A GENERALIZED TIMED PETRI NET MODEL
FOR PERFORMANCE ANALYSIS

by

Mark A. Holliday and Mary K. Vernon
Computer Sciences Technical Report #593

May 1985






A Generalized Timed Petri Net Model for Performance Analysis

Mark A. Holliday and Mary K. Vernon

Computer Sciences Department
University of Wisconsin — Madison
Madison, W1 53706

Abstract

We have developed a Generalized Timed Petri Net (GTPN) model for evaluating the perfor-
mance of computer systems. Our model is a generalization of the TPN model proposed by Zuberek
\1] and extended by Razouk and Phelps [2]|. In this paper, we define the GTPN model and present,
how performance estimates are obtained from the GTPN. We demonstrate the use of our automated
GTPN analysis techniques on the Dining Philosophers example. This example violates restrictions
made in the earlier TPN models. Finally, we compare the GTPN with the Stochastic Petri Net
(SPN) models. We show that the GTPN model has more modeling power than the existing SPN
models. The GTPN provides an efficient, easily used method of obtaining accurate performance
estimates for models of computer systems which include both deterministic and geometric holding
times.

This research was partially supported by the National Science Foundation under grants DCR-
8402680 and MCS81-05904.






1. Introduction

We present a Generalized Timed Petri Net (GTPN) model for evaluating the performance
of computer systems. The GTPN model is an efficient. easily used tool for calculating exact
performance estimates for many models of computer systems. For example, in [3] we derive exact
performance estimates of multiprocessor memory and bus interference for fixed memory cycle times.

Only approximate solutions existed previously for many of the models we studied.

Petri Nets are a graph model of computation {4'. Modifying Petri Nets so that time is repre-
sented has recently been an active research area. The goal of these models is to analyze system
performance as an extension of the reachability analysis. Our model is a generalization of the
Timed Petri Net (TPN) model proposed by Zuberek [1] and extended by Razouk and Phelps [2].
The TPN model associates firing frequencies and deterministic firing times with each transition
in the net. Both Zuberek and Razouk and Phelps restrict the allowed nets in order to proposé
algorithms for building the net’s reachability graph. They further restrict the allowed nets in order
to analyze the net’s reachability graph. Our generalization, the GTPN model, removes all of these
restrictions. We present efficient algorithms for building the reachability graph of an arbitrary

bounded net and we show how to analyze that reachability graph in the general case.

For the purpose of performance analysis we view the GTPN as a stochastic process. The time-
in-state is a deterministic function for each state of the net. However, a probability distribution
is defined over the possible next states based on the firing frequencies. The GTPN analyzer au-
tomatically generates the associated discrete parameter, embedded Markov Chain and calculates

performance estimates.

Stochastic Petri Nets (SPNs) are an alternate method of representing time in Petri Nets for
the purpose of performance analysis. Continuous-time SPN models were proposed by Natkin[5],
Symons|6], and Molloy {7,8,9], and generalized by Marsan, Balbo, and Conte [10] and Dugan,
Trivedi, Geist, and Nicola [11]. The generalized continuous-time SPN (GSPN) model associates an

instantaneous or exponentially distributed firing time with each transition. Molloy [7,9] has also



proposed a discrete-time SPN model with transition firing times that are geometrically distributed.

The discrete-time SPN model is especially interesting because it can represent deterministic
firing times, thus bridging the gap between the SPN and TPN models. However, the representation
of deterministic firing times has two restrictions in the discrete-time SPN: 1) a firing time must
be a non-zero multiple of some unit time step, and 2) all conflicting actions having deterministic

delays must be equally likely.

The GTPN can represent geometric holding times, and thus also bridges the gap between the
TPN and SPN models. Furthermore, deterministic firing times can be any nonnegative real value,
including zero, and we can assign arbitrary next-state probabilities to conflicting transitions. The
GTPN is thus more powerful than existing SPN models. We examine this issue in more detail in
this paper.

This paper is an extended version of {12]. In section 2, we describe untimed Petri Nets and -
the previous TPN models. In Section 3 we describe the GTPN model and in Section 4 we show
how the GTPN model 1s analyzed. In section 5, we demonstrate the use of our automated GTPN
analysis techniques on the Dining Philosophers model [13], which violates restrictions in the earlier
TPN models. In Section 6 we compare the GTPN with the discrete-time and continuous-time SPN

models. Section 7 contains the conclusions of this work and suggestions for future research.
2. Untimed Petri Nets and Previous TPN Models

In this section we describe untimed Petri Nets and previous TPN models which provide a
foundation for the GTPN in Section 3. Section 2.1. describes untimed Petri Nets. A more thorough
introduction to untimed Petri Nets can be found in Peterson|13 . Section 2.2 reviews the work of

Zuberek and Razouk and Phelps.
2.1. Untimed Petri Nets

Untimed Petri Nets (PNs) contain places P, transitions T, and arcs A. The arcs are directed
and can only connect transitions to places and places to transitions. If an arc exists from a place to

a transition, then the place is an input place for that transition. If an arc exists from a transition




to a place, then the place is an output .place for that transition. Places may contain tokens. The
state of a PN is defined by the number of tokens in each place and is represented by a vector M
called the marking vector. Ml is the number of tokens in the wh place. A transition is enabled
if each of its input places contains at least as many tokens as there are arcs from the place to the
transition. The tokens in the input places which enable a transition are its enabling tokens. An
enabled transition can fire. A transition fires by: 1) removing all of its enabling tokens from its
input places, and 2) placing on each of its output places one token for each arc from the transition
to that output place. Each firing of a transition changes the assignment of tokens to places and
thus creates a new state. The reachability set of a PN and a given initial state is the set of all states
that can be reached from that initial state via a sequence of transition firings. The reachability
graph associated with a reachability set can be constructed as follows. Represent each state by a
vertex and place a directed edge from vertex v, to vertex v, if the state vo can result from firing

some transition enabled in state vy,

Petri Nets are often illustrated graphically. Circles represent the places. Black dots in the circles
represent the tokens. Bars represent the transitions. Figure 3.1 can be considered an example of

an untimed Petri net by simply ignoring the vectors next to each transition.
2.2. Previous TPN Models

Ramachandani [14] was the first to introduce a fixed firing time with each transition in a Petri
net. Ramamoorthy and Ho [15], Zuberek (1], and Razouk and Phelps [2] are three more recent

studies that use a single fixed firing time. Our work is based on the TPN model of Zuberek and

Razouk and Phelps.

The TPN model [1)12] is a Petri net which has been augmented to include a set of firing durations

(D), a set of firing frequencies (F), and a set of named resources (R). Each set is associated with

the transitions in the net. The model is thus formally defined as follows:
TPN = (P,T, A, M', D, F, R)

where



P ={pi,pa,...,pn} (places)

T = {ti,ta,...,tn} (transitions)
AC{PxT}u{T x P} (directed arcs)
M' = {m,,ms,...,m,} (initial marking)
D = {d,,da,...,d,,} (firing durations)
F ={f1, f2,-.., f} (firing frequencies)

R ={r;,ra,...,7.} (resources)

The state of a TPN is defined differently than in untimed Petri Nets because firing a transition
is not an atomic operation. A transition has an associated deterministic firing duration. There is
a start firing, and an end firing event. In between the firing is in progress. The removal of tokens
from a transition’s input places occurs at start firing. The placement of tokens on a transition’s
output places occurs at end firing. While the firing of a transition is in progress, the time to en@
firing, called the remaining firing time (RFT), decreases from the firing duration to zero (without
causing a change in the marking of the net). Because firings can be in progress when a marking
change occurs, a state is only partially defined by the distribution of tokens. A state must also

include the RFT of each firing in progress. A state is thus a marking vector and a set of RFT’s.

