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ABSTRACT

The performance of a database system is strongly influenced by its buffer manage-
ment. Common tactics for memory management in virtual memory systems, such as the

LRU replacement strategy, are known to be less suitable in a database environment.

In this dissertation, we present a new query behavior -model, the ciuer_v ‘locality set
model (QLSM), for database svstems. Like the hot set moﬁeli the~QLSM has an advantage
over the stochastic models due to its ability to predict future reference behavior. However,
the QLSM avoids the potential problems of the hot set model by separating the modeling of

reference behavior from any particular buffer management algorithm.

Based on the query locality set model, we propose a new algorithm, termed the Query
Locality Set (QLS) algorithm, for database buffer management. Using the file instance as
the basic unit for buffer allocation and management, the QLS algorithm implements a
memory policy that is tailored to the individual needs of the queries. By operating on a per-
file basis, it adapts betier than the hot set algorithm to a query’s buffer needs, making more

efficient use of the available buffers.

To evaluate buffer management algorithms in a multi-user environment, we use a per-
formance evaluation methodology that emplovs a hybrid model which combines features of
both trace-driven and distribution-driven simulation models. Using this model for simula-
tion experiments, we compare the performance of sin buffer management algorithms:
RAND. FIFO, CLOCK, WS (Working Set algorithm), HOT (Hot Set algorithm), and QLS.
The simulation results indicate that the latter o algorithms, HOT and QLS, provide signifi-
canth betier performance than the other algorithms. And in comparison, QLS provided

about 10% more throughput than HOT for the tests conducted.
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CHAPTER 1

INTRODUCTION

1.1. The Problem - Management of Buffers in Database Systems

In a memory hierarchy, buffering of data between different levels is one of the most
important factors in determining the performance of the entire system. Likewise, the perfor-
mance of a database system is strongly influenced by its buffer management. Common tac-
tics for memory management in virtual memory syvstems, such as the LRU replacement stra-
tegy, are less suitable in database systems [Ston81]. The need for a better buffer manage-
ment algorithm, coupled with the encouraging results of recent studies in this area, have

motivated our study on buffer management for database sysiems.

The idea of using a large backing store to complement the limited capacity of primary
memory is certainly not new. In the classical paper by von Neumann et al. [Burk63], a
large automatic “subsidiary memory” was suggested for this purpose. The first realization
of this idea appeared in the demand paging supervisor of the ATLAS computer [Foth61]
[Kilb62] in the late 50°s. Despite earlier pessimism [Fineo6] [Coff68], demand-paged vir-
tual memory systems have been successfully implemented on several pioneer computers,
including the Ferranti ATLAS [Foth61] [Kilb62], the IBM M44/44X [Braw681, and MUL-

TICS [Dale68] [Bens72].

The success of dynamic storage systems has brought forth a wide research interest in
the area of virtual memory management for the past quarter century. Various subjects

related to virtual memory systems have been extensively studied, both analytically and




empirically. These studies have contributed to the maturity of a number of areas, including
program behavior modeling, page replacement algorithms, memory partitioning, and load
control.

Compared to its counterpart in virtual memory systems, buffer management in data-

base systems' has not received a great deal of attention. Many existing database systems
either use a buffer management algorithm designed for virtual memory systems, e.g. System
R [Astr76], or simply rely on the buffer management of the underlying operating system,
e.g. INGRES [Ston76]. However, conventional virtual memory policies, such as the LRU
algorithm, were found to be generally unsuitable for a relational database environment
[Ston81] |Sacc82]. Not only are the reference patterns of database queries different from
those of programs, but also the regularity of the query reference behavior enables the predic-
tion of future references. Equipped with this advance knowledge on reference patterns, a
database buffer management algorithm has an advantage over conventional virtual memory

algorithms that are based on stochastic reference models.

The hot set model [Sacc82], proposed by Sacco and Schkoinick, is a notable example
of a query behavior model that departs from conventional Markov chain program models.
By using advance knowledge on a query’s reference behavior, the hot set model is able to
predict the memory requirement of a query under the LRU algorithm. The availability of
this information greatly simplifies the problems of memory partitioning and load control
since we can partition the memory according to the individual needs of queries and regulate
the load so that the aggregate memory requirement of active queries does not exceed the

available memory in the svstem.

! In database systems, the focus of buffer management is on the buffering of data
pages; while buffer management in virtual memory systems deals with both instruction
(code) and data pages.



Although the predictive power of the hot set model has been demonstrated in [Sacc82],
extensive testing of the model and its related buffer management algorithm are required to
evaluate the hot set model. As studies indicate [Kapl80], the LRU algorithm is not a good
page replacement strategy for certain reference patierns of database queries. Thus, the close

interaction between the hot sel model and the LRU algorithm leaves room for further
improvement.

In this dissertation we first review the important results from the studies of virtual
memory management and database buffer management. We then present a new query
behavior model, the query locality set model (QLSM). Like the hot set model, the QLSM
has an advantage over the stochastic models due 10 its ability to predict future reference
behavior. However, the QLSM avoids the potential problems of the hot set model by
separating the modeling of reference behavior from any particular buffer management algo-
rithm. Based on this model of query behavior, we propose a new buffer management algo-
rithm, termed the Query Locality Set (QLS) algorithm, for database systems. Using the file
instance as the basic unit for buffer allocation and management, the QLS algorithm imple-

ments a buffer management policy that is tailored to the individual needs of the queries.

To evaluate buffer management algorithms in a multi-user environment, we use a per-
formance evaluation methodology based on a hybrid model that combines features of both
trace-driven and distribution-driven simulation models. Using this model for simulation
experiments, we compare the performance of six buffer management algorithms: RAND,

FIFO, CLOCK, WS (Working Set algorithm), HOT (Hot Set algorithm), and QLS.




1.2. Organization of the Dissertation
The rest of the dissertation is organized as follows:

Chapter 2 reviews some important results on modeling reference behavior of programs
and database systems. A new reference behavior model, the query locality set model

(OLSM), for relational database systems is also presented.

In Chapter 3, we review some important results from the studies of main memory
management, focusing on three important issues: load control, memory partitioning and
page replacement. Several algorithms for database buffer management are also discussed.
In the latter part of the chapter, we present a new buffer management algorithm, the Query
Locality Set (QLS) algorithm, for database systems.

Chapter 4 presents a performance evaluation methodology for evaluating buffer
management algorithms in a multi-user environment. Using this model for simulation
experiments, the performance of six buffer management algorithms are evaluated.

Chapter 5 investigates issues related to the integration of a QLS-based buffer manager
and two other major components of a database system: the query optimizer and the transac-
tion manager. Finally, the conclusions of our study and some suggestions for future

research are presented in Chapter 6.



CHAPTER 2

MODELS OF REFERENCE BEHAVIOR

A program behavior model provides a basis for determining a program’s working
information at a given time and predicting what it will be at a future time. It helps us under-
stand the dynamic behavior of programs and is useful in both designing and evaluating poli-
cies for virtual memory svstems. Similarly, a query behavior model for database systems is
useful in designing and evaluating buffer management policies. In this chapter, we shall
review some important results on modeling behavior of programs and database systems.
After surveving various behavior models in the literature, a new query behavior model for
database systems, called the Query Locality Set Model (QLSM), will be proposed and dis-

cussed in the last part of this chapter.

2.1. Models of Program Behavior
The concept of Working Set, introduced by Denning [Denn68a], plays an important

role in the study of memory management. Intuitively, the working set' of a process is the
minimum subset of its program pages that must reside in main memory in order for the pro-
cess to execute efficiently. It is observed that many programs, t0 varving degrees, obey the

principle of locality [Denn70], which states:

L1. During any interval of time, a program references non-uniformly over its pages,

! To be more precise, the set of pages favored by a process at a given time (during its
execution) is called its locality set [Denn80]. A working set is an observed estimate of the

locality set.




some pages being favored over others.

1.2. The frequency with which a given page is referenced tends to change slowly in
time.

L3. References in the immediate past and the immediate future tends to be highly corre-

lated, whereas the correlation between references tends to become smaller as the dis-

tance between them increases.

The principle of locality provides a basis for predicting a program’s memory demand of the
immediate future from that of the immediate past. Following this principle, Denning
[Denn68a] defined a process’s working set W(t,) at time t to be the set of pages referenced
by the process during the process time interval [t—7,t]. The parameter 7 is called the win-
dow size.

Based on the definition of working set W(t,7), an analysis for program behavior in
terms of working set properties was presented in [Denn72a). Consider a program with n
pages, and let N=11,2,..,n| be the set of all pages of the program. The dynamic behavior
of the program for a given input can be modeled by its reference string, which is a
sequence ryr» -+ 1 -+, 1N, The meaning of ry=i is that page i is referenced at time
t; thus t measures the process’s execution time or virtual time. If r and TN in the refer-
ence String Fyry * @t Xyt Tyt aretwo successive references to page i, x is called an

interreference interval for page i. Under the assumptions that reference substrings are

. . o . .
stationary and references are asymptotically uncorrelated”, equations that established the

2 A reference substring is stationary if references within the substring satisfy the condi-
tion:
Prir,,,=j|r,=i1=Prry, . ,=j| 14 =il for any 2>0, i,jeN.
References are asymptotically uncorrelated if for all t>0, ry and ryy become uncorrelated

as X—o..



relationships between the mean working set size s(7), the missing-page rate m(t) and the

interreference density function f(v) were derived:

s(T+ D)=—s(7) =m(7).

m(r+ 1)—-m(r)=—fT+1).

11 71
s()=Ym@y=3 f(y).
z=0 72=0 y>z

Informally, the interreference-interval density function is the negative slope of the missing-

page rate function which, in turn, is the slope of the mean working set size function.

The derivation above provides a unified view towards the formalization of program
behavior. On the other hand, it also suggests a hierarchy for classifying program behavior
models (Figure 2.1). There are four levels in the hierarchy: mean working set size,
missing-page rate, interreference interval, and page reference strings: each provides a finer
characterization of program behavior than its predecessor.

A working set size function describes a program’s dynamic memory requirement in
terms of the number of page frames required to hold the working set of the program. This

class of models is useful for studying memory partitioning policies in multiprogrammed

[ Working Set Size ]
] Missing ll)age Rate ]
| Interreference Interval |
| Page Referlence String |

Figure 2.1 Hierarchy of Program Behavior Models




systems where detailed paging behavior is not required. Coffman and Ryan [Coff72], for
example, demonstrated how dynamic (as oppose to static) memory partitioning can improve
memory utilization by using a locality model, in which a program’s working set size is

modeled as a stationary Gaussian (normal) process.

Missing-page rate is another manifestation of program behavior and has been the sub-
ject of many studies [Bela69] [Cham73] [Denn73] [Ghan75b] [East77] [East78]. Lifetime
function L(x) [Bela69], which gives the mean execution interval (in the process’s virtual
time) between page exceptions under memory constraint x, is a program behavior model
based on the missing page rate. Two empirical lifetime functions, Belady’s formula
[Bela69] and Chamberlin’s formula [Cham73], have been proposed and used in several stu-
dies [Bela69] [Cham73] [Aror73] [Ghan75b]. Lewis and Shedler [Lewi73] have also
derived a semi-Markov model for sequences of page exceptions. Like the working set size
models, models in this class are useful for studying issues of multiprogrammed systems,

including memory partitioning and control of multiprogramming level.

The models discussed as far are useful for studying memory contention among con-
current processes in a multiprogrammed environment. However, they do not contain
enough information on the paging behavior of an individual process, and hence are inade-
quate for studying such issue as page replacement algorithms. One solution is to formulate
page references as an arrival process'”, and impose a stochastic structure on the intervals
between page references. The renewal model [Coff73] [Opde75], in which references to
each page constitutes a renewal process, is one such model, and has been used to analyze

the performance of the working set replacement algorithm,

3 The term "process” here refers to a sequence of random events, not the execution of
a program.




The last class in the hierarchy of program models is the page reference model. A page
reference model describes the details of a program behavior at the page level, and uses a sto-
chastic process to characterize the page reference activities of the program. Due to their
wide use in the study of memory management, we shall examine individually some important

page reference models for program behavior.

2.1.1. Independent Reference Model (IRM)

The independent reference model (IRM) [Aho71] treats a reference string
ryr.+ -1, c°c asasequence of independent random variables with identical distributions.
Under this model, a fixed reference probability is associated with each page in a program.
That is, Prir,=i]=c; for all t. A special case of the IRM is called the random reference
model (RRM) [Opde75], in which the reference probability of all pages are the same (i.e.
Pr[r,=i]=C for all i€ N). Due to its simplicity, IRM has been extensively analyzed [Aho71]
[King71] [Gele73] [Coff73] [Smit76b]. However, since it fails to capture the temporal local-
itv of programs, TRM has also been shown to be a poor model for program behavior

[Spir72] [Arvi73] [Lenf75].

2.1.2. Locality Model (LM)

The locality model [Denn72b] tries to capture program locality explicitly through the
concept of locality sets {L;}, each representing a set of favored pages. Under this model,
the dynamic behavior of a program is described by a sequence of pairs
Ly ), Maty), - iy, o where L is the ith locality set and t; is the holding time

in L;. A stochastic structure can be imposed by a transition matrix [Pr(LiuLj)] among local-

ity sets and a set of holding time distributions Hy(t) for each L;. An early form of the locality
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model was presented by Shemer and Shippey [Shem66] in which "paging unit” and "paging
unit transition matrix” were used to describe locality sets and the transition of localities,
respectively. The so-called very simple locality model (VSLM) [Spir72] is another special
case of the LM in which a fixed size locality and a geometric holding time distribution are
assumed?. Although experimental results show that the VSLM is a better model than the

IRM, the simple LRU model, which will be discussed next, is superior to both.

2.1.3. LRU Stack Model (LRUSM)

The LRU stack model (LRUSM) originated from the LRU replacement algorithm
[Matt70]. Central to the model is the LRU stack, which is a dynamic list that arranges the
referenced pages from top to bottom by decreasing recency of reference. The position at
which a referenced page was found in the stack before being promoted to the top is called its
stack distance. Another interpretation of the stack distance is the number of distinct pages
referenced since the page was last referenced. The LRU stack model describes the dynamic
behavior of a program by a distance string, i.e. sequence of stack distances,
d,d- - -+ d;- - - generated by some stochastic process.

Shedler and Tung [Shed72] proposed a first order Markov process for generating the
distance string. There are N states in the model, among which the first f states are favored.
Their model is relatively complex and has not been empirically validated.

In an attempt to improve the LRU stack model, Arvind et. al. [Arvi73] used separate
stacks for instruction and data spaces, and defined a random process for switching between

stacks. Despite the added complexity, this approach did not result in a better model.

4 That is, lLil =1 and Hy()= (1—)\)'1 '\ for all i, where 1 and A are two parameters of
the model.
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The most popular form of LRUSM is the simple LRU stack model (SLRUM), which
has been subjected to extensive study [Coff72] [Denn72b] [Oden72] [Spir72] [Coff73].
Under this model, a fixed probability is associated with each stack distance, i.e.
Pr{d,=i]=b; for all t. SLRUM provides a good model for predicting references coming
from a locality in a program. However, it fails to describe the disruptive behavior during
transitions of localities, and thus inaccuracy of the model has been observed [Arvi73]

[Lenf75].

