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LIPSCHITZ CONTINUITY OF SOLUTIONS OF LINEAR INEQUALITIES,
PROGRAMS AND COMPLEMENTARITY PROBLEMS

0. L. Mangasarian & T.-H. Shiau

I. Introduction

The purpose of this work is to show that solutions of linear inequal-
ities, linear programs and certain linear complementarity problems are
Lipschitz continuous with respect to changes in the right hand side of the

problem. Speaking in general and in somewhat loose terms, if we denote by
1 2

r and r-, two distinct right hand sides, then there exist corresponding
solutions x1 and x2 such that
(1.1) I =] < ke -

where the Lipschitz constant K depends only on the matrix defining the
problem, but not on the right hand sides nor the objective function if there
is one. A key role in determining the Lipschitz constant K 1is played by
the condition number for linear inequalities introduced in [11] which is a
generalization of the very useful concept of a condition number for a non-
singular square matrix [3]. In [19] Robinson obtained local Lipschitz
continuity results for generalized equations which include linear programs,
convex quadratic programs and monotone linear complementarity problems.
Robinson's Lipschitz constant [19, Theorem 2] involves a bound on the solu-
tion set which is assumed to be bounded. By constrast our Lipschitz
constants are global, and our solution sets need not be bounded. In [18]
Robinson obtained a Lipschitz constant for the perturbation of linear

inequalities which is different from our constant (2.5).

Sponsored by the United States Army under Contract No. DAAG29-80-C0041.
This material is based upon work sponsored by the National Science
Foundation under Grants MCS-8200632 and MCS-8420963.
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We give now a summary of our principal results. Theorem 2.2 deals with
a system of linear inequalities and equalities (2.1) and shows that if the

system is solvable for right hand sides r] and rz, then for each solution

x] for right hand side r]

r2 such that (1.1) holds. The Lipschitz constant here plays the same role as

there exists a solution x2 for right hand side

the norm of the inverse of a nonsingular matrix does for a system of Tinear
equations. Our Lipschitz constant for the system (2.1) defined by (2.5), is a
minor variation of the constant (6) of [11] but is different from Robinson's
[18]. Furthermore, the Lipschitz continuity Theorem 2.2 leads in a very
elementary way to Theorem 2.2' which is essentially equivalent to Theorem 1
of[11] and to Hoffman's theorem [8,18] and which gives an estimate of

the error in an approximate solution to the systems of linear inequalities
and equalities (2.1) in terms of the residual of the approximate solution
and the Lipschitz constant. Again the role played in Theorem 2.2" by the
Lipschitz constant is an extension of the same role played by the norm of
the inverse of a maﬁrix for a system of linear equations. Computation of
the Lipschitz constant (2.5) for the system of Tinear inequalities and
equalities (2.1) is quite difficult, but an important fact is that such a
constant exists and is finite. For some special cases such as when we have
strongly stable Tinear inequalities only (that is linear inequalities solv-
able for all right hand sides) the Lipschitz constant can be computed by a
single linear program as in (2.17) below. By using the Lipschitz constant
for linear inequalities and equalities we show in Theorem 2.4 that solutions
of Tinear programs are also Lipschitz continuous with respect to right hand
side perturbations only. Proposition 2.6 shows that our Lipschitz constant

(2.20) for the linear program (2.18) is sharper than that of Cook et al

[4, Theorem 5]. By means of a simple example (2.26), we show that solutions



of linear programs are not Lipschitz continuous with respect to perturba-
tions in the objective function coefficients. Finally in Section 3 by using
the Lipschitz constant for linear inequalities and equalities we establish
in Theorem 3.2 Lipschitz continuity of solutions of Tinear complementarity
probTems with respect to right hand side perturbations that generate unique
solutions along the line segment joining perturbed and unperturbed right
hand sides. A simple consequence of this result is Theorem 3.3 which shows
that the solution of a linear complementarity problem with a P-matrix (that
is a matrix with positive principal minors) is Lipschitz continuous with
respect to right hand side perturbations.‘ Example 3.4 shows that solutions
of positive semidefinite Tinear complementarity problems are not Lipschitz
continuous with respect to their right hand sides. Finally by exploiting the
fact that for certain classes of matrices such as Z-matrices (real matrices
with nonpositive off-diagonal elements) the linear complementarity problems
can be solved as a Tinear program [1Q], Lipschitz continuity of solutions of
such Tinear complementarity problems are obtained in Theorem 3.5.