Also unlike an untimed Petri net, the next state is not generated by a single start firing or
end firing event. Instead it is generated by a set of start firings or a set of end firings which
occur simultaneously. Given a particular state, the basic rule for finding the possible next states
is straightforward. Find how many enablings of each transition exist. This is determined by the
number of tokens on its input places. Find the mazimal sets 1 that can start firing simultaneously.
Each maximal defines a next state. The time spent in the original state is zero. The RFT vectors
of the transitions which just started firing are set to their transition’s duration. If there are no
enablings, but there are some firings in progress, then the next state is generated by the end firing

of all transitions with the smallest RFT (Tmin). The time-in-state value in this case is Tmin. If

LA set with property « is a mazimal set with property o if it is not a proper subset of any other set
with property «.




there are no enablings and no firings in progress. then the net remains in the current state forever.

The rule that next states are generated by sets of events that occur simultaneously. is not
strictly necessary. The advantage of having it is that the state spaces generated are dramatically

smaller. The disadvantage is that the algorithms for building the state space are more complicated.

The frequencies are used in assigning probabilities to next states when building the net’s

reachability graph.

Zuberek suggested that the reachability graph of the Timed Petri Net be viewed as a Markov
Chain and that performance measures be computed using standard techniques for analyzing the
Markov Chain’s long run behavior. Extensions of his work, however, are desirable in two areas.
One, he only proposed a method for constructing a net’s reachability graph for a restricted class
of nets: nets that are safe and free choice. A net with a given initial state is said to be safe if, for
every state in the reachability set, no place has more than one token. A place is a decision place if
it is an input place to more than one transition. A net is free chotce if every transition that has an
input place that is a decision place has no other input places. Two, even for safe and free choice
nets, the structure of the reachability graph (i.e. the Markov Chain) may be such that Zuberek’s
approach gives incorrect values for the performance measures. The states in a discrete time Markov
Chain can be divided into classes. A set of classes, called recurrent classes, 1s important because in
the long run the model will reach and stay in one of these classes. Zuberek’s approach gives correct

values only when there is exactly one recurrent class.

Razouk and Phelps |2] extend Zuberek’s work in the first of the two areas above. They allow
a superset of the class of safe, free choice nets. Two or more transitions are said to be in the same
conflict set if their sets of input places intersect. Two conflict sets overlap if at least one transition
is in both. Razouk and Phelps make the restrictions that conflict sets do not overlap and that all
transitions in a conflict set are mutually disabling, i.e. firing of one, disables all the others. They

maintain Zuberek’s restriction in the second area (they call this, requiring a cyclic net).

Razouk and Phelps also introduce the concept resources, originally proposed in E-Nets{16]. A



resource can-be associated with one or more transitions. Whenever one of those transitions is firing,
the resource is in use. If more than one of these transitions is firing simultaneously, the resource
has several usages occurring. By building and analyzing the net’s reachability graph we can find
the average number of uses of a resource over time. This average, if properly implemented and

interpreted, can be used to obtain a variety of meaningful performance estimates.

3. The GTPN Model

The GTPN model extends the models of Zuberek and Razouk and Phelps by: 1) removing
all restrictions on the net except the obvious one that the state space be finite, and 2) computing
correct performance estimates for any reachability graph (i.e. an arbitrary embedded discrete
parameter, finite state Markov Chain). We also allow the firing duration to be an arbitrary real

number (the non-integer case is not discussed by Zuberek or Razouk and Phelps).

A third extension we have found useful involves firing durations and frequencies. In the modeiS*
of Zuberek and Razouk and Phelps, the duration and frequency are state-independent constants.
Consequently, in the GTPN model a transition’s firing duration and frequency can be expressions
contalning immediate values (real and integer), names of places (a place name stands for the number
of tokens in that place in the current state), and arithmetic, relational, and logical operators. These
state dependent durations and frequencies become deterministic values when used to determine

time-in-state and next state probabilities for each state in the reachability graph.

Besides a firing duration, frequency, and set of resources, a GTPN transition has a flag associ-

ated with it that is used in computing the next state probabilities as described in section 3.2.

Figure 3.1. shows an example GTPN net. including the initial state distribution of tokens.
Each place and transition is labelled. Each transition has, from left to right, its firing duration
expression, its frequency expression, its flag, and its list of resources. This example models users at
terminals, who with a geometric think time generate requests for a server. There 1s one token on
place P1 for each user. Transitions T1 and T2 implement the think time. Transition T3 implements

a load-dependent server with a firing duration that depends on the number of tokens on P2.




T2 T1
(1,0.6,ves, (Terminal)) (0,0.4,ves, ()
)
P3 P2
T
((P2%2)+4.73,1.0,n0,(Server))

Figure 3.1. Example of a GTPN net

Figure 3.2. Reachability Graph for example

Table 3.1. Reachable States for example

States | P1 | P2 | P3 RFT Set Resources
0 1 0 l i s
1 0| 0| 1 | «(T1,0.0) ¥
2 0 0 l (T2,1.0), ‘Terminal(l)|
3 0 | 1 ] ¥ o
4 0 0 0 1(T3,6.73)) \Senver(1)!

In Figure 3.2 and Table 3.1 we show the reachability graph for the simple GTPN in Figure 3.1
assuming only one user. The labels on the edges of the graph are the next state probabilities. The
labels on the vertices of the graph are the values for time-in-state. The marking vectors are shown
in the table. The RFT sets are shown as a list of pairs with one pair per in progress firing of a

7



transition. The first component of each pair is the name of the transition. The second component
is the remaining firing time. The resources used and their number of uses are also shown in the

table.

The Razouk and Phelps’ TPN model does not allow multiple tokens on place P1. Allowing such
nets complicates constructing the reachability graph. An overview of our reachability algorithm,
which handles these complications, is in Figure 3.3. The TimelnState and ResUsages (number
of usages of a resource) functions are used in the performance analysis as described in Section 4.
The algorithm has two complex parts: 1) finding the next states when the next states are due to
maximal sets of transition enablings which start firing together, and 2) assigning probabilities to

next states. These two parts are discussed in the Sections 3.1 and 3.2.
3.1. Finding Maximals

Our first point is somewhat discouraging. In an arbitrary state in a net the number of maximals

in the worst case is exponential in the number of enablings.

Theorem 1. Consider a state S in a GTPN with n enablings. The number of mazimals s

02 -2-).

