PIECEWISE-LINEAR APPROXIMATION METHODS AND
PARALLEL ALGORITHMS IN OPTIMIZATION

by
Bernardo Feijoo

Computer Sciences Technical Report #598

May 1985

PIECEWISE-LINEAR APPROXIMATION METHODS AND
PARALLEL ALGORITHMS IN OPTIMIZATION

by

BERNARDO FEIJOO

A thesis submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN-MADISON

1985

PEEPRETS S

ii

ACKNOWLEDGEMENTS

I am profoundly thankful to my thesis advisor Professor Robert R. Meyer for
his encouragement, advice and guidance, not only in the preparation of this the-

sis, but throughout my graduate studies at the University of Wisconsin-Madison.

I would also like to express my gratitude to Professors Olvi L. Mangasarian
and James G. Morris for reading a draft of this thesis, and Professors Stephen

M. Robinson and Raphael A. Finkel for serving on the Examination Committee.

I dedicate this thesis to my wife and my family. Their love and support

made this work possible.

This research was supported by the Venezuelan Government through “Fun-
dacién Gran Mariscal de Ayacucho” and by the National Science Foundation
under grant MCS8200632. This thesis was typeset using the computer facilities

at the Mathematics Research Center of The University of Wisconsin.

iii

PIECEWISE-LINEAR APPROXIMATION METHODS AND
PARALLEL ALGORITHMS IN OPTIMIZATION

Bernardo Feijoo

Under the supervision of Professor Robert R. Meyer

ABSTRACT

In this thesis we develop an algorithm for the solution of nonseparable convex
optimization problems. The algorithm is an iterative method based on piecewise-
linear approximations of the objective function. A global convergence proof is
given under the assumptions that the objective function is convex, Lipschitz con-
tinuous and differentiable and that the feasible set is convex and compact. We
discuss the implementation of this method iﬂ parallel on the CRYSTAL multi-
computer to solve multi-commodity traffic assignment problems. Encouraging
computational results for the sequential and parallel versions in the case of non-

linear network problems are discussed.

Chapter 1

Chapter 2

2.1

2.2

Chapter 3
3.1
3.2
3.3

3.4

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

INTRODUCTION

REVIEW OF OTHER METHODS
Global Approximation Methods

Local Piecewise-linear Approximations

PIECEWISE-LINEAR APPROXIMATION METHODS
A General Algorithm

Separable Approximations

Piecewise-linear Approximations

Main Convergence Theorem

iv

i

i1l

15
18

24

Chapter 4
4.1
4.2
4.3

Chapter 5
5.1

5.2

Chapter 6

OPTIMIZATION ON THE CRYSTAL MULTICOMPUTER 31

Parallel Algorithms for Nonlinear Networks
The CRYSTAL Multicomputer
Implementation on CRYSTAL

COMPUTATIONAL IMPLEMENTATION

Implementation Details
Test Problems

Numerical Results

DIRECTIONS FOR FURTHER RESEARCH

APPENDIX

REFERENCES

32
35

40

55
55
57

60

66

70

95

CHAPTER 1

INTRODUCTION

Throughout this thesis, we are concerned with the development and implemen-
tation of a general algorithm for the solution of convex optimization problems of

the general form:

min f(x) (P)

st.xcF

where f is a convex function on the compact convex set F C R". We further
assume that a hyper-rectangle H = {x |1 <x <u} is given such that F C H
and f is Lipschitz continuous (i.e., V x,y € H, |f(x) — f(¥)| < L|jx - y||)
and differentiable on H. The basic algorithm is an tierative descent method
based on a procedure P that for a given non-optimal point x € F, returns a set
P(x) C F with the property that Vy € P(x), d =y — x is a descent direction
for f at x. At each iteration an improved feasible solution is produced by first
applying P to the current iterate and then performing a line search along the

resulting descent direction.

For notational simplicity in the formulation of the approximating functions

involved in our approach, we define the function
h, R" — R
hy(x) =f(x+ z) — f(z)

whose graph is a translation of the graph of f by the vector —(z,f(z)). Note
that if z and y are feasible solutions of (P), then y — z is a descent direction for
f at z if and only if y — z is a descent direction for h, at 0. Given an iterate
xJ | our procedure P involves approximating h,, by a separable function 8,;
that will be called the underlying separable approzimation to h.;. A piecewise-
linear approximation to s,; is then used to obtain %7 such that d7 = %7 — xJ
is a descent direction for h,; at 0. The procedure returns P(x?) = {¥'}. In
chapter 3 we prove that this approach yields a sequence of iterates whose objective
values converge to the optimal value of (P). It is also shown in that chapter that
any other procedure P that produces a descent direction and defines a closed
map gives rise to a convergent algorithm. For example, it’s well known that
optimization of the linearized objective function will produce a descent direction
provided that x7 is feasible and non-optimal, and this procedure is closed. In
the linearly constrained case this is the well-known Frank-Wolfe method. In
practice, the choice of P would largely depend on the particular structure of the

constraints defining F.

In chapter 3 we also describe in detail the main properties of the underlying
separable approximations, including the piecewise-linear approximation method
used to attack the separable subproblems in order to obtain the desired descent

properties.

3

Although the algorithm and approximation techniques are developed for
problems of the general form of (P), our aim is to provide an efficient algorithm
for the case in which n is large and F is given by a set of network constraints plus
upper and lower bounds (i.e., F = {x l Ax = b, 1 <x <u} where A is a node-
arc incidence matrix). For this particular constraint structure the subproblefns
resulting from the piecewise-linear approximation can be transformed into linear
network problems (see [Kamesam and Meyer 82]) that can be solved using the
very fast algorithms available for such problems. In other words, we try to take
full advantage of the network structure of the problem. Chapter 2 is a brief

review of some of the methods readily applicable to problems of this kind.

These problems arise in a great variety of applications. Applications areas
include computer network design [Cantor and Gerla 74|, [Gavish and Hantler 82,
[Magnanti and Wong 84], urban traffic assignment |[Bertsekas and Gafni 82],
[Dantzig, et al, 79], [Lawphongpanich and Hearn 83]. |Pang and Yu 82|, hydro-
electric power systems [Hanscom, et al, 80], [Rosenthal 81], telecommunication
networks [McCallum 76], and water supply systems [Beck, et al, 83]. These prob-
lems are among the largest nonlinear programming problems that are currently
being studied because large-scale networks of various sorts not only arise nat-
urally in many different areas and represent a type of model that people in a
variety of disciplines find intuitively easy to develop and maintain, but also ex-
hibit a mathematical structure that can be exploited to develop algorithms that
in many cases can solve at affordable cost problems involving tens of thousands
of variables (In the case of linear networks, [Barr and Turner 81| describe the
solution of problems with 50,000 constraints and 65 million variables being run

on a “production basis” for the U. S. Department of the Treasury).

Of particular interest in terms of widespread applicability are problems of
traffic routing, equilibrium, and network design in computer and urban trans-
portation networks. These problems are typically multi-commodity problems,
i.e., they involve many different types of commodities flowing through the net-
work where, depending on the application, a commodity will be associated with
the traffic flowing out of a source node or between a designated origin-destination
pair. Enormous sizes result from the fact that the number of variables and con-
straints is determined by the number of links and nodes multiplied by the number

of commodities.

Some of these problems, in particular traffic assignment problems, have the
property that coupling between the commodities occurs only in the objective
function. Because of this property, our approach results in a decomposition of
the linear network subproblems into separate and smaller linear network prob-
lems that can be solved in parallel on distributed computer architectures. The
CRYSTAL multicomputer [DeWitt, et al, 84] under development in the Com-
puter Sciences Department at the University of Wisconsin-Madison was used to
implement our algorithm in such a way. In chapter 4 we describe this implemen-

tation in detail.

In chapter 5 we are concerned with computational considerations with em-
phasis on 1) generating only the needed segments of the piecewise-linear approx-
imation, 2) the linear programming or network subproblems that result when
F has appropriate structure and 3) a comparison of computational results for
the original algorithm and its parallel implementation on CRYSTAL. Chapter 6

presents some directions for further research.

CHAPTER 2

REVIEW OF OTHER METHODS

Problem (P), as stated, encompasses a very large class of convex optimization
problems and there are many nonlinear programming algorithms that can be
used to solve such a problem. The choice of algorithm clearly depends on the
particular structure of the constraints defining F and also on the nature of the
objective function f. We are mainly interested in the subclass of problems in
which F is determined by a set of linear network constraints plus upper and
lower bounds on the variables. In this chapter we review some of the algorithms
that can be used or specialized to solve problems in this subclass. In section 2.1
we discuss algorithms based on global approximations of the objective function
and in section 2.2 we review the use of local approximations in the case in which

the objective function is separable.

2.1. GLOBAL APPROXIMATION METHODS

Within this large collection of algorithms we consider the Frank-Wolfe method,
piecewise-linear approximation methods, generalized programming, the reduced
gradient method, and second order methods such as Newton, quasi-Newton and

variable metric methods.

The Frank-Wclfe method [Frank and Wolfe 56| is by far the simplest of
these methods in terms of implementation. It is an iterative procedure that uses
linearization of the objective function at the current iterate. The resulting linear
subproblem is solved and a line search is performed in the direction indicated
by the new feasible solution. At each iteration a lower bound on the optimal
value is easily obtained and the process is repeated until the current objective
value is within a certain tolerance of the current lower bound. In the network
case the subproblems generated are all linear network problems and as such can
be solved using the very fast codes developed for these problems. Unfortunately,
the Frank-Wolfe method has been known to have rather slow convergence and

thus is not considered a practical procedure for large-scale optimization.

Global piecewise-linear approximation methods consist of iteratively approx-
imating f on the hyper-rectangle H by a piecewise-linear function }, obtain-
ing at each iteration an approximate solution to the original problem. This is
achieved by setting up a grid of points in H and using the values of f at these
points to generate ;’ The main disadvantage of these methods is the need to

generate a rather large number of grid points in order to get a fairly accurate

approximation. This poses problems of storage and efficiency, since the number
of function evaluations and the size of the linear subproblems become very large.
Furthermore, if the objective function is not separable, the resulting subproblems
don’t inherit the network structure of the original problem even though they are

still linear. Thus the fast network codes cannot be used.

The generalized programming method uses linear approximating subprob-
lems based on function evaluations and solution of these via the simplex method.
At each iteration there are two major steps performed, solving a master linear
problem and then a Lagrangian relaxation. In general, solving the Lagrangian
relaxation requires considerable computational effort, problems of storage and
efficiency occur when the number of grid points increases, and once again the

network structure of the constraints is lost in the subproblems.

The reduced gradient method |Wolfe 67] is an iterative procedure originally
developed to solve problems of the form
min f(x)
st. Ax=Db
x>0
where f is continuously differentiable and convex, and A is an m X n matrix
with full row rank. The nondegeneracy assumption that every basic solution

to the constraints has m strictly positive variables is made. A partition of the

columns of A is considered, as follows:

A=(B S N)

where B denotes a basis matrix, S corresponds to superbasic variables (i.e.,
nonbasic variables allowed to vary) and N denotes nonbasic variables whose
values are fixed at 0. This partition induces corresponding partitions on the

variables, the gradient of f and the search direction:

XB VBJf(x) ds
x= | xs Vix)=| Vsf(x) d=| ds
XN Vnf(x) dn

The variables in xg and xn are regarded as independent variables, whereas
the variables in xp are considered dependent, since they can be obtained from

xg and Xpy. At each iteration the reduced gradient

() (3 - 3

is computed and a search direction is obtained by letting ds = —rs, dw = 0.
The direction dgp is then given by dg = —B~!Sds. Searching along the re-
sulting direction d, either a basic variable reaches its lower bound or we find the
minimum value of the function along d. In the former case a pivot operation is
performed and the partition is changed accordingly. In both cases a new iterate

is found and the process repeated.

Note that letting

the search direction is given by

where

In recent work, the convergence of the reduced gradient method has been
improved by introducing the use of second order information and the method
has been specialized for nonlinear network problems. [Dembo and Klincewicz 81|
discuss a scaled reduced gradient algorithm for nonlinear network flow problems,
in which a positive definite scaling matrix M is used in the direction finding

step. The search direction is then given by
d=12v

where

Mv = -ZTVf(x) .

