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ABSTRACT

"The equation
g = (U )zz, tER, >0
u(-,0) =uo
with m > 1 models the expansion of a gas or liquid with initial density uo in a one dimensional
porous medium. Denote by ¢ — s+ (t) the vertical boundaries of the support of u. Caffarelli

and Friedman have shown that s4 € C!(t4,00) where t4 := sup{t : s+ (t) = s+(0)} is the
waiting time. Using their result we prove that

st € Coo(ti, OO)
Moreover, we show that the pressure v := w™~1 is infinitely differentiable up to the free

boundaries sy after the waiting time. Our proof is based on a priori estimates in weighted
norms which reflect the regularizing effect near the free boundaries.
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C*°-REGULARITY FOR THE POROUS MEDIUM EQUATION
K. Hollig and H.-O. Kreiss

1. Introduction. We consider the porous medium equation

ug — (u™)zz =0, zE€R, >0,
u(-,0) = ug

(1)

for m > 1 and continuous positive initial data ug with connected compact support.

It is well known [3,9,10] that problem (1) has a unique weak solution and that the support
of u(-,t) remains bounded for all ¢, i.e.

suppu(-,t) = [r(t),s(t)].

The curves r,s are Lipschitz continuous 7], but in general not Cl. As was first observed by
Aronson [1] v’ (and similarly s') can have a jump for ¢ equal to

t, := sup{t : r(¢) = r(0)}.

Caffarelli and Friedman [4] proved that a classical solution of problem (1) exists up to the free
boundaries for ¢ > max(t,,t;). By considering the equation for v := u™ 1 (cf. (2.1) below)
they showed that

(i) wvi,vs,vee are continuous on the set O, := {(z,1) : r(t) <z < s(t), t > t,}
(ii) re CHt,, 0)
(iii) r'(t) = —Psva(r(t),t), t >t

m-—1

The corresponding statement holds for the right free boundary s. In particular, the functions
in (i) are continuous on the closed support of u if

vp(r(0)) vo(s(0)) # O (2)

where vg := v(-,0). With the aid of an interesting idea of Gurtin, McCamy and Socolovsky [5]
it has been recently shown [6] that 7 € C°(0,T7] if vo is sufficiently smooth, (2) holds and T
is sufficiently small. However, this method does not yield regularity of v.

In this paper we obtain the following optimal regularity result.
Theorem. v & C®(1,), r € C®(t,, ).

Our approach is different from the method in 6]; it is based on the smoothing effect of the
porous medium equation in a neighborhood of the free boundaries. We prove in section 2 the
following a priori estimate.
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Proposition 1. Let u be a solution of (1) for which v € C*°(Q2,) and assume that
s(0) — 7(0) < k™!
k< ub(r(0)), Ioh) < x~? (5
06 (r(0) +y) — vo(r(0))] < Aly). v < &,

where k is a positive constant and A is a smooth function with A(0) = 0, A > 0. Then, for
any k € N, there exist positive constants 6, T, A such that

A

irlkgr/2,m + lvlkaer) < A (4)
where Q(6,T) == {(z,t) : 7(t) < z < r(t) + 6,T/2 < t < T} and | |k,0 denotes the
norm on WE (Q). The constants 6,7, A depend on k, A\, k; in addition, T, A depend on
\UO‘2k+4,[r(o)+5/2,r(o)+n]-

In section 3 we show existence of smooth solutions for smooth data.
Proposition 2. If vy € C®(suppug) and (2) holds, then v € C* (suppv) and r € C*(0,00).