2.1.4. Phase/Transition Model

An approach that explicitly models the transitional behavior of programs is based on
the principle of decomposability [Cour75}.  This approach, known as the
phase/transition model [Denn75b], decomposes a reference siring into a sequence of
intervals called phases, during which the program is assumed to be in equilibrium. The
phase holding times and associated locality sets are described by a macromodel, while the
reference pattern within each phase is described by a micromodel. The phase/transition
model is very similar to the locality model except that the phase/transition model was derived
with a better theoretical background and places more emphasis (at least conceptually) on the
disruptive nature of the transitional behavior. Denning and Kahn [Denn75b] showed that
even simple forms of the phase/transition model are able to reproduce observed program
behavior, which the IRM and the LRUSM fail to model. The study of program localities by

Madison and Batson [Madi76] reinforces the concept of phases and transitions.
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2.2. Models of Query Behavior for Database Systems

After looking at various program behavior models, we now examine their counterpart
in database systems. Basically, the query behavior models to be discussed in this section are

extensions to the program behavior models.

2.2.1. A Working Set Model for Database Systems

In establishing a framework for evaluating database systems, Rodriguez-Rosell and
Hildebrand [Rodr75] extended the working set model to hierarchical databases. In their
approach, a database system is viewed as consisting of three levels, the logical level, the
encoding (access structure) level, and the physical block level. A working set definition for
each of the three levels was given in terms of target entities, path entities and data blocks,
respectively. The study also reported some working set statistics obtained by applying the
extended working set definitions to trace data gathered from IMS, IBM’s Information
Management System. In a later study, Rodriguez [Rodr76] reported more experimental
results from the IMS trace data. An important conclusion was that database reference

strings have strong sequentiality and weak locality.

One major contribution of the database working set model is that it relates database
reference behavior to program behavior in multiprogrammed systems, thus allowing the
tools and results in that area to be applied to the study of database systems. However, the
model is heavily biased toward hierarchical databases. It is not clear how this approach can

be extended to other higher-level data models.
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2.2.2. Easton’s Model
In a study to model the reference strings generated by an interactive database system

AASS. Easton [East75] proposed a Markov chain model for database reference behavior.

The model has n states, one for each page in the database, and the transition probabilities

Pﬁ:r+(l '-*r))\i,

n
where 0 = r<1, $A\=1, and A>0, fori=1, -+ n. The intuitive meaning of the transi-

i=1
tion probabilities is that with probability (I1—r), the next reference is chosen according to
distribution {\;}. Based on this model, Easton derived expressions for working set functions
s(t) and m(7), and showed that the results agree with observations of an AAS trace for large
window sizes (7’s). Note that this model is a degenerated VSLM with a locality size of one,

and the IRM is a special case of this model with r=0.

In a later study, Easton [East78] generalized the above model through the concept of
reference clusters, which is an observed phenomenon that once a page is referenced, there
are often additional references to it within a relatively short time. A reference to a page is
defined to be primary if the time since the page was last referenced exceeds a particular
value 7. Otherwise. the reference is secondary. The generalized model describes the
behavior of primary references, and ignores the secondary references under the assumption
that they will not cause any page fault. The model states that once a cluster has ended, the
time to the initiation of the next clustered is a random variable with a geometric distribution.

Formally stated, there exist a finite T and probabilities {p;! such that for all T=7,

5 AAS is an IBM database system known as the Advanced Administrative Svstem.
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— & =t . e . (TR g o ...
Prir=x;|r_ p#% 11417 % o X =pg, =1, .

Intuitively, 1/p; is the mean interval between clusters of references to page i. Again, the
expressions for working set functions s(r) and m(7) derived under the new model were vali-
dated by empirical results from trace strings. Note that the first Easton model is a special

case of the second, with 7=1 and p;= (l-r))\j.

Both models discussed in the preceding paragraphs have demonstrated success in
determining working set functions s(7) and m(7). However, as Easton pointed out [East78],
the models are not suited to addressing such issues as determining the distribution of inter-
vals between successive page faults, since the models do not explicitly deal with the correla-
tion between references of different pages. Furthermore, the models do not provide enough
details on page reference behavior, and hence are inadequate for studying buffer replacement

policies.

2.2.3. Hot Set Model

Most of the behavior models we have discussed so far are Markov chain models that
describe the behavior of a process® by some stochastic process. Based on the assumption
that no advance knowledge is available [Denn68a), these models predict a process’s future
behavior by past statistics or simply by probability distribution. However, there are excep-
tions to this assumption, for example, in relational database systems [Astr76] [Ston76]. A
relational database system provides its users with a high-level non-procedural interface and
lets its optimizer [Wong76] [Seli79] decide how the data will be accessed. Thus, the refer-
ence patterns for data pages can be predicted at the time the optimizer selects an access plan

for a query.

® A process in this context refers to the execution of either a program or a query.
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The hot set model proposed by Sacco and Schkolnick [Sacc82] is a query behavior
model for relational database systems that integrates the advance knowledge of reference pat-
terns into the model. In this model, a set of pages over which there is a looping behavior is
called a het set. If a query is given a buffer large enough to hold its hot sets, its processing
will be efficient because the pages referenced in a loop will stay in the buffer. On the other
hand, a large number of page faults may result if the memory allocated to a query is insuffi-
cient to hold a hot set. Plotting the number of page faults as a function of buffer size, we
can observe a discontinuity around the buffer size where the above scenario takes place.

There may be several such discontinuities in the curve, and each is called a hot point.

In a nested loops join in which there is a sequential scan on both relations, a hot point
of the query is the number of pages in the inner relation plus one. The formula is derived
by reserving enough buffers to hold the entire inner relation, which will be repeatedly
scanned, plus one buffer for the outer relation, which will be scanned only once. If,
instead, the scan on the outer relation is an index scan, an additional buffer is required for
the leaf pages of the index. Following similar arguments, the hot points for different queries

can be determined.

Applying the predictability of reference patterns in queries, the hot set model provides
a more accurate reference model for relational database systems than a stochastic model.
However. the derivation of the hot set model is based partially on the LRU replacement algo-
rithm, which is inappropriate for certain looping behavior. In fact, the MRU (Most-
Recently-Used) algorithm, the opposite to the LRU algorithm, is more suited for cycles of
references [Thor72], because the most-recently-used page in a loop is the one that will not
be re-accessed for the longest period of time. Going back to the nested loops join example,

the number of page faults will not increase dramatically when the number of buffers drops
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below the "hot point” if the MRU algorithm is used. In this respect, the hot set model does
not truly reflect the inherent behavior of some reference patterns, but rather their behavior

under the LRU algorithm.

2.3. The Query Locality Set Model

As discussed in the previous section, the hot set model, which integrates knowledge on
reference patterns as part of the model, is better at describing the reference behavior of data-
base systems than other stochastic models. Based on similar assumptions, we propose a new
query behavior model for relational database systems which we shall refer to as the Query
Locality Set Model (QLSM). However, unlike the hot set model, the QLSM is not tied to
any particular buffer replacement algorithm. The main focus of the QLSM is to character-
ize the "inherent” behavior of database queries rather than to describe the paging behavior

under a certain buffer management policy.

In the following, we shall start with a description of the storage organizations used in
our analysis. Based on the storage model, page reference patterns found in relational data-
base systems will be characterized and discussed. Finally, the classification of page refer-

ence patierns will be applied to the analysis of a number of database operations.

2.3.1. Storage Organizations and Access Methods

Without loss of generality, we shall use disks as the storage medium for databases in
our discussion. Each disk is physically partitioned into pages, which are the basic unit of
access. Files and records are the logical structures imposed on disks and pages, respec-
tively. A file is a portion of a disk that consists of logically related pages. Each page, in

turn, contains a number of records. We are not concerned with the exact structure of a
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record, except that it contains a number of fields whose values may be used as search keys
for accessing records. Roughly speaking, a file corrésponds to a relation (or table), and a

record corresponds to a tuple in the relational data model.

There are storage organizations that require additional space for maintaining auxiliary

access structures, such as indices. Some storage organizations mix access structures and

data together, even on the same page7. However, many other equally powerful storage
organizations do not place such a restriction on the underlying implementations. The
storage system of System R [Blas77] and the Frame Memory design [Marc81], for instance,
both have a clear separation between control and data pages. In the following, we shall
assume that the control and the data portion of a storage organization are placed (at least
conceptually) in different files. For example, a file with a B -tree index can be imple-
mented by two files; one for storing data records, and the other for storing key information

and pointers to the data records. We consider the following storage organizations:

(1) Heap Organizations
This is the simplest form of data organization in which there is no logical ordering
among records. Adding a record to a heap file, with no checking for database con-
straints, consists simply of appending the record to the end of the file. However,
retrieving a record that satisfies a certain condition is expensive. A sequential scan

seems o be the only meaningful way of accessing the file.

(2) Ordered Sequential Organizations
This organization is similar to the heap organization except that there exists a logical

ordering among records in the file. Ordered files are useful for range scans and

7 For example, a DL-tree [Lome83] may have indices and data compressed together in
leaf pages.
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merge joins [Blas77]. Like the heap organization, a sequential scan seems to be the

only pattern of accesses®.

(3y Indexed Organizations
An index is usually structured as a tree. Examples in this category include ISAM
[Mart75], B -tree [Come79], digital tree [Knut73], K-D-B tree [Robi81], and so on.
The leaves of an index tree are assumed to be linked to facilitate sequential scans.
Based on the physical ordering of data records, an index can be classified as either
clustered or non-clustered. For a clustered index, the physical ordering of data
records is generally the same as that of their key values. Furthermore, an index is

said 10 be unique if there is no duplication of keys, and non-unique otherwise.

(4) Hashed Organizations
A hashed organization uses some key transformation technique to locate records.
While it provides good random access time, it has poor performance on sequential
scans. Although there exist many variants, such as extendible hashing [Fagi79] and
linear hashing [Litw80], we shall use the term hashing to refer to all the key-
transformation techniques. To simplify discussion, we shall assume that hashing is
used only when the key field of the data file is unique. Random access is the only rea-

sonable reference pattern to this organization.

2.3.2. A Classification of Page Reference Patterns

Although a database system usually deals with a large amount of data, the set of opera-

tions required to manipulate databases is surprisingly small. Furthermore, the patterns of

8 A binary search on a sorted file is possible if the ordering and disk locations of pages
are directly available, say, from a page table. However, it is generally inappropriate because
it necessitates time consuming disk seek operations [Mart75].
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page references found in database operations are very regular and predictable. In the fol-
lowing, we shall propose a taxonomy for classifying page reference patterns exhibited by
access methods and database operations. This classification is applicable to both data page
and control page accesses, and is useful for identifying the importance of a page for the pur-

pose of buffer management.

2.3.2.1. Sequential References

In a sequential scan, pages are referenced and processed one after another. In many
cases, a sequential scan is done only once without repetition. For example, during a selec-
tion operation on an unordered relation, each page in the file is accessed once and then
thrown away forever (so to speak). A single page frame provides all the buffer space that is

required. We shall refer to such a reference pattern as straight sequential (SS).

Local re-scans may be observed in the course of a sequential scan in certain opera-
tions. That is, once in a while, a scan may back up a short distance and then start forward
again. This can happen in a merge join [Blas77] in which records with the same key value
in the inner relation are repeatedly scanned and matched with those in the outer relation.
We shall call this pattern of reference clustered sequential (CS). Obviously, records in a
cluster (a set of records with the same key value) should be kept in memory at the same time
if possible.

In some cases, a sequential reference to a file may be repeated several times. In a
nested loops join, for instance, the inner relation is repeatedly scanned until the outer rela-
tion is exhausted. We shall call this a looping sequential (LS) pattern. The entire file that
is being repeatedly scanned should be kept in memory if possible. If the file is too large to

fit in memory, the most-recently-used page is the best candidate for replacement since it will
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not be re-accessed for the longest period of time.

2.3.2.2. Random References

A random reference patiern consists a series of independent accesses. For example, in
an index scan through a non-clustered index, the reference pattern of the data pages can be
described by the Independent Reference Model (IRM) with equal access probability for each

data page. The total number of distinct pages accessed in a series of random accesses can be

estimated by Yao’s formula [Yao77]:

Kk
m{l—T] (n—-p=i+1)/(m—i+1)]
i=1 when k=n—p

b(m,p.k) =
(m.p m when k>n—p
where n is the total number of records in the file, m is the number of pages in the file,

p=n/m is the blocking factor (number of records on a page) and k is the number of
accesses.

There are cases when a locality of reference exists in a series of "random” accesses.
This may happen in the evaluation of a join in which a file with a non-clustered and non-
unique index is used as the inner relation, while the outer relation is a sorted (or clustered)

file with non-unique keys. The reference string generated by accesses 10 the data pages of

n n n
. . . 1 2 m
the inner relation can be represented by as a regular expression §; *S; *°** *Sp, where

each cluster s; is a sequence of random variables (page numbers). We shall call this pattern
of reference clustered random (CR). The reference behavior of a clustered random refer-

ence is similar 10 that of a clustered sequential scan. 1If possible, each page containing a
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record in a cluster should be kept in memory at the same time.

2.3.2.3. Hierarchical References

A hierarchical reference is a sequence of page accesses that form a traversal path from
the root down to the leaves of an index. If the index is consulted only once as in an ad hoc
query, one page frame is enough for buffering all the index pages. We shall call this a
straight hierarchical (SH) reference. There are cases in which a tree traversal is followed
by a sequential scan through the leaves. To distinguish these cases from SH references, we
shall call these references either hierarchical with straight sequential (H/SS) if the scan
on the leaves is SS, or hierarchical with clustered sequential (H/CS) otherwise. Note
that the reference patterns of an H/SS reference and an H/CS reference are similar 1o those

of an SS reference and a CS reference, respectively.

During the evaluation of a join in which the inner relation is indexed on the join field,
repeated accesses to the index structure may be observed. We shall call this pattern of refer-
ence looping hierarchical (LH). In an LH reference, pages closer to the root are more
likely to be accessed than those closer to the leaves. The access probability of an index page
at level i, assuming the root is at level O, is inversely proportional to the ith power of the
fan-out factor of an index page. Therefore pages at an upper level (which are closer to the
root) should be favored to stay in buffer over those at a jower level. In many cases, the

roots is perhaps the only page worth keeping in memory since the fan-out of an index page is

usually high.
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2.3.3. Reference Behavior of Database Operations

After discussing how to classify page reference patterns, we shall demonstrate how this
classification can be applied to analyzing the reference behavior of database operations. In
essence, the reference behavior of a database operation is a composition of a number of sim-
ple reference patterns. In the following, we shall start with the discussion of three relational
database operations, projection, selection and join. Analysis of sort operations will be given

next, followed by a discussion of aggregate functions.

A projection, without duplicate elimination?, usually involves a source file and a file to
hold the projected result. Fields within a source record may be eliminated, transposed, or
perhaps replicated. However, no matter what is required for the projection, the page refer-
ence pattern to the source file is always straight sequential. Appending records to the output
file is also sequential. Note that if a projection is optimized as part of another operation, it

requires no buffers at all.

When no access structures are available, a straight sequential scan is the only way to
execute a selection operation. However, if an index exists, we can then traverse down the
index and do a sequential scan over some leaf pages (ie., an H/SS reference). In this case,
the reference pattern to the data pages is straight sequential if the index is clustered, and ran-
dom otherwise. If hashing is used, references to the hash table and to the data pages are

both random.

There are a varietv of algorithms for evaluating joins. Despite the variety, they share

one common pattern: extract a record from the first file, and use the value of its join field (as

9 Removing duplicates from a file can be done by first sorting the file and then scan-
ning it sequentially to eliminate adjacent duplicates. We shall delay the discussion of the
sort operation until later in the section.
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the search key) to do a selection on the second file. The access pattern to the first file is

always straight sequential‘o. Therefore we shall concentrate on the reference pattern to the

second file.

(1) For the nested loops algorithm, the reference pattern to the second file is looping
sequential.