This is motivated by the fact that if we were to use a constrained-Newton
algorithm to solve the problem, for a given feasible point x, we would have to

solve the following quadratic program to compute a feasible search direction.
1
min ~pTHp + Vf(x)Tp
p 2
st. Ap=20
p; 20ifx; =0
where H is the Hessian matrix of f at x. If we ignore the constraints p; > 0,

then letting p = Zy, the problem becomes an unconstrained problemin y, since

AZ = 0. The solution to this problem is obtained by solving
(Z"HZ)y = -Z"V f(x)

and the optimal solution of the constrained problem is recovered from p = Zy.
In other words, the reduced gradient method can be thought of as being a quasi-

Newton method, in which the reduced Hessian ZTHZ is approximated by the

10

identity matrix. Thus, by introducing the scaling matrix M containing some
second order information, we hope to get a more accurate approximation to the
reduced Hessian. Dembo and Klincewicz prove that the rate of convergence for
this algorithm corresponds to the canonical rate given by the largest and small-
est eigenvalues of M-iTZTHZM % . That is, if @ and A are, respectively, the
smallest and largest eigenvalues of that matrix, the sequence of objective values
converges linearly with a ratio no greater than [%%_{—?;%]2 . Their tests include
experiments in which M = Hg and M = diag(ZTHZ) and they obtain en-
couraging results for separable networks, where these matrices may be efficiently

generated. Their algorithm makes efficient use of the network programming data

structures and uses a preprocessing device that resolves degeneracy problems.

For nonlinear networks, |Beck, et al 83] propose a reduced gradient algo-
rithm that uses the network data structures efficiently and relies on direction
finding procedures based on conjugate gradient methods. They concentrate on
the computational implementation and show promising results for separable and

nonseparable network problems.

The subproblems generated by these approaches are, in general, more com-

plex than the ones resulting from the approach proposed in this thesis.

For problems with nonlinear objective functions and linear constraints, a
version of the reduced gradient method is used in the MINOS optimization pack-
age [Murtagh and Saunders 83]. This method uses a stable implementation of
the quasi-Newton algorithm to obtain the search direction for the superbasic

variables, by solving a system of the form

cTcd, = -2V f(x)

11

where Z is as above and C is an upper triangular matrix that is updated in
various ways in order to make CTC ~ ZTHZ . This implementation makes no
explicit use of the possible network structure of the constraints and, for large-
scale problems, the solution of the system of equations may pose storage and

efficiency problems.

Newton, quasi-Newton and variable metric methods use quadratic approx-
imations of the objective function as an alternative to linear or piecewise-linear
approximations. It is possible to ensure global convergence of these methods by
including a suitable stepsize procedure. The main disadvantage of these methods,
in the case of general large-scale problems, is that solving very large quadratic
approximating problems could be computationally very expensive. However,
it is possible to solve large positive definite separable quadratic programming
problems by highly efficient iterative schemes based on generalizations of SOR
methods [Cryer 71] [Mangasarian 77, 81]. In the case of f being separable and
having positive definite Hessians, these methods can be used to solve the sub-
problems generated by an iterative quadratic programming approach. If f is not
separable, but its Hessian has positive diagonal, it would be interesting to inves-
tigate the use of these methods to solve the underlying separable subproblem at

each iteration, instead of generating piecewise-linear approximations.

2.2. LOCAL PIECEWISE-LINEAR APPROXIMATIONS

In the case of f being a separable function (i.e., f(x) =) fi(z:)) several

approximating approaches have been suggested in recent years. These include

12

the use of local piecewise-linear approximations to each of the f; |[Meyer 79,80],
[Kao and Meyer 81| and implicit global approximations |Kamesam and Meyer 82].

The latter form the basis for our direction finding procedure.

Local approximation methods are based on approximating each component

b component of the current iterate by 2k— segment

function f; around the d*
piecewise-linear functions. A sequence of these approximating problems is con-
sidered and the new iterate is chosen to be the “best” feasible solution amongst
the solutions of the sequence of subproblems. Computationally, the first solution
that effects a “substantial” reduction in the objective function is chosen as the
next iterate. These methods have the clear advantage of having linear subprob-
lems of fixed size depending on the number of segments in the approximation and
thus do not have the problem of trading off accuracy for storage and efficiency

restrictions. The subproblems also maintain the network structure of the original

problem and thus can be efficiently solved.

Implicit global approximation methods are based on considering a piecewise-
linear approximation of f on all of H but in practice working with only a
two-segment approximation per variable at a given time. This is achieved by a
column generation-column dropping strategy. The separability of the function
implies that the approximation dominates the objective function on H and thus
a line search procedure is not needed. This method keeps the size of the linear
subproblems fixed and maintains the network structure of the original problem.
Computational experience has shown nice convergence properties for large sepa-

rable nonlinear network problems.

13

CHAPTER 3

PIECEWISE-LINEAR APPROXIMATION METHODS

In this chapter we discuss the general algorithm, our approach to P and the con-
vergence properties of this particular choice of procedure. Section 3.1 consists of
a description of the main algorithm. In section 3.2 we discuss the properties of
the underlying separable approximation. Section 3.3 is devoted to the descrip-
tion of the piecewise-linear approximating problems and the resulting procedure
P . In section 3.4 we establish the convergence properties of all approximating

functions involved and finally we state and prove the main convergence theorem.

3.1. A GENERAL ALGORITHM

We assume that we have an algorithmic map P with the property that if x € F

and x is not an optimal solution of (P), then P(x) C F and Vy € P(x),

14

d = y — x is a descent direction for f at x. We also need a line search map.

For a feasible point x and a descent direction d we consider the problem:

Inain f(x + 6d)
st. Xx+0dCF (S)

>0,

and define a search map § by $(x,d) = {y] y = X+ 0*d, and 0* solves (S) }.
For simplicity we initially assume exact line searches. The convergence proof is
easily extended to any of the inexact line searches based on Armijo-Goldstein
rules (see, e.g., [Luenberger 84]) A proof for a modified Goldstein search is given

in section 3.4.
In this setting the algorithm is defined as follows:
Algorithm 3.1.1:
Step 0: Let x! be a starting feasible solution and j + 1.
Step 1: If x7 satisfies the stopping criterion then stop,
else
compute %! € P(x%).

Step 2: Let d/ := %/ —xJ. Obtain x7*! ¢ S(xj,dj). Set j < j+ 1 and go to

Step 1.

15

3.2. SEPARABLE APPROXIMATIONS

Let z be a feasible solution of the problem (P). The underlying separable ap-

prozimation to h, is defined as follows:

n

85(x%) := Zs;">(z.-)

1=1
where s{9(z;) = h,(ze') and e’ is the i* canonical unit vector, i.e., all vari-

ables except the it* are zero.

Our first lemma establishes some useful properties of the function s,.

Lemma 3.2.1. s, satisfies the following properties:

(1) s, is a separable, Lipschitz continuous, differentiable convex function

on H-—-1z;
(2) 85(0) = hz(0) =0;
(3) Vs,(0) = Vh,(0) = Vf(z).
Proof: The Lipschitz continuity, differentiability and convexity of s, are in-

herited from those of h,. Property (2) is easily checked from the definition of

8, . Property (3) is also straightforward: Let 1 < j < n, then

ds, ds(9) . . Oh, .
P2 x) = (zj) = Vh,(z;e’) e’ = (x;¢7)
3$J' d:l:j az]'

hence, letting x = 0, we get

16

and this concludes the proof. §

The concepts of feasible direction and descent direction are needed for the

discussion of the following results. We now give a formal definition of these terms.

Definition 3.2.2. Given x € F, we will say d is a feasible direction at x if
there is an & > 0 such that x+ ad € F for all a € [0,a|. Given x € F and f
we say that d is a descent direction for f at x if there is an & > 0 such that

f(x+ ad) < f(x) for all a € [0,&].

It’s well known that if f is convex and differentiable, d is a descent direction

for f at x if and only if Vf(x)-d <O0.

The following lemma establishes the relationship between the optimal solu-

tion x* of (P) and that of the underlying separable problem centered at x*.

Lemma 3.2.3. The point 0 is an optimal solution of the separable problem:

min 8+ (X) (SP(x*))

st. xe F-—x*

if and only if x* is an optimal solution of the original problem (P).

Proof:
[=]

Let d be a feasible direction at x*, (if d doesn’t exist, then F = {x*} and

the lemma is trivial). Since O is optimal for (SP(x*)) and since d is a feasible

17

direction for 8x+ at 0, we have Vs,.(0)-d > 0. But by lemma 3.2.1(3) we
have Vs,+(0) = Vf(x*) so Vf(x*)-d > 0 also, and by the convexity of [,
f(x*+ ad) > f(x*), Va > 0. This is true for any feasible direction at x*, hence

x* is an optimal solution of (P).

| <]
Follows by reversing the roles of 84+ and f.H

The next lemma establishes a key descent relationship between f and its
separable approximations. It shows that it suffices to find a feasible point that
improves the separable approximation in order to get a descent direction for the

original objective function.

Lemma 3.2.4. Let y,z € F, if s,(y —2) <0, then d = y —z is a descent

direction for 8, at 0 and for f at z.

Proof: Since 8, is convex and differentiable and 8,(0) = 0, then, for every

x € F, we have

V5,(0) - (x —z) < 85(x — 2)

thus
Va,(0)- (v —2) < sy(y —2) <O

then, from lemma 3.2.1(3), we have
Vi(z)-(y-2z) <0

so d is a descent direction for 8, at 0 and for f at z.H

18

3.3. PIECEWISE-LINEAR APPROXIMATIONS

So far we have approximated h, by aseparable and in general nonlinear function
s, . We don’t attempt to solve the resulting approximating problem but instead
we use a piecewise-linear approximation to s, and, at each iteration, solve the
resulting problem. This provides us with the desired descent direction. In this
section we describe in detail the piecewise-linear approximating functions to be

used and define precisely our procedure P.

Given z € F and a vector A = (Aq,...,Ap) > O of gridsizes, a piecewise-

linear approximation }' to 8, is defined as follows:

zAx Zf,zAz,

where

sO((ki —DN) + ¢ {mi = (ki — 1)}

for (k,‘ _ I)A; <z < ki
_ k; =1,2,...,8
fi(Z,A,:D{) =
sO(—(ki —DA) + e {zi+ (ki — 1)}

for —k;A; < z; < —-(k; - I)A;

k;i=1,2,...,8

and

b (e (eidi) — oD (ki — 1) M)}
D Ai
b {80 (—kidi) — 88 (= (ki — 1)A)}
i Yy

19

and 8; and s! are chosen so that 8;A; = u; — 2; and —8tA; = li — z;. (For nota-
tional simplicity, we assume that at any iteration all segments used to construct
an approximation :f,- are equal. In practice the segments near the boundaries
defined by l; and u; are generally smaller than A;. This poses no problems
in utilizing the theory to be developed since the proofs below merely utilize the
fact that A; is an upper bound on segment size. Moreover, the segments of },-
may be generated as needed starting at 0, and it is seldom necessary to generate
more than a few such segments. In a sense, 5’,- is implicitly rather than explicitly
generated). Note that the convexity of sgi) implies that 8,(zi) < };(Z,A,z;) for
all z; € [li — zi,ui — z;] and hence } dominates 8, on H — z. This property

plays an important role in the convergence arguments.

Given the iterate x? constructed in the j'* iteration, we define an approx-

imating problem

min Z Fi(x? A9,) (AP(x7,A%))
=1
st.xe F — x7

that will be the basis for our procedure P for finding the search direction.

Procedure P(x’):

Step 1: If j = 1, then choose A! such that 0 < A' <u -1,
else
for a € (0,1) let A7 + aAi™?.

Step 2: Obtain an optimal solution § of (AP(x7,A%)).

20

If }(‘xj,Aja §) =0, then AV «— aA’ and repeat Step 2,
else

%4 « § + x? and stop, returning {¥’}.

It should be noted that f is defined in such a way that }(Z,A,O) =0 and
thus the test in Step 2 of P determines if the mesh is fine enough to produce a
descent direction for f (and hence for 8, and f). In each call to P the mesh
size is reduced by a factor of a. If this reduction is not enough to produce an
improvement in the piecewise-linear approximation we repeatedly cut down the
mesh size until such an improvement is achieved. We know from earlier results for
piecewise-linear approximations of separable functions (see, e.g., [Kamesam and
Meyer, 82]) that if O is not an optimal solution for (SP(x7)), then for a small
enough A’ a better feasible solution will be found, i.e., }(xj,Aj,ij —x9) < 0.

In most cases in practice, however, only the initial optimal solution is needed.

The next three lemmas establish the uniform convergence of the approxi-

mating functions considered.

- . . JEK _
Lemma 3.3.1. If K is an index set such that xJ L X, then
JEK

8,(x — xj) — 8x(x — X)

uniformly in x.