The Theorem follows from Propositions 1,2 by an approximation argument. Assume that
@ is a solution of problem (1). By the result of Caffarelli and Friedman, (i)-(iii) are valid for
5 and 7. Let t; < t; < ts. For any 7 € [t1,ts], vo := ©(-,7) satisfies the assumptions (3)
of Proposition 1 with a constant x and a modulus of continuity X which depend on 0,1;,%2
but not on 7. For each (fixed) 7 we approximate vg by a sequence of smooth functions vg ; €
C°°(suppuvo) for which (3) remains uniformly valid and which converge to vg in Le (suppvo).
In addition we require that (2) holds for v ; and

Suppvop,; = SUPP Vo
vo,;(z) >0, r(0) < z < s(0), (5)

sup [vo,jl2k+4,{r(0)+8/2,7(0)+x] < OO
J

Let (vj)l/(m'l) denote the solutions of (1) with initial data ug = (voyj)l/(m"l). By Propo-
sition 2, v; € C* (suppw;). Moreover, the conclusion (4) of Proposition 1 is valid for v; and
the corresponding left free boundary r;, uniformly in j. Passing to the limit 7 — oo it follows
that

reWkir+T/2,7+T)

veWE({(z,t):r(t) <z <r(t)+6, r+T/2<t <7+ T}).

Since k € N, 7 € [t1,12] were arbitrary and in the interior of suppuv the regularity is known,
the Theorem follows.

2. A priori estimates. Troughout this section we assume that u is a solution of (1.1)
for which v satisfies the assumptions of Proposition 1. Substituting v = pt/(m=1) ip (1.1) we
obtain

Ut — MUVgyg — nvl=0

v(-,0) = vg ' (1)
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where n := 1/(m — 1). The change of variables
y =z~ r(t), v(z,t) = w(yt)
transforms the left free boundary to the vertical axis {y = 0}. Since by (iii)
ye = —1'(t) = nwy(0,1)

the problem for w is
— MWWy, — nwl + nwy (0, Jwy =0

w(-,0) = wo := vo(- + 7(0))-

For the proof of Proposition 1 it is sufficient to show that
33§w|o,{o,5]x[T/2,T] < A, j <2k (3)

We need several auxiliary Lemmas.

Lemma 1. fo )2dy < ¢ fo (672f(v)® + f'(y)?) dy.
Proof. By scalmg we may assume that 6 = 1. Then,

1 1
[r=rap -2 [ ur
0 0
<07 e 1 [0
where the first term on the right hand side can be estimated by the standard Sobolev inequality.

Lemma 2. supgcy<s lyf(y < ¢y Jo (672f(y)? + f'(y)?) dy.
Proof. Again, by scaling, let 6 = 1. Then,

I =10 - [ L)+ 200 ()7 () d

<pap e[+ [

and the Lemma follows from Lemma 1 and the standard Sobolev inequality.

Lemma 3. Let Q(6,T) := [0,6] x [0,T], 8Q := [0,6] x {0} U {6} x |0, T] and assume that
p:= mingg wy > 0. Then

min w, < min wy, < max wy < max wy.
9Q Q Q 8Q

Proof. Set n(t) := (p — €) exp(—et) with 0 < € < p. We differentiate (2) with respect to y
and subtract ' + en = 0. This yields

[wye — 1) + [=mwwyyy) + [((=m = 2n)wy + nwy (0,-))wyy]| + [~en] = 0.
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Assume that wy (§,1) = n(t) where

t:=sup{t:wy(-t) > n(t)}.
If (g, E) € @\9Q all terms in square brackets are nonpositive. Since n # 0 this is not possible,
i.e. we must have n < w, on . Letting ¢ — 0 proves the first inequality of the Lemma and
the last inequality is proved similarly.

Lemma 4. If 26 < k, A(26) < x/4, then there exist constants 7' and cs which depend on
K,0,k,|v0|2k44,5/2,5) Such that

— i < 4M(é
Sy dpigy e = P
k)2 < wy(y,t) < 2677, (u,1) € Q(6,T), (4)

|0y 0k w(é,t)] <es, 2+ p<2k+3, t<T.

Proof. The maximum principle is valid for problem (1.1),i.e. vy < w7 implies that u™ < u™
and r~ > 1. By (1.3) and our assumption on 9,

vo(y) > 3k/4, y — 7(0) < 26.
Using this and (1.3),

vy = max{0, (y — 7(0))(r(0) + 26 — y)/2} < wo <
max{0, (y — r(0))(r(0) + 471 —y)) =0
For the solutions of (1.1) with initial data uf = (vE)Y/(m=1) the assertions (i)-(iii) are valid
with ¢, = 0. Therefore, by the above comparison principle,
¢ < v(y,t) <c!
—c Mt <r(t) - r(0) < —ct

if 6/2 <y <36/2, t <1. The constant ¢ depends on 6,k. We choose T' < 1 so that
|r(t) —r(0)| < 6/4, t < T,
which also yields
c<w(y,t) <ctif 36/4<y<56/4, t<T.