(2) If an index exists on the second file, several combinations of reference patterns to the
index and data pages are possible: (i) H/CS and CS, when the first file is clustered and
non-unique”, while the index to the second file is clustered; (ii) H/CS and CR, when
the first file is clustered and non-unique, while the index to the second file is non-
clustered: (iii) H/SS and SS, when the first file is clustered and unique, while the
index to the second file is clustered; (iv) H/SS and random, when the first file is
clustered and unique, while the index to the second file is non-clustered; (v) LH and
random, otherwise.

(3) If the second file is hashed on the join field, the reference pattérns to both the hash
table and the data pages are random.

(4) For the sort merge algorithm, the reference pattern on the second file is either straight
sequential or clustered sequential, depending on whether the join attributes of the outer
relation are unique.

A common way to implement an external sort utility is to use an N-way sort-merge
algorithm [Braw70] [Knut73]. The file to be sorted is first partitioned into N-page segments

called runs, each of which are sorted by an internal sort routine. Then every N input runs

10 In the sort merge join algorithm, both source files may have to be sorted first. We
shall factor out the effect of sort and delay its discussion until later.

11 A file is clustered if the records in the file are sorted or nearly sorted. A file is
unique if its key field is unique (i.e. no duplicate keys).
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are merged into a larger (output) run in each iteration. The whole process terminates when

there is only one input run left. The number of iterations required for the merging process

depends on the value of N. To sort a file with M pages, [logNM]wl merging iterations are

needed. Since each iteration requires one complete scan of the entire file, using a larger N
is clearly preferred.

During an iteration of the merging process, accesses to each of the N runs are equally
frequent. We need one page frame for each run. Except for prefetching, additional page
frames will not improve the performance as the locality of reference in each run is so
predominant. If one has extra page frames, it is more beneficial to increase the value of N
rather than allocating more page frames to each run. Thus, the number of page frames to
use is determined by the availability of free page frames in the system. An N-way merge
sort is possible when (N+1) page frames are available. A buffer replacement strategy may
be unnecessary for a sort operation since it is easy for a sort utility to do its own buffering.
However, we can still fit sort into our framework by viewing each run in the merging phase
as a separate file under sequential scan. The reference pattern to the source file in the initial

sorting phase can also be treated as straight sequential scan.

Many database systems provide simple aggregate operations, such as MIN, MAX,
SUM. AVG, COUNT, and so on. Despite the difference in semantics, their reference pat-
terns to the source file are the same, namely, straight sequential. For aggregate functions
that involve grouping records before aggregation, two implementations are possible. The
first method is to sort the source file on the grouping attribute and then do a sequential scan
on the sorted file 1o calculate the aggregate value for each group. The second and more effi-
cient method is to scan the source file sequentially while using an auxiliary structure, such

as a BT -tree or hash table, to hold the intermediate aggregate value for each group. Thus,
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the reference behavior of these aggregate operations has been covered by the previous dis-
cussion.

In this section, we have presented a new query behavior model, the query locality set
model, for database systems. Using a classification of page reference patterns, we have
shown how the reference behavior of common database operations can be described as a
composition of a set of simple and regular reference patterns. Like the hot set model, the
QLSM has an advantage over the stochastic models due to its ability to predict future refer-
ence behavior. However, the QLSM avoids the potential problems of the hot set model by
separating the modeling of reference behavior from any particular buffer management algo-
rithm. 1In the next chapter, we shall describe the construction of a predictive buffer manage-

ment algorithm based on the QLSM.
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CHAPTER 3

MAIN MEMORY MANAGEMENT

Memory management is concerned with the management of a critical resource in a
computer system, namely the main memory (or primary memory). It is one of the most stu-
died areas in computer science. Numerous papers on this subject have appeared in the
literature in the past quarter century. In this chapter, We shall review some important
results from these studies and propose a new approach to database buffer management. Sec-
tion 1 is a survey of memory policies for virtual memory systems. Their counterpart in data-
base systems, namely buffer management algorithms, will be discussed in section 2. A new
buffer management algorithm, which is based on the query locality set model discussed in

the previous chapter, will be presented in the last part of this chapter.

3.1. Memory Management in Virtual Memory Systems

By executing several jobs concurrently, a multi-programmed system can improve its
resource utilization, and hence its throughput, i.e. the number of jobs completed per
second. However, when the number of active jobs exceeds certain limit, a collapse in per-
formance can occur due to excessive paging activity. This phenomenon is known as thrash-
ing [Denn68b). Therefore, the purpose of load control is to maximize resource utilization

while preventing the system from entering the thrashing state.

Another issue in memory management is how main memory shall be allocated among
competing jobs. Some might tend to think that memory partitioning is simple and can

readily be dealt with by dividing the main memory evenly among all active jobs. However,
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Belady and Kuehner [Bela69] have shown that even a simple biased partitioning scheme can
improve the throughput of a computer system by 10 to 15 percent. Thus, this apparently

simple problem can have a significant effect on the performance of a computer system.

One remaining question is what action should be taken when a page requested is not in
memory and there are no page frames available. Usually, a resident page (i.e. a page in
main memory) is chosen for removal by a replacement algorithm. The objective of such a
replacement algorithm is two-fold. On one hand, it should keep those pages that are
currently being used in main memory to reduce paging traffic. On the other hand, it should
remove those resident pages that are unlikely to be re-used to ensure the efficiency of

memory utilization.

Load control, memory partitioning and page replacement are three closely related
aspects of a memory policy (Figure 3.1). In fact, as we shall see, there are memory policies
that use a single mechanism to deal with all three problems. However, for ease of discus-

sion, they will be treated as three different issues to be examined separately in this section.

l Load Control J
|

r Memory Partitioning J

r Page Replacement ]

Figure 3.1 Issues of Main Memory Management
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3.1.1. Replacement Algorithms

The replacement algorithm was called the “learning” program when it was incor-
porated in the "one-level storage system” (i.e. virtual memory system) of ATLAS in the late
50's [Kilb62]. Since then, numerous replacement algorithms have been proposed, and
some of them have been implemented in real systems. These algorithms can conveniently be
classified into two major types, lookahead and non-lookahead (Figure 3.2). For complete-
ness, we shall examine both types of algorithms in more detail. The results of some empiri-
cal studies will also be summarized to conclude the discussion of replacement algorithms for

virtual memory systems.

3.1.1.1. Lookahead Replacement Algorithms

A lookahead replacement algorithm requires a priori knowledge of the actual page

requests before program execution. Therefore, it is generally impossible to implement one

Lookahead: MIN, OPT, VMIN, GOPT

Non-Usage Based: RAND, AO, FIFQ, LIFO
Loop-Model: ALD, MRU, MFU

Non-Lookahead | . X
Locality-Model: LRU, LFU, CLOCK, WS, PFF, WSCLOCK

Hybrid: SIM, SFIFO

Figure 3.2 Classification of Replacement Algorithms
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in practice. However, an optimal lookahead replacement algorithm can provide useful infor-
mation for evaluating real systems. For example, the MIN algorithm presented by Belady
[Bela66] is an optimal replacement algorithm which provides a lower bound on page fault
rates under fixed memory allocation!. Mattson et al. [Matt70] presented another algorithm,
OPT, which also yields the minimum number of page faults for a given reference string. In
essence, both algorithms remove the resident page with the longest time to its next reference
when a free page frame is required.

The VMIN algorithm presented by Prieve and Fabry [Prie76] is an optimal replace-
ment algorithm for variable space allocation. After each reference, VMIN removes the page
just referenced if and only if the page will not be re-used within the next R/U time units,
where R is the cost of a page fault and U is the cost of retaining a page in memory per time
unit. Note that R/U can be viewed as the size of a time window into the future, and is in
contrast to the working set parameter 7, which is the size of a backward time window.
Using the page fault rate as a function of (average) memory sizes as the criterion=, Prieve
and Fabry have demonstrated the optimality of VMIN. Denning and Slutz [Denn78b] later
presented an extended version of VMIN, called the generalized optimal policy (GOPT),

which minimizes the aggregated retention and swapping costs.

3.1.1.2. Non-lookahead Replacement Algorithms

Although complexity of implementation and run-time overhead are commonly used cri-

teria for characterizing replacement algorithms, it is convenient to categorize replacement

I Number of page faults is usually the criterion for evaluating replacement algorithms
under fixed memory allocation. A different characterization of the optimality of replacement
algorithms was presented by Pomeranz [Pome71].

2 Under mild assumptions, this criterion is equivalent to the time-space (time integra-
tion of memory sizes) criterion.
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algorithms according to the reference pattern they anticipate. From this viewpoint, existing
non-lookahead algorithms can further be classified into four sub-types: non-usage based,
loop-model, locality-model and hybrid. In the following, we shall examine each sub-type in

more details.

A non-usage based algorithm anticipates, more or less, a random reference pattern. It
does not base its replacement decisions on programs’ past history. Consequently such an
algorithm is usually simple to implement and has low run-time overhead since no usage

statistics need to be maintained. Examples of non-usage based algorithms include:

(1) RAND [Bela6o]: When a page frame is needed, randomly select a page for replace-

ment. This algorithm is justifiable if programs obey the random reference model.

(2) A0 [Aho71]: When a page frame is needed, replace the page that has the lowest proba-

bility of being accessed. Aho, Denning and Ullman [Aho71] have shown that AQ is
optimal if program behavior satisfies the IRM?>.

(3) FIFO (First-In-First-Out) [Belabt]: When a page frame is needed, replace the oldest
page in memory. FIFO is based on the assumption that programs tend to follow
instructions in sequence so that the page which has been in memory longest is least
likelv 10 be re-used. Another argument for FIFO is that it is easier to maintain a

cvelic counter than to generate a random number.

(4) LIFO (Last-In-First-Out): When a page frame is needed, replace the youngest page in
memory. LIFO, the opposite to FIFO, has little logical justification. However, LIFO
may occasionally out-perform some other algorithms. For example, LIFO is better

than LRU when the available space is not enough to hold all the pages that are being

3 1ew [Lew76] later extended their work by formulating page replacement as an op-
timal control problem, which can be solved by dynamic programming.
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repeatedly scanned.

The loop-model algorithms look for cycles of references in programs. These algo-

rithms assume that a program’s behavior is dominated by iterations (e.g. DO loops in FOR-

TRAN or FOR loops in PASCAL). Some examples are:

ey

ALD (ATLAS Loop Detection) [Kilb62]: The ALD algorithm keeps statistics on every
page’s presence in and absence from main memory. Based on these statistics, a page
is removed if it is projected to be no longer active in the current loop.

MRU (Most-Recently-Used): Replace the Most-Recently-Used page when a page
frame is needed. This method yields the minimum number of page faults for cyclic
references because the MRU page in a loop is the one that will not be re-used for the
longest period of time.

MFU (Most-Frequently-Used): Replace the Most-Frequently-Used page when a page
frame is needed. This method is similar to MRU, except that a usage count is used as

the basis for predicting the future access time of a page.

The locality-model algorithms are designed to capture "locality of reference” in pro-

grams. These algorithms are more popular than other algorithms due to the frequently

observed locality in real programs. However, they are also more expensive since statistics

for tracking the locality need to be maintained. Some well-known examples are:

(1)

LRU (Least-Recently-Used) [Bela66]: When a page frame is required, remove the
page that has not been referenced for the longest period of time. Denning, Spirn and
Savage [Denn72b] have shown that under the simple LRU model, the LRU algorithm

is optimal when the reference probabilities associated with stack distances are non-

increasing.
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LFU (Least-Frequently-Used) [Matt70]. When a page frame is required, remove the
page that is least frequently used. This method is similar to LRU, except that a usage

count is used as the basis for deciding the priority of a page.

CLOCK [Bela66]: This method requires a reference bit for each page frame in main
memory. When a page frame is needed, a pointer resumes a cyclic scan through the
page frames, resetting the reference bit of used frames and choosing the first unused
frame for replacement. CLOCK is an approximation to LRU with a simpler imple-
mentation. An early version was presented by Belady [{Belab6]. Later it was adopted
in MULTICS under the name “First-In-Not-Used-First-Out” (FINUFO) [Corb68]. A
detailed analysis of the CLOCK algorithm and some variations of it were presented by
Easton and Franaszek [East79].

WS (Working Set) [Denn68a]: The WS algorithm is based on the concept of "working
set”. This algorithm assigns a resident set to a process that is identical to its observed
(or estimated) working set. Under the time-window WS algorithm, pages that have
been referenced in the past T time units (in the process’s virtual time) are retained in
memory?. The WS algorithm tends to over-allocate memory during phase transitions.
This problem is alleviated in a modified version of WS, the Damped Working Set
(DWS) algorithm proposed by Smith [Smit76a], which trys to "clip off” the overshoot

of working sets during transitions.

PFF (Page Fault Frequency) [Chu72): The PFF algorithm proposed by Chu and

Opderbeck is an approximation to WS which re-computes a process’s working set only

4 The original time-window WS§ algorithm [Denn68a] is actually a special case of the

generalized WS policy (GWS) [Denn78b], which keeps as the resident set those pages whose
retention costs do not exceed their retrieval costs. However, due to its wide use in the litera-
ture, WS will be used to refer to the time-window WS unless otherwise stated.
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at page fault time in order to reduce the run-time overhead. Under the PFF algo-
rithm, a process is given an additional page frame if the interval between successive

page faults is smaller than a certain threshold. Otherwise, pages that have not been

referenced within the threshold interval are removed at the page fault time>.

(6) WSCLOCK [Carr81]: The WSCLOCK algorithm proposed by Carr and Hennessy is a
compromise between the WS and CLOCK algorithms. Its purpose is to gain the per-
formance advantage of WS and the simplicity of CLOCK. The scanning structure of
WSCLOCK is similar to that of CLOCK. However, the WS principle is applied to the
page frame which is currently being scanned. In other words, the status of the page
frame is checked against the working set information of its owner process. A page is
available for replacement when it is determined that the page is no longer in the work-

ing set of the owner process.

The hybrid algorithms attempt to achieve the advantages of two or more difterent algo-
rithms by combining them into one integrated algorithm. An example is the SIM algorithm
proposed by Thorington and Irwin [Thor72]. SIM is an adaptive algorithm that simultane-
ously simulates several decision rules (e.g. RAND, FIFO, LRU, etc.) at run time. The
decision rule "on duty” is the one which yielded the best performance in the last time frame.
Thus the SIM algorithm can be viewed as a "parallel” hybrid algorithm. In contrast, there
are hybrid algorithms in which the main memory is managed by a two-stage mechanism
[Turn81] [Baba82]. Under such an algorithm, most replacement decisions are made at the
first stage by a replacement policy with a low implementation cost, €.£. FIFO. The poor

performance of the first policy is compensated at the second stage by a better policy with a

5 The parameter 6 used in the actual algorithm is the page fault frequency, which is the
reciprocal of the interval between successive page faults.
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higher implementation cost, e.g. WS. The intent is to achieve the performance of the
second policy while keeping the cost close to that of the first policy. An typical example is
the SFIFO (Segmented FIFQ) algorithm, a combination of FIFO and LRU, proposed by

Turner and Levy [Turn81].