A brief word about notation and some basic concepts employed. For a
vector x in the n-dimensional real space R", |x| and x, will denote the

+

vectors in R" with components lei:= |x;] and (x,),:= max {x;, 0}, i=1,...,n

s
respectively. For a norm }IXHB on R", ”XIIB* will denote the dual norm

[9,16] on R", that is ||x #:= max xy, where xy denotes the scalar prod-
Tyl
B

n

uct J x;¥;. The generalized Cauchy-Schwarz inequality |xy| §=]|x!|8-|]y|]B*,
i=1

for x and y in R", follows immediately from this definition of the dual

101 n 1/p
norm. For 1 < p, q <», and stgs 1, the p-norm ( ) Ixilp) and the
- T =1



g-norm are dual norms on R" [16]. If

8 is a norm on Rn, we shall,

with a slight abuse of notation, let

l .

norm on R™ for m #n. For an mxn real matrix A, Ai denotes the ith

8 also denote the corresponding

row, A.j denotes the jth column, AI:= A where

el and A.J:= A‘jeJ’

I c{l,...,m} and J < {1,...,n}. HA]IB denotes the matrix norm [16,20]

subordinate to the vector norm

g> that is ]IA”B =ll;ﬁ;=]]]AxHB. The

consistency condition “Ax”3=i HAlhﬂ]xHB follows immediately from this

definition of a matrix norm. A monotonic norm on R" is any norm

on
R" such that for a, b in R", ||a]| < ||b]| whenever |a] < |b] or equiva-
Tently if |la|| = || |a] || [9, p. 47]. The p-norm for p > 1 1is monotonic
[16]. A vector of ones in any real space will be denoted by e. The
identity matrix of any order will be denoted by I. The nonnegative orthant
n

in R will be denoted by Ri. The abbreviation rhs will denote "right hand

side".



2. Linear Inequé]ities and Programs

We shall first be concerned with Lipschitz continuity of solutions of
the following set of linear inequalities with respect to changes in the

right hand side

(2.1) Ax < b, Cx

il

d

k

where b and d are given points in R™ and R respectively, Aec Rmxn’

that is an mxn real matrix and Ce kan.

We shall employ a slight
variation of the condition constant introduced in [11, Equation (6)] for
linear inequalities and programs as our Lipschitz constant for the linear
inequalities (2.1) and subsequently for the linear program (2.18) and the
Tinear complementarity problem (3.1).

We begin with a simple extension of the fundamental theorem on basic

solutions [6, Theorem 2.11] to unrestricted as well as nonnegative

variables.

kxn

2.1 Lemma (Basic solutions) Let AeR™"™, CeR and peR". The system

(2.2) ATu+clv=p,us>o0

m+k

has a solution (u,v)eR if and only if it has a basic solution, that

is a solution (u,v) such that the rows of [é) corresponding to nonzero

components of (u,v) are linearly independent.
Proof The system (2.2) having a solution (u,v) implies that
(2.3) Alu + 8y = p, (u,v) >0

has a solution where C is obtained from C by multiplying by -1 those rows
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of C corresponding to negative components of v. It follows from the
fundamental theorem on basic solutions [6, Theorem 2.11] that (2.3) has a

basic solution and consequently so does (2.2). O

We proceed now to establish Lipschitz continuity of solutions of (2.1)

with respect to right hand side perturbations. Robinson [18, Corollary 2.2]

gives this result with a different Lipschitz constant.