21

Proof: Given ¢ >0, 3 N suchthatif j € K and j > N then ||x7-%||; < 55;.

Then for such ¢ we have

[(¢ = 57) — sl =)| < 3 [(a1 = &) = 85 (i = 71|
=1

<TI0 + (i = ad)e) = J(%+ (i = 2)e)] + 17() ~ ()
<D L(I6 + (i = w)e’) = (x4 (@i = z)e)h + [= %)

n
<Y 2|} — %[= 20| — || < €
i=1

Since € is arbitrary this concludes the proof. &
Lemma 3.3.2. If A7 255 0 for K C N. Then f(z,A%,x) JEK, 8;(x) uni-

formly in x and z.

Proof: Let j€ K, z€ F and x € F — z. Then if we define
E; = |}i(Z’Ajazi) - sgi)(z;”

we have

|7 (2, A,) — 85(x |<ZE,

An estimate for E; in the presence of a Lipschitz condition for sg") is well known

(see, e.g., [Thakur 78]):

LX
E; <
= 2

22

So now we have that

LIIA’lh

[f(z,A7,%) — 8,(x ZA’
. j JEK . .
and since we have A7 =—=— 0 the convergence is uniform. il

Lemma 3.3.3. Let K C N be an index set. If AV =250 and xJ --?-—E—IL X, then

7(x7,A%,x - x7) ELR 8xz(x — X)

uniformly in x.

Proof: Since

the result follows from lemmas 3.3.1 and 3.3.2. B

The following theorem uses the continuity properties of the approximating
functions to show that the optimal solutions of the approximating problems have

the appropriate continuity property.

Theorem 3.3.4. Let x*, X € F and K CN be an index set such that
(1) x? LIS

(2) %9 —x’ is an optimal sol. of (AP(x?,A%)), for j € K with %7 IeK &

3) A 0.

23

Then % — x* is an optimal solution of (SP(x*)).

Proof: Let x*™ —x* be an optimal solution of (SP(x*)) and choose € > 0. By
lemma 3.3.3 and the continuity of 8x+, 3 N such that for j € K, j > N we have
|F(x7, A, x—xF) — 8,0 (x —x*)| < €, VX € H and |85 (XT —%*) — 850+ (X —%*) | < €.

In particular

}(XjaAj7X** - xj) < 8y (X** - X*) + € (1)
Br (X — X*) < 85 (XF —x*) + € (2)

and similarly
8o (X —x*) < F(x, M9, %7 — xT) + ¢ (3)

but from (2) and (3) we get
8oer (X — X*) < F(xI, AT, %7 — x7) + 2¢ (4)

On the other hand, since x* —x/ € F — xJ and %/ — x’ is optimal for

(AP(x7,A%)), we have
FxF, A0, %7 — x7) < F(ocF, AT, % — %) (5)
so combining inequalities (1), (4) and (5) yields
85t (X — X¥) < 8yt (™ — X) -+ 3¢

Since ¢ is arbitrary, 8xs(X — x*) < 8x+(x*™ — x*) and the optimality of X —x*

is established. B

24

3.4. MAIN CONVERGENCE THEOREM

In this section we prove that algorithm 3.1.1, with P as described in the previous
section, generates a sequence of iterates whose objective values converge to the
optimal value of (P). We also extend the proof to handle an inexact line search

procedure based on a Goldstein-type test.

Our first theorem shows that the sequence of objective values of the iterates

is a monotone strictly decreasing sequence.

Theorem 3.4.1. Let x? and x/*! be iterates generated by algorithm 3.1.1

with P defined as in section 3.3. If x7 is not an optimal solution of (P), then

FxI+Y) < F(d).

Proof: Since x? is not optimal for problem (P) we have, by lemma 3.2.3, that
0 is not optimal for (SP(x?)). As mentioned in the previous section , we know

that P will produce %7 such that ;‘(xj,Aj,ij —x7) < 0. The approximation f

is defined so that f(x/,A%,x) > s (%), Vx€H —x7 . These inequalities imply
0 (3 = x9) < F(x7, A, %7 = xf) <0
so by lemma 3.2.4 d’ = %9 — xJ is a descent direction for f at x?, and since

xI*t1 ¢ §(x7,d%) we have the desired result. i

From the preceding theorem it follows that {f(x7)}, being a bounded se-
quence, converges. We now show that the limit of this sequence is the optimal
value of (P) (we will assume that a full sequence {x’} is generated, otherwise

the method terminates at an optimal solution).

25

Theorem 3.4.2 (Main Convergence Theorem). The iterates %/ generated
by algorithm 3.1.1, with P defined as in section 3.3, have the property that
{f(xj) ;2:1 converges to the optimal value of the original problem (P) and every

accumulation point of {x’};‘;l is an optimal solution of (P).

Proof: Let {Xj};?';l be a sequence of iterates generated by algorithm 3.1.1, let
(%’ }_‘;":1 be the sequence produced by step 1 of the algorithm. The sequences
{xj};’-?;]) {xj“‘"l}‘;-f’.‘__1 and {ij}_‘;"zl are contained in F, a compact set, so they
have accumulation points in F, say x*, % and X respectively. Without loss of

generality there exists an index set K C N, such that

; JEK
x] = x*
; JEK .

X!t === %

~j JEK
X — X

We claim that x* is an optimal solution of (P). Assuming x* is not an optimal
solution of (P) we will get a contradiction. By lemma 3.2.3 0 is not an optimal
solution of (SP(x*)). Since AJ IEK, 0, by theorem 3.3.4 we have that X — 5{*
is an optimal solution of (SP(x*)), hence 8(%X —x*) < 0. By lemma 3.2.4

d* := X — x* is a descent direction for f at x*.
Now consider the problem
moin f(x* + 6d%)

st x*+0d*€F (s")

0<0<1

26

and let 0* be an optimal solution of (S'). Defining x, := x* + 6*d* we have
f(xs) < f(x*). Now let y7+! = x7 4 0*d for d’ as defined in algorithm 3.1.1.
Since 0 < 0* <1 we have y/ € F and y’ EiSN x,. Moreover f(x3t1) < f(y7)
because x/*! minimizes f over the set {x | x = x/ + 047, x € F, § >0}. In

the limit we then have f(%) < f(x,) < f(x*), contradicting f(%) = f(x").
So x* is an optimal solution of (P).

Note that the proof of the theorem goes through if P is any closed mapping
with the property that, if x is not optimal for (P) and y € P(x), then y —x is

a descent direction for f at x.

We now show how the proof of the main convergence theorem can be ex-
tended to the case in which an inexact line search is used. We chose a modified
Goldstein test because of its analytical simplicity. The proof requires the ad-
ditional assumption that f is continuously differentiable. Let us first define a
modified Goldstein test which performs a line search within the feasible compact

set F. We denote by I the set of acceptable stepsizes.

Modified Goldstein Test. Let x € F and let d be a descent direction for f

at x. For a given fixed €, with 0 < € < %, define
Alx,d)={0|0>0,x+0d€F and €< Q(0,x,d) <1-¢}

where
f(x +6d) — f(x)
OVf(x)-d

If A(x,d) # @, then I¢ := A(x,d), else I¢ := {0*}, where

Q(ovxad) =

0* = max{f | x +6d € F} .

27

The corresponding search map is

Se(x,d)={y |y=x+6d, 0¢€ I¢}

If we use this test in algorithm 3.1.1, let us consider how the proof of theorem
3.4.2 may be extended. The first part is independent of the line search and thus
the conclusion that d* = X — x* is a descent direction is still true. It suffices to

show that f(%) < f(x*).

Let j € K and x/*! = x7+67d7, and suppose A(x/,d’) = . Then 6/ > 1
since xJ +d7 € F, and Q(0/,x7,d%) > 1 — ¢, since Q(#7,x7,d’) < € would
imply A(x7,d%) # @ because Q(0,x/,d’) > ¢ for # sufficiently small. Thus,
Q(67,x7,d%) > € and

Fx7 + 07d%) — f(x) < 07V f(x7) - &7 (1)

On the other hand, if A(x7,d’) # @ then 67 clearly satisfies (1). We thus

conclude that (1) is satisfied for all 5 € K. Now since x7+! = x7 + 07d’ we can

write
yi_ It =
l1d7]]
If we define
o IE = x|
]|

; JEK < . T
we have 67 255, 9. Taking the limit in (1), we get

F(%) < F(x*) + bV f(x*) - d* (2)

28

Note that # > 0, since 67 AN implies A(x?,d’) # @ for j large enough
and Q(67,x7,d") ek, 1, contradicting Q(67,x7,d?) <1 — €. Then from (2),

since Vf(x*)-d* < 0, we have f(%) < f(x*). 1

To obtain some insights with respect to the convergence rate of the algo-
rithm, we regard the problem as having only equality constraints, since near the
solution, the set of active inequality constraints will hopefully remain the same,
in which case we can consider them as being equality constraints. Let us also

assume that f is a quadratic function. The problem (P) then becomes

1
min é—xTQx +cTx (P)

st. A'x =D

where Q is a symmetric positive definite matrix. Let us consider an idealized
algorithm consisting of solving the underlying separable problem ezactly at each
iteration and using the direction obtained as a search direction for finding an
improved solution for (P). The stepsize is then obtained by minimizing the ob-
jective function of (P) along the search direction. Given an iterate x7 , letting
D = diag(Q), the underlying separable function centered at xJ is given by

s, i(z) = hx,~(z;ei)

’l‘[o

«

(zie' + x9)TQ(ze’ + %) + T (zie' + x7) — —z—x’TQx’ — T

ii

I
gl
-

(z;ei)TQ(z;ei) + (ijQ + CT)(Ziei)

i
.M:
[ST

)

2"Dz + (xTQ + cT)z

B |

29

where z = x — x7. The underlying separable problem then becomes

1 ,
min 5zTDz +(Qx +)Tz

st. Alz=0.

On the other hand, (P) is equivalent to the problem

1 .
min EZTQZ + (Qx? + c)Tz

sit. Alz=0.

Now let Z be the matrix whose columns form a basis for the null space
of A'. Then if we let z = Zy, the latter problem becomes the unconstrained

problem
. 1 T(rnT j T
min _y'(Z°QZ)y + (@« + c) Zy (QP)
and the underlying separable problem is transformed into

min -;—yT (Z"DZ)y + (Qx! + ¢)TZy (SQP)

The solution to (SQP) is obtained by solving the system
(zTDZ)y = —27(Qx’ + ¢)

and since the gradient of the objective function in (QP) evaluated at y =0 is
exactly the negative of the right hand side, the procedure would amount to an
approximate Newton method using the matrix ZTDZ as an approximation to

the true Hessian ZTQZ. The rate of convergence of such a method is given by

30

the canonical rate of the eigenvalues of the matrix (ZTDZ)™? ZTQZ , namely the
gA—a!]z

objective values of the iterates will converge linearly with a ratio of {(A+a) ,

where A and a are, respectively, the largest and smallest eigenvalues of such

matrix (see, e.g., [Luenberger 84]).

Now, since for sufficiently small gridsizes the piecewise-linear approximation
is close to the underlying separable approximation, the solutions of these prob-
lems are also close and the convergence rate of our method should be similar to

the one for the idealized procedure described above.

31

CHAPTER 4

OPTIMIZATION ON THE CRYSTAL MULTICOMPUTER

In this chapter we discuss in detail the implementation of algorithm 3.1.1 in
parallel on the CRYSTAL multicomputer, in the case of (P) being a nonlinear
multicommodity network problem with coupling between commodities only in
the objective function. In section 4.1 we describe how the algorithm can be
specialized when (P) has this particular structure. Section 4.2 deals with details
of the CRYSTAL multicomputer and the particular software used. Finally, in

section 4.3 we briefly describe how the algorithm is implemented on CRYSTAL.

32

4.1. PARALLEL ALGORITHMS FOR NONLINEAR NETWORKS

As previously mentioned, we are concerned with the particular class of problems
in which the feasible set F is given by network constraints plus upper and lower

bounds on the variables. Problem (P) then becomes:

min f(x)
st.Ax=Db (NNP)
1<x<u

where X is an n— vector of lows and A is a node-arc incidence matrix.