NG
pf. First we will construct a state in a net such that the number of maximals 1s (“'/'2), Consider the
case where n is even (The n is odd case is similar.). Consider the net with n transitions and one
place P where the one place is an input place for all the transitions. Assume each transition needs
one token in the input place to have one enabling. Let the state have n/2 tokens on the input place
P Then there are (,",) maximals. Thus, the number of maximals is (2(,’},). The observation that
by Stirling’s approximation, n! = v/2rn(n/e)" (1 + O(1/n)), completes the proof. |}

This result should not be given too much weight. In practice, we find that the number of
maximals is far less than exponential in the number of enablings. Theorem 1 does, however,
point out that the space of potential maximals is large. Consequently, an algorithm for finding

the maximals must be carefully thought out in order to prevent poor performance when the actual

number of maximals is small. The algorithm described below meets this criterion. When we profiled




X.State — Initial State; X.Class — Frontier
while at least one Frontier state, Y do begin
if Y s a duplicate of an Interior state Z then
Y.Class «— Duplicate
else begin
Find the set of enablings in Y
If no enablings and the RFT set 1¢ empty then
Y Class — Termanal
else if any enablings then begin
Find the set of manimals of enablinge
Compute the probability of each mazimal
For each mammal M create a new state Z from Y
Remove tokens from the input places of
transitions that have enablings in M
Add a firing, f;, to the RFT set for each
enabling in M
Set the RFT of each added firing, f:, to the
firtng duration of transition t
Z becomes a child of Y, Z. Class — Frontier
for all resources ResUsages Y| «— count uses
TimelnState!Y, — 0; Y.Class — Interror end
else begin
Let Tman be the smallest RFT in Y
Create state Z from Y by subtracting Tmin from
each RFT in Y
For each firing f; whose RFT = 0 Z do
Add tokens to the output places of transition t
Remove f; from the RFT set
Z becomes a child of Y; TimelnState]Y] — Tmin
for all resources ReslUsages|Y | «— count uses
Z.Class « Frontier; Y.Class — Interior end
end

Figure 3.3. Overall State Space Algorithm

our GTPN tool, the percentage of total program time taken by this algorithm was less than 5% for

the analysis of large nets z

Our algorithm consists of two independent subalgorithms Partition and FindMaz. The Parti-
tion algorithm partitions the set of enablings into Generalized Conflict Sets, such that maximals of

the partitioned sets can be efficiently combined to generate all the maximals for the original set of

2 we profiled our program using gprof under 4.2 bsd UNIXT* running on a VAX-11/780T#

9



enablings. The Partition algorithm does not specify how the maximals for each partition member

are found. Maximals are found for each member of the partition by FindMax.
3.1.1. The Partition Algorithm

The Partition algorithm has two parts. The first part constructs a static partition of the set of
transitions, T. Define the directly-conflicts-with relation on T as follows. For all ¢, and t> in T, ¢,
directly-conflicts-with ¢ if the set of input places for ¢, intersects the set of input places for ¢,. beﬁne
the conflicts-with relation on T as the transitive closure of the directly-conflicts-with relation. The
conflicts-with relation is clearly reflexive, symmetric, and transitive, so it is an equivalence relation
on T. The partition of T induced by conflicts-with is denoted by {GCS[1]|1 <1 < N}, where GC S|z
is the 1th member of the partition and N is the size of the partition (GCS stands for generalized
conflict set). Note that a transition which does not share any input places with any other transitions

forms a GCS of size one.

Part two of the Partition algorithm uses the conflicts-with partitioning of T to partition the

set of enablings, Enablings(S), for each state 5. The desired partition of Enablings(S) is
{EGCS|S,1|= Enablings(S) N GC'Sizi|partition i}.

At this point, FindMax is applied to each partition member to find its local mazimals. Let
Mazimals{Enablings(S)] be the set of maximals over all the enablings. We have constructed our

partition such that Mazimals|Enablings(S)| is simply the Cartesian product of the local maximals.
Mazimals|Enabings(S)] = FindMaz(S, EGCS|1]) x  x FindMaz(S, EGCS|N!)

3.1.2 The FindMax Algorithm

We want to find the local maximals for a generalized conflict set, ¢, in a given state 5. Any
subset of EGCS|S, G| is a potential local maximal (for brevity’s sake we will call a local maximal, a
maximal, in this section) The power set, P(EGCS|S, (7}), unfortunately, can be a large search space.
Our goal is to minimize the number of members of this power set that we examine. Note that set
inclusion defines a partial order on P(EGCS|S. G|) which, in turn, induces a directed acyclic graph

10




This graph has one root which represents the set EGC'S:S. G itself. The FindMax algorithm
does a breadth-first search of this graph searching for vertices that are maximals. The traversal is
implemented in the standard way using a queue. Initially, the root vertex is the only entry on the

queue.

Searching the graph breadth-first causes the order in which vertices are examined to have an
important property: if 1) the set of enablings, E, represented by a vertex can fire together, and
2) E, is not a subset of any maximal already found, then E, is a maximal. In other words, it
is impossible that some vertex examined later will have a set of enablings, E-., that can all fire
together and for which E, is a subset. Thus, to find the maximals we just do the breadth-first

search, checking each vertex to see if it satisfies properties 1) and 2).

Three methods are used to avoid searching the entire graph. One, if a vertex’s set of enablings,
E,, can all fire together, then none of its descendents needs to be examined (so its children are nobt
added to the queue). To see this, note that either E; is a maximal or it is a subset of a maximal
that has already been found. Two, a pointer is used to ensure that vertices are never examined
more than once. Note that the graph is not a tree. Thus, a naive breadth-first search would cause
vertices to be examined multiple times. Three, the pointer used in method twois used to implement

a heuristic for pruning subtrees.

Methods two and three are based on a pointer, V,,, associated with each vertex, V, in the graph.
Consider the set of enablings, E|, represented by V to be described by a vector of nonnegative
integers. The :th component of the vector gives the number of enablings of the :th transition. ¥,

points at one of the components in this vector. The set of transitions to the left of V,, is V. The

set of transitions to the right of V,, and including the transition pointed to by V,, is V.

The pointer V,, can be used to ensure that a vertex is only examined once. The method is as
follows. Set the V,, of the root vertex to point to the leftmost transition. For each parent vertex,
subtracting one enabling from the transitions in Vp defines a child vertex. For each of these child

vertices, set its V,, to point to the transition that was decremented. It can be shown inductively that

11



at each level in the graph, the sets V;. are distinct for each vertex. Consequently, any child resulting
from decrementing Vp of one parent can.never be the same as a child resulting from decrementing
Vi of another parent. Note, also, that the use of V,, does not cause any state to not be examined
that should be examined. For each state, ¢, that should be examined, there is a vertex, p, whose
set of enablings over the transitions in ¥V, matches ¢’s set of enablings over the same transitions.

Consequently, ¢ will become a child of p.

Method three is a simple optimization made possible by the existence of V,,. If the enablings in
V. cannot fire together, then it is irrelevant what enablings are subtracted from V. Consequently,

none of the child vertices resulting from decrementing Vi need be added to the queue.

Partition and FindMax are used to calculate all maximal sets of enabled transitions which can
start firing together. Next state transition probabilities must be assigned to these maximal sets.