2.2 Theorem (Lipschitz continuity of feasible points of Tlinear inequalities

and equalities) Let the linear inequalities and equalities (2.1) have non-

1 2

empty feasible sets S and S™ for the right hand sides (b1, d]) and

(bz, dz) respectively. For each x] 551 there exists an xzas2 closest
to x1 in the «-norm such that
1 2
(2.4) I =, < (s 0) |5 75,
d -d
B
where ||| 8 is some norm on R™K and

luA +vCl[{=1, u>0

(2.8)  ug(AsC):= 3*:5 ”3

Rows of [/\] corresponding to nonzero
B*
elements of m are lin. indep.

Proof We note that uB(A; C) is finite. For if not, there would exist

fixed subsets I and J of {1,...,m} and {1,...,k} respectively and a

. - . . A
sequence {u}, VI]} such that {Ilu}, V:‘]H} + o and the rows of {CI] are
J

i, i, ij i.
linearly independent. Hence a subsequence {(uIJ,vJ“-’)/HuI , VJJ”} con-

verges to (up,vy) satisfying ufAp + v Cy = 0, HGI,VJH =1, which
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A
contradicts the linear independence of the rows of (CI} .
J
which is closest to x in the w-norm.

Choose x2 €S

Now let x] 651.
Thus x2 must solve
(2.6) min ||x - x]Ho° s.t. Ax < b2, cx = d°
X
which is equivalent to the linear program
. 2 Y 1 1
(2.7) min § s.t. Ax<b", Cx=d", x +es§ > x, -x +ed > -x
X,0
Hence (x2,62) and some (uz, vz,rz, 52)e gIHk+2n satisfy the following
Karush-Kuhn-Tucker conditions for (2.7)
Al < b, ol = 2, |Ix -8l = 6
(2.8) {uz(-Ax2-+b2) = 0, rz(xz-kesz-x1) =0, sz(-x2-+e62-+x1) =0
“PA e+ - s2 =0, e(rPes?) =1, (W%, 2, sz):; 0
Note that if 0 = 82 = llx]' XZIL»’ then (2.4) is trivially true. So assume
that 62 > 0. It follows from 62 > 0 and r?(xz-kedz-x])j = 0 and
sg(—x2-+e62-+x]). = 0 that rgsg =0, for j=1,...,n. Hence
J J J J
(2.9) ~u2A + veC + R 0, e(r2 +sz) =1, r2s? = 0, (u2, r2,52)=i 0

2
By Lemma 2.1 and u?(—AxZ-FbZ)j =0 it follows that we may take u2 = {UI]:>O
A
are linearly independent and
J

2
and v2 = {VJJ such that the rows of [C
0

2 Hence (2.9) becomes

2 2,
uI(—AIx -be) = 0.



2

120

2 2 2 2 2, 2
Ay
Rows of C lin. indep.
J

Hence by (2.5) we have that

2
(2.10) ol < ug(AsC)
v B*
We now have
1 =2, = 6% = b2 + dBvP 4 X (- 5P
= -b2u2+ d2v2 + x](ATuz— CTvz)
= Ak b2 ept ob1) + V(e # P e d - d)
2,1 .2 2,2 1
< ué(b' - b%) + vo(d°-d
(2.11) < vl )+ v )
< u2 b] - b2
=2 12
v g d -d 8
b! - b2
< u,(A;C) (By (2.10)) O
B 12
d' -],

Note that the Lipschitz constant UB(A; C) of (2.4) plays the same
role as that of the norm of the inverse of a nonsingular matrix of a system
of linear equations. This fact can be seen more clearly from the following
corollary to Theorem 2.2 applied to systems solvable for all right hand sides
(i.e. strongly stable) systems. Note also that we can get a sharper result

1

by replacing (b]— b2), in (2.4) and (2.11) onward, by (b - b2)+.