On the rectangle [36/4,56/4] x [0,T'] the problem (2) is nondegenerate and the last inequality
in (4) follows from parabolic regularity theory if T < T' [8]. We set T := min{T", A(6)/c3}.
Then

A(8)

lwy (6,1) — wy (6,1")] <
c3

|wye (6,8")] < A(6)

which yields the first two inequalities for (y,t) € dQ and therefore, in view of Lemma 3, also
for (y,t) € Q.



Proof of Proposition 1. Let 0=T_; < Ty < ... < Typ+1 = T/2. We prove by induction
on [ that for sufficiently small é,

1 T &
max / yc?f,+1w(y,t)2 dy + / / :t/:zci)f/"*zw(y,z‘,)2 dydt < A"(l), 0<I<2k+1. (5)
Ti<t<T [, ; Jry Jo )

The constants A" depend on &,6, A\, k, T, [volzk+4,]é/2,) By Lemma 1,

&
laiu)("t)Q‘O,[oyﬁ] < c(q/o 8;"”(‘,02 4 8§+]w(",t)2

<eser6 2 (AY(5 - 1) +24"(7) + AT(5 + 1))
which shows that (5) implies (3).
Since w and wy are bounded, inequality (5) is obviously valid for I = —1. We assume that
(5) holds for I < j and set Wi(y,t) := 8] w(y,t + T;,). Differentiating (2) (s + 1) times
with respect to y and replacing ¢ by t + T, we obtain

(W) = mW s Wiz — (20 + (j+ )m)Wo — nWo(0, )Wyr — > eruWuW, = 0 (6)

1<p<pgy
vEp=iE1

where ¢, , are constants which depend on 5. We multiply (6) by t*yW; and integrate over the
interval |0, 6],

1 1 5
-i(/ t2yWJ~2 dy)t + m/ szyVV,1WJ-21Ll dy =
0 0

/tyWJ'?Z
+ mt2EW_1 (6, t)W;41(6,8)W;(6,t)
- m/tz(yW—l)ijHWj
+/t2y[(2n+ (- 1)m)Wo — nWo(0, )| Wys1 W,
+ch/t2ywuw,twj.
The third term on the right hand side of (7) equals
—mt (W_1(6,t) + 6Wo(6,1))W;(6,8)*/2 +m / t2(Wo + yW: /2)W .

Proceeding similarly with the fourth term on the right hand side and using (1.3) and (4) we
deduce from (7) that

L[ 2, /2 mr [ 2, 21172
0 0
cqcs —i—/tij2

_ /t2[~mWo + (n+(7+ 1)m/2)W; - %WO(OVNW;

+c¢5 max ;/tzywyw;,w“
1<
[2 S T



where the constant ¢4 depends on x and the constant ¢; depends on 5. We estimate each of
the integrals appearing on the right hand side of (8) seperately. By the definition of W; and
the induction hypothesis

&
/ tyW;(y,1)* dy <
°© , (9)
6/t2Wj(y,t)2dy + ¢! / yzazﬂw(y,t«}-Tjwl)z dy.

By (4), [Wo(y,t) —Wo(0,t)] < 4A(6) and k/2 < W(0,t) < 2. Therefore the term in square
brackets in the second integral on the right hand side of (8) can be estimated by

BE —cg, if7=0
U= I nk/4 = cgA(6), ifg7>0 (10)

> nk/4 — ceA(6) — max(0,1 — j)ce

where cg depends on j,x. Finally we estimate | [ t?yW,W,W,|. Set Wo(y,t) = Wo(y,t) —
Wo(0,t). Integrating by parts and using (4) it follows that

)/t2yW1Wfl <
t26WO(é,t)Wj(6,t)2|+1/t2WoWJ?‘|+2|/t2yWoWjo+li < (11)

4A(5)c§+8A(5)/t2wj?+8,\(5)/t2y2wf+1

if 6,1 < 1. We have

[l < e [ ewE e B (12)

where By, (t) := [t*y*W2ZW2 If v < p < 7 it follows from Lemma 2 that

Ba() < 2 (gmax, oW, 0,07 ¢ ([ Wal0,0) )

0<y

< czé“z(/ v (W) +W2,,)) x (/ yWy).