This is discussed in the next section.
3.2. Computing Probabilities

To interpret the reachability graph as a Markov Chain we need to assign probabilities to next
states. In the nontrivial case, we need to assign a probability to each maximal set of transitions
that can start firing together. From the previous section we know that a maximal is the union
of a set of independent local maximals, one from each GCS. Thus a reasonable probability for the
maximal is the product of the probabilities for the local maximals. Suppose that LocalMaz|k, ]
is the kth local maximal of the «th generalized conflict set. Suppose that there are N generalized
conflict sets and the jth global maximal is the union over all GCS’s of the jth local maximal of
the «th generalized conflict set. Then

PriMazmmalj} = [  PrilocalMazly, 2}
=1 N

In order to compute the probability of a local maximal, we take the product of the frequencies
of all the enablings in the local maximal. This is multiplied by a number Num(omb discussed
below. Then for each local maximal, we normalize this product by dividing it by the sum of the
products over all local maximals. More formally, suppose the 1th GCS has M local maximals

12




and the frequency expression for the kth enabling in the i:th GCS is f,. Then our formula for

Pr{LocalMaz|), |} 1s

Num(Comb|LocalMaz|y, v} * I1 i
{k:AELm::l.\f:ll@/;.l]}
Pr{LocalMazij |} = - — ‘
{ o]} 3 NumComb|LocalMazim, i « I1 fi
batorn= 1 A Vietk€ Lo al Moarine a]}

NumComb means number of combinations and is a combinatoric value associated with each local
maximal This value is defined as the number of ways tokens can be removed from input places in
order to implement that local maximal. As a simple example, suppose the local maximal consists
of one enabling of one transition with one input place. two arcs connect the place to the transition,

and the input place has three tokens. In this case. the combinatoric value NumComb is (3).

Computing NumComéb|LocalM az)] is done by decomposing it first on the transitions in the local
maximal and second on the input places for the given transition. The number of ways that the
tokens can be removed from the given input place by the given transition is a binomial coefficient.
As we consider each transition, the value in the upper position of this binomial coefficient is changed

to reflect any removals made by transitions considered earlier.

More formally, consider the local maximal. LMaz, of the :th generalized conflict set. Let
InputPlace|t] be the set of input places for transition t. Let Enabit| be the number of enablings of
transition ¢ in this maximal Let TokNceded|t, p; be the number of tokens needed from input place
p by one enabling of transition t. Note that Enabit: + Tok Neededt, p|is the number of tokens needed
from place 1 by transition ¢ in this maximal. Let TokLeft!pj initially be the number of tokens on

input place p in the parent state After looking at an input place TokLeft|p} is updated to reflect

the start firing of all the enablings of transition . With this notation we have:

) TokLeft{t, p|
NumCombh|LMuaz, = L o
um('omb] ax; H H ‘ (Ena/iiti # TokNeeded|t, p]
Ve L Muac) pepElnput Dlae e <t} ' :
From practical experience it appears that in some cases it is reasonable to use this combinatoric
value when assigning probabilities to local maximals. A boolean flag associated with each transition
specifies whether this should be done. Only if the flag is yes for all transitions in the maximal.
is NumComé used. Formula 1 above is for the case where Num('omé is used. The formula in the

alternative case is the same except that NumComb = 1 for all terms.

13



The motivation for our method of assigning probabilities to local maximals is that it assigns
the right probabilities in-the important case where all the enablings in a local maximal are inde-
pendent events. In the case where there are dependencies between the enablings it is difficult to
envision a single formula that will always generate the “right” probabilities. This case motivated
our introduction of state-dependent frequency expressions. Such frequency expressions can specify
w‘hat probabilities maximals should have in different markings. Allowing state-dependent frequency
expressions also allows the possibility that in some states a transition’s frequency expression may
evaluate to zero even though it has one or more enablings. We remove these enablings from the set

of considered enablings before finding the local maximals.
4. GTPN Performance Analysis

For the purpose of performance analysis, we view the GTPN as a stochastic process. The
time-in-state is a deterministic function, TimelnState, of the state. Nevertheless, the process IS
stochastic because of the probability distribution over the possible next states. Since the time-in-
state can be an arbitrary real number, the process is a continuous time stochastic process. The
parameter set is described in Section 4.5. The states of the stochastic process are divided into
classes. In the long run, with probability one, the process will reach and stay in one of the set of
classes called recurrent classes °. Consequently, the long run fraction of time spent in each state
depends on which recurrent class the process reaches in the long run. For each recurrent class
the long run fraction of time spent in each state forms a probability distribution over the states.
Thus, there is a vector of long run probability distributions with one component for each recurrent
class. In addition, we can compute the probability (the absorption probability) of reaching each

recurrent class in the long run. These absorption probabilities allow us to assign relative weights

to the components of the vector of long run probability distributions.

The number of usages of a given resource is also deterministic for a given state; it is a function

ResUsages of the state. Consequently, ResUsages, being a function of a random variable, is a

2
9 Note that a terminal state in the reachability graph is a recurrent class due to the self-loop we added
(see Figure 3.3).

14




random variable. A performance estimate for a resource is a vector with one component for each
recurrent class. The value for recurrent class R’s vector component is the long run expectation of
that resource’s ResUsages random variable with respect to R’s long run probability distribution. In
other words, it is the weighted sum of the long run fractions of time spent in each state given that
in the long run the process is in class R The weight of a state is the number of resource usages in

that state.

Our approach to computing performance estimates uses the key observation 4 that the times
at which state changes occur form an embedded, discrete time, finite state Markov Chain. Con-
sequently, our approach has four parts: 1) building the Markov Chain (i.e. reachability graph;
described in Section 3), 2) aggregating the states in order to reduce the size of the state space (Our
aggregation rule is: Any state S, can be aggregated with its parent state, S, if and only if §, 1s S2’s
only parent and S, is $,’s only child.), 3) analyzing the Markov Chain, and 4) computing resource

usage expectations in the original stochastic process.

Part 3, the Markov Chain analysis, has three steps: a) finding the chain’s recurrent classes, b)
finding the absorption probability for each recurrent class, and c) finding, for each recurrent class,
the long run fraction of visits to each state. These steps are discussed, respectively, in Sections 4.1,
4.2, and 4.3.

Part 4 has two steps: a) for each recurrent class R, computing the long run fraction of time
spent in each state (the TimeInState function and the long run fraction of visits to each state are
used to do this), b) for each recurrent class R, use the ResUsages functions and the long run fraction
of time spent in each state to find the long run expected number of usages of each resource These

two steps are discussed in Section 4.4

As mentioned above, these long run expectation are the performance estimate (given that the
process is in class R in the long run). For each resource we thus have a vector of performance

estimates. If desired, the vector components could be weighted by the absorption probabilities to

4 The GSPN model uses a similar observation.

15



give a single performance estimate.

In Section-4.5 we give a more precise definition of the parameter set of the GTPN stochastic

process.
4.1. Finding Recurrent Classes

In order to find the recurrent classes we need to first define a recurrent class. Recall that ¥n
P, = Pr{X,.:=3X, =1}. P=|P,} is the one-step transition probability matriz. P'"!, the n-step
transition probability matriz is defined similarly. f|"' is the probability that, starting from state 1,
the first return to state : occurs at the nth transition. A state is recurrentif Y77 fz(z“) = 1. In other
words, a state is recurrent if and only if, after the process starts from state ¢, with probability one
the process returns to state : in a finite length of time. A state is transient if it is not recurrent.
State ; is said to be accessible from state 2 if Pr(,/”‘ > 0 for some integer n > 0. Two states i1 and ]

that are each accessible to the other, are said to communicate.