2.3 Corollary (Lipschitz continuity of feasible points of strongly stable

kxn

linear inequalities) Let Ae R™M and CeR be such that



( ) Rows of C are linearly independent and
2.12
Ax < 0, Cx = 0 has a solution x

Then the linear inequalities (2.1) are solvable for all right hand sides

(b, d) eRm+k. For each x] in the solution set of (2.1) with rhs (b], d]),
there exists an x2 in the solution set of (2.1) with rhs (b2, dz) such that
1 2
(2.13) 1x! =l < T (As ) ||P, P
B
where “lig is some norm on R"HLk and
) [JuA +vC||; =1
(2.14) uB(A; C):= max “l\:l 1
*
(u,v)eR™K B uzo

Proof That (2.1) is solvable for any right hand side (b, d) follows from
solving Cx =d for xd for any given d and then taking as the desired
solution xd + Ax for sufficiently large positive A, where X solves

Ax < 0, Cx = 0. The rest of the proof of the corollary is similar to the
proof of Theorem 2.2, except that u2 and v2 are not decomposed into

U2 V2 o . -

{OI} and {OJ]. The finiteness of uB(A;C) of (2.14) follows from the
boundedness of the feasible region of (2.14). For it were unbounded, there
would exist fu',v'} such that {|[ui, v1]| ~ » and consequently an

accumulation point (u,Vv) would exist such that

(2.15) WA +VC=0,0>0, (G,v) #0

This however would contradict the linear independence of the rows of C if
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u=0, and if u # 0 would contradict the solvability of Ax < 0, Cx = 0,

because then 0 = UAXx + vCx = uAx < 0. 0

Note that if A 1is vacuous and C 1is a nonsingular square matrix, then

- -1 -1
(2.16) 0,(95€) = max {JIvll{]lvelly =13 = Jiceh I, =l il
k
veR
This was already pointed out in [11, Remark 2]. Note also that (2.14) can
be written in the equivalent form

_ -z<uh +vC <z
(2.14") uB(A;C) = max

(u,v,2)eR

u
m+k-+n “V B*l u>0, ez =1

This is a difficult convex-function maximization problem on a polyhedral set

which is closely related to the NP-complete problem of a norm-maximization
problem on a polyhedral set for positive integer B* [12]. However for
B* = o, that is B8 = 1, it can be shown, as in [12], that (2.14') is.in P.
In addition a good bound for ﬂB(A; C) for any B can be obtained by solv-
ing a single linear program [12]. When C is empty and B ==, (2.14')

degenerates to the following linear programs

(2.17) u (A5 9) = max {eu]-z<uA<z, u>0, ez=1}
(u,Z)eRm+n
We note that the Lipschitz constants UB(A; C) and ﬂB(A; C) which play
the role of the norm of the inverse of a nonsingular matrix of a system of
Tinear equations, can also be used, just as the norm of the inverse can, to
obtain a bound on the error in an approximate solution in terms of the

residual. Thus if we assume for the moment that A 1is vacuous and that C
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is nxn and nonsingular, then ﬁ8(¢; C) = HC']HQ° by (2.16). Thus (2.5)
and (2.13) are the extensions to a system of linear inequalities and

equalities of the following simple Lipschitz continuity property of Cx = d

Ix =), < 1L e - dl

o0 ==

1 2 -1

where x] = C"]d and x~ =C 2

d=. Since HC'1[|oo can also be used to

estimate the error in an approximate solution x to Cx1 = d1 in terms of

its residual IICx--d]]]oo as follows

Ix=x"l, = le7 ex=ahl, < eI ex-d' ],

o«

it follows that the Lipschitz constants uB(A; C) and ﬁB(A; C) can be
similarly used to give an estimate on the error in an approximate solution
to (2.1) in terms of its residual. In fact this estimate has been given
in [11, Theorem 1] and by Hoffman [8,18] with a different constant. It also

follows very easily from Theorem 2.2 above as follows.