Within this large class of problems we find the collection of problems of traffic
routing, equilibrium, and network design in computer and urban transportation
networks. These problems are typically multi-commodity problems. There are
two fundamental types of traffic assignment problems: symmetric problems in
which the congestion on a given link is determined by the total flow summed
over all commodities in that link only, giving rise to a symmetric Jacobian ma-
trix in the corresponding variational problem, and asymmetric problems in which
the congestion on a link depends on the total flows in several links. It is well
known [Steenbrink 74| that the former problem is equivalent to a convex opti-
mization problem under relatively weak assumptions, whereas the latter gives
rise to a variational inequality that has a more complex optimization formula-
tion involving a non-differentiable objective function. In this chapter we will

concentrate on the former problem, although some of the decomposition ideas

33

considered apply equally well to both problem classes. This problem is of the
form (NNP), where the objective function represents total congestion over all of
the links of the network, and the constraints represent the supply, demand, and
conservation constraints for each of the individual commodities flowing through
the network. The number of commodities may be quite large because, depending
on the formulation, there can be a commodity corresponding to each node or to
each origin-destination pair. However, in the urban traffic equilibrium problem
it is typically the case that the only coupling between different commodities oc-
curs in the objective function. Because of this property, the approximation of
the objective function by a separable function leads to a decomposition of the
problem into separate optimization problems, one for each commodity. These
single commodity problems may then be optimized in parallel (many algorithms
for the asymmetric problem also contain a phase in which the objective function
is replaced by a linear approximation so that the same decomposition may be

used).

While the traffic assignment problem has been the subject of investigation
by numerous researchers in recent years, and many algorithms have been pro-
posed and tested for its solution, in almost all cases these algorithms lead to a
decomposition of the problem into smaller subproblems, and thus are suitable

candidates for research on the use of distributed systems.

We consider now the application of algorithm 3.1.1 to the problem (NNP).
Given the iterate x7 obtained in iteration j the piecewise-linear approximating

problem becomes:

34

n
ngzn Z fi(x?, A%, z;)
i=1
s.t. Ax =0 (AP(x?,A%))

1<x+x’<u.

The problem (AP(x7,A7)) has two key features: 1) because the objective
function is now separable, the problem may be decomposed into K separate
optimization problems, where K is the number of commodities in the original
problem; and 2) because of the convexity of the original objective function, each

of these new problems is equivalent to a linear network optimization problem.

Specifically, assume that x = (x1,...,Xg), where x; is the vector of arcs
corresponding to commodity k, and similarly xJ = (:x’l yeens x:}() , 1= (l1,..-,1K)
and u = (uy,...,u k). We assume there is no coupling between commodities in

the constraints so we can write

4; O 0

0 A, 0
A= }

0 0 ... Ag

where Ay is the node-arc incidence matrix corresponding to commodity k for
each k. The problem (AP(x7,A7)) may then be decomposed into a set of sub-
problems, one for each commodity, as follows. Let Sg be the subset of {1,...,n}

corresponding to commodity k, then the corresponding subproblem is:

35

min Z fi(x?, A, z))
1cS;
st Apxp =0 (APk(xjaAj))

lkgxk+xj§uk.

Now step 2 of the procedure P described in 3.3 consists of solving in parallel
the set of subproblems (APg(x?,A?)) for k = 1,...,HK , and since the objective
function in each of the subproblems is piecewise-linear and convex, equivalent
linear network subproblems can be solved via very fast linear network codes.
For our implementation, a modification of the RNET package |Grigoriardis and

Hsu 79] was used.

Letting ¥1,...,¥kx be the solutions of these subproblems, we set vy =
(¥1,-.-,¥x) and P returns %/ = § + x7. So at each iteration the bulk of
the work in P is done in parallel and a reduction in total real time is achieved

as described in chapter 5.

4.2. THE CRYSTAL MULTICOMPUTER

CRYSTAL is a set of VAX-11/750 computers (currently there are 20) with 2
megabytes of memory each, connected by a 10 megabit /sec Proteon ProNet token
ring. It can be used simultaneously by multiple research projects through par-

titioning the available processors according to the requirements of each project.

36

This partitioning is done via the software, and, once a user has acquired a “par-
tition” or subset of processors, the user then has exclusive access to the node
machines of that partition. CRYSTAL software is written in a local extension to
Modula. Researchers can employ the CRYSTAL multicomputer in a number of
ways. Projects that need direct control of processor resources can be implemented
using a reliable communication service (the “nugget”) [Cook, et al, 83] that re-
sides on each node processor. Projects that prefer a higher-level interface can be
implemented using the Charlotte distributed operating system. The Charlotte
kernel provides multiprocessing, inter-process communication, and mechanisms
for scheduling, store allocation, and migration. There is also a package called
the simple-application package, which is a set of routines allowing application
programmers to use the nugget for communication at a high level. Versions of
this package are available for projects using Fortran, Modula, Pascal and C. Our
implementation of the algorithm makes use of this set of routines. Development,
debugging, and execution of projects takes place remotely through any of several
VAX-11/780 hosts running Berkeley Unix 4.2. Acquiring a partition of node ma-
chines, resetting each node of the partition, and then loading an application onto
each node may be performed interactively from any host machine. CRYSTAL
has been used for research in a variety of areas, including distributed operating
systems, programming languages for distributed systems, tools for debugging
distributed systems, multiprocessor database machines, protocols for high per-
formance local network communications, and numerical methods. Future plans
for CRYSTAL include an increase in the number of node machines to approxi-
mately 40 and an upgrade of the communications medium to an 80 megabit/sec

token ring.

37

The first step for running an application program on CRYSTAL is to obtain
a partition of node machines. This is done via the Nuggetmaster Command
Interpreter (NCI) which allows the user to send commands to the nuggetmas-
ter. These commands include show, new, link, load, state and free. The show
command shows the status of the network of node machines including which
nodes are free for use, current existing partitions and information about the con-
dition of each machine. The new command is used to obtain or reserve partitions
according to availability. The link command links the specified code to the
nugget in each specified node while the load command actually downloads the
linked code to the specified node machines. The state command gives informa-
tion about the status of each node in the partition for purposes of debugging.
Finally, the free command deallocates the specified partitions. In the next sec-

tion we give a sample run of NCL

We now describe the use of the Fortran version of the simple-application
package. There are two sets of routines in the package, the routines used for
communication by the host machine and the ones used by the node machines.
The main difference between the two is that, in the host machine, receiving and
sending of messages is a blocking procedure (i.e., the program has to wait until

the message is read or delivered to proceed with execution).

For the program to be used in the host machine, the user should provide some
extra variables as described below. Five integer variables numrecbufs, num-
sendbufs, buflength, parid and parsiz, representing respectively the num-
ber of input and output buffers, the length of these buffers, the name of the parti-

tion and the number of node machines in it. A two-dimensional real array recbfs

38

of size buflength X numrecbufs is used as a pool of buffers to store incoming
data. A two-dimensional real array senbfs of size buflength X numsendbufs is
used as the corresponding pool of buffers for outgoing data. A one-dimensional
boolean array iflags of size numrecbufs which specifies if messages have arrived
in recbfs (iflags(i)=true means a message has arrived in recbfs(*,1)). A
one-dimensional boolean array of lags of size numsendbuf's specifying if messages
in senbfs have been sent (oflags(i)=true means a message in senbfs(*,i)
is still being sent). A one-dimensional integer array source of size numrecbufs
which denotes the sources (machine numbers) of the corresponding messages in
recbfs. Finally, a one-dimensional integer array dest of size numsendbufs in-
dicating the destinations for messages in senbfs. For the programs used by
the node machines the same variables are needed with the exception of parid
which is replaced by mchnum, representing the number of the node machine the
program is in. Note that the buffer arrays are of type real. In order for users
to work with double precision data, a viable alternative is to define two dou-
ble precision arrays decbfs and denbfs of sizes buflength/2 X numrecbufs
and buflength/2 X numsendbufs, respectively, and “equivalence” them with
the corresponding real arrays. We used this approach to handle our double pre-
cision data. It is important to note that the simple-application package allows
a maximum of 2000 bytes per buffer, this implies that the maximum value that
buflength can take is 500. Some of our double precision arrays have dimensions
greater than 250, so we have to send them partitioned into different buffers (so

far just two).

The first routine that should be called is mkbufr. This routine should be

called only once. It has as arguments all the variables mentioned in the previous

39

paragraph, and informs the library routines these variables are the ones to be
used for communication purposes. In the host machine, it returns the partition
size in parsiz, whereas in the node machines it returns the machine number in

mchnum.

For the process of sending information the simple-application package pro-
vides the routine sendbf which has as argument an integer nextob representing
the number of the buffer to be sent. This routine sends the data contained in
senbfs (*,nextob) to the destination specified in dest (nextob). A side effect is
to set oflags(nextob) = true until the message is safely delivered. In the host
machine, this procedure blocks processing until the send is performed. A user
first loads the data into the first available output buffer, sets the destination of
the message by modifying the array dest accordingly, and finally calls sendbf.
In the host library, the routine recbf is used to receive data from the node
machines. This routine puts arriving messages into recbfs(*,nextib), where
nextib is the number of the next available input buffer. Note that recbf is
not required in the node library, since the communication is non-blocking on the
node machines. After the data is cleared the user should call frbufr(nextib)
which frees buffer number nextib so it can be used by latter receives. This is

done by setting iflags(nextib)=false.

The routine run is also provided in the host library so execution can be
synchronized. This routine works in conjunction with the pause routine of the
node interface library. Nodes can be put in pausing state, by calling pause, until

the host program calls run so they can start processing.

40

4.3. IMPLEMENTATION ON CRYSTAL

We now discuss the details of the parallel implementation of our algorithm on
CRYSTAL. We consider in this section only the case in which the number of
commodities in the network problem is not greater than the number of available
processors (the case in which the number of commodities is greater is discussed

in chapter 6). The general structure of the program is the following:

[1] Input program data.

|2] Until optimality repeat:
[a] Solve network subproblems (in parallel).
[b] Perform line search to obtain new iterate.

[3] Output final solution data.

Since 1/O processes on the node machines were not fully implemented at the
time we performed this research, we use a host program, which resides in the
host machine (a VAX 11/780), for stages [1] and [3]. Our approach for the
node machines involves two other programs, a master program which resides
on node machine 1 and a slave program which is used by node machines 2
through K, K being the number of commodities. The master program, apart

from handling communication with the host and slaves and performing (2](a] for

41

its particular subproblem, performs the line search at each iteration. The slave
program, working in each of the slave nodes, just receives data from the master
node and solves its particular subproblem, sending the solution data back to the

master.

Note that other approaches can also be implemented. For example, if avail-
ability of processors is not a restriction, one could work with K+1 node machines
and use node K + 1 exclusively for step [2][b], leaving the optimization of the

subproblems to nodes 1 through K.

The host program is then structured as follows:

1 Program Host

2 Input problem data.

3 Call run to start node programs.

4 Send data to master node.

5 Receive final solution from master.
6 Print solution and timing data.

7 end.

where between steps 5 and 6 the host program remains idle until the process
of optimization at the nodes is finished and then receives the solution and timing

data from the master.

42

The master program has the following structure:

1 Program Master

2 Pause until host calls run.

3 Receive data from host.

4 for 7:= 2 until K do

5 Send parameter data to node 1.

6 while true do

7 for 7:= 2 until K do

8 Send new data to node ©.

9 Optimize subproblem 1.

10 for ¢:=2 until K do

11 Receive new partial solutions.
12 Perform line search.

13 if optimal or maziter then

14 Send stopsignal to slave nodes.
15 go to 21.

16 end if

17 end while

18 Send final solution to host.

19 end

In step 6, the master node sends to each slave node the variables defining the
structure of the network and the parameters to be used throughout the opti-
mization process, whereas in step 10, it sends just the segment of the stepsize

and iterate vectors to be used in the next iteration for the corresponding sub-

43

problem. The test performed in step 15 determines if the solution is optimal or
if the maximum number of major iterations has been reached, in either case the

slaves are advised to stop processing and the current solution is sent to the host.

For nodes k = 2 through k= K each slave program looks as follows:

1 Program Slave k

2 - Pause until host calls run.

3 Receive parameter data from master.

4 while true do

5 Receive new data from master.

6 if stopsignal then go to 12.

7 Optimize subproblem k.

8 Send new partial solution to master.
9 end while

10 Send timings to host.

11 end

Figure 4.3.1 shows an schematic description of how this programs are syn-

chronized.

After these programs are compiled on the host machine using the {77 Unix
Fortran compiler, they should be linked to the simple-application library and any
other required libraries (e.g., Fortran and C libraries). The resulting executable
files corresponding to the node programs are then ready to be linked and loaded
onto the respective node machines. This, as discussed in the previous section, is

done via NCI. Figures 4.3.2 and 4.3.3 show a sample run of NCL

Host: Reads problem data and signals the

nodes to start running.

!

