu}(t). \end{aligned}$$

Since, induction hypothesis,

$$\int_0^{T-T_{j-1}} b(t) dt \leq A''(j-1)$$

it follows from (4) and (13) that for any  $t \in [0, T - T_{j-1}]$ ,

$$\frac{1}{2} \int t^2 y W_j(y,t)^2 dy + \frac{m\kappa}{4} \int_0^t \int \tau y^2 W_{j+1}(y,\tau)^2 dy d\tau \le c_4 c_3^2 t + \epsilon^{-1} A''(j-1) + 4t^3 \kappa^{-2} + c_5 \epsilon^{-1} c_7 A''(j-1)^2 t.$$

This completes the induction step.

3. Existence of smooth solutions. In this section we outline the proof of Proposition 2 which justifies the approximation argument in the introduction. Similarly as in section 2 we transform the equation (2.1) to a fixed domain. Let  $\xi \in C^{\infty}[0,1]$  satisfy  $\xi' \leq 0$ ,  $0 \leq \xi \leq 1$ ,  $\xi(y) = 1$  for  $0 \leq y \leq \kappa$ ,  $\xi(y) = 0$  for  $2\kappa \leq y \leq 1$  and set  $\eta(y) := \xi(1-y)$ . Assuming without loss that r(0) = 0, s(0) = 1 the change of variables

$$y = x - \xi(y)r(t) - \eta(y)(s(t) - 1) v(x,t) = w(y,t)$$
(1)

transforms the free boundaries to the vertical lines  $\{y=0\}$  and  $\{y=1\}$ . One easily verifies that the transformed equation for w is

$$w_{t} - (m/\chi^{2})ww_{yy} - (n/\chi^{2})w_{y}^{2} + (n/\chi)\xi w_{y}(0,\cdot)w_{y} + (n/\chi)\eta w_{y}(1,\cdot)w_{y} + (m\chi_{y}/\chi^{3})ww_{y} = 0, \ 0 \le y \le 1, \ t \ge 0,$$

$$w(\cdot,0) = w_{0} := v_{0}$$
(2)

where

$$\chi(y,t) = 1 - n \xi'(y) \int_0^t w_y(0, au) \; \mathrm{d} au - n \eta'(y) \int_0^t w_y(1, au) \; \mathrm{d} au.$$

In a neighborhood of the left boundary  $\{y=0\}$  we have  $\chi(y)=1$  and equation (2) coincides with equation (2.2). Therefore an analogous a priori estimate is valid.

**Lemma 5.** Assume that  $w \in C^{\infty}([0,1] \times [0,T])$  and that  $w_0'(0) w_0'(1) \neq 0$ . Then for any  $l \in \mathbb{N}$ 

$$\left(\max_{0 \le t \le T} \int_{0}^{1} y(1-y) \partial_{y}^{l} w(y,t)^{2} \, \mathrm{dy}\right) + \left(\int_{0}^{T} \int_{0}^{1} y^{2} (1-y)^{2} \partial_{y}^{l+1} w(y,t)^{2} \, \mathrm{dydt}\right) \le c \quad (3)$$

where c depends on  $l, T, v_0$ .

The **proof** of this Lemma is completely analogous to the proof of Proposition 1. Instead of multiplying equation (2.6) by  $t^2yW_j$ , we multiply the corresponding equation obtained by differentiating (2) by  $y(1-y)\partial_y^{j+1}w(y,t)$ . Because of the weight y(1-y) no boundary terms appear when the appropriate terms are integrated by parts. The estimates are somewhat more complicated because of additional terms involving  $\chi$ . But, these complications are merely of technical nature.

Given the above a priori estimate it is straightforward to prove a corresponding local existence result via finite difference or finite element approximation. This completes the (outline of the) proof of Proposition 2.

#### References

- [1] D. G. Aronson, Regularity properties of flows through porous media: A counterexample, SIAM J. Appl. Math. 19 (1970), 299-307.
- [2] D. G. Aronson, L. A. Caffarelli, and J. L. Vazquez, Interfaces with a corner point in one-dimensional porous-medium flow, Lefschetz Center for Dynamical Systems, report #84-9.
- [3] P. Benilan, M. G. Crandall, and M. Pierre, Solutions of the porous medium equation in  $\mathbb{R}^n$  under optimal conditions on initial values, Indiana Univ. Math. J.
- [4] L. Caffarelli and A. Friedman, Regularity of the free boundary for the one-dimensional flow of gas in a porous medium, Amer. J. Math. 101 (1979), 1193-1218.
- [5] M. Gurtin, R. MacCamy and E. Socolovsky, A coordinate transformation for the porous media equation that renders the free boundary stationary, Mathematics Research Center Technical Summary Report #2560 (1983).
- [6] K. Höllig and M. Pilant, Regularity of the free boundary for the porous medium equation, to appear in Indiana Univ. Math. J.
- [7] B. F. Knerr, The porous medium equation in one-dimension, Trans. Amer. Math. Soc. 234 (1977), 381-415.
- [8] G. Z. Ladyzenskaja, V. A. Solonnikov, and N. N. Uralceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs 23 (1968).
- [9] O. A. Oleinik, A. S. Kalishnikov and Y-L. Chzou, The Cauchy problem and boundary value problems for equations of the type of non-stationary filtration, Izv. Akad. Nauk SSR Ser. Mat. 22 (1958), 667-704.
- [10] J. L. Vazquez, Asymptotic behavior and propagation properties of the one dimensional flow of gas in a porous medium, Trans. Amer. Math. Soc. 277 (1983), 507-527.