2.2" Theorem (Error bound for approximate solution of linear inequalities

and equalities) Let the linear inequalities and equalities (2.1) have a

nonempty feasible set S] for the right hand side (b],d1). For each x
in R" there exists an X1€ S] such that
1
1 (Ax - b )+
%= x|, < uglhs ©) :
Cx-d

where uB(A; C) 1ds defined by (2.5).

Proof Since for each xe R"
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Ac< b+ (Ax-bl),, cx = d' + (Cx-d')

1

it follows by Theorem 2.2 that there exists an x1e S such that the

conclusion of the theorem holds. g

A similar error bound holds for strongly stable linear inequalities
which is based on (2.13).

It is interesting to note that Theorem 2.2 is stronger than Theorem 2.2’
in the sense that the latter follows directly from the former as was demon-

strated above, whereas the converse holds with the additional assumption that

the norm 8 is a monotonic norm [9, 16]. Thus to obtain Theorem 2.2

from Theorem 2.2', we have from Theorem 2.2' that for each X1e S1 there

exists an xze 52 such that

- (ax' - %), o b! - b
w S U (A3 C < Hp(As C
=8 ox -t |7 F d'- &l

2 _ 1
IESER

where the last inequality follows from

1 2,1

2 1 1 1_,2 T_,2
(Ax -b%), = (Ax' =b"+b'-b"), < (b -b )+_i_lb - 7]

lex! - 2] = ext - d?+d - d'] = |d' - 2

and the monotonicity of the norm -llB.

Next we establish the Lipschitz continuity with respect to right hand

side perturbation of solutions of the Tinear program

(2.18) max px s.t. Ax<b, Cx=4d
X
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where pe R" and A, b, C, d are as in (2.1). For the Lipschitz contin-
uity results for linear programs we have to restrict the norms employed to

monotonic norms [9, 16] and have to drop u > 0 from (2.5). Lipschitz

continuity results for more general optimization problems are given in [1,71.

2.4 Theorem (Lipschitz continuity of solutions of linear programs with

respect to rhs perturbation) Let the linear program (2.18) have nonempty

! 2 for right hand sides (b], dl) and (b2, dz)

respectively. For each X]e S] there exists an xzs S2 such that

solution sets S and S

L b1-b2
(2.19) IIx' = x|, £ va(AsC)
o = 1 2
d -d
B
where H-IIB is some monotonic norm on R™ and
||uA +vClfy =1
(2.20) vB(A, C):= sup Hu Rows of’(é] corresponding to nonzero
U,V g*

} are lin. indep.

elements of(e

Proof Given x]e S, let

LR P R

Apx 1° A J

X = b

where Iud = {1,2,...,m}. Fix any 226 52

and let I = I]UI2 where
Y -2 _ .2 g -2 2
I].— {iel Aix "bi}’ 12.— {iel Aix < bi}

Since x = iz satisfies the system of constraints
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2
(i) A; x = b3 ,
I L
. . -7 2
(2.21) (ii) A; x“ < Ay x, A; x< b
12 = 12 IZ = I2

(i11) Agx < b5, Cx = d

it follows that (2.21) is nonvacuous. Let x2 be a solution of
(2.22) min |lx-x [ s.t. (2.21).

Since (2.22) is a convex program, x2 remains optimal after we remove any
number of inactive constraints. For each i eIz, at least one of the two

2

constraints of (2.21) (ii) is inactive because Aii < b?. So we can

remove one inactive constraint for each i 612 thus obtaining

(2.23) sz--x]][oo = min |]x--x]Hoo s.t. (2.24) = min Hx--x1|1oo s.t. (2.21)

where
. 2
(i) Ay x=b
L L
(iia) A < Agx
(2.24) 2
(iib) A x < bf
.. 2 _ 42
(iic) AJx é:bJ’ Cx = d

where Kul =1I,, KnlL =¢. So IyuKulud = {1,2,...,m} and Iy, K, L

and J are all disjoint. On the other hand, since

- 2 1 2 =2
Agx' = by - by + by 2 by = by + AX

1

it follows that x = x  satisfies the following system



. 1
(i) Ay x=0b>
I] I]
. 1 2 =2
(2.24") . 1
(iib) ALx < b
(i1c) Agx <bl, Cx = d

It follows by (2.23), (2.24'), Theorem 2.2 and the norm monotonicity that

I =2l < gl A ||| || BT -0
c 12
A d -d
J B
< v, (A; C

B

where H = I]L)LLJJ js the complement of K.