Host: Sends problem

data to nodes.

Master Node: Gets

problem data.

Slave Nodes: Get

problem data.

|

Master Node: Solves one

optimization subproblem.

Slave nodes: Solve one opti-

mization subproblem.

|

solution to Master node.

Slave nodes: Send subproblem | Master node: Receives

subproblem solution.

!

Master

node: Performs line search

and obtains new iterate.

|

Is stoppin

satisfied?

g criterion

44

Yes

No

|

Master node: Sends new

data to slaves.

Slave nodes: Receive new
solution data.

Master node: Send
solution to Host.

s final | Host: Receives

final solution.

Fig. 4.3.1: Scheme for the distributed algorithm

% nci
Initializing NCI version 4.1

Nuggetmaster Command Interpreter

NCI: new 4

Partition 1 has been created and targeted.
Targets: partition 1 nodes 1,2,3,4

NCI: show

adr vax Mb ttys class state nug pri part owner

62 750 2 1 user accept reg b 1.1 bernar
61 750 2 1 user accept reg b 1.2 bernar
60 750 2 1 user accept reg b 1.3 bernar
59 750 2 1 user accept reg b 1.4 Dbernar

NCI: link ../dirmas/probo3.o -1 -n 1

partition 1:

node 1 ... linked OK ... 1loaded OK

NCI: link ../dirsla/probo3.o-1-n 2 3 4

partition 1:

node 2 ... linked OK ... loaded 0K
node 3 ... linked OK ... loaded OK
node 4 ... 1linked 0K ... loaded 0K

Fig. 4.3.2: Sample run of NCI (1)

45

NCI: state

partition 1:
node 1

node 2 ...
node 3 ...

node 4

NCI: bye

warning:

PAUSING
PAUSING
PAUSING
PAUSING

a retained partition exists

% probo3.o < datp3 > outfiled

% nci

(* Programs running, see Figs.

Initializing NCI version 4.1

A preexisting partition has been targeted.

Targets:

partition 1 nodes 1,2,3.4

Nuggetmaster Command Interpreter

NCI: free

partition 1

NCI: bye

%

has been deallocated

Fig. 4.3.3: Sample run of NCI (2)

46

4.3.4 - 4.3.7 %)

47

The sample run starts by calling NCI and using the new command to get a
new partition of 4 node machines. The show command then allows us to check on
the status of the partition. In the case shown, we were given node machines with
logical addresses 59, 60, 61 and 62. Each of them has 2 Megabytes of memory
and 1 terminal. The nugget installed is the regular nugget (as opposed to an
experimental one) and it is in accept state, that is waiting for an application to
be loaded. The partition has a default priority of 5 and the owner of the partition

is also shown.

Afterwards, we link and load the executable file corresponding to the master
node program into node 1. Instead of using the load command to load it, we use
the -1 flag of the 1ink command which allows us to link and load the executable
file in one shot. The nodes where the load will be done are indicated after the
-n flag. Then we carry out a similar process for the slave node programs for
nodes 2, 3 and 4. A check on the state of the partition reveals the nodes are
in pausing state (i.e., waiting for the host to send a signal, so they can start
work simultaneously). The next step is to exit NCI temporarily and, back in the
system, start running the host program. After the program finishes, we go back

to NCI, free the partition and exit.

In figures 4.3.4 through 4.3.7 we give samples of communication code for

different cases.

For legibility reasons, we have omitted the segments of code that perform
the timing of each process. Examples of complete communication routines are

given in the appendix. In figure 4.3.4 we have an example of how the host sends

CHxsnxn

200

Cocoteot %

Cxkix

Cxksx

Wait for the next output buffer to become available.

IF (OFLAGS (NEXTOB)) GOTO 200

Load data on array DENBFS(#,NEXTOB)

corresponding to output buffer number NEXTOB.

DO 1 I=1,NARCS

DENBFS(I,NEXTOB)=FROM(I)

CONTINUE

Set destination, in this case node 1 (master node).

DEST(NEXTOB) =1

SENDBF sends buffer NEXTOB.

CALL SENDBF (NEXTOB)

Increment the output buffer counter by 1.

NEXTOB=NEXTOB+1
IF (NEXTOB.GT.NUMSENDBUFS) NEXTOB=1

Fig. 4.3.4: Sending data from the host

48

*ok R
CHdws

C

Coowkx

300

Cootokk

Csieokx

Cxkxx

Receive message into next available buffer.

CALL RECBF

Send message to master node, host is ready.

IF(OFLAGS(NEXTOB)) GOTO 300
DEST (NEXTOB) =1
CALL SENDBF (NEXTOB)

Receive message into next available buffer.

CALL RECBF

Read information from array DECBFS(#*,NEXTIB).

DO 1 I=1,NUMNET+NARCS/2
XNEW(I)=DECBFS(I,NEXTIB)
CONTINUE

Free buffer NEXTIB for subsequent use.
CALL FRBUFR(NEXTIB)

NEXTIB=NEXTIB+1
IF(NEXTIB.GT.NUMRECBUFS) NEXTIB=1

Fig. 4.3.5: Receiving data at the host

49

Ceoskeoksk

300

Cokokk

Caokoksk

Cxoxokox

Caexkk

Check that data has been received.

IF(.NOT.IFLAGS(NEXTIB)) GOTO 300

Read data from array DECBFS(x,NEXTIB)

corresponding to input buffer NEXTIB.

DO 2 I=1,NARCS
LB(I)=DECBFS(I,NEXTIB)
CONTINUE

Free buffer for further use and increment input

buffer count.
CALL FRBUFR(NEXTIB)

NEXTIB=NEXTIB+1
IF (NEXTIB.GT.NUMRECBUFS) NEXTIB=1

Fig. 4.3.6: Receiving data at the nodes

50

Cx#xx Wait for next output buffer to become ready.

C

100
C
Cok sk
Cxxotx

C

Ckx

Cooskx

IF (OFLAGS(NEXTOB)) GOTO 100

Put data in array DENBFS(x,NEXTOB) corresponding

to next output buffer

DENBFS(1,NEXTOB)=RTN (4)

DENBFS(2,NEXTOB)=RTN(5)

DO 1 I=1,NARCS
DENBFS(I+2,NEXTOB)=XNEW(I)

CONTINUE

Set destination for the buffer, send it calling

SENDBF and increment output buffer counter.

DEST(NEXTO0B)=1

CALL SENDBF(NEXTOB)
NEXTOB=NEXTOB+1

IF (NEXTOB.GT.NUMSENDBUFS) NEXTOB=1

Fig. 4.3.7: Sending data from the nodes

51

52

data to the master node. The first step is to check if the next available output
buffer nextob is free to use by succesively checking the busy flag on it. Once
we have an output buffer for use, we load some data into it. In this case the
array from, which defines the tails of the arcs in the network, is loaded into the
output buffer denbfs(*,nextob). The destination is set and sendbf is called
to send the information in denbfs(*,nextob) to node 1. After the message is
safely delivered execution of the program resumes and the counter of available
buffers nextob is incremented with the provision that if we exceed the number

of available buffers, it should start again from 1.

In figure 4.3.5 we show how the host receives data from the nodes. First
we should call recbf to perform a receive of the incoming message into the next
available input buffer. Since this procedure is blocking, the master node has
to wait for the host to acknowledge the arrival of the previous message. The
host does this by sending an empty message to the master node. Then the next
message is received and the process is repeated until all messages are received by
the host. Finally, the information on the input buffers is processed. In the portion
of code shown, the contents of the first input buffer decbfs (x ,nextib) are the
components of the first half of the solution vector xnew (storage restrictions force
sending this vector in two parts). The input buffers are freed after the data is
processed and the input buffer counter nextib is incremented. One could read
the data from each input buffer right after its arrival but we tried to minimize
the waiting time for the master node, so we first get all the buffers and then we

read the data from them.

53

Figure 4.3.6 shows how the nodes receive data. Initially the busy flag on
the next available input buffer is checked repeatedly until it indicates the arrival
of a message. The data is read from the corresponding input buffer right after
it arrives. In this case we are receiving the array of lower bounds on the flows
of the network subproblem. The buffer is then freed for use and the counter

incremented as before.

Finally, in figure 4.3.7 we describe how the nodes send data to each other.
As usual we wait for the next available output buffer. Then we load the data to
be sent in the buffer. In this example the first 2 entries of the buffer will contain
information given by RNET, that is number of pivots and number of degenerate
pivots. The rest is the segment of the new feasible solution corresponding to the
subproblem that this particular node was handling. The destination is set to be
the master node and sendbf is called. Once again the counter for output buffers

is incremented.

In our tests we have used numsendbufs = numrecbufs = 13, since in the
largest problem, the maximum number of buffers that can arrive at approxi-
mately the same time is 11 (coming from the slave nodes). It is always best
to have some extra buffers, so we add two more for insurance. This setting
avoids the possible delay in communication caused by trying to send or receive
a message, but having no buffers available for the task. In the case of a message
arriving at a node machine and not finding a suitable buffer, the delay could be

up to a full second before a second try is made.

Regarding the timing of processes, we decided to divide the timing intervals

into three types: 1) Wait time, time spent waiting for a message to arrive, which

54

is measured by making observations before and after a wait on either iflags or
oflags, 2) Communication time, time spent processing incoming or outgoing
data (i.e., loading or reading buffers), and 3) Work time, time spent actually

doing algorithmic work. In the next chapter we discuss the timings obtained.

55

CHAPTER 5

COMPUTATIONAL IMPLEMENTATION

This chapter contains computational results, for the algorithm in its original
form and also for the parallel implementation on CRYSTAL. In section 5.1 we
discuss details of the implementation of the algorithm. Section 5.2 describes the
problems tested. In section 5.3 we show the numerical results for the original

algorithm and for the parallel implementation.

5.1. IMPLEMENTATION DETAILS

As previously mentioned, the algorithm is particularly useful in the case of the
problem being a nonlinear network problem. In this case the resulting approxi-
mating problems can be transformed into linear network problems. This is done
by introducing several new variables in place of the original variables without
altering the network structure of the problem. In practice however, only two

segments of the approximation are stored at a given time, and extra segments

56

are added as needed (for details see [Kamesam and Meyer 82). It is worth not-
ing that in order to maintain this two-segment approximation when a particular
variable reaches an absolute bound, an imaginary arc is generated, with a very

high linear cost, so the structure of the approximation is maintained.

After some computational experimentation with a uniform gridsize in which
all segments, except the ones close to the bounds, were equal, we decided to
implement a variable gridsize approach. For a given gridsize ,\{ , this approach
consists of having the first segment to the right of the current iterate being of
size)\{ , the second of size 2/\{ , the third of size 4/\3: , and so on. The same
is done for the segments to the left of the current iterate. This approach has
resulted in a decrease in the amount of work needed for the optimization of the
subproblems, and a corresponding worsening of the resulting descent direction.
Nevertheless, the results indicate that this approach is of advantage when dealing

with nonseparable problems.

Another issue of computational relevance is the factor a by which the grid-
size is reduced at each iteration. In [Kamesam and Meyer 82] it is reported that
for separable problems, their algorithm working with a value of a = 0.25 yielded
the best results. Our experience has shown that the best choice of « for non-
separable problems is more dependent on the problem being solved. For some
problems a value of a = 0.25 would cause large amounts of work and somewhat
slow convergence. In section 5.3 we show the values of « used for the different

test problems.

Since in general an initial feasible solution is not available, the first iterate

57

x! is generated by solving a problem of the form AP(%,A"), where % is an

arbitrary element of H and A} is typically i'»‘——*l‘;l")

As a stopping criterion we have used previously obtained solutions to each of
the problems, stopping our algorithm whenever our solution value matched the
best known solution value to the particular problem. The technique of producing
a lower bound at each iteration via solving a Lagrangian relaxation problem and
stopping when the lower bound and the current solution value are close enough is
not computationally practical for our kind of test problems. Another alternative
is solving a linearized problem at each iteration obtaining a lower bound. Our
experience with this approach is that the resulting bound provides a reasonable

good idea of how close we are to the optimal solution, but is not very accurate.

5.2. TEST PROBLEMS

Thus far, three test problems have been used. All are nonlinear multi-commodity
network flow problems of the form of traffic equilibrium problems. The problems
are of a relatively small size in which the number of commodities is not greater

than the number of processors available on CRYSTAL.