3.1.1.3. Comparative Evaluation of Replacement Algorithms

One of the earliest simulation studies of replacement algorithms was conducted-by
Belady [Belat6]. By simulating programs written for an IBM 7094/94, Belady found that
RAND and FIFO generated about two to three times as many page faults as his MIN algo-
rithm. In the same study, ALD was found to perform slightly better than RAND and FIFO.
Nonetheless, Belady concluded that too much reliance on cumulative information is not
worthwhile. His viewpoint was later supported by experiments done on the ATLAS [Bayl68]
in which ALD generated about 10 percent more page fauits than LRUJ. In a paging study on
an IBM 360/50, Coffman and Varian [Coff68] found that LRU yielded a performance within
30 to 40 percent of that of Belady’s MIN. In a later study bv Thorington and Irwin
[Thor72], LRU was reported to perform better than FIFO and LFU, but not as well as the
SIM aigorithm. Although CLOCK was initially designed as an approximation to LRU, evi-
dence indicates that the two algorithms are comparable in performance. This was first sug-
gested by Belady's simulation results [Bela66], and later confirmed by Grit and Kain’s

experiments [Grit75]. Similar results were also obtained by Easton and Franaszek [East79].

By simulating programs running on the UCLA SIGMA-7, Chu and Opderbeck
[Chu72] showed that WS has a betier space-time product than does LRU, and their PFF
algorithm is comparable 1o WS in performance. Using trace data from programs running

under TSS/360, Prieve and Fabry [Prie76] found that WS generated up to 50 percent more
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page faults than VMIN. Similar results on WS and VMIN were also obtained by Smith
[Smit76a]. Using reference strings generated by an Inter-Reference Interval Model (IRIM),

Carr and Hennessy [Carr81] demonstrated that their WSCLOCK algorithm is comparable to

WS in performance.

3.1.2. Memory Partitioning

Consider a multi-prosrammed system with M pages and n active processes, denoted by
prog 3 pag P A
P,.....P,. Associated with each process P; at time t is its resident set Z;(t), containing

z;(t) pages. The allocation of the main memory can be described by a partition vector

Z() = (Zy(V).n . Zy0) )
n
under the constraint ¥ z,(t)= M. In the general case in which each z(t) is a time varying
i=1
function, Z(t) is termed a dynamic partition. In contrast, z(t) is a constant z; under a
fixed partition Z. Denning and Graham [Grah74] [Denn75a] proposed a classification

scheme which further divides memory management policies into two fixed-partition and

three dynamic-partition classes (Figure 3.3).

An equi-partition is a fixed partition in which every process is given the same amount
of memory, that is z;=M/n for all i [Matt68]. Otherwise, a fixed partition is an imbal-
anced partition in which the main memory is not equally divided among active processes.
Imbalanced partitioning is a viable solution to memory allocation if the memory demands of
different programs are static and predictable. Even when all processes have identical

memory requirements, an imbalanced partition may still be more efficient than an equi-
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Equi-partition

Fixed Partition { .
Imbalanced Partition

V1: BIFO
Dynamic Partition | V2: Global LRU, AC/RT

W: WS, PFF

Figure 3.3 Classification of Memory Partitioning

partition. This can be attributed to the convexity of lifetime functions®. Operating within a
convex region, a multi-programmed system can increase the average interval between page
faults, and hence the efficiency, by relocating more memory to one process, since the margi-

nal value of a page frame to that process is higher. This argument has repeatedly been sug-
gested by several studies [Cham73] [Denn75a] [Ghan75b].

One main advantage of fixed partitioning is its low implementation cost. However, this
advantage can be offset-by the loss of storage utilization for programs with large variations in
locality size. This effect has been analyzed by several studies. Coffman and Ryan [Coff72]
showed how variable partitioning can improve storage efficiency when the working set sizes
of programs are modeled by a Gaussian process. Using the simple LRU model for program
behavior, Oden and Shedler [Oden72] found that an increase is obtainable in the average

execution interval between page faults under variable partitioning. Similar results were

% Belady and Kuehner [Bela69] found that the lifetime functions of many programs are
nonlinear, and can be approximated by L(s)=ask, where a varies with the individual pro-
gram and k has a value in the vicinity of 2.

7 Ghanem actually showed a stronger result that gives the condition under which imbal-
anced partitioning is more efficient than equi-partitioning and vice versa.
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obtained by Denning and Spirn [Denn73] in a study on dynamic storage partitioning. Thus,

the general conclusion is that dynamic partitioning is more efficient than fixed partitioning.

Based on their correlation with locality changes of programs, dynamic-partition poli-

cies can be grouped into three sub-classes:

(H

(2)

V1: The memory partition Z(t) is a time varying function, but with no explicit correla-
tion to the reference patterns of the active processes. An example of a class V1 policy
is a "biasing” scheme proposed by Belady and Kuehner [Bela69]. Their BIFO
(Biased FIFO) algorithm, a modified version of FIFO, selects one of the competing
processes to be the favored process, whose pages are exempted from replacement con-
sideration for a period of p page faults. The privilege is then passed on to the next
process selected, and so on. Despite the somewhat arbitrary nature of the algorithm, a

gain of 10 to 15 percent in throughput over the simple FIFO was observed.

V2: Variation in Z(t) is directly correlated with the aggregate behavior of the active
processes, but the individual locality of each process is not explicitly identified. The
global LRU algorithm, in which all the pages in main memory are ordered in a global
LRU stack for replacement purpose, is a typical example of a class V2 policy.
Another example is the AC/RT algorithm proposed by Belady and Tsao [Bela73]. In
this algorithm, two control parameters are maintained for each process: a memory
demand indicator RT (Round-Trip frequency) defined as the relative frequency that the
page demanded is the one which has been most recently replaced; and a memory utili-
zation indicator AC (Activity Count) defined as the average fraction of resident pages
being referenced between page faults. The AC/RT algorithm steals a page from the
demanding process itself if its RT value (memory requirement) is low. Otherwise,

AC/RT increases the memory of the process by selecting a page from another program
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with the lowest AC value (memory utilization).

(3) W: The resident sets Z(t) are assigned according to the (estimated) working set of each
active process. The WS algorithm, which assigns a resident set to a process that is
identical to its working set, is perhaps the most well-known example of a class W pol-

icv. The PFF algorithm is another well-known example®. Going one step further,

9

Ghanem [Ghan75a] showed how optimal partitioning” can be achieved by selecting an

optimal set of window sizes 7} such that

wi(Ty)

‘.Vi(Ti)

for all i, where Wi(fi) and V'\"i(’Ti) are the first and second derivatives of the working set

size function of process i, respectively.

In addition to presenting a classification of memory partitioning policies, Denning and
Graham [Denn75a] also gave a relative ranking among the five classes of policies, from
worse to best: equi-partition, fixed imbalanced partition, V1, V2 and W. As mentioned ear-
lier, imbalanced partitions are more efficient than equi-partitions due to the convex property
of lifetime functions. Similarly, the convexity argument also explains why V1 partitions are
generally better than fixed partitions, although they do not correlate memory allocation with
program behavior. V2 policies improve storage efficiency by relocating memory according
to the dvnamic requirements of processes. This claim is substantiated by experiments con-
ducted by Oliver [Oliv74] in which global LRU generated less page faulis than local LRU
with equi-partition. Class W policies are more efficient than V2 policies partly because they

attend to the individual memory needs of each process, and partly due to their inherent load

8 Chamberlin et al. [Cham73] suggested a similar method in which page frames are al-
located to processes in such a way that all their page fault rates are kept equal.
? His goal was to minimize the total number of page faults of the system.
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control. Empirical studies [Rodr73] [Opde74] [Smit76a] have provided evidence that W pol-

icies are superior to V2 policies.

3.1.3. Load Control

To attain its performance, a computer system needs to regulate not only memory allo-
cation but also the multiprogramming level (MPL) of the system. Without such regulation,
thrashing [Denn70] can occur and may severely degrade the performance of the system.
Rodriguez-Rosell and Dupuy [Rodr72] reported the results of experiments which revealed
how the performance of CP-67, an operating system running on the IBM 360/67, degraded
when the number of logged-in users exceeded a certain value. Using a queuing model,
Arora and Kachhal [Aror73] illustrated through a stochastic analysis how CPU idle time
increases as the number of concurrent jobs grows beyond certain limit. Thus, the basic
need for a load control is to restrict the number of active jobs in a system within some limit

n in order to prevent thrashing. Empirical data [Weiz69] [Rodr72] [Rodr73], supported

man
by later queuing network modeling [Bran74] [Bade75] [Denn75a], also indicates the
existence of an optimal MPL n, at which the performance of the system is at its peak. A
more ambitious load controller attempts to locate such an optimal MPL and adjusts its load
accordingly. Due to the dynamic nature of user load, an adaptive mechanism is often
required to re-estimate the optimal MPL n (1) from time to time. At any rate, the function
of a load controller is to regulate the level of multi-programming according to certain con-

straint in order to ensure the performance of the system. Based on the nature of their con-

trol criterion, load controllers can be categorized into three classes: static, feedback and

predictive (Figure 3.4).
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Static: OS/VS1, LT/RT
Feedback: 50% Rule, L=S, Discrete Optimal Control

Predictive: Knee Criterion
Figure 3.4 Classification of Load Control

The simplest load control is to set a fixed limit n,,. on the number of concurrent jobs
that are allowed to compete for system resources. We call this a static load control. It has
been used on several IBM 360/370 operating systems [Madn74], including OS/360-MFT,
OS/VSI, and so on. Given a system configuration, the value of n,,,, can be determined by
some optimization technique, such as integer programming [Matt68], or simply by experi-
ence. Usually, the value of n,,, is conservatively chosen to be smaller than any possible
MPL that might lead to thrashing. Therefore, a system’s memory tends to be under-utilized
under a static load control. Another static rule is called the LT/RT (Loading Task/Running
Task) control [Carr81], in which the number of loading tasks'? (processes) is limited
according to the number of paging devices. It has been observed that many programs have a
distinct initial loading phase in which many new pages are referenced [Jose70]. Therefore it
is sensible to limit the number of loading processes to prevent them from saturating the pag-
ing devices. LT/RT can be used with other load control mechanisms as an auxiliary con-

straint to deal specifically with the loading phase of processes.

The second approach 10 load control is based on the feedback control technique. It

requires a feedback parameter which, in our case, is an indicator that reflects the current

10°A process is said to be in its loading phase until it has executed for 7 units of CPU
time, where 7 is a parameter of the RT/LT scheme.
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loading of the system. Device utilization and page fault rate have long been recognized as
effective load indicators for virtual memory systems [Braw68] [Cham73]. An example of a
feedback load control that is based on device utilization is the "50% rule” [Bade75]
[Lero76]. This criterion constraints the load so that the paging devices are busy about half
the time. A criterion that uses lifetime function (the reciprocal of page fault rate) as the
feedback parameter is the "L=S§ criterion” [Denn76a]'’. Under the "L=S criterion”, the
load is regulated so that the average lifetime of the system is at least as large as the swap
(access) time of the paging device. A detailed analysis and a comparison of the above two
criteria have been presented in [Denn76b]. More recently, Blake [Blak82] applied the
discrete optimal control technique to load control in a virtual memory system. Using a new
feedback parameter, called the thrashing level'", Blake showed how to formulate load con-
trol as a discrete control problem, which can then be solved by a dynamic programming
technique. The advantage of this method is that its run-time overhead is low since the deci-

sion table for the control mechanism can be calculated in advance.

A predictive load controller activates a new process only if the activation will not over-
load the system. It makes such a prediction by analyzing the information supplied by the
memory policy or other reliable sources. An example of a predictive load control is the

"knee criterion” [Denn75a], which requires that each process be operating under the
knee!? of its lifetime curve. In other words, a process is given a resident set whose size is

" An early version was proposed by Chamberlin et al. [Cham73] which suggested that
the average system page fault rate U be kept between limits U, ;, and U,....

2 The thrashing level at time t is defined as: THL(t)= VMOQ(t)/ MPL(t) where VMOQ(1)
is the length of the virtual memory (paging device) queue and MPL(t) is the degree of
multi-programming at time .

13 The knee of a lifetime curve is defined as the highest point of tangency between a
line from the origin and the curve [Denn75b]. The space-time (time integration of the
resident set) of a process is minimized when it operates under the knee [Denn78a].
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the same as the "knee”. The resident set sizes thus determined form a basis for a predictive
load control: the activation of a process is delayed if its resident set size exceeds the number
of available page frames. What this amounts to is a WS algorithm with multiple window
sizes, one for each process. The implied complexity makes this approach impractical. How-
ever, it has been found in a number of experiments that one global window size suffices to
come within 10 percent of minimum in the space-time of all the programs [Denn78a].
Thus, the one-parameter (one-window-size) WS algorithm can approximate a multi-
parameter WS algorithm with only a minor loss of efficiency. In this respect, the one-
parameter WS algorithm is a practical implementation of the "knee criterion”. A predictive
load control is inherently more stable than a feedback load control because the former can

prevent overload, whereas the latter can only response to overload after the condition has

been detected.

3.2. Buffer Management for Database Systems

Many early studies of database buffer management focused on the double paging prob-
lem'?, which arises from managing a buffer pool on top of a virtual memory system
[Fern78) [Lang77] [Sher76a] [Sher76b] [Tuel76]. Denning made a comment on these stu-

dies [Denn80]:

The double paging problem is the consequence of a flaw in the architecture of the
computer; it is not an interesting subject of memory management research.

Although we do not totally agree with such a strong statement, managing a buffer pool on

top of a virtual memory system does not appear particularly suitable either.

'4 The double paging anomaly [Gold74] was initially discovered in paged operating sys-
tems (e.g. IBM’s OS/VS2) which were running under a paged virtual machine system (e.g.

VM/370).
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Another focus of research in this area is to find buffer management policies that
"understand” database systems and know how to exploit the predictability of database refer-
ence behavior. As Stonebraker pointed out [Ston8l1], conventional algorithms, although
effective for virtual memory systems, are not necessarily suitable for database systems.
Several buffer management algorithms for database systems have been proposed in the past.

We shall examine some of these algorithms in this section.

3.2.1. Domain Separation Algorithm

Consider a query that randomly accesses records through a B -tree index. The root
page of the B -tree is obviously more important than a data page since it is accessed with
every record retrieval. Based on this observation, Reiter [Reit76] proposed a buffer manage-
ment algorithm, called the domain separation (DS) algorithm, in which pages are classi-
fied into types. Each type of pages is separately managed in an associated domain of buffers.
When a page of a certain type is needed, a buffer is allocated from the corresponding
domain. If none are available for some reason, e.g. all the buffers in that domain have 1/0
in progress, a buffer is borrowed from another domain. Buffers inside each domain are
managed using the LRU discipline. Reiter suggested a simple page type assignment scheme:
assign one domain to each non-leaf level of the B-tree structure, and one to the leaf level
together with the data. Empirical data'® showed that this DS algorithm out-performed the

LRU algorithm by 8 to 10 percent in throughput.

Using the terminology for virtual memory systems, the DS algorithm is a multi-class

LRU algorithm with class V2 memory partitioning and no provision for load control. This

15 In Reiter’s simulation experiments, a shared buffer pool and a workload consisting
of 8 concurrent users were assumed.
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characterization of the DS algorithm reveals the weaknesses of the algorithm. First of all,
the concept of domain is static, and the algorithm fails to reflect the dynamics of page refer-
ences because the importance of a page may vary in different queries. It is obviously desir-
able to keep a data page resident when it is being repeatedly accessed in a nested loops join.
However, this is not the case when the same page is being accessed in a sequential scan.
Second, the DS algorithm ignores the relative importance between different types of pages.
An index page will be over-written by another incoming index page under the DS algorithm,
although the index page is potentially more important than a data page in another domain.
Memory partitioning is another potential problem. Partitioning buffers according to
domains, rather than queries, can not prevent interference among competing queries. For
example, pages that are important to a query may be forced out when another query is doing
a fast sequential scan that touches a lot of pages which will not be re-used. Lastly, a separate
mechanism needs to be in to prevent thrashing since the DS algorithm has no built-in facili-

ties for load control.