Note the following facts. Accessibility defines a partial order on the states. This partial order
implies a directed graph with the vertices being the states. Communication is an equivalence
relation on the states. Thus it partitions the states into subsets called classes. The communication
classes are the strongly connected components of the accessibility graph. These strongly connected

components form a directed acyclic graph, DAG.

All the states in a class are recurrent or none are, so we can speak of recurrent classes and
transient classes. In the case of a finite state space 5, the recurrent classes are the leaves of the
DAGI17] of strongly connected components. The interior nodes of the DAG are the transient

classes.

Given that the recurrent classes are the leaves of this DAG, the algorithm to find the recurrent
classes is immediate. The reachability graph of the GTPN is the accessibility graph. Create the
DAG by finding the strongly connected components of the accessibility graph. We do this using

Tarjan’s O(nlogn) algorithm[18]. Then find the leaves of the DAG by a depth first search starting

O This is not true if the the state space is countably infinite. A simple counterexample is a one-dimensional,
asymmetric random walk.

16




at the initial state.
4.2. Absorption Probabilities

In a finite state Markov Chain, if we start in a state in a transient class we will eventually
reach and stay forever in one of the recurrent classes. We are said to be absorbed by a particular
recurrent class. Computing the probability of absorption in a particular recurrent class R given a
particular initial state, ¢, can be done using a standard technique called first-step analysisi19]. On
the first state change, the process will move from state : to a state ; that is in a transient class or
in a recurrent class. If 5 is in class R, the future probability of being absorbed by class R is one. If
7 1s in another recurrent class, the future probability of being absorbed by class R is zero. If ; is
in a transient class, then, by the memoryless property, the probability of being absorbed by class

R is the same as 1f ] were the initial state.

More formally, suppose that the states in all the transient classes are numbered 0,...,7r — 1
and consider a fixed recurrent class R and fixed initial state . Let U, = Pr{ Absorption in class
RiXy=:}foro<e«r.

rol
U= > P,+y P,Ujp, 1=01,.,r-1
LER) j=0

This equation cannot be be solved in isolation. However, if we consider all possible initial states,

then we have a system of linear equations that can be solved for the U, ’s.
4.3. Long Run Expected Fraction of Visits

If R is a recurrent class in a finite state space. then ¥3 € R a number =, exists such that vi = R
try 1 -1

1 , 1 (1)
. ) v S
mhm E[-AE Liv =piXo=1= lim — E P =,

[ il o)
=t b=ty

The leftmost expression above is the long run expected fraction of visits spent in state . 1y, =, 18

the indicator random variable that equals one when the outcome chosen is in the event {X, = 5}

and 0 otherwise.

We want to find these #,’s for each class R. We do this by noting that each recurrent class R
in a finite state space has one and only one stationary probability distribution and the vector np of

17



- its #,’s is this stationary probability. distribution. This stationary probability distribution is easy

to find since it is the unique solution to the set of equations

WRZYTDP[: and Zﬂ'/-:l
jeR

The matrix Pp is Pp = {P,,i € R} We solve this system of equations using an iterative matrix
algorithm|20].

It is also true that an arbitrary Markov Chain with a finite state space has at least one stationary
probability distribution over the entire state space. However, if the Markov Chain has more than
one recurrent class, then any linear combination that sums to one of the stationary probability
distributions of the individual recurrent classes is a stationary probability distribution of the chain

as a whole.

Our approach is correct regardless of whether the recurrent classes are periodic or aperiodic.
Recall that the period of a state is the greatest common divisor of all integers n > 1 for which
P!"' > 0. A state is aperiodic if its period is 1, else is periodic. All the states in a class have the
same period so we can refer to a class as periodic or aperiodic. Only for the states: in an aperiodic
recurrent class does the limit lim,, — o P,‘,’” exist. However. the long run expected fractions of visits
and the stationary probability distribution exist in both cases. Again we assume a finite state
space.

4.4 Resource Usage Estimates

We find, for each recurrent class R, the long run expected fraction of time spent in each state.

Then, we find the long run expectation of each resource with respect to each recurrent class.

Let S be the set of states. Let RelTvme(S;) be the long run expected fraction of time spent in
state S, given that the process is absorbed in class R. From the Markov Chain we know the long
run expected fraction of visits to each state k, 7, , given absorption in class R. RelTime(S,) can be
computed, using the TimelnState function, as follows: '

138




=1
lim £ 35 Ellyxi1 =~ TimelnState( X (t))]

ne—oc M

RelTime(S)) =

n—1i
lim L 57 ETimelnState(X(t))]
n—oe M 2T
_ TwmelnState(S;)m-,
~ Y TimelnState(k)m
hE-

Recall that 1, is the indicator random variable for the event 4. To show why the last equality
holds we derive its denominator. A similar derivation holds for the numerator. Let S be the set of

states.
n—1

1
im - T Stat |
”1_1_31;c - ,Z___;, E|TvmelnState( X (t))!

=1

= lim ! le TvmelInState(k)Pr{X(t) = k}]

o0 N
t=t Les

n—1

= Z TimelnState(k) lim E Z PriX(t) =k}
nH—=o n

he~ =0

= Z TimelnState(k)m,
Les

To find the long run expected number of usages of each resource for each absorbing recurrent
class, we simply take the expectation of the random variable ResUsages.

= Z ResUsages(k)Pristatek} = Z Resllsages(k)RelTvme(k)

hes hE s

E|ResUsages

4.5 Parameter Set of the Stochastic Process

Since firing durations can be zero in the GTPN model, a GTPN can be in two or more states
at the same “time”. This slightly complicates viewing a GTPN as a stochastic process. In this
subsection we discuss that complication and how it can be resolved. The complication is that the
right halfline cannot be the parameter set of the GTPN stochastic process. To see this, recall that
a stochastic process is a family of random variables indexed by the parameter set and a random
variable is a function from the sample space into the reals. If the right halfline were the parameter
set, then on some sample path at some parameter t, the random variable X (¢t) could simultaneously
hold more than one value in its range. This contradicts X (¢)’s being a function.

19



This complication.is resolved by using a different parameter set. The parameter set used is
‘the lexicographically ordered Cartesian product of the nonnegative reals and the natural numbers.
The parameters are assigned in the following way. Consider an arbitrary sample path. At any time
t in the nonnegative reals, if there are n(n > 0) instantaneous state changes, then X (t,0) is the state
before the first (if any) state change, X(t, 1) is the state after the first state change, ... X(t,n - 1)
is the state after the n — 1th state change, X(t,m),m > n is the state after the nth instantaneous
state change. Since at most a countably infinite number of instantaneous state changes can occur,
the process is never in two or more states at the same “time”. Note that the parameter set of the

embedded Markov Chain need only be the nonnegative integers with the nth parameter meaning

the nth state change.
5. Analysis of The Dining Philosophers

The Dining Philosopher model is a well-known example which violates net restrictions in previ-
ous TPN models. Although performance of this system is largely hypothetical in nature, 1t serves to
illustrate the capabilities of the GTPN analyzer, and it yields some insight into the timing behavior

of the dining philosopher protocol.