Problem 1 was provided to us by Professor J. S. Pang [Pang 83]. The network
corresponding to this problem consists of 20 nodes, 28 links and 2 commodities
with corresponding origin-destination pairs, (1,15) and (1,20) both having a de-

mand of 100 units. The equivalent optimization problem then has 56 variables

58

Origin Dest. Demand Origin Dest. Demand
2 3 2000 3 2 200
2 4 2000 4 2 200
2 5 1000 5 2 100
3 4 1000 4 3 100
3 5 2000 5 3 200
4 5 1000 5 4 100

Table 5.1.1: Origin-Destination pairs for problem 3

and 40 constraints. The objective function for this problem is given by:
28
Z c,lcf,f + Cifk
k=1

where fi represents total flow on link k (i.e., the sum of the flows of commodities

using that link), and ¢! and c? are given vectors of coefficients.

Problem 2 was taken from [Bertsekas and Gafni 82]. The network for this
problem consists of 25 nodes, 40 links and 5 commodities. The origin-destination
pairs are (1,4), (2,5), (3,1), (4,2), and (5,3) with demands 0.1, 0.2, 0.3, 0.4 and
0.5, respectively. After some cleaning up of the resulting optimization problem
(i.e., removing arcs that cannot be used for a particular commodity) the problem
is converted to one having 60 variables and 60 constraints. The objective function

for the problem is:

40 3 2
Y Eeg
k=1

where fi is as before.

Problem 3 comes from [Steenbrink 74]. The network for this problem has
9 nodes, 36 links and 12 commodities. Table 5.1.1 shows the origin-destination

pairs and corresponding demands.

59

The resulting optimization problem has 432 variables and 108 constraints.

The objective function is given by:

36
12 2
k=1

60

5.3. NUMERICAL RESULTS

As previously mentioned, we use a modification of the RNET package |Grigo-
riardis and Hsu 79|, for solving the linear network subproblems. The original
RNET package was designed to have all its data of type integer. This version
was modified by |[Kamesam and Meyer 82] to allow the costs and dual variables
to be double precision real variables and to implicitly handle the generation and
dropping of segments of the approximation. We further modified it to allow for
the vectors of variables, right hand sides and lower and upper bounds to be also
double precision variables. This was necessary since the line search procedure in
general yields real data, even having integer base point and direction vectors. We
also implemented the variable gridsize strategy described in 5.1 by modifying the
implicit generation of segments. The algorithms are coded entirely in Fortran
and they were run using the 77 compiler with optimization running under the
UNIX Operating System. The numerical results reported for the sequential ver-
sion were obtained on a VAX 11/780. For comparison purposes, we also used the
MINOS package to solve the test problems. In table 5.3.1 we show a restatement

of the size and structure of the problems.

Links Nodes Cmdts. Cnstr. Vars.

Problem 1 28 20 2 40 56
Problem 2 40 5 5 60 60
Problem 3 36 9 12 108 432

Table 5.3.1: Test Problems

61

Numerical results for our algorithm are shown on table 5.3.2. We give the
number of major iterations of our algorithm, the total number of RNET pivots,
CPU time for the algorithm and the objective function value obtained. The factor
a by which the gridsize is reduced at each iteration is a = 0.70 for problem 1,

a = 0.25 for problem 2 and « = 0.42 for problem 3.

Iter. Pivots CPU time Obj. value
Problem 1 30 429 7.27 s. 1010540.6
Problem 2 11 346 4.81 s. 4'7.858538
Problem 3 11 2266 44 .61 s. 16957.674

Table 5.3.2: Computational Results on VAX 11/780

The performance of MINOS is shown on table 5.3.3. We include total num-

ber of major iterations, CPU time and the objective function value obtained.

Iter. CPU time Obj. value
Problem 1 32 7.71 s. 1010540.6
Problem 2 6 6.15 s. 47.858538
Problem 3 106 39.01 s. 16957.674

Table 5.3.3: MINOS results on VAX 11/780

We now discuss the numerical results obtained for the parallel implementa-
tion of our algorithm on CRYSTAL. Since the VAX 11/780 is a faster machine
than the VAX 11/750’s used as node machines, we implemented the sequential

version of the algorithm so it can be run on CRYSTAL (i-e., using just one

62

node machine), and in this way we can get a realistic view of the advantages, in
terms of real-time savings, of using a parallel approach. In table 5.3.4 we display

the results obtained using both the parallel and the sequential versions of the

algorithm.

Problem 1

Parallel Sequential

CPU time 13.05./3.6s. 16.8 s.

Real time 15.2s. 17.2 s.
Problem 2

Parallel Sequential

CPU time 4.85./1.0s. 8.5 s.

Real time 7.0 s. 8.9s.
Problem 3

Parallel Sequential

CPU time 13.7./8.5 s. 111.0s.

Real time 23.5 s. 111.8 s.

Table 5.3.4: Computing times on CRYSTAL

In the parallel case, two CPU time figures appear, the first represents the
CPU time for the master node and the second an average of the CPU times

for the slave nodes. The figure for the master node is higher than the one for

63

the slave nodes due to the fact that the master node performs the line search.
We should also remark that, for these test problems, the CPU time for each

individual slave node does not differ much from the average.

The differences between Real and CPU time for the master node are due to
waiting and communication times. We performed timing tests to determine how
these times were distributed. Table 5.3.5 shows the timing results for the master
node and for each problem. The times shown represent, respectively, time work-
ing on subproblems, time performing search, waiting time and communication

time as defined in 4.3 and the time given is the total over all iterations.

Optim. Search Idle Comm.
Problem 1 5.21 s. 7.84 s. 1.82 s. 0.39 s.
Problem 2 1.07 s. 3.74 s. 1.58 s. 0.59 s.
Problem 3 9.49 s. 4.18 s. 3.68 s. 6.31 s.

Table 5.3.5: Timings at the master node

‘able 5.3.6 shows timing data for the slave nodes. The times shown are

averages of the times for each individual slave node over all iterations.

Optim. Idle Comm.
Problem 1 3.64 s. 11.09 s. 0.19 s.
Problem 2 1.00 s. 5.45 s. 0.08 s.
Problem 3 8.50 s. 14.31 s. 0.32 s.

Table 5.3.6: Timings at the slave nodes

64

Note that in some cases the time corresponding to the line search is greater
than the optimization time. This facl indicates that improving the efficiency
and parallelism of the line search is a subject which needs further work. The idle
times for the master node are due to the fact that in some iterations the master
node finishes its optimization before some slave nodes have done so, and hence
it has to wait for them. The master node also has to wait for the host to be
ready to receive messages, but our tests show that this time is small compared
to time waiting for the slave nodes. Communication times for the master, as
mentioned before, represent the time spent loading and unloading buffers and,

as such, increase with the size of the problem.

The idle times for the slave nodes are due not only to the time they wait for
the master node to perform the line search, but also to the same phenomenon of
different optimization times, since the faster slave nodes also have to wait while
other slave nodes are finishing their optimization procedures. Communication
times for the slave nodes are determined by subproblem size rather than by

overall problem size, as confirmed by our figures.

It is reasonable to expect that the communication times for the master node
would be roughly K — 1 times the ones for the slave nodes, but this is not the
case. We believe this is so because communication time includes basically loading
or unloading of buffers and calls to the interface routines, and a call to sendbf is
more time consuming that one to frbufr, plus the fact that the amount of data
going from the master node to the slave nodes is larger than the amount going

the other way. Also the simultaneous arrival of messages to the master node in-

65

terrupts execution of communication code, increasing communication time. This

is of more relevance in the larger problems.

66

CHAPTER 6

DIRECTIONS FOR FURTHER RESEARCH

In this chapter we discuss directions for further research both in the theoretical

and computational areas.

The discussion in chapter 3 for the linearly constrained quadratic case leads
us to believe that near the optimal solution, the convergence rate of our piecewise-
linear algorithm should be linear with a rate of approximately [((;14—_—;%]2 , Where
A and a are, respectively, the largest and smallest eigenvalues of the matrix
(ZTD Z)™? 7ZTH?Z , where H represents the Hessian of the function at the current
iterate, D = diag(H) and Z is the matrix whose columns form a basis for the
null space of the matrix A'. This would imply that our algorithm would behave
better for problems in which the objective function is near separable, in the
sense of having a Hessian with small off-diagonal entries relative to the diagonal

elements. The work of Dembo on truncated Newton methods [Dembo 81| may

be useful in this area.

67

Another interesting topic for further investigation is the use of Newton,
quasi-Newtlon and variable metric methods to iteratively solve large-scale non-
linear network problems, by using generalizations of SOR methods such as the
ones proposed by [Cryer 71] and [Mangasarian 77, 81] for solving the quadratic
subproblems. In the separable case, the Hessian of the objective function is
diagonal, so these methods can be used to solve such subproblems. In the non-
separable case, we could use an underlying separable function approach as the
one described here and solve an approximating quadratic separable problem to
obtain a descent search direction. In either case, some work is needed to establish
the convergence properties of such a method and its computational eflectiveness.
On the other hand, it would be interesting to investigate the use of some other
algorithins for solving the underlying separable network subproblems such as the
one proposed by |Rockafellar 84]. For separable network problems, this algo-
rithm, given a feasible point, produces a descent direction. Some research has to

be done however, to establish its closedness.

Regarding the computational implementation of the algorithm, the problem
of finding a suitable stopping criterion is still not fully solved. In the separable
case a lower bound on the current objective value can be obtained from estimates
of the error of approximation [Meyer 80]. A stopping criterion based on how
close the current objective function value is to the corresponding lower bound
can then be used. Another alternative is the use of a Lagrangian relaxation
problem whose solution is a lower bound on the current objective value. In the
separable case this problem can be solved by solving n one-dimensional problems

|[Kamesam and Meyer 82|, and in some cases the solutions to these problems can

68

be obtained in closed form with very little computational effort. Unfortunately, in
the nonseparable case we do not have nice estimates on the approximation error
and, in general, the solution of a Lagrangian relaxation problem at each iteration
could be a very expensive procedure, so these lower bound generation techniques
are not immediatly applicable as bases for stopping criteria. The development
of efficient ways of determining the degree of optimality of the current objective

value is in order.

We now turn to the parallel implementation on CRYSTAL. One area that
requires further investigation is the case of more commodities than processors.
In this case several strategies may be implemented. One alternative would be
to divide the set of single-commodity problems into smaller groups and have
each node solve a fixed group of problems at each iteration. We suspect this
static approach would cause significant differences between the amount of work
each node has at each iteration and consequently increase idle times. To avoid
this problem one could stop processing on all nodes at the same time, once
one of them completes its optimization, and take the current solutions (perhaps
nonoptimal, but certainly defining a descent direction). A new group of problems
would then be sent to the slaves and the process repeated. The issue of how good
these directions, arising from partial solutions, would be is a subject for further
computational and theoretical study. Another alternative is to have a node
exclusively for coordination and line search purposes. This node would send
problems to the slaves and receive solutions from them. After all subproblems
are finished, the master node performs the line search and the process is repeated.

This approach has the advantage that the idle times for the slaves are reduced

69

because once a slave node is ready to start work, the master node provides
a new subproblem to solve, except of course when there aren’t any more. In
all of these cases, there is still the problem that the slave nodes are idle while
the master node is performing the line search. One alternative that partially
minimizes this idle time is to have a coordination node that waits for a group
of subproblems to be processed by the slaves and then performs a line search
restricted to the corresponding subset of variables, while the slaves are optimizing
the next group of subproblems. This approach leads to interesting mathematical
questions in that it may be necessary to change the objective function of the
optimization problems during or after the solution process as a result of the line
search. It should be observed here that the line search plays a more critical role
with regard to efficiency in the parallel approach than it does in the sequential
implementation. Although it represents only a few percent of the total computing
time, this small fraction will be significant if it is comparable to the total workload
on each of the individual node machines and if the slave nodes are idle while this
task is being performed. Work on making the line search as efficient and parallel
as possible is needed to improve the overall efficiency of the algorithm. The most
advanced alternative for the parallel implementation of the algorithm is the use
of the Charlotte distributed operating systems, which automatically distributes
work to processors and promises to provide the most efficient enviroment for such
an application. Of course, much experimental work has to be done to determine

which strategy would yield the best results.

70

APPENDIX

In this appendix we list the codes for some of the communication routines used in
the CRYSTAL implementation of the algorithm. Listed are horecl and hosend
which are routines for use at the host: the first one receives the final solution
data from the master node and the other sends the problem data to the master
node at the start of the algorithm. Four routines for use at the master node
are listed. These are marecv which receives the problem data from the host,
maseni which sends the final solution data to the host, maslri which receives
the solution of the subproblems from all slaves at each iteration, and maslsi
which sends the current base point and gridsize vectors to the slaves at each
iteration. Two routines for use at the slave nodes are listed. These are slrecl
which receives the current base point and gridsize vectors from the master node
at each iteration, and slseni which sends the subproblem solution to the master

node at each iteration.

o o000 o0

subroutine horecl

HOST ROUTINE
This routine receives the final solution data
from the master node.