Several extensions to the DS algorithm have been proposed. The group LRU (GLRU)
algorithm, proposed by Hawthorn [Nybe84], is similar to DS, except that there is a fixed
priority ranking among different groups (domains). A search for a free buffer always starts
from the group with the lowest priority. Another alternative, presented by Effeisberg and
Haerder [Effe84], is to dynamically vary the size of each domain using a WS-like partition-
ing scheme. Under this scheme, pages in domain i which have been referenced in the last 7;
references are exempt from replacement consideration. The ”working set” of each domain
may grow or shrink depending on the reference behavior of the user queries. Although
empirical data indicated that dvnamic domain partitioning can reduce the number of page

faults (of the svstem) over static domain partitioning, Effelsberg and Haerder concluded that
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there is no convincing evidence that page-type-oriented schemes'® are distinctly superior to

global algorithms such as LRU and CLOCK.

3.2.2. ““New” Algorithm

In a study to find a better buffer management algorithm for INGRES [Ston76], Kaplan
[Kapl80] made two observations about the reference patterns of queries. First, the priority
to be given to a page is not a property of the page itself, but of the relation to which it
belongs. Second, each relation needs a “working set”. Based on these observations, Kaplan
designed an algorithm, called the "new” algorithm, in which the buffer pool is subdivided
and allocated on a per-relation basis. In this "new” algorithm, each active relation is
assigned a resident set which is initially empty. The resident sets of all active relations are
linked in a priority list with a global free list at the top. When a page fault occurs, a search
is initiated from the top of the priority list until a suitable buffer is found. The faulting page
is then brought into the buffer and added to the resident set of the relation. The MRU dis-
cipline is employed within each relation. However, each relation is entitled to one active
buffer which is exempt from replacement consideration. The ordering of relations is deter-
mined, and may be adjusted subsequently, by a set of heuristics. A relation is placed near
the top if its pages are unlikely to be re-used. Otherwise, the relation is protected by being
placed near the bottom. Results from Kaplan’s simulation experiments suggested that the
"new"” algorithm performed much better than the UNIX!7 buffer manager normally used by
INGRES. However, in a trial implementation [Ston82], the "new” algorithm failed to

improve the performance of IFS-INGRES, an experimental version of INGRES. One factor

16 The DS algorithm is called a page-type-oriented buffer allocation scheme in
[Effe84].
7 UNIX is a Trademark of Bell Laboratories.
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that accounted f(‘)l’ the failure of the "new” algorithm in the IFS-INGRES experiment was
that the "new” algorithm was modified and applied to the management of the buffers in user
processes rather than the system buffers; hence the potential data sharing between successive
queries was lost. Furthermore, the standard IFS-INGRES did not use the UNIX systems
buffers. A modified LRU algorithm, similar to the DS algorithm, was used by the standard
IFS-INGRES to manage the buffer space of the IFS-INGRES process.

The "new” algorithm is essentially a multi-class MRU replacement algorithm for a
single-user environment'®. The algorithm presented a new approach to buffer management,
an approach that tracks the locality of a query through relations. However, the algorithm
itself has several weak points. The use of MRU is justifiable only in limited cases. The
rules suggested by Kaplan for arranging the order of relations on the priority list were based
on simple intuitions: further justification and extensions are needed'®. Furthermore, under
high memory contention, searching through a priority list for a free buffer can be expensive.
Extending the "new” algorithm to a multi-user environment presents additional problems.
Although Kaplan claimed that such an extension is straightforward. it is not at all clear how

to set up a priority among relations from different queries that are running concurrently.

3.2.3. Hot Set Algorithm
The hot set algorithm [Sacc82] is based on the hot set model described in the previous
chapter. It was proposed as an alternative to the global LRU (actually CLOCK) algorithm

currently used in System R. In the hot set algorithm, each query is provided with a separate

'8 This was appropriate for INGRES since INGRES was structured as user processes
running on top of the UNIX operating system, which did not support sharing of data space
among processes.

19 Even Kaplan admitted that "the best wav to carry out this reordering of the relation
descriptors has not yet crystallized”.
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list of buffers that are managed using an LRU discipline. The number of buffers each query
is entitled to is predicted according to the hot set model. That is, a query is given a local
buffer pool of size equal to its hot set size. A new query is allowed to enter the system if its
hot set size does not exceed the available buffer space. Thus, the hot set algorithm is a local

LRU algorithm with imbalanced memory partition and predictive load control.

As mentioned in the previous chapter, the use of LRU in the hot set model lacks a log-
ical justification. There exist cases where LRU is the worse possible discipline under tight
memory constraints. The hot set algorithm avoids this problem by always allocating enough
memory to ensure that references to different data structures within a query will not interfere
with one another. Thus it tends to over-allocate memory, which implies that memory may
be under-utilized. Another related problem is that there are reference patterns in which
LRU does perform well and yet is unnecessary since another discipline with a lower over-
head can perform equally well. Lastly, the hot set algorithm can not respond well to phase

transitions of queries since the algorithm allocates the maximum amount of buffers ever

needed by a query-C.

3.3. QLS - A Buffer Management Algorithm Based on the QLSM

In the previous chapter, the regularity and predictability of query reference behavior
have been illustrated through the query locality set model. It is advantageous to integrate
such information into a database buffer manager. To explore the potential of this approach,

we have designed a new buffer management algorithm, which we call the Query Locality Set

(QLS) algorithm,

20 This problem can be alleviated by sub-dividing a query into a number of sub-queries
and adjusting memory allocation at the beginning of each sub-query.
1 g b £ & query
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In the QLS algorithm, buffers are allocated and managed on a per file instance®! basis
(Figure 3.5). The set of buffered pages associated with a file instance is referred to as its
locality set. Each locality set is separately managed by a discipline selected according to the
intended usage of the file instance. Active instances of the same file are given different
buffer pools which are independently managed. However, as we will explain later, all these
file instances share the same copy of a buffered page whenever possible through a global

table mechanism. If a buffer contains a page that does not belong to any locality set, the

Free List *
Process 1
File 1 === FIFO Queue [
Process 1 Global
File 2 ~==%| MRUStack [~ Byffer
Pool

ProcessN  -——3| FIFO Queue
File m

Figure 3.5 QLS Buffer Organization
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buffer is placed on a giobal free list. For simplicity of implementation, we restrict that a
page in the buffer can belong to at most one locality set. A file instance is considered the
owner of all the pages in its locality set. To allow for data sharing among concurrent
queries, all the buffers in memory are also accessible through a global buffer table. To sim-

plify the description of the algorithm, we shall use the following notation:
N, the total number of buffers (page frames) in the system;
l. the maximum number of buffers that can be allocated to file instance j of query i;
rij. the number of buffers allocated to file instance j of query i.
Note that I is the desired size for a locality set, while r is the actual size of the locality set.
At start up time, QLS initializes the global table and links all the buffers in the system
together on the global free list. When a file is opened, its associated locality set size and
replacement policy are given to the buffer manager. An empty locality set is then initialized

for the file instance. The two control variables r and 1 associated with the file instance are
initialized to 0 and the given locality set size, respectively.
When a page is requested by a query, the global table is searched first, and then the
associated locality set is adjusted. There are three possible cases:
(1) The page is found in both the global 1able and the locality set:
In this case, only the usage statistics need to be updated if necessary as determined by
the local replacement policy.
(2) The page is found in the global table but not in the locality set:

If the page already has an owner, the page is simply given to the requesting query and

no further actions are required. Otherwise, the page is added to the locality set of the
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file instance, and r is incremented by one. Now if r > 1, a page is chosen and
released according to the local replacement policy, and r is set back to 1. Usage statis-

tics are updated as required by the local replacement policy.

(3) The page is not in memory:
A disk read is scheduled to bring the page from disk into a buffer allocated from the

global free list. After the page is brought into memory, proceed as in case 2.

Note that the local replacement policies associated with file instances do not cause actual
swapping of pages. Their real purpose is to maintain the image of a query’s "working set”.
Disk reads and writes are issued by the mechanism that maintains the global table and the

global free list.

The load controller is activated when a file is opened or closed. Right after a file is

opened, the load controller checks to see if $Sk; < N for all active queries i and their file
i

instances j. (Note that the inequality guarantees that a free buffer is always available when a
page fault occurs.) If the condition is met, the query is allowed to proceed; otherwise, it is
suspended and placed at the front of the waiting queue. Buffers associated with a suspended
query are released to avoid possible deadlock situations. When a file is closed, buffers asso-
ciated with its locality set are released. The load controller then activates the first query on

the waiting queue if this will not cause the above condition to be violated.

QLS can be viewed as a combination of the WS algorithm and Kaplan’s "new"” algo-
rithm in the sense that the locality set associated with each file instance is similar to the
working set associated with each process. HQwever, the size of a locality set is determined
in advance, and need not be re-caiculated és the execution of the query progresses. This

predictive nature of QLS is close to that of the hot set algorithm. But, unlike the hot set
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algorithm which allocates buffers statically, QLS uses a dynamic partitioning scheme, in
which the total number of buffers assigned to a query may vary as files are open or closed.
To summarize, QLS may be considered a local hybrid algorithm with class W memory parti-
tioning and predictive load control. What remains to be described is the selection of local
replacement policies and the sizes for the locality sets. Using the query locality set model as

a framework, we shall demonstrate how local policies for locality sets can be determined.

Sequential References:

As mentioned in the previous chapter, there are three types of sequential reference pat-

terns: straight sequential, clustered sequential, and looping sequential.

(1) Straight Sequential Reference:
For a straight sequential reference, in which each page is brought into memory only
once, the locality set size is obviously 1. When a requested page is not found in the
buffer, the page is fetched from disk and overwrites whatever is in the buffer. For

convenience, we shall call this simple replacement policy the SB (Single Buffer) algo-

rithm.

(2) Clustered Sequential Reference:
During the evaluation of a merge join, a clustered sequential reference may be
observed on the inner relation. Clearly, it is desirable to keep the members of a clus-
ter (i.e. records with the same key) in memory. Thus, a proper size for the locality
set is the size of the largest cluster divided by the blocking factor (i.e. the number of
records per page). To account for the worst case boundary conditions, one additional
buffer may be needed. Provided that enough space is allocated, FIFO and LRU both

yield the minimum number of page faults. If run-time overhead is taken into con-
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sideration, FIFQ is a better policy than LRU for a clustered sequential reference.

(3) Looping Sequential Reference:
When a file is being repeatedly scanned in a looping sequential reference, MRU is the
best replacement algorithm?! as discussed previously. It is beneficial to give the file as
many buffers as possible, up to the point where the entire file can fit in memory.

Hence the locality set size corresponds to the total number of pages in the file.

Random References:

There are two types of random reference patterns identified by the query locality set

model: independent random references, and clustered random references.

(1) Independent Random Reference:
When the records of a file are being randomly accessed, say through a hash table, the
choice of a replacement algorithm is immaterial since all the algorithms perform
equally well [King71] [Gele73]. What is left to be determined is a proper size for the
locality set. Yao's formula [Yao77] provides an estimate of the total number of pages
referenced b in a series of k random record accesses. This sets up an (estimated)
upper bound on the locality set size. In the cases where page references are sparse,
there is no need to keep a page in memory after its initial reference. Thus, there are

two reasonable sizes for the locality set, 1 and b, depending on the likelihood that each

page is re-referenced. We define r = as the residual value of the pages in a

21 It is perhaps worth noting that the performance of LIFO is close to that of MRU in
this particular case. The difference in missing page rate M is

“r+l p- i
M(LIFO)-M(MRU) = 272 _pP7F T

P p-1  pip—D
where p is the number of pages in the file and r is the number of buffers.
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file. The locality set size is 1 if r = B, and b otherwise. Thus, B is the threshold
above which pages are considered to have a high probability of being re-referenced.
Due to the recursive nature of Yao’s formula, its computational cost may be too expen-
sive. If this is a concern, there are formulas that give reasonable approximations to

Yao’s formula with less computational overhead [Whan83].

(2) Clustered Random Reference:
The reference pattern of a clustered random reference is similar to that of a clustered
sequential reference. The only difference is, in a clustered random reference, records

in a "cluster” are not physically adjacent, but randomly distributed over the file. The

locality set size in this case can be approximated by the size of the largest cluster-.

Hierarchical References:

The remaining reference patterns are hierarchical references to indices. The ﬁrsl&
three types of hierarchical references are straightforward and will be discussed together.
However, the case of looping hierarchical references is more complex and will be treated
separately.

(1) Straight Hierarchical, H/SS, and H/CS References:

In a straight hierarchical reference or an H/SS reference, an index page is traversed

only once. Thus, the SB algorithm for the sequential reference is also adequate in

these two cases. Similarly, the discussion of the clustered sequential reference is
applicable to H/CS reference, except that each member in a cluster is now a key-

pointer pair rather than a data record.

21 . . . ,
22 A more accurate estimate can be derived by applving Yao’s formula to calculate the
number of distinct pages referenced in a cluster.
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(2) Looping Hierarchical Reference:
In a looping hierarchical reference, an index is repeatedly traversed from the root
the leaf level. In such a hierarchical reference, pages near the root are more likely to
be accessed than those at the bottom [Reit76]. Consider a tree of height h and with a
fan-out factor . Without loss of generality, let us assume that the tree is complete,
i.e. each non-leaf node has f sons. During each traversal from the root at level O to a
leaf at level h, one out of the i pages at level i is referenced. Therefore pages at an
upper level (which are closer to the root) are more important than those at a lower
level. Consequently, an ideal replacement algorithm should keep the (accessed portion
of the) upper levels of a tree resident and multiplex the rest of the pages using a
scratch buffer. As to how many levels to keep in memory, we can again resort to the
concept of "residual value” which we have defined for the random reference pattern.

Let b; be the number of pages accessed at level i as estimated by Yao’s formula. The
J

size of the locality set can be approximated by (1+ S b))+ 1, where j is the largest i
i=1

k—b,
such that —— > B. In many cases, the root is perhaps the only page worth keeping
i
in memory, since the fan-out of an index page is usually high. 1If this is true, the
LIFO algorithm with few buffers may deliver a reasonable level of performance as the

root is alway kept in memory.

In this section, we have presented a new buffer management algorithm, the QLS algo-
rithm, for database systems. Using the file instance as the basic unit for buffer allocation
and management, the QLS algorithm implements a memory policy that is tailored to the
individual needs of the queries.. However, despite its theoretical support from the query

locality model, the efficiency of QLS remains to be evaluated. In the next chapter, we shall
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present a performance evaluation of the QLS algorithm and compare its performance with

that of other algorithms.
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CHAPTER 4

EVALUATION OF BUFFER MANAGEMENT ALGORITHMS

Evaluating a computer system through direct measurement is both accurate and credit-
able [Saue81). Benchmarking, for example, has recently been applied to the evaluation of
several database svstems [Bitt83] [Bora84]. The problem with direct measurement is that it
is usually a computationally expensive procedure, and it is only possible when the system to
be evaluated is already operational. Analytic modeling is a cost-effective alternative for
estimating the performance of computer systems. However, accuracy is often traded for sim-
plicity of the equations in order to keep the solution tractable. Since our objective is to com-
i)are the performance of different buffer management algorithms in a multi-user environ-
ment, neither of these two approaches seems appropriate. Thus, simulation was chosen for
evaluating the performance of a number of selected buffer management algorithms in our
study.