It remains to show that xze SZ. Since X]e S], we have by the

Karush-Kuhn-Tucker optimality conditions that

(2.25) A¥u} + CTv1 = p for some u} > 0 and some v1.

Since both % and X2 satisfy (2.21) it follows that

px’ = u}AIx2 + viexd ;ﬁu}Aliz s v1ex? = pi’

and the proof is complete. W

2.5 Remark We note that Cook-Gerards-Schrijver and Tardos [4, Theorem 5]

have a similar result to Theorem 2.4 for integer entries for A but without
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the equality constraints Cx = d. However their Lipschitz constant is big-
ger than or equal to our Lipschitz constant. In fact their Lipschitz con-
stant nA(A) is only for B = «, where AA dis the maximum of the absolute

values of the determinants of the square submatrices of A. We formalize

the relation between the two Lipschitz constants as follows.

2.6 Proposition For integer A, v_(A; ¢) < nA(A).

Proof For any u; for which HuIAIII] =1 and the rows of A; are lin-

early independent, we can assume that
A; = [B N]

where B is a nonsingular square submatrix.
Let q:= u;B, then “q||1=; ””IAIII1 =1 since uB is a subvector
of uIAI. It follows that

-1

loglly = 1D ally < 16Dy ally < 16Dy = nas I ihygl

1

where hij is the (i,j) entry of B™' [13, p. 22]. Hence

_ i+]
his = ders (-1) “Byys

where Bij is the (i,j) cofactor of B which is the determinant of a

square submatrix of A. Hence

[Bj5| < B(A).

If A is integral |det B| > 1 is an integer, hence
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[Py iﬁél_BT B3] < AA).
Consequently
luglly < 1B, = max [ jhys| < nacn).
13
Since Uy is arbitrary, we have
v (A3 ¢) = sup {HUI“]llluIAI”1 =1, rows of A Tin. indep.}< nA(A).

2.7 Remark Note that it is not true that solutions of linear programs
are Lipschitzian with respect to perturbations in the objective function
coefficients as evidenced by the following simple example:

(2.26) max (T+6)x; + X, s.t. x; + X, <15 (X75%) 20

The solution to this problem is:

(1,0) for 6§ >0

x(8) =
(0,1) for -1 <8 <0
Hence
1ig Ax(8) = x(=8)]I _
§>0+ 2(3

and hence x(8) 1is not Lipschitzian with respect to §.

a
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3. Linear Complementarity Problems

In this section we shall employ the Lipschitz constant uB(A; C)
developed in Theorem 2.2 for Tinear inequalities and equalities to obtain
a Lipschitz constant for linear complementarity problems with matrices
that have positive principal minors [5] or which are hidden Z-matrices
[17]. We will show by means of Example 3.4 that solutions of linear
complementarity problems with a positive semidefinite matrix are not
Lipschitz continuous with respect to right hand side perturbations.