A GTPN model of the 5 Dining Philosophers [13] is shown in Figure 5.1. The initial marking
of the net shows all 5 philosophers thinking. We have analyzed the model with deterministic think
times, 7,, as shown, for each philosopher i. We have also used a slightly modified model (see Figure
3.1), to represent think times that are geometrically distributed with mean 7,. After thinking, the
philosopher competes for two forks which are shared with neighboring philosophers on the left and
right, respectively. After acquiring the forks, the philosopher spends a deterministic amount of
time eating (d;). This cycle is repeated as many times as necessary to finish the meal. The firing
frequencies, f,, associated with transitions that model fork acquisition are used to compute the
probabilities that various maximal sets of competing philosophers get the forks they require. These
probabilities are calculated as described in Section 3.2. Note that all of these transitions are in the
same Generalized Conflict Set. Also note that, to simplify the diagram, we have omitted the arcs
which model releasing the forks at the end of the dining transitions.

20




¥ (d1,1.n0,(dinel))

Figure 5.1.Dining Philosophers GTPN Model

A unique resource is associated with each thinking and dining transition. The GTPN analyzer
will compute the long run fractions of time (U, .., and U, ;) that philosopher i spends thinking and
dining. From these measures, we can calculate the long run fraction of time philosopher i waits for

fOI'kS (l”, rdle & 1 - [rz fou ™ [I'l «/)'

Performance of the dining philosophers is maximized when time spent waiting for forks and
expected time to complete the dinner are minimized. Note that time spent waiting for forks can be
minimized if a subset of the philosophers agree not to eat until the other philosophers are finished.
We consider this to be a less-than-ideal situation. even if the expected time to complete the meal
is minimized, as compared with a situation where all philosophers dine and think together. Thus,
for simplicity, we will assume the dinner ends at time Dman, the expected time that the first
philosopher(s) will complete the meal, and assess a penalty for philosophers who have not finished.

We assume that each philosopher requires R units of time dining to complete the meal. Let U/,.... .

be the maximum value of U/, , over all i The time to complete the dinner is then: Dmun = &

Towee 1

21



The Dining ‘Philosopher.model can. be analyzed quickly for various think times, dining times.
and firing frequencies (i.e. relative aggressiveness in grabbing forks). It is easy to assign determin-
istic delays which yield multiple recurrent classes. For example, if all philosoophers have d; = 3, two
non-neighboring philosophers have a deterministic think time of 3, and the remaining philosophers
have a deterministic think time of 5, then the Markov Chain has four recurrent classes. However,
each set of parameters we report for the model with deterministic think times ylelds a Markov
Chain that has one recurrent class. Analysis of each Markov Chain thus yields a single value for

each performance estimate.

We first consider the case of two classes of philosophers and deterministic think times. The first
class of philosophers, formed by any two non-neighbors, thinks for N units of time and dines for N
units of time. The second class of philosophers also dines for N units of time. In one experiment, we
let N=3, and vary the duration of the think time of the second class of philosophers between 1 and
12 units of time. The firing frequencies, f; for both classes of philosophers in this experiment are
set equal to one Figure 5.2 shows U, ,, U, ;. , and U, , for the model. Our first observation is that
the fractions of time the philosophers spend thinking, waiting, and dining, vary in a complex way
with the input parameters. This behavior would be further emphasized if we included data points
at each integer for 1 < r» < 12. Reasoning about the behavior of the system for one parameter
setting (i.e. when ., = 3), shows that after 9 units of time, the system reaches "steady state”, in
which two philosophers are thinking, two are dining, and one is waiting, (interchangeably), forever

after. We note that this behavior is highly dependent on the relative delays in the model.

We investigated the complex behavior of system performance as a function of varying think
times for the two classes of philosophers further. Figure 5.3 shows the total time spent thinking,
idle, and dining, and the amount of time needed to complete any unfinished portions of the meal,
for a few interesting parameter settings, assuming the time required to complete the meal, R=60.
Starting with a “baseline” model (r, = d, = N), in 5.3(a), we see that Dmin=2.5 hours, of which
each class of philosopher spends 60 min.(40%) eating, 60 min. thinking, and 30 min. waiting for

forks. This corresponds to 7,2 = 3 in Fig 5.2. All philosophers finish the meal at the same time.

22




1 Resource Usages
0.8+
4 o Uti2,tau)
0.7" ’/’
<4 ,/
Onf)" __.//
0.5' \\‘\' /”_—‘
04: s\\/; /__—\ Uil tau)
0.3
0.2
0.1 U(fl,fdle)
J U2, idle)
0.0
0 3 6 9 12 Tau(i2)
+ Resource Usages
0.6 1
0.5
041l ual,d)
0.31
0.2 1
| Ua2,d)
0.1
0.0 e e e e TR s
0 3 6 9 12 Tau(i2)

Figure 5.2. Performance Measures for varying deterministic think times. Two Classes of Philosophers.

7,1:3 \V] f/::l’d/:.'jn

Note that two philosophers is the maximum number that can be dining at the same time, so the
baseline model is optimum with respect to U, , = 04. The question is whether the idle time for
the philosophers can be reduced while still dining at full capacity. In 5.3(b), the second class of
philosophers reduce their idle time by slightly increasing their think time by some amount 7,z < £.
In 5.3(c) the second class of three philosophers increase their think times to 3N, which reduces idle
time to zero for all philosophers, but causes the three to miss half their meal. This corresponds to

r» = 9in Figure 5.2. In 5.3(d), both classes of philosophers have think times set to 7, = 1.5d; = 1.5V,

23



Time Idle D 2 Dining
Thinking N B Unfinished

T T T N
| NN
120+ ‘ -<§ &
= N N N
PR B B
SSEESS S8 S8
60 = = >
L8 A B B
2 o B B
di N N N N
2 NN NiN+1 N:3N  15N:L5N
@) (b) (c) ()

Figure 5.3. Performance for Selected Parameters

0.5 T Resource Usage

//—— UGil,d)
0.41

Y

I

Uil tau)

~——
~-
- —
e

U2,d) = U@2,tau)

0.34
-------------------- U2 idle)
0.2+
0.14
Uil idle)
0.0 4 4 4 ' $ $ 4 : + $
0 1 2 3 4 5 f(il)

Figure 5.4. Performance with Aggressive Philosophers.

which represents the optimum behavior.

For the experiments above, we varied the think time while holding all dining times and firing
frequencies constant. In the next experiment, we set the think time of the second class of philoso-

24




phers to N, and vary the firing frequencies of the first class of philosophers. Figure 5.4 gives the
results of these analyses. Note that the maximum possible value for U, for the given parameter
settings, is 50%. When the firing frequency for the aggressive philosophers is 5.0 the fraction of

time they spend waiting for forks is reduced by 70% (to 0.06).

4 Resource Usages
0.871
07 U(i2,tau)
0.61
0.5 A
0.4+ Ul tau)
0371
0.2+
i Uil idle)
0.1 1 U(i2,idle)
0.0 et
0 3 6 9 12 Tau(i2)
+ Resource Usages
0.671
0.5+
T Ucl,d)
0.41 ~
0.31 T
021 Tl va2.0)
0.1t
0.0 + + + 4 t t + + + + t +
0 3 6 9 12 Tau(i2)

Figure 5.5. Varying geometric think times. Two Classes of Philosophers. 7,, =3 V) f, = 1,d, = 3.