Inserting declarations file.

#include "hodec.h"

C
(ol]
C

C*
C*

ok

300

400

Receiving the next message
call recbf

Incrementing the output buffer counter.
(done after RECBF to prevent loss of message)

nextob=nextob+1
if (nextob.gt.NUMSENDBUFS) nextob=1

Checking if buffer is available.
if (oflags(nextob)) goto 300

Setting the destination (1 = master node)
dest (nextob)=1

Sending empty message to master, host is ready
to receive next message.

call sendbf (nextob)
Receiving next message
call recbf

nextob=nextob+1
if (nextob.gt . NUMSENDBUFS) nextob=1

if (oflags(nextob)) goto 400

dest (nextob)=1

71

C*
C*

100
C*
ok

C*
ok

Cx
ok

200

72

call sendbf (nextob)
call recbf

nextob=nextob+1
if (nextob.gt . NUMSENDBUFS) nextob=1

if (oflags(nextob)) goto 500
dest (nextob)=1

call sendbf (nextob)

call recbf

nextob=nextob+1
if (nextob.gt.NUMSENDBUFS) nextob=1

Checking the flag on the input buffer
(just a safeguard)

if (.not.iflags(nextib)) goto 100

Reading the first buffer containing the final
objective value, the lower bound, the number

of pivots and degenerate pivots, and the number
of calls to SEARCH.

newobj=decbfs(1,nextib)
1bound=decbfs(2,nextib)
mpivot=decbfs(3,nextib)
npivot=decbfs(4,nextib)
nsea=decbfs(5,nextib)

Freeing the buffer and incrementing the
buffer counter.

call frbufr(nextib)
nextib=nextib+1

if (nextib.gt.NUMRECBUFS) nextib=1

if (.not.iflags(nextib)) goto 200

C*
C*®

210

C X

11

the first half of the final solution
vector ...

do 1 i=1,numnet*narcs/2
xnew(i)=decbfs(i,nextib)
continue

call frbufr(nextib)
nextib=nextib+1
if (nextib.gt .NUMRECBUFS) nextib=1

if (.not.iflags(nextib)) goto 210
and the other half.
do 11 i=1,numnet*narcs/2
xnew (i+numnet*narcs/2)=decbfs(i,nextib)
continue
call frbufr(nextib)

nextib=nextib+1
if (nextib.gt .NUMRECBUFS) nextib=1

return
end

73

C
C
C¥
[olk]
C
G *
C

74

subroutine hosend

HOST ROUTINE
This routine sends the problem data to the
master node.

Inserting declarations file.

#include "hodec.h"

C
ol
C
100
C
C*
C*
C*
C*®
C*
[ok
C

C*x

c
200
c

Checking the flag on the next output buffer
if (oflags(nextob)) goto 100

Loading the first outpu buffer with the scalar
parameters of the problem: gridsize reduction
factor, tolerance for optimality, pricing frequency,
lower bound, number of nodes, number of arcs, number
of separate networks, number of segments in the
approximation and search parameter.

denbfs(1,nextob)=alpha
denbfs(2,nextob)=epslon
denbfs(3,nextob)=frq
denbfs (4 ,nextob)=1bound
denbfs (5,nextob)=mnode
denbfs (6 ,nextob)=narcs
denbfs (7 ,nextob)=numnet
denbfs (8,nextob)=segmnt
denbfs (9,nextob)=sepam

Setting the destination and sending the buffer.

dest{(nextob)=1
call sendbf (nextob)

Incrementing the buffer counter.

nextob=nextob+1
if (nextob.gt . NUMSENDBUFS) nextob=1

if (oflags(nextob)) goto 200

300

C*
c*

310

C*

21

400

Loading the array of tails of the network

do 1 i=1,narcs
denbfs (i,nextob)=from(i)
continue

dest (nextob)=1
call sendbf (nextob)

nextob=nextob+1
if (nextob.gt .NUMSENDBUFS) nextob=1

if (oflags(nextob)) goto 300

half the vector of lower bounds on
the variables

do 2 i=1,numnet*narcs/2
denbfs(i,nextob)=1b(i)

continue

dest (nextob)=1
call sendbf (nextob)

nextob=nextob+1
if (nextob.gt . NUMSENDBUFS) nextob=1

if (oflags(nextob)) goto 310
and the other half.
do 21 i=1,numnet*narcs/2
denbfs (i ,nextob)=1b(i+numnet*narcs/2)

continue

dest (nextob)=1
call sendbf (nextob)

nextob=nextob+1
if (nextob.gt.NUMSENDBUFS) nextob=1

if (oflags(nextob)) goto 400

75

500

C*

600

C*
C*

610

The vector of right hand sides

do 3 i=1,numnet*mnode
denbfs (i,nextob)=rhs(i)
continue

dest (nextob)=1
call sendbf (nextob)

nextob=nextob+1
if (nextob.gt.NUMSENDBUFS) nextob=1

if (oflags (nextob)) goto 500

The vector of heads for the network.
do 4 i=1,narcs

denbfs (i,nextob)=to(i)

continue

dest (nextob)=1
call sendbf (nextob)

nextob=nextob+1
if (nextob.gt.NUMSENDBUFS) nextob=1

if (oflags (nextob)) goto 600

half the vector of upper bounds on
the variables.

do 5 i=1,numnet*narcs/2
denbfs (i,nextob)=ub(i)

continue

dest (nextob)=1
call sendbf (nextob)

nextob=nextob+1
if(nextob.gt.NUMSENDBUFS) nextob=1

if (oflags (nextob)) goto 610

76

b1

and the other half.

do 51 i=1,numnet*narcs/2
denbfs (i ,nextob)=ub(i+numnet*narcs/2)
continue

dest (nextob)=1
call sendbf (nextob)

return
end

77

C
C
C*
C*
C
C*
C

78

subroutine marecv

MASTER ROUTINE
This routine receives the problem data from
the host machine.

Including the declarations file.

#include "madec.h"

C

C*x

C %

100

C*

C*
C*

C X
C*

real*8 btime

Timing ...
tmold=btime (0)

Waiting for the next available buffer.
if (.not.iflags(nextib)) goto 100

Time observation.

tmtemp=btime (0)
tmwaih=tmwaih+tmtemp-tmold

Reading the buffer containing the parameters
for the problem.

alpha=decbfs(1,nextib)
epslon=decbfs(2,nextib)
frq=decbfs(3,nextib)
1bound=decbfs (4,nextib)
mnode=decbfs (5,nextib)
narcs=decbfs(6,nextib)
numnet=decbfs (7 ,nextib)
segmnt=decbfs (8,nextib)
sepam=decbfs(9,nextib)

Freeing the buffer for further use and
incrementing the input buffer counter.

call frbufr(nextib)
nextib=nextib+1

310

if (nextib.gt .NUMRECBUFS) nextib=1

tmold=btime (0)
tmcomh=tmcomh+tmold-tmtemp

if (.not.iflags(nextib)) goto 200

tmtemp=btime (0)
tmwaih=tmwaih+tmtemp-tmold

Reading the vector of tails for the network.

do 1 i=1,narcs
from(i)=decbfs(i.nextib)
continue

call frbufr(nextib)
nextib=nextib+1
if (nextib.gt .NUMRECBUFS) nextib=1

tmold=btime (0)
tmcomh=tmcomh+tmold-tmtemp

if(.not.iflags(nextib)) goto 300

tmtemp=btime (0)
tmwaih=tmwaih+tmtemp-tmold

Reading first half of vector of lower bounds.

do 2 i=1,numnet*narcs/2
1b(i)=decbfs(i,nextib)
continue

call frbufr(nextib)
nextib=nextib+1
if (nextib.gt .NUMRECBUFS) nextib=1

tmold=btime (0)
tmcomh=tmcomh+tmold-tmtemp

if(.not.iflags(nextib)) goto 310

79

21

C*

tmtemp=btime (0)
tmwaih=tmwaih+tmtemp-tmold

and the other half.

do 21 i=1,numnet*narcs/2
1b(i+numnet*narcs/2)=decbfs(i,nextib)
continue

call frbufr(nextib)
nextib=nextib+1
if (nextib.gt.NUMRECBUFS) nextib=1

tmold=btime (0)
tmcomh=tmcomh+tmold-tmtemp

if (.not.iflags(nextib)) goto 400

tmtemp=btime (0)
tmwaih=tmwaih+tmtemp-tmold

Reading vector of right hand sides.
do 3 i=1,numnet*mnode
rhs (i)=decbfs(i,nextib)
continue
call frbufr(nextib)
nextib=nextib+1

if (nextib.gt .NUMRECBUFS) nextib=1

tmold=btime (0)
tmcomh=tmcomh+tmold-tmtemp

if (.not.iflags(nextib)) goto 500

tmtemp=btime (0)
tmwaih=tmwaih+tmtemp-tmold

Reading vector of heads for the network.

do 4 i=1,narcs
to(i)=decbfs(i,nextib)

80

C*

b1

continue

call frbufr(nextib)
nextib=nextib+1
if (nextib.gt.NUMRECBUFS) nextib=1

tmold=btime (0)
tmcomh=tmcomh+tmold-tmtemp

if(.not.iflags(nextib)) goto 600

tmtemp=btime (0)
tmwaih=tmwaih+tmtemp-tmold

Reading half of the vector of upper bounds

do 5 i=1,numnet*narcs/2
ub(i)=decbfs(i,nextib)
continue

call frbufr(nextib)
nextib=nextib+1
if (nextib.gt.NUMRECBUFS) nextib=1

tmold=btime (0)
tmcomh=tmcomh+tmold-tmtemp

if (.not.iflags(nextib)) goto 610

tmtemp=btime (0)
tmwaih=tmwaih+tmtemp-tmold

and the other half.

do 51 i=1,numnet*narcs/2
ub (i+numnet*narcs/2)=decbfs(i,nextib)
continue

call frbufr(nextib)
nextib=nextib+1
if (nextib.gt.NUMRECBUFS) nextib=1

tmold=btime (0)

81

tmcomh=tmcomh+tmold-tmtemp

return
end

82

C
C
C*®
C
ok
[o

83

subroutine masenl

MASTER ROUTINE
This routine sends the final solution to the host.

Inserting the declaratioms file.

#include "madec.h"

C

ok

C*

100

C*

C*
cC*
C*

C*
C*
C*

real*8 btime
Time observation.

tmold=btime (0)
tmcomh=tmcomh+tmold-tmtemp

Waiting for the next output buffer.
if (oflags (nextob)) goto 100
Timing ...

tmtemp=btime (0)
tmwaih=tmwaih+tmtemp-tmold

Loading the first buffer with the final objective
value, the lower bound, number of pivots and
degenerate pivots, and number of calls to SEARCH.

denbfs (1,nextob)=newobj
denbfs(2,nextob)=1bound
denbfs(3,nextob)=mpivot
denbfs (4,nextob)=npivot
denbfs (5,nextob)=nsea

Specifying the destination (0 = host machine),
sending the message and incrementing the
output buffer counter.

dest (nextob)=0

call sendbf (nextob)
nextob=nextob+1

if (nextob.gt.NUMSENDBUFS) nextob=1

C*
C*

C*

210

tmold=btime (0)
tmcomh=tmcomh+tmold-tmtemp

if (oflags(nextob)) goto 200

tmtemp=btime (0)
tmwaih=tmwaih+tmtemp-tmold

Loading the buffer that contains half of
the final solution vector.

do 1 i=1,numnet*narcs/2
denbfs(i,nextob)=xnew(i)
continue

dest (nextob) =0

tmold=btime (0)
tmcomh=tmcomh+tmold-tmtemp

Checking if the host is ready to receive
if(.not.iflags(nextib)) goto300

tmtemp=btime (0)
tmwaih=tmwaih+tmtemp-tmold

call frbufr(nextib)

nextib=nextib+1
if (nextib.gt . NUMRECBUFS) nextib=1

Sending the buffer .
call sendbf (nextob)
nextob=nextob+1

if (nextob.gt . NUMSENDBUFS) nextob=1

tmold=btime (0)
tmcomh=tmcomh+tmold-tmtemp

if (oflags (nextob)) goto 210

84

cC*®

11

C X

400

85

tmtemp=btime (0)
tmwaih=tmwaih+tmtemp-tmold

loading the other half.
do 11 i=1,numnet*narcs/2
denbfs (i ,nextob)=xnew (i+numnet*narcs/2)
continue

dest (nextob)=0

tmold=btime (0)
tmcomh=tmcomh+tmold-tmtemp

Checking if the host is ready.
if (.not.iflags(nextib)) gotod00

tmtemp=btime (0)
tmwaih=tmwaih+tmtemp-tmold

call frbufr(nextib)
nextib=nextib+1
if(nextib.gt.NUMRECBUFS) nextib=1

call sendbf (nextob)
nextob=nextob+1
if (nextob.gt . NUMSENDBUFS) nextob=1

tmold=btime (0)
tmcomh=tmcomh+tmold-tmtemp

return
end

O O 0 0 0 00

subroutine maslril

MASTER ROUTINE
This routine receives the subproblem solution
from the slave nodes.