We consider the linear complementarity problem (M,q) of finding an

n

x in R such that

(3.1) Mx + q >0, x>0, x(Mx+q) =0

where Me R™" and qe R". Note that given Jc{l,...,n}, any solution

of the following system of 2n linear inequalities and equalities

it

M.x + qj >0, x 0, jed

J
(3.2)

]
(e
-
>

v

MjX+Qj >0, jéJ

is a solution of (M,q). For Jc{l,...,n} let Q(J) denote the set of
all q vectors for which (3.2) has a solution. It is easy to verify that

Q(J) is a closed convex cone. In fact it is called a complementary cone

of (M,q) [14, p. 482]. It is also obvious that U Q(J) is the set
Je{l,...,n}

of all q for which (M, q) is solvable. Define

(3.3) OB(M):= ma X } Mg .
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where Mg is defined by (2.5) and J 1is the complement of J in {1,...,n}.
We shall prove (Theorem 3.3) that GB(M) will serve as a Lipschitz constant
for solutions of (M,q) when M is a P-matrix, that is a matrix with posi-
tive principal minors [5, 2], or more generally (Theorem 3.2) for perturba-
tions of q such that the Tinear complementarity problem is uniquely solvable
along the line joining the original q and the perturbed gq. We will also
establish Lipschitz continuity for solutions of (M,q) when M is a hidden
Z-matrix (Theorem 3.5). We begin with a Temma. A related result to this

lemma appears in [15].

! and q2 be fixed distinct vectors in R" and let

2

3.7 Lemma Let gq

q(t):= (1 - t)q] + tq~ for te[0,1]. Assume that (M,q(t)) is solvable for

te[0,1]. Then there exists a partition 0 = tg <t < el <ty =1 such
that for 1 <1 <N

(3.4) q(t1_1)e Q(Ji), q(ti)e Q(Ji) for some Ji<:{1,...,n}
Proof Let
T(9):= {t|te[0,1], qlt) € Q(I)}

for Jc{l,...,n}. It is easy to see that T(J) 1is closed and convex and
hence it is a closed interval which may degenerate to a single point or to

the empty set. Since (M, q(t)) is solvable for te[0,1] it follows that

[0,1] < U T(J)

Let
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be the set of maximal intervals in {T(J)lJc:{l,...,n}}, that is there is no
other interval T(J), J<{1,...,n} that properly contains [21, uij. By re-

moving duplicates from L if needed, we can assume that [zi, ui],...,[lK,uK]
are distinct and that Qi <Ly <l < zK. Since each te[0,1] belongs
T(J) (for some Jc{l,...,n}) which is either in L or contained in some

interval of L, we have that

K
[0,1] < U [2;, u.]
i=1 1]

Thus %; < u

j 1> Otherwise (u; 4> %;) would be an uncovered gap of

i
[0,1]. Also Us_q < Uss otherwise [Qi,ui] would not be maximal because

it would be contained in [2; 4, u;_¢1.

Hence 21 = 0, 21_1 < 21 S Ui <y and =1, Let

i uK
O='t0< ti< ..... <:tN='l be the sorted numbers of {£1=tﬁ’ lz,uz,...,zK,uK}

with duplicates removed. Then each interval [t1_1,t1] is contained in

some interval T(Ji) in L and so
q(t'i--l)EQ(J'i) and q(ti)EQ(J.i) 0

We establish now the Lipschitz continuity of linear complementarity

problems with unique solutions along the line segment

q(t):= (1-t)q' + tq°, te[0,17.

3.2 Theorem (Lipschitz continuity of uniquely solvable linear complementarity

problems) Let q] and q2 be points in R" such that the linear comple-

mentarity problem (M, q(t)) with q(t):= (1 -t)q] + tq2 has a unique solu-

tion for each te[0,1]. Then the unique solutions x] of (M,ql) and x2

of (M,qz) satisfy
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1 2 1 2
1< - 2l < ogtmla’ - ]
where GB(M) is defined by (3.3)

Proof There exist 0 = tO < t] < eeeo < tN = 1 with properties stated in
Lemma 3.1. Let x(ti) be the unique solution of (M,q(ti)). Since for

1 <1 <N, q(t1_1) and q(ti) belong to Q(Ji) for some Jic:{l,...,n},
there exists a solution y(t; ;) of (M,q(t;_ 7)) such that by (2.4)

and (3.3) it follows that

[x(t5) -yt Dl 2 1g

< op(M (- t;_Dlla’=a%l,

where ﬁi is the complement of J. in {1,...,n}. Summing up for i=1,...,N
gives

Ix(t;) = y(t; 1)l < o) lla' - a7l

[ e =

i=1

Since (M,q(ti_])) has a unique solution, y(t.