In this chapter, we shall discuss how our simulation experiments were conducted as
well as the results of the experiments. This chapter is organized into five sections. The
simulation model used in the experiments and the six selected buffer management algorithms
are described in sections 1 and 2, respectively. Section 3 evaluates the performance of the
algorithms using the empirical data obtained from the simulation experiments. Complemen-
tary to these empirical results is a simple cost analysis of some of the algorithms derived in

section 4. Finally, the results of the evaluation are summarized in the last section of this

chapter.
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4.1. Performance Evaluation Methodology

There are two types of simulations that are widely used [Sher73]: trace-driven simu-
lations which are driven by traces recorded from a real system, and distribution-driven
simulations in which events are generated by a random process with a certain stochastic
structure. A trace-driven model has several advantages, including creditability and fine
workload characterization which enables subtie correlations of events to be preserved. How-
ever, selecting a “representative” workload is difficult in many cases. Furthermore, it is
hard to characterize the interference and correlation between concurrent activities in a
multi-user environment so that the trace data can be properly treated in an altered model
with a different configuration. To avoid these problems, we emploved a hybrid simulation
model which combines features of both trace-driven and distribution-driven models. In this
hybrid model, the behavior of each individual query is described by a trace string, and the
system workload is dynamically synthesized by merging the trace strings of the concurrent
queries.

Another component of our simulation model is a simulator for a database system which
manages three important resources: a CPU, an I/O device, and memory. When a new
query arrives, a load controller (if it exists) decides, depending on the availability of
resources at the time, whether to activate or delay the query. After a query is activated, it
then circulates in a loop between the CPU and the I/O device, competing for resources until
it finishes its execution. After a query terminates, another new query is generated by the
workload model. An active query, however, may be temporarily suspended by the load con-

troller when the condition of overloading is detected.

“The page fault rate has frequently been used to measure the performance of a memory

policy. However, minimizing the number of page faults in a multiprogrammed environment
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Figure 4.1 A Simulation Model for Database Systems

does not guarantee optimal system behavior. Although a time-space product is usually a
better criterion in this case, it does not relate directly to the overall performance of the sys-
tem. Thus, Ihrougliput, measured as the average number of queries completed per second,
has been chosen as the performance metric in our study. In the following subsections, we
shall discuss in detail the three aspects of the simulation model: workload characterization,

the configuration model and performance measurement (Figure 4.1).

4.1.1. Workload Synthesis

The first step in developing a workload was to obtain single-query trace strings by run-
ning queries on the Wisconsin Storage System (WiSS) [Chou83]. While WiSS supports a
number of storage structures and their related scanning operations, WiSS does not directly
support a high-level query interface; hence, the test queries were "hand coded”. The
Wisconsin Database [Bitt83], a synthetic database with a well-defined distribution struc-
ture, was used in the experiments. Several types of events were recorded (with accurate tim-
ing information) during the execution of each query, including page accesses, disk I/Q’s,

and file operations (i.e. the opening and closing of files).

A trace string can be viewed as an array of event records, each of which has a tag field

that identifies the type of the event. There are six important event types: page read, page
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write., disk read, disk write, file open, and file close. Their corresponding record for-

mats are:

- Page read and write

page read / write_| file ID | page 1D l time |

- Disk read and write

disk read / write | file ID | page ID | time J

- File open

file open | file ID | locality set size | replacement policy

- File close

l ﬁile close | file IDJ

Disk reads or writes come in pairs, each of which brackets the time interval of a disk
operation. The times originally recorded were real (elapsed) times of the system. For rea-
sons to be explained later, disk read and write events were removed from the trace strings,
and the times of other events were adjusted accordingly. In essence, the times in a modified
trace string reflect the virtual (or CPU) times of a query.

Since accurate timing (on the order of 100 microseconds) is required to record the
events at such a detailed level, tracing was done on a dedicated VAX'-11/750 [Digi80] under
a very simple operating system kernel designed for the CRYSTAL multi-computer system
[DeWi84b]. To reduce the overhead of obtaining the trace strings, events were recorded in

main memory and written to a WiS$ file after tracing had ended.

I VAX is a Trademark of Digital Equipment Corporation.
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In the methodology proposed by Boral and DeWitt [Bora84] for evaluating the perfor-
mance of database systems in a multi-user environment, three important factors were identi-
fied: the number of concurrent queriesz, the degree of data sharing, and the query mix.
The number of concurrent queries in each of our simulation runs is a fixed constant in the
range of 1 to 32. To study the effects of data sharing, 32 copies of the test database were
replicated. Each copy was stored in a separate portion of the disk. Three levels of data
sharing were defined according to the average number of concurrent queries accessing a

copy of the database:
(1) full sharing: all queries access the same copy of the database.
(2) half sharing: two queries share a copy of the database.
(3) no sharing: every query has its own copy of the database.

The approach to query mix selection used in [Bora84] is based on a dichotomy of the con-
sumption of two system resources, CPU cycles and disk bandwidth. We extended their
query classification scheme by considerating one additional resource, main memory (Table
4.1y}, After some initial testing, six queries were chosen as the base queries for synthesiz-
ing multi-user workioads. The first two are simple selection queries, and the remaining are
two-way join queries with a selection operation on one of the source relations. The CPU
and disk consumptions of the queries were calculated from the single-query trace strings,
and the corresponding memory requirements were estimated by the hot set model (Table

4.2). Table 4.3 contains a summary description of the queries.

* The term multiprogramming level (MPL) was used in [Bora84]. However, since it is
desirable to distinguish the external workload condition from the internal degree of multipro-
gramming, "number of concurrent queries” (NCQj) is used here instead. Using our defini-
tions, MPL = NCQ under a buffer manager with load control.

3 The types of queries with low CPU requirement and high memory requirement were
not included since they are less likely to occur in practice.
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Query CPU Disk Memory
Type Requirement | Requirement Requirement
I Low Low Low
1 Low High Low
I High Low Low
v High High Low
v High Low High
A2 High High High

Table 4.1 Query Classification

Query CPU Usage | Number of Disk | Hot Set Size
Number (seconds) Operations (4K -pages)
1 .53 17 3
11 67 99 3
I 2.95 53 5
v 3.09 120 5
\Y 3.47 55 17
VI 3.50 138 24

Table 4.2 Representative Queries

At simulation time, a multi-user workload is constructed by dynamically merging the
single-query trace strings according to a given probability vector which describes the relative
frequency of each query type. The trace string of an active query is read and processed by
the CPU simulator, one event at a time, when the query is being served by the CPU. Fora
page read or write event, the CPU simulator advances the query’s CPU time according to
the time in the event record, and then it forwards the page request to the buffer manager. If
the requested page is not found in the buffer, the query is blocked while the page is being
fetched from the disk. The exact ordering of the events from the concurrent queries are

determined by the behavior of the simulated system and the times recorded in the frace

strings.
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Query Query Selectivity Access Path Join Access Path
Number | Operations Factor of Selection Method of Join
1 select(A) 1% clustered - -
index
11 select(B) 1% non-clustered - -
index
111 select(A) 2% clustered index clustered
join B index join index on B
v select(A’) 10% sequential index non-clustered
join B scan join index on B
v select(A) 3% clustered nested sequential
join B’ index loops scan over B’
VI select(A) 4% clustered hash hash on result
join A’ index join of select(A)

A,B:10K tuples; A’: 1K tuples; B’:300 tuples; 182 byies per tuple.

Table 4.3 Description of Base Queries

4.1.2. Configuration Model

The general structure of the configuration model is similar to those used in [Opde74]
and [Poti77] (Figure 4.2). Three hardware components are simulated in the model: a CPU,
a disk, and a pool of buffers. A round-robin scheduler is used for allocating CPU cycles 1o
competing queries. The CPU usage of each query is determined from the associated trace
string, in which detailed timing information has been recorded. In this respect, the
simulator’'s CPU has the characteristics of a VAX-11/750 CPU. The simulator’s kernel
schedules disk requests on a first-come-first-serve basis. In addition, an auxiliary disk
queue is maintained for implementing delayed asynchronous writes, which are initiated only

when the disk is about to idle.

The disk times recorded in the trace strings tend to be smaller than what they would be

in a "real” environment for two reasons: (1) the database used in the tracing experiments
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was relatively small; and (2) disk arm movements are usually less frequent on a single-user
system than in a multi-user environment. Furthermore, requests for disk operations are
affected by the buffer management algorithm used. Therefore, the disk times recorded were
replaced by times from a stochastic disk model in which a random process for disk head
positions is assumed. In the disk simulator, the access time of a disk operation is calculated

from the timing specifications of a Fujitsu Eagle disk drive [Fuji82]. On the average, it
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takes about 27.6 ms to access a 4K page on an Eagle disk.

The buffer pool is under the control of the buffer manager, which uses one of several
buffer management algorithms. However, the operating system can fix a buffer in memory
to prevent replacement when an 1/0 operation is in progress. The size of the buffer pool for

each simulation run is determined by the formula

T Pt
i
8 .
R UL
i
where p; is the issuing probability of query type i, t; and h; are the CPU requirement and
the hot set size of query type i, respectively. The intent was to saturate the memory at a load

with eight concurrent queries so that the effect of overloading on performance can be

observed under different buffer management algorithms.

To speed up the simulation runs, the simulator was coded in the C language [Kern78§],
and it uses the hardware queue instructions of the VAX [Digi81]. Maintaining several
buffer management algorithms, each with its own version of the operating system, would be
a tedious task. Therefore, the operating system in the simulator was designed to have a
table-driven interface to the buffer manager so that it can be used for all of the buffer

management algorithms.

4.1.3. Performance Measurements

As mentioned earlier, throughput is used as the performance metric for evaluating the
performance of the buffer management algorithms. Due to the stochastic nature of the
workload model, each simulation experiment has to run long enough to provide meaningful

measurements. In addition, statistical analysis of the measurements is required to establish



65

the validity of the results. After some trial runs, our goal was set to limit each confidence

interval [Bask73] to within = 5% of the mean throughput at the 90% confidence level.

There are three alternatives for estimating confidence intervals: batch means, indepen-
dent replications, and the regenerative method [Sarg76]. Although batch means is the least
rigorous method of the three, it was chosen as it can easily be programmed into the simula-
tor. The number of batches in each simulation run was set to 20. Analysis of the
throughput measurements indicates that many of the confidence intervals fell within = 1% of
the mean throughput. For those experiments in which thrashing occurred, the length of a

batch was extended to ensure that all confidence intervals were within 5% of the mean.

4.2. Buffer Management Algorithms

Six buffer management algorithms, divided into two groups, were included in the
experiments. The first group consisted of three simple algorithms: RAND, FIFO, and
CLOCK%. They were chosen because they are typical replacement algorithms and are easy
to implement. It is interesting to compare their performance with that of the more sophisti-
cated algorithms to see if the added complexity of these algorithms is warranted. Beside
OLS, WS (the working set algorithm), and HOT (the hot set algorithm) were included in the
second group. WS is one of the most efficient memory policies for virtual memory systems
[Denn78a]. so it is interesting to know how well it performs when applied to a database sys-
tem. HOT was chosen to represent the class of algorithms that have previously been pro-
posed for database systems, since it is more complete, both technically and theoretically,

than other algorithms that we have examined. Also, we are unaware of previous performance

4 L RU was not included since CLOCK provides similar performance at a lower imple-
mentation cosl.
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results for HOT, making such results interesting in their own right.

All the algorithms in the first group are global algorithms in the sense that the replace-
ment discipline is applied globally to all the buffers in the system. Common to all three

algorithms is a global table that contains, for each buffer:
(1) the identity of the residing page, and
(2) a flag indicating whether the buffer has an 1/O operation in progress.

Additional data structures or flags may be needed depending on the individual algorithm.
Implementations of RAND and FIFO are typical, and need no further explanation. The
CLOCK algorithm used in the experiments gives preferential treatment to dirty pages, i.e.
pages that have been modified. During the first round of a scan, an unreferenced dirty page
is scheduled for write, whereas an unreferenced clean page is immediately chosen for
replacement. If no suitable buffer is found in the first complete scan, dirty and clean pages
are treated equally during the second scan. None of the three algorithms has a built-in facil-
ity for load control. However, we will investigate later how a joad controller may be incor-

porated and what its effects are on the performance of these algorithms.

The algorithms in the second group are all local policies, in which replacement deci-
sions are made within each local buffer pool. There is a local table associated with each
query or file instance for maintaining its resident set. Buffers which do not belong 1o any
resident set are placed in a global LRU list. To allow for data sharing among concurrent
queries, a global table, similar to the one for the global algorithms, is also maintained by
each of the local algorithms in the second group. When a page is requested, the global table
is searched first, and then the appropriate local table is adjusted if necessary. As an optimi-

zation, an asynchronous write operation is scheduled whenever a dirty page is released back
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to the global free list. All three algorithms in the second group base their load control on
the (estimated) memory demands of the submitted queries. A new query is activated if there
is sufficient free space left in the system. On the other hand, an active query is suspended
when over-commitment of main memory has been detected. Buffers associated with a
suspended process are released to avoid potential deadlocks. We adopted the deactivation
rule implemented in the VMOS operating system [Foge74] in which the faulting process
(i.e. the process that was asking for more memory) is chosen for suspension®. In the fol-
lowing, we shall discuss implementation decisions that are pertinent to each individual algo-

rithm in the second group.

(1) The working set algorithm:
To make WS more competitive, a two-parameter WS algorithm was implemented.
That is, each process is given one of two window sizes depending on which is more
advantageous to it. The two window sizes, 7, = 10ms and 7, = 15ms, were deter-
mined from an analysis of working set functions on the single-query trace strings (see
Appendix A). Instead of computing the working set of a query after each page access,
the algorithm implemented re-calculates the working set only when the query
encounters a page fault or has used up its current time quantum. This implementation
is very close to the "ideal” WS algorithm since releasing pages not in the current

working set is unnecessary while the query has control over the CPU.

(2) The hot set algorithm:

HOT was implemented according to the outline described in [Sacc82]. The hot set

sizes associated with the base queries were hand-calculated according to the hot set

5 We-also implemented the -deactivation rule suggested by Opderbeck and Chu
[Opde74] which deactivates the process with the least accumulated CPU time. However, no
noticeable differences in performance were observed.
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model (see Table 4.2 above). They were then stored in a table which is accessible to
the buffer manager at simulation time.

(3) The QLS algorithm:
The locality set size and the replacement policy for each file instance were manually
determined. They were then passed (by the program that implemented the query) to
the trace string recorder at file open times while the single-query trace strings were
being recorded. At simulation time, the QLS algorithm uses the information recorded
in the trace strings to determine the proper resident set size and replacement discipline

for a file instance at the time the file is opened.

4.3. Simulation Results

In order to make a thorough evaluation of the buffer management algorithms, a
number of parameters were included in the simulation:

(1) the buffer management algorithm,

(2) the number of concurrent queries,

(3) the query mix, and

(4) the degree of data sharing.
In addition, the effects of a feedback load controller on the performance of the three simpler
algorithms were also included in the experiments.

To cover such a wide domain, several thousand simulation runs, which took a total of

3.000 VAX 11/750 CPU hours®, were performed. The CRYSTAL multi-computer system
[DeWig4b], on which we gathered the single-query.trace strings, was used again for the

simulation runs. On the average, five dedicated VAX 11/750°s were simultaneously used
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for the simulations.

For ease of discussion, we shall further organize this section into five sub-sections.
The first sub-section evaluates the performance of the buffer mangement algorithms for the
six query types. The effects of query mix and data sharing are examined in the second and
third sub-sections, respectively. We then describe the implementation of a feedback load
controller and examine its effectiveness in the fourth sub-section. Finally, the results of the

simulation are summarized in the last part of this section.