Finally, we repeated the first experiment (Figure 5.2) with geometric think times. Figure 5.5
shows the performance estimates as a function of mean think time of the class two philosophers. The
trends in the performance estimates as r» varies are qualitatively the same as in the deterministic

25



model. However the performance curves are smooth, in contrast to the erratic variations in Figure
5.2. The erratic performance in the deterministic models is due to cyclic dependencies. These

dependencies also make multiple recurrent classes more likely in the deterministic models.
6. Comparison with SPN Models

Models in which a transition’s firing time is an exponential random variable, Stochastic Petri
Nets (SPN), have been independently proposed by Natkin |5], Symons [6], and Molloy [7,8]. Marsan,
Balbo, and Conte (10| generalized the continuous-time SPN model, GSPN, by allowing transitions
which fire in zero time. Molloy [7,9] also proposed a discrete time SPN model with transition
firing times that are geometric random variables. The SPN models are interesting because the
reachability graph for these models are (continuous-time or discrete-time) Markov Chains. In this
sectlon, we compare the conflict resolution and probability assignment methods of the GTPN model
and the SPN models. We then compare the modeling power of the GTPN and SPN models in four

respects. Finally, we comment on the complexity issues concerning deterministic firing durations.
6.1. Conflict Resolution

The addition of timing information to the Petri net model provides several options for conflict
resolution. The method of resolving conflicts in the GTPN is different than the method defined for

the SPN models.

The GTPN conflict resolution submodel uses (possibly state-dependent) transition firing fre-
quencies to resolve conflicts. Our underlying assumption is that the conflict must be resolved
before one of the conflicting transitions can start firing. We also assume that once a transition is
in progress, it cannot be preempted by a new conflict. This submodel is useful, for example, if
the conflict is due to contention for a shared resource, or represents alternative outcomes based on

resource availability.

In contrast, the conflict resolution submodel implicit in the SPN is based on competing transi-
tion delays. The transition which fires first wins the conflict. This mechanism is based on the view

that the physical events modeled by the conflicting transition are in progress simultaneously and




that the completion of one event disables the other. For example, this view holds if one transition
models the successful acknowledgement of a message in a computer network, and the other tran-
sition models a timeout process. The removal of tokens at the time a transition is enabled is not

useful for this approach.

Each of the conflict resolution submodels is valid for the corresponding view of the physical
system. Either can be employed in the SPN or the TPN model. Marsan’s GSPN model uses
firing frequencies for instantaneous transitions and competing delays for exponentially distributed
transition rates. Razouk and Phelps use firing frequencies and enabling times. This is equivale;nt to
implementing the two conflict resolution policies within one model. If it becomes useful, the GTPN

reachability graph construction methods can easily be extended to incorporate enabling times.
6.2. Probability Assignment

The continuous time GSPN model and the GTPN have an embedded discrete time Markov
Chain, while the discrete time SPN model itself is a discrete time Markov Chain. In either case,
probabilities need to be assigned to next states. Each model assigns probabilities that are consistent

with its conflict resolution semantics.

When the time until the next state is positive (i.e. no instantaneous transitions are firing), the
SPN models assign probabilities according to competing transition delays. In the continuous time
SPN’s, with probability one, no two transitions in progress will finish firing simultaneously. This
simplifies probability assignments. In particular, the probability of the next state associated with
transition ¢,’s finishing first has probability equal to t,’s firing rate divided by the sum of the firing

rates of the transitions that are in progress.

In the discrete time SPN, with probability greater than zero, two or more transitions in progress
can finish firing simultaneously. Though more complicated, it is still possible to assign probabilities
to next states using competing transition delays [7,9]. Unfortunately, using competing delays to
assign next state probabilities restricts the allowed probability assignments in the important special

case of deterministic firing delays. A deterministic firing delay is represented as a geometric firing



delay that has probability one of firing in the next time step. Consequently. using competing delays

implies that all the next states have equal probability

The GTPN uses transition frequenciesto assign next-state probabilities, independent of transi-
tion delays. The transition frequency method, unlike the discrete time SPN, can assign non-uniform
probabilities to next states in the case of conflicting transitions with deterministic delays. Compet-
ing deterministic delays lead to only one possible next state. Thus, assigning next state probabilities
is trivial in this case (as long as we support enabling times). It is also possible to assign frequencies
for conflicting geometric transitions such that assigned next-state probabilities are equal to proba-
bilities based on competing delays. This is straightforward, for example. if conflict only arises at the
first time step that both holding times are enabled. We can resolve the conflict with instantaneous
transitions having the appropriate frequencies and then model the geometric delays in the usual
way. In more complex cases the assignment becomes less straightforward. In general, although the
frequency method is powerful, the assignment of static (state-dependent) frequencies, since they
will be used for the dynamic calculation of probabilities, requires careful thought during model

construction.

The random switches used in the GSPN when there are instantaneous transitions firing is a
similar method which uses transition delays to determine probability assignments. In the ran-
dom switches method, however, instead of one frequency expression per transition, a probability

distribution is explicitly given for each possible set of enabled transitions.
6.3. Modeling Power
The GTPN has more modeling power than the existing SPN models in the probability assign-

ments discussed above and in three additional respects: 1) firing durations, 2) resources, and 3)

analysis of multiple recurrent classes.

The first respect is firing durations. The GTPN can represent deterministic firing durations
which are arbitrary nonnegative real values, including zero. The GTPN can also model geometric

‘holding times as can the discrete time SPN. Since a hold time in the discrete time SPN must be a

28




=multiple of some unit step, the GTPN-can ‘be said to have more modeling power, with respect to
firing durations, than the discrete time SPN. Also, since the geometric distribution is the discrete-
time analog of the exponential distribution, and since the GTPN cannot represent deterministic
delays, the GTPN can also be said to have more modeling power, with respect to firing durations,

than the GSPN model.

The second respect is that the GTPN resources provide a simple method of calculating a wide
range of performance estimates. The existing SPN models only provide steady state probabilities.

It should, however, be fairly simple to add resources to an SPN model.

The third respect is the GTPN’s analysis of multiple recurrent classes. The GTPN allows
the performance evaluation of systems that have several possible long run behaviors. In contrast,
the GSPN and the discrete time SPN assume that their Markov Chains are irreducible (i.e. have
only one recurrent class). Again, we believe that the SPN analysis could be developed to suppoft

multiple recurrent classes.

We note that the Extended Stochastic Petri Net (ESPN) model of Dugan, Trivedi, Geist, and
Nicola [11} is a SPN model that, in at least one respect, is more powerful than the GTPN. The
ESPN allows arbitrary holding times and has been shown to be useful for analyzing system response
to failure. However, the ESPN can only be analyzed if the reachability graph is acyclic, unless
restrictions are placed on transitions which have delays that are not exponentially distributed.
6.4. Complexity Issues

Representing deterministic holding times inherently requires larger state spaces than when
holding times are geometrically or exponentially distributed, because the memoryless property of
the geometric and exponential random variables does not apply. Thus, both the GTPN and the
discrete-time SPN model have the potential for large state spaces when deterministic holding times
are represented.