Therefore, using the induction hypothesis,

T-T,_,
/ By, (t) dt < ep6 2 (A" (v — 1) + A"(v)) x A" () < ez A"(5 - 1)%. (13)
0
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Combining the estimates (9-12) it follows from (8) that
1 me
5(/t2wa2>t 2 /tz Wi <
cqct +e / tzVVj2 + e b(2)
~ (nk/4— csA(8) — max(0.1 - 7)ce) /tZW]2
+cs(4}\(6)c§+8>\(6)/t2Wf +8)\(6)/t2y2Wj2+1)

+ 65(€/t2W7'2 +e? B B, u(t ))
v psm g 1

where b(t) = [ 4202 w(y,t + T,;_;)* dy. We choose 6, ¢ so that
8cs A (8) < %’?
€+ coA(6) + BesA(8) + cse < mk/4.
Then we obtain from (14) that
1 mK
w2 v
cack + € 'b(t)
+ cgmax (0,1 — 7) / tZsz
+ cse P max B, (t).

Since, induction hypothesis,

T TI ]
/ b() dt < A"(j - 1)
o]

it follows from (4) and (13) that for any ¢ € [0,T — T;_1],

1

a/tzij(y, dy + ———-/ /Ty Wiiily, 7 ) dydr <

2

cacit + e TA"(5 - ) + 4tk P rcseter A" (7~ 1)%t.

This completes the induction step.
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3. Existence of smooth solutions. In this section we outline the proof of Proposition
2 which justifies the approximation argument in the introduction. Similarly as in section 2
we transform the equation (2.1) to a fixed domain. Let £ € C*°[0,1] satisfy ¢/ <0, 0 < £ <
1, £(y) = 1 for 0 < y < &, &(y) = 0 for 2k < y < 1 and set n(y) := £(1 — y). Assuming
without loss that r(0) = 0, s(0) = 1 the change of variables

(1)

transforms the free boundaries to the vertical lines {y = 0} and {y = 1}. One easily verifies
that the transformed equation for w is

wy — (m/x*)wwyy — (n/x*)w] + (n/x)€wy (0, Jwy + (n/x)nwy(1,-)wy
+ (mxy/x*)ww, =0, 0<y <1, £ >0, (2)

w(-,0) = wo := v

where

4 4

wy (0,7) dr — nn'(y)/ wy(1,7) d7.

0

X(wt) =1-n¢'ty) [

0
In a neighborhood of the left boundary {y = 0} we have x(y) = 1 and equation (2) coincides
with equation (2.2). Therefore an analogous a priori estimate is valid.

Lemma 5. Assume that w € C°([0,1] x [0,7) and that w(0)wg(1) # 0. Then for any
leN

1 T 1
( max /0 y(1— y)c?lyw(y,t)2 dy) + (/o /0 y*(1 - y)zc?zljﬂw(y,t)?' dydt) < ¢ (8)

0<t<T

where ¢ depends on [, T, vg.

The proof of this Lemma is completely analogous to the proof of Proposition 1. Instead
of multiplying equation (2.6) by t*yW,, we multiply the corresponding equation obtained by
differentiating (2) by y(1 — y)c?i“w(y,t). Because of the weight y(1 — y) no boundary terms
appear when the appropriate terms are integrated by parts. The estimates are somewhat more
complicated because of additional terms involving x. But, these complications are merely of
technical nature.

Given the above a priori estimate it is straightforward to prove a corresponding local ex-
istence result via finite difference or finite element approximation. This completes the (outline
of the) proof of Proposition 2.
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