4.3.1. Performance for Six Query Types

The purpose of the first set of experiments was to compare the performance of the dif-
ferent algorithms for the six query types. In these experiments, it was assumed that there is
no data sharing among concurrent queries. The results are plotted in Figures 4.3 (a)
through (f). The x axis is the number of concurrent queries and the y axis is the throughput
of the system measured in queries per second. There are six curves in each graph, one for

each of the buffer management algorithms.

The presence of thrashing for the three simple algorithms is evident’. A sharp degra-
dation in performance can be observed in most cases. RAND and FIFO vyielded the worst
performance, although RAND is perhaps more stable than FIFO in the sense than its curve
is slightly smoother than that of FIFO. Before severe thrashing occurred, CLOCK was gen-

erally better than both RAND and FIFO.

6 This corresponds to 15,000 simulated hours, as the simulator runs about 5 times fas-
ter than the simulated system. .

7 This is why the data points for the three simple algorithms were gathered only up to
16 concurrent queries. It is very time-consuming to gather throughput measurements with a
+ 5% confidence interval when the simulated system is trapped in a thrashing state.
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WS performed quite well for the first four queries. However, it began to thrash for

queries V and VI. The reason is that the two window sizes chosen for WS captured only

small localities and failed to include the large loops (on the inner relation of the join) in

queries V and VI. Selecting a window size large enough to include the main loop of a join

is rather complicated since it depends on the size of the inner relation, the cost of processing

a tuple, and many other factors.

HOT did not thrash as WS did for queries V and VI. However, its performance was

worse than that of WS and QLS for some queries, such as for query III. There are several

possible reasons for this degradation:

(1)

(2)

€))

The storage allocation in HOT is static; hence buffers may be under-utilized during

certain phases that require less space than what is allocated.

The hot set model does not apply well to the intermediate files that are being generated
during the execution of a query. For example, for a selection query with a low selec-
tivity factor, a page for storing the selected tuples may be forced out by the LRU policy
while a source page which is no longer in use is kept in memory because it has been

more recently accessed.

An implicit assumption of the hot set model is that the interface between the buffer
manager and the higher level software is a block-at-a-time interface. If a tuple-at-a-
time interface is used instead, the reference patterns of queries may not be as regular
as the hot set model expects. In a hash join operation, for example, crossing a page
boundary in the outer relation may cause a page of the inner relation to be flushed out,
although the page of the outer relation is never needed again. In many other similar

situations, HOT is sensitive to small perturbations in the reference string.
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QLS yielded the best performance for most queries. An exception is that WS out-
performed QLS for query IV. Query IV consists of a range selection, in which tuples with a
key value that falls within a pair of bounds are selected, followed by an index join. QLS
assumed that the hierarchical references to the index are randomized over the entire range of
key values. Only two buffers, one for the root and one as a scratch buffer, were allocated
for the index accesses by QLS, since QLS projected that a leaf page had a low probability of
being re-used. (The index tree, not counting the data level, was only two-levels deep.) How-
ever, the actual references to the index were clustered in a narrow strip of the index tree
because the range of the search keys had been narrowed down by the previous selection.
WS was able to keep the accessed portion of the tree resident, whereas QLS miscalculated
and failed to do the same. Note that QLS might have performed better if the results of the

range selection were sorted, since the smaller locality set could then fit in two buffers.

4.3.2. Effects of Query Mix

Although comparing the performance of the algorithms for different query types pro-
vides insight into the efficiency of each individual algorithm, it is more interesting to com-
pare their performance undér a workload consisting of a mixture of query types. Instead of
conjecturing what a "real” workload should look like, three query mixes were defined to

cover a wide range of workload characterization:

Query Type Type Type Type Type Type
Mix 1 11 111 v Vv VI
Ml 16.67% | 16.67% | 16.67% | 16.67% | 16.66% | 16.66%
M2 25.00% | 25.00% | 12.50% | 12.50% | 12.50% | 12.50%
M3 37.50% | 37.50% 6.25% 6.25% 6.25% 6.25%
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Experiments similar to those for the homogeneous workloads were conducted for the
three query mixes. The results, as shown in Figure 4.4, are consistent with those of the
previous experiments. Thrashing is again observed for the simple algorithms, although the
degradation is not as steep as before. The slowdown in performance degradation may be
explained as follows: The three simple algorithms are all global algorithms in which the
buffers allocated to each query are not isolated for page replacement purposes. Some types
of queries may compete more favorably than others under high memory contention. Conse-
quently, queries that managed to get more buffers might still be making reasonable progress
while others had begun to thrash. This argument is consistent with the analysis of memory
contention by Smith [Smit80] which showed that an imbalance of memory allocation can

result under heavy memory contention as a self-stabilizing mechanism to resist thrashing.

WS did not perform well because it failed to capture the main loops of the joins in
queries V and VI. Its performance improved as the frequency of queries V and VI
decreased. The efficiency of HOT was close to that of QLS. When the system was lightly
loaded, QLS was only marginally better than the rest of the algorithms. However, as the
number of concurrent queries increased to 8 or more, HOT and WS were about 7 to 13%
and 25 to 45% worse than QLS, respectively. Since mixed workloads are more likely to be
found in real environments than homogeneous workloads, we discuss from now on only

experiments with mixed queries.

4.3.3. Effects of Data Sharing

To study the effects of data sharing on the performance of the algorithms, two more
sets of experiments, each with a higher degree of data sharing, were conducted. In the

experiments with half data sharing, an average of two queries were simultaneously accessing
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each copy of the database. In the case of full data sharing, all concurrent queries were shar-
ing the same database copy. The results are plotted in Figures 4.5 and 4.6. It can be
observed that, for each of the algorithms, the throughput increases as the degree of data
sharing increases. This reinforces the view that allowing for data sharing among concurrent

queries is important in a multi-programmed database system [Reit76] [Bora84].

The relative performance of the algorithms for half data sharing is similar to that for
no data sharing, but this is not the case for full data sharing. For query mixes M1 and M2,
the efficiencies of the different algorithms were close. Because every query accessed the
same copy of the database, it was easy for any algorithm to keep the important portion of the
database in memory. Not surprisingly, RAND and FIFO performed slightly worse than the
other algorithms due to their inherent deficiency in capturing locality of reference. For
query mix M3, however, the performance of the different algorithms again diverged. This
may be attributed to the fact that small queries dominated the performance for query mix
M3. The "working” portion of the database becomes less distinct as many small queries are
entering and leaving the system. (In contrast, the larger queries, which intensively access a
limited set of pages over a relatively long period of time, played a more important role for

query mixes M1 and M2.) Therefore, algorithms that made an effort to identify the localities

performed better than those that did not.

4.3.4. Effects of Load Control

As was observed in the previous experiments, the lack of load control in the simple
algorithms led to thrashing under high workloads. It is interesting to find out how effective
those algorithms will be when a load controller is incorporated. The "50% rule” [Lero76],

in which the paging device is kept busy about half the time, was chosen for its simplicity of
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implementation and because it is supported by empirical evidence [Denn76b].
A load controller which is based on the "50% rule” usually consists of three major
components:
(1) an estimator that measures the utilization of the paging device,
(2) an optimizer that analyzes the measurements provided by the estimator and
decides what load adjustment is appropriate, and
(3) a control switch that activates or deactivates processes according to the decisions
made by the optimizer.
The measurements provided by the estimator are in the form of a confidence interval
[u, u']. Each confidence interval is checked against a threshold U,,", which is the
desired level of device utilization. The optimizer bases its decisions on the following rules:
(1) retain the current multi-programming level if Uy, € [u ,u"],
(2) increase the multi-programming level if U,h>uJr , and
(3) decrease the multi-programming level load if Ug,<u .

Setting the value of Uy, to 50% is reasonable for virtual memory systems because the
objective is to maximize CPU utilization by avoiding queuing delay of processes at the paging
device. For a database system, however, a higher value of Uy, is more desirable since we
want to maximize both CPU and disk utilization. We tried several values of Uy,, ranging
from 50% to 100%. The results, as shown in Figure 4.7, suggest that performance
improvement can be achieved by increasing the utilization of the disk up to a certain point.

(Although only the results for query mix Ml are shown, the results for query mixes M2 and

8 For virtual memory systems, the value of Uy, is usually around 50%. This is why
the criterion is called the "50% rule”.
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M3 were similar.) There is virtually no load control when Uy, is set to 100% as the lower
bound of a confidence interval can never exceed 100%. In fact, using a value higher than
90% is worthless since a typical confidence interval, as measured in the experiments, is

around = 10% of the mean value.

The empirical data show that a load controller can indeed prevent thrashing. With
load control, every simple algorithm in the experiments outperformed the WS algorithm
(Figure 4.8). The performance of CLOCK with load control even came close to that of
HOT. However, the results should not be interpreted too literally. There are potential
problems with such a load control mechanism which arise from the feedback nature of the

load controller:

(1) Run-time overhead can be expensive if sampling is done too frequently. On the other
hand, the optimizer may not respond fast enough to adjust the load effectively if ana-
lyses of the measurements are not done frequently enough. The interval between
measurements is usually on the order of 100 milliseconds [Bade75]. Although a
smoothing type (or an incremental) technique can be used to cut down the costs of the
analysis, estimating the device utilization is still a computationally expensive pro-

cedure.

(2)  Unlike the predictive load controllers, a feedback controller can only respond after an
undesirable condition has been detected. This may result in unnecessary process
activations and deactivations that might otherwise be avoided by a predictive load con-

trol mechanism.

(3) A feedback load controller does not work well in an environment with a large number
of small transactions which enter and leave the system before their effects can be

assessed. It can be seen in Figure 4.8 that the load controller based on the "50%
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rule” becomes less effective as the percentage of small queries increases. Note that
the so-called "small queries” (i.e. queries 1 and II) in our experiments still retrieve
100 tuples from the source relation. The disadvantages of a feedback load controller
are likely to be more apparent in a system with a large number of single-tuple queries

or queries that access a few tuples (e.g., debit-credit transactions).

4.4. Cost Analysis

In the previous section, we have compared the performance of the six buffer manage-
ment algorithms through a large number of simulation experiments. However, the evalua-
tion is still incomplete, as the cost associated with each algorithm was not included in the
simulation model. To better evaluate the algorithms, a cost analysis of the algorithms is
presented in this section. We restrict our analysis to the last three algorithms since the more
sophisticated algorithms, especially QLS and HOT, have a significant performance advan-

tage over the simple algorithms.

Due to the complexity involved in analyzing a multi-user system, we were initially con-
sidering direct cost measurements of a prototype implementation of the buffer management
algorithms. Since the implementation of the algorithms in the simulator contains sufficient
details to be considered a "realistic” implementation, measuring the time the simulator
spends in the buffer manager may provide a reasonable estimate of the cost of a buffer
management algorithm. A major problem with this approach, however, is that the buffer
manager was coded in such a way that the different algorithms can share the same interface
and-data structures. Hence, direct cost measurements from the simulator do not necessarily

reflect the inherent costs of the algorithms.
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Modeling is the next alternative after direct measurement has been ruled out. Since
we are more interested in comparing (rather than quantifying) the performance of the algo-
rithms, an abstract analysis seems adequate for our purpose. Thus, a simple model, in

which the activities of a buffer management algorithm are described as a set of basic opera-
tions, is used in our analysis.

As described in section 2 of this chapter, all three algorithms (WS, HOT, and QLS)
maintain a global table and one local table for each process or file instance. Accesses to the
global and local tables are similar in all three algorithms. (Note that locating the local table
for a file is no more difficult than locating the local table for a process.) The main difference
among these algorithms is in the way that they maintain the local tables (i.e. the resident
sets). There are three possible cases for each page request:

Case 1. The page is found in the local table (which also implies that the page is

resident in the buffer).

Case 2. The page is found in memory but not in the local table.

Case 3. The page is not in memory.

To formulate the cost of each algorithm for these three cases, we shall use the notation Cy(A)
to represent the cost of algorithm A for case i. In addition, we shall use ¢, to represent the

cost associated with operation op, which is one of the following operations:
(1) su - stack (or table) entry update.
(2) vu - variabie update.
(3) cp - variable comparison.

Using the notation C;(A) and c,,,, we shall first derive the cost formulas for the WS

algorithm:
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C,(WS) = ¢,

CZ(WS) = Cqut Gy

C3(WS) = rss-ccp+(rssﬂwss)°cs“+Cl(WS)
where rss and wss represent the resident set size and working set size of the faulting process,
respectively. In case 1, only a time stamp needs to be updated as the page is already in the
working set of the process. In case 2, a new stack entry with a fresh time stamp needs to be
added to the working set. Case 3 is more complicated since il resuiis in a context switch, at
which time the resident set is compacted to be the same as the working set?. The first term
in C; is the cost to compute the working set, and the second term is the cost to remove pages
that are no longer in the working set. The last term is for adding the faulting page to the
working set.

Since a fixed-size LRU stack is maintained for each process, the cost functions for

HOT are straight-forward:

C,(HOT) = C,(HOT) = C3(HOT) = ¢y, +¢yy-
In all three cases. the response of HOT is the same; namely, update an LRU stack and its
associated stack pointer. 1f pushing the bottom entry off an LRU stack is considered a

separate operation, C~ and Cj should be modified to:
C,(HOT) = C3(HOT) = 2:cy+ ¢y

Four replacement policies were used by QLS in the experiments: SB, RAND, LIFQO'?

and MRU. The cost functions of QLS are:

9 We have ignored the case where a process is preempted by the scheduler because
- such a preemption should be less frequent than a page fault.
10 As an approximation, index pages in hierarchical references were managed by

LIFO.
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Cvu  for MRU
C,(QLS) =

0 otherwise,

Cyu for SB
C,(QLS) = C3(QLS) = | ¢y for RAND
Cou+ S for LIFO and MRU.

MRU is the only policy that needs to update a recency pointer for each page access. When a
page is missing from the local table, SB simply replaces the old page while RAND randomly

picks a victim for replacement. Under the same situation, both LIFO and MRU need to

update the local stack and its associated pointer.

Although the above analysis is not a rigid derivation, it does give us a general idea of
the relative cost of the algorithms. Judging from the formulas, the cost of the WS algorithm
is higher than that of HOT unless the page fault rate is kept very low. In comparison, QLS

is less expensive than both WS and HOT, as fewer usage statistics need to be maintained.

4.5. Conclusions

In this chapter, we have compared the performance of six buffer management algo-
rithms using the results of a number of simulation experiments. Homogeneous workloads
help us understand the advantages and potential problems associated with each buffer
replacement algorithm, while mixed workloads provide a clearer view of the relative perfor-
mance of the different algorithms. The experiments on data sharing show that there is

indeed a performance advantage associated with allowing sharing among concurrent queries.

Without load control, the performance of the three simpler algorithms (CLOCK,

RAND, FIFO) suffered from thrashing at higher loads. A trial implementation of the "50%
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rule” was shown to be effective in controlling thrashing. However, as we pointed out, there
are cases where such a feedback load controller may fail. Furthermore, its run-time over-
head can be very expensive.

As expected, the three more sophisticated algorithms - WS, HOT, and QLS - per-
formed better than the simple algorithms. However, WS did not perform as well as "adver-
tised” for virtual memory systems [Denn78a], especially when its run-time overhead is con-
sidered. HOT and QLS generally performed better than the first four algorithms. In com-
parison, QLS, which has a lower run-time overhead, provided 7 to 13% more throughput

than HOT over a wide range of operating conditions for the tests conducted.
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CHAPTER 5

SYSTEM INTEGRATION ISSUES

In the preceding chapters, we have described the design and the evaluation of the QLS
buffer management algorithm. In this chapter, we shall investigate issues related to the
integration of different components of a database system. In particular, we shall examine
how to interface a QLS-based buffer manager with two other major components of a data-

base system, the query optimizer and the transaction manager.