Inserting declarations file.

#include "madec.h"

C

C*
C*

100

C*

C*

C*
Cc*
ok
ok

real*8 btime

For each of the slave nodes 2, ..., numnet
do 2 kk=2,numnet

Timing ...

tmold=btime (0)
tmcomn=tmcomn+tmold-tmtemp

Checking if a message has arrived in the next
input buffer

if(.not.iflags(nextib)) goto 100
Time observation.

tmtemp=btime (0)
tmwain=tmwain+tmtemp-tmold

Determining where the message came from.
mach=source (nextib)

Unloading the buffer containing number of pivots
(MPIVOT is # of pivots this iteration, NPIVOT is
total # of pivots), number of degenerate pivots,
and the solution vector of the subproblem.

mpivot=mpivot+decbfs(1,nextib)
npivot=npivot+decbfs(1,nextib)
idegp=idegp+decbfs(2,nextib)

86

do 1 i=1,narcs
wnew(i+ (mach-1)#*narcs)=decbfs(i+2,nextib)
continue

call frbufr(nextib)

nextib=nextib+1
if (nextib.gt.NUMRECBUFS) nextib=1

continue

return
end

87

C
C
C*
C*
[
C*
C

88

subroutine maslsl

MASTER ROUTINE
This routine sends the current gridsize and base
point to the slaves at each iteration.

Including declaration file

#include "madec.h"

C

Cx

ok

Cc*

400

C*

C*
C*

real*8 btime
integer mach

For each slave
do 1 mach=2,numnet
Timing

tmold=btime (0)
tmcomn=tmcomn+tmold-tmtemp

Waiting for next output buffer.
if (oflags(nextob)) goto 400
Timing

tmtemp=btime (0)
tmwain=tmwain+tmtemp-tmold

Load the buffer containing the gridsizes.

do 3 i=1,narcs
denbfs (i ,nextob)=delta(i+(mach-1)*narcs)
continue

Set destination, send buffer and increment buffer
counter.

dest (nextob)=mach
call sendbf (nextob)
nextob=nextob+l1

c*

if (nextob.gt . NUMSENDBUFS) nextob=1
continue

For each slave node
do 2 mach=2,numnet

tmold=btime (0)
tmcomn=tmcomn+tmold-tmtemp

if (oflags(nextob)) goto 500

tmtemp=btime (0)
tmwain=tmwain+tmtemp-tmold

Load half the base point XOLD.
do 4 i=1,numnet*narcs/2

denbfs (i,nextob)=xo0ld (i)
continue

Sending ..
dest (nextob)=mach
call sendbf (nextob)
nextob=nextob+1
if (nextob.gt . NUMSENDBUFS) nextob=1
continue

For each slave node

do 7 mach=2,numnet

tmold=btime (0)
tmcomn=tmcomn+tmold-tmtemp

if (oflags(nextob)) goto 510

tmtemp=btime (0)
tmwain=tmwain+tmtemp-tmold

89

41

C*

Load other half of XOLD.

do 41 i=1,numnet*narcs/2
denbfs(i,nextob)=xo0ld (i+numnet*narcs/2)
continue

Sending ...
dest (nextob)=mach
call sendbf (nextob)
nextob=nextob+l
if (nextob.gt . NUMSENDBUFS) nextob=1
continue

return
end

90

C*
C
C ¥
ok
C
c*
C*

91

subroutine slrecl

SLAVE ROUTINE
This subroutine receives the new iteration data from
the master node.

Inserting the file of declarations.

#include "sldec.h"

C*

C*

200

Cx

C*®
Cx

400

real*8 btime
Time observation.

tmold=btime (0)
tmcomm=tmcomm+tmold-tmtemp

Waiting for next input buffer to become available.
if(.not.iflags(nextib)) goto 200
Timing

tmtemp=btime (0)
tmwait=tmwait+tmtemp-tmold

Reading buffer containing gridsize information.

do 2 i=1,narcs
delta(i)=decbfs(i,nextib)
continue

Freeing the input buffer for further use and
incrementing the buffer counter.

call frbufr(nextib)
nextib=nextib+1
if (nextib.gt.NUMRECBUFS) nextib=1

tmold=btime (0)
tmcomm=tmcomm+tmold-tmtemp

if (.not.iflags(nextib)) goto 400

C*
C*

C*

31

92

tmtemp=btime (0)
tmwait=tmwait+tmtemp-tmold

Unloading buffer containing half of
new base point ...

do 3 i=1,numnet*narcs/2
xold(i)=decbfs(i,nextib)
continue

call frbufr(nextib)
nextib=nextib+1
if (nextib.gt .NUMRECBUFS) nextib=1

tmold=btime (0)
tmcomm=tmcomm+tmold-tmtemp

if (.not.iflags(nextib)) goto 410

tmtemp=btime (0)
tmwait=tmwait+tmtemp-tmold

..... and the other half.

do 31 i=1,numnet*narcs/2
xold (i+numnet*narcs/2)=decbfs(i,nextib)
continue

call frbufr(nextib)
nextib=nextib+1
if (nextib.gt .NUMRECBUFS) nextib=1

tmold=btime (0)

tmcomm=tmcomm+tmold-tmtemp

return
end

C
o)
Cc*
C®
C
Cc*
C

93

subroutine slsenl
SLAVE ROUTINE

This routine sends the solution of the corresponding
subproblem from each slave node to the master node.

Inserting the declarations file.

#include "sldec.h"

C

C*

C*

100

C*

ok
C*
C*
Cc*
C*

C*
C*

real*8 btime
Reading current time.

tmold=btime (0)
tmcomm=tmcomm+tmold-tmtemp

Waiting for next output buffer to become available.
if (oflags(nextob)) goto 100
Time observation

tmtemp=btime (0)
tmwait=tmwait+tmtemp-tmold

Loading the buffer with solution information.
The first two entries are # of pivots this
iteration and # of degenerate pivots and the
next NARCS entries contain the solution of the
subproblem. '

denbfs (1,nextob)=rtn(4)

denbfs (2,nextob)=rtn(b)

do 1 i=1,narcs
denbfs(i+2,nextob)=xnew(i)

continue

Setting the destination for the message
(1 = master node).

dest (nextob)=1

Sending the buffer.
call sendbf (nextob)
Incrementing the buffer counter.

nextob=nextob+1
if (nextob.gt .NUMSENDBUFS) nextob=1

tmold=btime (0)

tmcomm=tmcomm+tmold-tmtemp

return
end

94

95

REFERENCES

Barr, R. S. and Turner, J. S. [1981]: “Microdata file merging through large-scale
network technology”, Mathematical Programming Study 15, 1-22.

Beck, P., Lasdon, L. and Engquist, M. (1983]: “A reduced gradient algorithm
for nonlinear network problems”, ACM Transactions on Mathematical
Software, Vol. 9, No. 1, 57-70.

Bertsekas, D. P. and Gafni, E. M. [1982]: “Projection methods for variational
inequalities with application to the traffic assignment problem”, Mathe-
matical Programming Study 17, 139-159.

Cantor, D. G. and Gerla, M. [1974]: “Optimal routing in packet switched com-
puter networks”, IEEE Transactions on Computing C-23, 1062-1068.

Cook, R., Finkel, R., DeWitt, D., Landweber, L. and Virgilio, T. [1983]: “The
Crystal Nugget”, Technical Report 499, Computer Sciences Department,
The University of Wisconsin-Madison.

Cryer, C. W. [1971]: “The solution of quadratic programming problems using
systematic overrelaxation”,SIAM Journal of Control, Vol. 9, 385-392.

Dantzig, G., Harvey, H., Lansdowne, Z., Robinson, D., and Maijer, S. [1979]:
“Formulating and solving the network design problem by decomposi-
tion”, Transportation Research 13B, 5-17.

Dembo, R. S. [1981]: “Large scale nonlinear optimization”, in Nonlinear Opti-
mization 1981, M. J. D. Powell (Ed.), Academic Press.

Dembo, R. S. and Klincewicz, J. G. [1981]: “A scaled reduced gradient algorithm
for network flow problems with convex separable costs”, Mathematical
Programming Study 15, 125-147.

DeWitt, D., Finkel, R., and Solomon, M. [1984]: “The CRYSTAL Multicom-
puter: Design and Implementation Experience”, Technical Report 553,
Computer Sciences Department, The University of Wisconsin-Madison.

Frank, M. and Wolfe, P. [1956]: “An algorithm for quadratic programming”,
Naval Research Logistic Quarterly, 3, 95-110.

Gavish, B. and Hantler, S. L. [1982]: “An algorithm for optimal route selection in
SNA networks”, Research Report RC 9549, IBM T. J. Watson Research
Center, Yorktown Heights, N. Y.

Grigoriadis, M. D. and Hsu, T. [1979]: “RNET the Rutgers minimum cost net-
work flow subroutine”, SIGMAP Bulletin, 17-18.

96

Hanscom, M. A., Lafond, L., Lasdon, L. and Pronovost, G. [1980]: “Modeling
and resolution of the medium term energy planning problem for a large
hydro-electric system”, Management Science 26, 659-668.

Kamesam, P. V. and Meyer, R. R. [1982]: “Multipoint methods for nonlinear
networks”, Technical Report 468, Computer Sciences Department, The
University of Wisconsin-Madison. To appear in Mathematical Program-
ming Studies.

Kao, C. Y. and Meyer, R. R. [1981]: “Secant approximation methods for convex
optimization”, Mathematical Programming Study 14, 143-162.

Lawphongpanich, S. and Hearn, D. W. [1983]: “Restricted Simplicial Decom-
position with Application to the traffic assignment problem”, Research
Report 83-8, Department of Industrial and Systems Engineering, Uni-
versity of Florida, Gainesville, F1.

Luenberger, D. G. [1984]: Linear and Nonlinear Programming, Second Edition,
Addison-Wesley.

Magnanti, T. L. and Wong, R. T. [1984]: “Network design and transportation
planning: models and algorithms”, Transportation Science 18, 1-55.

Mangasarian, O. L. [1977]: “Solutions of linear complementarity problems by
iterative methods”, Journal of Optimization Theory and Applications,
Vol. 22, 465-485.

Mangasarian, O. L. [1981]: “Sparsity preserving SOR algorithms for separable
quadratic and linear programs”, University of Wisconsin Mathematics
Research Center, Technical Report 2260.

McCallum, C. J. [1976]: “A Generalized Upper Bounding approach to Commu-
nications network planning problems”, Networks 7, 1-23.

Meyer, R. R. [1979]: “Two segment separable programming”, Management Sci-
ence, 25, 385-395.

Meyer, R. R. [1980]: “Computational aspects of two-segment separable program-
ming”, Mathematical Programming 26, 21-39.

Murtagh, B. A. and Saunders, M. A. [1983]: “MINOS 5.0 user’s guide”, Technical
Report SOL 83-20, Stanford University, Stanford.

Pang, J. S. [1983]: private communication.

Pang, J. S. and Yu, C. S. [1982]: “Linearized Simplicial Decomposition Methods
for computing traffic eqilibria on networks”, Technical Report, Univer-
sity of Texas at Dallas, Richardson, Texas.

97

Rockafellar, R. T. [1984]: Network Flows and Monotropic Programming, Wiley.

Rosenthal, R. E. [1981]: “A nonlinear network flow algorithm for maximization
of benefits in a hydroelectric power system”, Operations Research 29,
763-786.

Steenbrink, P. A. [1974]: Optimization of Transport networks Wiley, London.

Thakur, L. S. [1978]: “Error analysis for convex separable programs”, SIAM
Journal of Applied Mathematics, 704-714.

Wolfe, P. [1967]: “Methods of nonlinear programming”, in Nonlinear Program-
ming, J. Abadie (Ed.).