The GTPN contains new states for start firing as well as end firing events. If we loosely identify

these two state changes as one, there is an equivalence between the states in the GTPN and the

29



deterministic SPN when geometric holding times are in progress (i.e. one state change per time
step, including a cycle back to a given state with the probability that none of the geometric delays
completes in the step). When only deterministic holding times are in progress, however, the GTPN
may not contain state changes (or new states) for every time step, whereas the deterministic-time
SPN must. Thus, it appears that the GTPN has at most twice as large a state space as the discrete-
time SPN and that for some deterministic models, the GTPN has a smaller state space. We note
that the RFT vector, which allows a potential reduction in the size of the state space, adds minimal

complexity. It is easy to assign new values to the RF'T vector and to find the smallest value in it.

Due to the inherent complexity of deterministic delays, two important goals during our de-
velopment of the GTPN were to minimize the size of the state space and to minimize the cost of
constructing and analyzing it. These goals are reflected in the algorithms and performance analysis
techniques presented in Sections 3 and 4 The GTPN state space is reduced by generating next
states for mazimal set of events that occur simultaneously (including multiple start-firings of a sin-
gle transition). Another example of reducing the cost of building the state space is our definition of
Generalized Conflict Sets (GCS) and the Partition algorithm. Generalized conflicts sets are state
independent and thus need only be calculated once. We thus are able to avoid a large fraction of
the conflict determination cost when we are calculating the next states of the reachability graph. In
contrast, the definition used in the discrete time SPN is based on partitioning enabled transitions
into sets that are in conflict. This partition is state dependent and thus must be computed for each

state.

That we achieved our goal can be seen by example. We have been able to apply the GTPN
to obtaining exact performance estimates of multiprocessor memory and bus interference [3| Pre-
viously, researchers have viewed obtaining such exact estimates to be computationally intractable.
In contrast, with the GTPN a multiprocessor model with 12 processors, 10 memories, 2 buses, and
a geometric time between memory requests with mean of 5 time units has 2026 states and requires

274 seconds to build the reachability graph and analyze it for performance estimates.

30




7. Conclusions

-We have developed-a generalized Timed Petri Net model for studying the performance of
computer systems. The model imposes no restrictions on the net except that the state space be
finite. We have also defined methods for performance analysis of the GTPN based on analysis of the
embedded discrete-time Markov Chain. The analysis is defined for chains which include multiple
recurrent classes. Our comparison of this model with the discrete-time SPN and the continuous-
time GSPN models shows that the GTPN has more modeling power. In particular, we showed
that the GTPN is a better bridge between the TPN and SPN models than is the discrete-time
SPN model. We have implemented the GTPN Analyzer and demonstrated that the algorithms

presented are efficient.

We expect that the capability to obtain accurate analytic performance estimates will yield
insight into many computer system models. Such exact estimates have already been obtained
with the GTPN for multiprocessor memory and bus interference [3]. Future research plans include
studying the applicability of GTPNs to other issues in computer performance evaluation, such as
the performance of network protocols, the performance of load balancing algorithms in distributed
systems, the performance of database machines, and the performance of advanced architectures for

high-speed numeric or symbolic computation.
Acknowledgements

Many people have made helpful comments and suggestions during our research. We would like

to especially thank Josh Chover, Bill Kalsow, Tom Kurtz, and Udi Manber.
References

(1] W.M. Zuberek, “Timed Petri nets and preliminary performance evaluation,” in Proc. 7th Ann.

Symp. Comp. Arch., pp. 88-96, 1980.

(2] R.R.Razouk and C.V. Phelps, “Performance Analysis Using Timed Petri Nets,” in Proc. 1984

Int Conf. on Parallel Processing, pp. 126-129. August, 1984.

(3] M.A. Holliday and M.K. Vernon, Ezact Performance Estimates for Multiprocessor Memory and

31



8]

9]

Bus {Interference, Tech.Rep. 593, CS Dept., UW-Madison, May 1985.

. C.A. Petri, “Kommunikation mit Automaten,” Schriften des Rheinisch- Westfalischen Institute

fur Instrumentelle Mathematick an der Universitat Bonn, Heft 2, Bonn, W. Germany, 1962;
translation: C.F. Greene, Supplement 1 to Tech. report RADC-TR-65-337, Vol. 1, Rome Air

Development Center, Grifiss Air Force Base, NY 1965

S. Natkin, “Reseaux de Petri stochastiques”, these de Docteur-Ingenieur, CNAM-Paris, June

1980.

F.J.W. Symons, “Introduction to numerical Petri nets, a general graphical model of concurrent
processing systems,” A.'T.R., vol. 14, Jan 1980.

M K. Molloy, “On the integration of delay and throughput measures in distributed processing
models,” Ph.D dissertation, Univ. California, Los Angeles, 1981.

M.K. Molloy, “Perf. Analysis using stochastic Petri nets,” IEEE Trans. Comp., vol. C-31, pp.

913-917, Sept. 1982.

M.K. Molloy, “Discrete Time Stochastic Petri Nets,” IEEE Trans. Soft. Engr., vol. SE-11, pp.

417-423, April 1985.

| M.A. Marsan, G. Balbo, and G. Conte, “A Class of Generalized Stochastic Petri Nets,” ACM

Trans. on Computer Systems, vol. 2, pp. 93-122, May 1984.

* J.B. Dugan, K.S. Trivedi, R.M. Geist, and V.F. Nicola, “Extended Stochastic Petri Nets:

Applications and Analysis,” Performance 84, pp. 507-519, Paris, France, December 1984.

M.A Holliday and M.K. Vernon, “A Generalized Timed Petri Net Model for Performance

Analysis,” in Proc. Int. Workshop on Timed Petri Nets, July 1985

I J.L Peterson, Petri Net Theory and the Modeling of Systems. Englewood Cliffs, NJ: Prentice-

Hall, 1981.

{ C. Ramachandani, “Analysis of Asynchronous Concurrent Systems by Timed Petri Nets,”

Ph D. Dissertation, MIT, 1974.

32




‘15 C.V. Ramamoorthy and G.S. Ho. “Performance Evaluation of Asnchronous Systems using Petri

nets,” [EEE Trans. Software Engr., vol. SE-6, pp. 440-449, Sept. 1980.
[16] G.J. Nutt, “Evaluation nets for computer systems perf. analysis,” in 1972 Fall Joint Computer
Conf., AFIPS Conf Proc.,vol.41., Montvale, N.J.. AFIPS Press, 1972, pp. 279-286.
(17} J.G Kemeny and J L. Snell, Finite Markov Chains. New York, NY: Springer-Verlag, 1976.
(18] R. Sedgewick, Algorithms. pp. 428-420, Reading, MA: Addison-Wesley, 1983.

[19] H.M. Taylor and S Karlin, An Introduction to Stochastic Modeling. Orlando, FL: Academic

Press, 1984.

[20] C.H. Sauer and K.M. Chandy, Computer Systems Perf Modeling, Englewood Cliffs, NJ:

Prentice-Hall, 1981.

w
[N