5.1. Integration of Query Optimization and Buffer Management

A buffer manager based on the QLS algorithm requires more information than a con-
ventional buffer manager does, including file sizes, blocking factors, expected patterns of
accesses. etc.. In many database systems, such information is already available for the pur-
pose of query optimization [Wong76] [Seli79]. 1n this section, we shall describe how to

interface a QLS-based buffer manager with a query optimizer.

As shown in Figure 5.1, the buffer manager has two components, a buffer predictor
and a buffer management algorithm. During access path selection for a query, the query
optimizer consults the buffer predictor to determine the memory requirement of each access
path. Given the intended usage of a file and other information pertinent to the access path,
the buffer predictor returns two pieces of information, an estimation of locality set size and a
replacement policy. Based on this information and the current availability of the buffers, the
-query optimizer generates an optimized access plan for the query. The locality set size and

replacement policy associated with each selected access path are encoded in the access plan
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Replaciement
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Figure 5.1 Integration of Buffer Management
and Query Optimization
and are given 1o the buffer management algorithm at query execution time. For compiled
queries [Cham81], the query optimizer could generate alternative plans with different

memory requirements, and delay the selection of the actual access plan until execution time.

Although the query locality set model covers the reference patterns of a wide range of
algorithms for relational database operations, the design of new algorithms is still an active
area of research. In particular, several new join algorithms, including the Grace-hash join

algorithm and the hybrid-join algorithm, have recently been proposed for systems with a
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large amounts of main memory [DeWi84a]. To explore the advantages of using a large
buffer space, these algorithms, with the buffer size as an explicit parameter, carefully coor-
dinate the use of buffers to minize disk I/O’s. One approach for coping with the buffer
management needs of these new algorithms is to extend the query locality set model. How-
ever, such an approach may be complicated and unnecessary, as the algorithms themselves

are very efficient in utilizing the buffer space.

A simple and effective solution is to provide an interface that allows these algorithm to
allocate the necessary space and do their own algorithm-specific buffer management. Using
this approach, not only is the full efficiency of these new algorithms preserved, but the over-
head associated with a general purpose buffer manager is also avoided. The only modifica-
tion required to the buffer manager is the addition of a dummy “replacement policy” which
does nothing. Under this scheme, no consultation with the buffer predictor is needed for a
" space-conscious” algorithm. Instead, the query optimizer (or its run-time support) needs 10
know only the availability of the buffers and decides a proper buffer size for the algorithm.
For a request with the dummy replacement policy, the buffer management algorithm simply
allocates a buffer pool of the requested size and returns it to the requester. No further parti-

cipation of the buffer manager is required until this buffer pool is released by the algorithm.

The preceding argument is also applicable to other “space-conscious” algorithms for
database operations. The N-way merge sort operation discussed in chapter 2 is one such
example. In addition, there is also a class of algorithms for statistical database operations
that fall into this category [Khos84]. Like the hash join algorithms, these algorithms are
aware of the size of the available buffer space and are very careful in scheduling disk I/O’s
‘and performing buffer overlays. Thus, there is no need to impose another layer of buffer

management that is unlikely to improve the efficiency of these algorithms. However,
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coordination between the query optimizer and the buffer manager is still necessary in a
multi-user enironment to prevent possible monopoly of the buffer pool by a "greedy” algo-

rithm.

5.2. Integration of Transaction Support and Buffer Management

Beside buffer management, transaction recovery is another important factor affecting
the performance of a database system. Careful coordination between the buffer manager and
the transaction manager is often necessary for recovery purposes. For example, the Write
Ahead Log Protocol [Gray78] requires that enough information, such as an UNDO log
record, be recorded on a nonvolatile storage device before a modified data page of an
uncommitted transaction is written back to the database. The recovery mechanism can be
simplified if there is more cooperation between the buffer manager and the transaction
manager. One such scheme, called the Database Cache (DB-cache) management, has

recently been proposed by Elhardt and Bayer [Elha84] (Figure 5.2).

A key concept in their approach is to forbid the modified pages of uncommitted tran-
sactions to be swapped out to the physical database, assuming that the cache (buffer pool) is
large enough to hold the modified pages of all uncommitted transactions. Recovery from a
transaction failure is fast since only the pages in the cache that have been modified by the
transaction need to be invalidated. To guarantee the effects of a committed transaction,
pages modified by the transaction are wrilten sequentially 10 a nonvolatile storage device
called the safe at commit time. Actual updates of a commitied transaction to the database
can then be done asynchronously after the transaction has been committed. The recovery
procedure after the system crashes is fast and simple since only the relevant part of the cache

(i.e. the set of pages modified by committed transactions which have not been flushed back
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Figure 5.2 The DB-Cache Recovery Mechanism

to the physical database) need to be restored from the contents of the safe. No determina-
tion of winner and loser transactions [Gray78] and REDO/UNDO operations are necessary.
Thus, the DB-cache mechanism provides a simple, elegant solution to the recovery of small

and medium transactions'.
Qur QLS algorithm and the concept of the DB-cache are compatible for several rea-

SONs:

! Long transactions are also supported by additional mechanisms in DB-cache.
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Figure 5.3 Integration of Buffer Management
and Transaction Management
(1)  The separation of buffer management for different queries, i.e. localized management
of buffers, is useful for identifving the pages, especially the modified pages, that are
associated with a transaction. Such an identification is necessary for the commit and

abort protocols described above.
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(2) QLS is a space-efficient buffer management algorithm in the sense that each query is
given the minimal amount of buffer space that is required for the efficient execution of
the query. The conservation of buffer space by the buffer manager allows the transac-

tion manager 10 have more space for transaction support.

One view toward the integration of QLS and the DB-cache concept is that read-only pages
are efficiently managed by the QLS algorithm where as updated pages are under the control

of the DB-cache mechanism for recovery purposes.

The QLS algorithm and the DB-cache concept can be integrated as follows (Figure
5.3): Each active transaction is given an update set to hold all the pages modified by the
transaction. In addition, there is a global update list to keep track of all the pages that have
been modified by committed transactions but have not been written back to the physical data-
base. When a modified page of a transaction leaves a locality set, instead of releasing it back
to the global free list, the page is added to the update set of the transaction. If a transaction
aborts or is aborted, buffers associated with its update set are invalided and released back to
the global free list. Otherwise, pages in the update set of a committing transaction are writ-
ten to the "safe” and added to the global update list. A page in the global update list is writ-
ten asynchronously to the physical database, and joins the global free list afterwards. Note
that the global update list corresponds to the portion of the DB-cache that needs to be recon-

structed from the “safe” after system crashes.
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CHAPTER 6

CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

Motivated by the need to find a buffer management algorithm that is better suited to
database systems than conventional virtual memory policies [Ston81], and encouraged by the
results of the hot set algorithm for single user queries [Sacc82], we initiated a study of the
problem of database buffer management. Our study was guided by the three steps of a typi-
cal problem-solving life-cycle: modeling, algorithm design, and evaluation. To benefit from
the results of previous virtual memory studies, we conducted a review of the literature in this
area. This examination of the previous studies of virtual memory management, as well as
recent advances in the study of database buffer management, led to the introduction of a new
query behaviér model and the design of a new buffer management algorithm. In this

chapter, we shall summarize the results of our study.

In Chapter 2, we reviewed some important results on modeling the reference behavior
of programs and database queries, and presented a new reference behavior model, the query
locality set model (QLSM), for relational database systems. Using a classification of page
reference patterns, we have shown how the reference behavior of common database opera-
tions can be described as a composition of a set of simple and regular reference patterns.
Like the hot set model, the QLSM has an advantage over conventional stochastic models due
1o its ability to predict future reference behavior. However, the QLSM avoids the potential
problems of the hot set model by separating the modeling of reference behavior from any

particular buffer management algorithm.
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In Chapter 3, we reviewed important results from the studies of main memory
management, focusing on three important issues: load control, memory partitioning and
page replacement. In particular, we showed how to systematically classify a memory policy
according to each of the three facets of memory management. Based on this three-
dimensional classification scheme, we are able to better understand the inherent features and
potential efficiency (or inefficiency) of each particular memory policy. By applying the same
classification scheme, we also examined and characterized a number of buffer management
algorithms for database systems. We then proposed a new buffer management algorithm for
database systems, the Query Locality Set (QLS) algorithm, which is based on the query
locality set model. Using the file instance as the basic unit for buffer allocation and manage-
ment, the QLS algorithm attends to the individual memory needs of the queries. In addition,
the QLS algorithm also provides an integrated solution to the problems of load control and

memory partitioning based on its predictive power.

An evaluation of buffer management algorithms in a multi-user environment was
presented in Chapter 4. Using a combination of trace-driven and distribution-driven tech-
niques for simulation experiments, we have compared the performance of six buffer manage-
ment algorithms: RAND, FIFO, CLOCK, WS (Working Set algorithm), HOT (Hot Set
algorithm), and QLS. Severe thrashing was observed for the three simple algorithms:
RAND, FIFO, and CLOCK. Although the introduction of a feedback load controller allevi-
ated the problem, it also created new potential problems. WS did not perform well in many
cases since it was unable to capture the main loops in the larger queries. Although using a
larger window may improve the performance, the selection of a proper window size is diffi-
cult. Furthermore, if a large window size is chosen, memory tends to be under-utilized dur-

ing phases which contain only small loops. HOT generally performed better than the previ-
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ous four algorithms. For loaded systems, however, the results of our experiment indicate

that further performance improvement by 10% in throughput is possible by using QLS.

In Chapter 5, we investigated issues related to the integration of a QLS-based buffer
manager and two other major components of a database system: the query optimizer and the
transaction manager. Cooperation between the buffer manager and the query optimizer is

necessary for two reasons:

(1) To allow the buffer manager to obtain necessary information (on the access paths) for

the prediction of locality set sizes and the selection of proper replacement policies.

(2) To extend the characterization of a query’s resource demands, which in turn enables

the query optimizer to better select an access plan for a query.

Through the description of one possible interface organization, we demonstrated how such

cooperation can be achieved.

Close interaction between the buffer manager and the transaction manager is necessary
for recovery purposes and is beneficial for performance reasons. Proper coordination
between the two components can lead to a simplification of the recovery process and a reduc-
tion in the overhead of the recovery mechanism. We showed how such goals can be
achieved through an interface design that integrates a QLS-based buffer management and a

previously proposed cache-based recovery mechanism, called the DB-cache.

For performance reasons, direct manipulation of the data in buffer is desirable for
database systems. Unlike virtual memory systems, which have hardware support for
dynamic address translation, a database system usually has to explicitly "fix” a buffer to
prevent replacement during its use and "unfix” the buffer when there are no active memory

pointers to the buffer [Effe84]. However, the need for such a fix-unfix mechanism can
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easily be avoided under the QLS algorithm. For an active query, QLS guarantees that all
the pages the query needs are fixed according to its locality sets. An active buffer pointer of a
query can only be invalidated while the query is suspended, which can only occur when a
query opens a file instance whose locality set size exceeds the number of available buffers.
If each query opens all the files it needs in each query phase (or sub-query) before it actually
operates on the data, there should be no buffer points active when a query is suspended.
Thus, a QLS-based buffer manager can avoid not only the need for a fix-unfix mechanism,

but also the potentiai deadlocks associated with fixing buffers.

While we presented a new solution to the problem of database buffer management,
new problems also arose that may merit further investigation. The first issue is how the
memory demands of different access paths can be taken into consideration during access path
selection. This issue has been largely ignored in existing query optimization techniques
[Wong76] [Seli79]. For example, the cost formula used by the query optimizer of System R
[Seli79] is a weighted measure of 1/O and CPU utilization. However, the number of disk
1/0’s is usually a function of the size of the allocated buffer space and the buffer manage-
ment policy. Thus, buffer management can have a significant impact on the actual cost of a
query. Integrating the memory demands of an access path into the cost formula seems bene-
ficial and viable, especially since we already have the necessary tools for predicting these

resource demands.

In our study, no update queries were included in the experiments. One reason is that
buffer management for update queries is better evaluated in conjunction with transaction
management. We have shown in Chapter 5 how to interface a QLS-based algorithm and a
cache-based recovery scheme. In particular, we have suggested an elegant solution in which

read-only pages are managed by the QLS algorithm, whereas updated pages are controlied
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by the transaction manager. An interesting area for future study is the comparison of the
performance of update queries under this organization with that of other alternative system

organizations.
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APPENDIX A

WORKING SET ANALYSIS OF THE TEST QUERIES

To better understand the behavior of the test queries and to determine the proper win-
dow sizes for the working set algorithm, we have analyzed some working set properties of
the queries. In particular, we have calculated the inter-reference interval histogram h(t),
the average missing page rate m(7), and the average working set size function s(1). As we

mentioned in Chapter 2, the working set functions can be calculated from the formulas

[Denn72al:
11 - ]
s(ny=Imz)=3 X f(1).
2=0 7=0t>2
h(t) . . . . .
where f(1) = b is the inter-reference interval density function. However, there are two
Sh(t)
1

reasons why these formulas are inappropriate for the page reference strings of database

queries:

(1) These formulas were obtained from asymptotic derivations. Although they provide
good approximations for long reference strings, they may provide inaccurate results for
the buffer reference string of a database query which is usually several orders of mag-

nitude shorter than a typical virtual address string.

(2) The formulas were derived by treating each page reference as one basic time unit.
This assumption is reasonable for address trace strings of programs since the instruc-
tion execution times of a machine are uvsually similar. However, intervals between

successive page references (to the buffer pool) of a database query can vary
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significantly.

Considering these factors, we have derived a new set of formulas for calculating work-
ing set functions of database reference strings. Let rgry + * * 1 represent the page reference
string of a database query, and t; be the time instance when page reference r; is made. Our

formulas for the working set functions are:

h(t) = Sh(t) "
§
m(r) = + S h() 2
tI\'mtO t>7 @
K
(1) = CY GG ) w ) 3)
L=l =

where hj(t) is the number of times the inter-reference interval of page j is t, and w(t;,T) is
the working set size at t; under window size 7. The missing page rate m(t) was derived by
dividing the total number of page faults of the query by the execution time of the query,
whereas the average working set size is the weighted average of the working set sizes at page
reference times.

The results are plotted in Figures A.1, A.2 and A.3. As shown in Figure A.1, there
are large clusters of inter-reference intervals near or below 10 ms. Figure A.2 shows that
the missing page rates drop significantly at similar window sizes. The curves for the work-
ing set sizes show that queries which include a non-clustered index as an access path (e.g.
queries 1 and I11) generally have a steeper increase in working set size as the window size
increases. For queries with high memory demands, e.g. query VI, the increase in working

set size is also rapid for window sizes that cover only part of the main loop.

Now we shall discuss how we selected the window sizes for the working set algorithm

tested in Chapter 4. Based on a page residency argument, Denning suggested in his early
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paper on the working set model [Denn68a] that the selection of the window size should be
t=2T, where T is the swap time of the paging device. Prieve [Prie73] later showed that the
residency argument was incorrect and provided little information on the selection of 7.
Although the issue of parameter selection has been addressed in several implementations of
the working set algorithm [Dohe70] [Rodr71], it is still unclear what the best solution is.
We decided to base our selection on observations of the inter-reference intervals and the
missing page rate function. As we mentioned earlier, 10 ms seems to be an appropriate
choice for some of the queries. We also selected another window size, 15 ms, for other
queries which have larger inter-reference intervals. Although the choices are somewhat
arbitrary, these two window sizes seem large enough to cover most localities and yet small

enough to avoid wasting buffers on unneeded pages.
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