1_]) = x(t1_1). Hence

Ix(t) - x(ts Dl < o) lla' =a®ll, O

o122
—t

by =%l <

Since for P-matrix M, the linear complementarity problem (M, q) has
a unique solution for each qe R" [13], the following theorem is an

immediate corollary to Theorem 3.2.

3.3 Theorem (Lipschitz continuity of solutions of linear complementarity

1 2

problems with P-matrices) Let M be a P-matrix. For each q and q

2

in R"™ the corresponding unique solutions x] and x~ of (M,q1) and

(M,qz) respectively, satisfy
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1 2 1 2
Ix" -1, < o) o' - a1
where oB(M) is defined by (3.3).

The following example shows that solutions of positive semidefinite

Tinear complementarity problems may not be Lipschitzian.

3.4 Example 0 1 1
M= > q
-1 0

0
1
- m
|
-
el
o
i
————
— @
L ——
-
™
v
o

-¢ +2¢et
Q(t)= 1 3t0=03t]=%3t2=]

J] = 6, J2 = {1,2}

q(to) and q(t1) are in Q(J1) = {qe R2 420, q25¥0}

q(t1) and q(tz) are in Q(JZ) = Ri
(t,) (ty) ] []
t,) = x(t,) = =

7o o £~ 2€t0 £

(t,) i
t =
- ]

0
In order to satisfy (3.5), y(t]) must be {0]. However (3.5) also requires

1
that x(t]) = (O]' Hence x(t1) # y(t]) and the proof of Theorem 3.2 fails.
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. [Ix(ty) = x(tg)ll 1
In fact since 1lim 7 = lim 5= = =, the solutions of the
0 |la"-q'l, e*0
problem cannot be Lipschitzian.
We conclude by showing that other Tinear complementarity problems which
can be formulated as linear programs [10] have solutions which are Lipschitzian
with respect to their right hand sides as a consequence of Theorem 2.4.

In particular if M satisfies the condition of Theorem 2 of [10] with ¢ = 0,

that is
(3.6) MZ] = 22’ rZ1 + sZ2 >0, (r,s) >0

for some nxn Z-matrices Z] and 22, and some n-vectors r and s, then
a solution to such a Tinear complementarity problem is obtained by solving the

single Tinear program

min px s.t. Mx+qg2>0, x>0

where p =r + MTs, and hence p 1is independent of q. In the terminology of

[17], such a matrix M is called a hidden Z-matrix and is a generalization of
Z-matrix which includes such matrices as those with a strictly dominant diag-

onal, and all matrices of Table 1of [10] except cases 12 to 14.

3.5 Theorem (Lipschitz continuity of solutions of linear complementarity

problems with hidden Z-matrices) Let M be a hidden Z-matrix, that is M

Z in R™ for which (M, q]) and (M, qz)

2

satisfies (3.6). For each q] and q

1

are solvable, there exist solutions x of (M, q]) and x~ of (M, q2) such as

1x =l < vg (o] la” - 41l
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where

8 is some norm on R" and Vg is defined by (2.20).

Proof By [10], there exist solutions of (M,q1) and (M,qz) which are

obtained by solving the Tinear programs

IMn{pﬂMx+q1;O,x;0}
rﬁn{pﬂMx+q2;0,x;0}

1

where p is a fixed vector independent of q and qz. The conclusion of

the theorem follows immediately from Theorem 2.4. O

We note that for the case of a strictly diagonally dominant
positive definite matrix M, (M,q) 1is uniquely solvable for each q in
Rn, and the Lipschitz continuity of the solution follows also from either

Theorem 3.5 or Theorem 3.3.
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