DIB—A Distributed Implementation
of Backtracking
by
Raphael Finkel

and
Udi Manber

Computer Sciences Technical Report #5838

March 1985

DIB - A DISTRIBUTED IMPLEMENTATION OF BACKTRACKING”

(Preliminary Version)

Raphael Finkel and Udi Manber

Department of Computer Science
University of Wisconsin
Madison. W1 53706
(608) 262-1204

ABSTRACT

DIB is a general-purpose package that allows applica-
tions that use backtrack or branch-and-bound to be imple-
mented on a multicomputer. It is based on a distributed
algorithm. transparent to the user. that divides the problem
into subproblems and dynamically allocates them to the
available machines. The application program needs only to
specify the root of the recursion tree. and for any given
node in the recursion tree what is the computation involved
in this node and how to generate its children. The package
runs on the Crystal multicomputer at the University of
Wisconsin-Madison. Any number of machines may be
devoted to the application. Our initial experience with DIB
has been very promising. Applications such as traveling
salesman. knapsack. eight queens. and knights tour. have
been coded quite easily. We have found that almost perfect
speedup is achievable for cerwain recursive backtrack prob-
lems. Only a small fraction of the time is spent in com-
munication.

1. INTRODUCTION

We expect that in the next few years a significant
number of professionals from many areas will have access
to advanced workstations connected through networks.
Many of these workstations will serve as personal comput-
ers and will be frequently idle. The ability to distribute
computationally intensive jobs will greatly enhance the utl-
ization of such systems.

Although several distributed systems and programming
languages have been developed and many more are now
being developed. it is apparent from the experience we have
so far that writing distributed programs is significantly
more difficult than writing sequential programs. Program-
mers have to deal with a variety of new issues. including
synchronization. concurrency, communication protocols.
and fault tolerance. Even seemingly simple parts (for
example, termination) become complicated and error-prone
in a distributed environment. In the current stage distri-
buted programming is almost always left to experts.

* This research was supported in part by the National Science Foundation under
grants MCS-8303134 and MCS-8105904, and by DARPA contract N00014-82-C-2087

There are two complementary approaches to make dis-
tributed programming easier. The first approach is to
develop better programming languages. Extensive efforts
are directed towards this goal and significant advances have
been made. but we are still quite far from an "“easy-to-
use’” system. I seems that distributed programs are
inherently complex. The second approach. which is the
one we are taking. is to develop library packages in specific
areas. These packages will be suitable only 1o specific
applications and will lack the generality of a programming
language. They will also be probably less efficient than
direct implementations of specific algorithms. However.
one can hope to make these packages relatively easy to use.
In particular. the distributed part of a program can be tran- -
sparent to the user. Such tools will enable a novice pro-
grammer to execute distributed programs that are written in
a basically sequential manner. As a result. programmers
who are unable or unwilling to master the techniques of
distributed programming can still use the full power of net-
works.

In this paper we present a package called DIB that
allows applications that use backtrack or branch-and-bound
algorithms to be implemented on a multicomputer. (A mu/-
ticomputer is a collection of machines. each with its own
local store. that co-operate by exchange of messages.)
These algorithms are useful for many classes of problems.
The design of DIB emphasizes flexibility and simplicity.
The distributed part of the algorithm is hidden from the
user. An application using DIB is written as a sequential
program.

DIB’s requirements from the distributed operating sys-
tem are minimal. The machines are assumed to be con-
nected by a network that supports a message-passing
mechanism. Each machine can send a message 1o every
other machine. The order of message delivery is
unpredictable. Messages are put in a buffer in the receiv-
ing machine. Once in a while a machine checks its buffer
and reads its messages. We do not assume any interrupt
capability. so the sending machine has no control over
when its message is read. In other words. the machines
are assumed 1o be independent. They may be part of a
multicomputer or workstations connected through a local
area network. Although DIB is implemented on Crystal.
an experimental multicomputer where each machine runs

To be presented at The Fifth International Conference on Distributed Computing

Systems, Denver, May 1985.

only one task. it can easily be adapted to an environment
where each machine is running a timesharing operating
svstem. Each machine may run at a different speed. which
may depend on its current load. A machine can stop exe-
cuting the algorithm for a while and continue later. It can
also decide to stop (as a result of a high load. for example).
We discuss fault tolerance in section 5.

The distribution of work in DIB is dynamic. When a
machine M) finishes the work it was given it sends a
“request for work™™ to another machine My. If Mj is
currently working it divides its work and sends part of it to
M. There is no need to know in advance the time it takes
to perform a piece of work or the relative speeds of the
machines. If M receives what turns out to be the bulk of
the work or if M} suddenly becomes slow, other machines
will finish their work and get M;’s part. Thus. DIB con-
tains an ‘‘automatic’” load-balancing mechanism. The
algorithms for distribution of work. which are described in
section 5. are efficient in terms of the amount of communi-
cation.

The organization of the paper is as follows. In section
2 we discuss related work. In section 3 we define the class
of problems for which DIB is useful. In section 4 we
describe the user interface of DIB. In section 5 we discuss
several distributed algorithms that are used in DIB. In sec-
tion 6 we describe the experiments we performed and our
experience with DIB. Section 7 contains suggestions for
further research. and final remarks and conclusions appear
in section 8.

2. RELATION TO OTHER WORK

The field of distributed algorithms is growing. Several
approaches to tree-search algorithms have been proposed in
the past. In particular. decompositions of alpha-beta search
have been the subject of much effort. Baudet! gives the
entire problem to each machine. with each one constrained
to find a solution within a different window. Narrow win-
dows speed up the search. He reports a speedup limited by
about 6. no matter how many machines are used. Finkel
and Fishburn“ describe a “‘tree-splitting™" algorithm that
maps subtrees of the lookahead tree to machines. The
machines are arranged in a static tree. and the mapping

assigns subproblems of a given problem to the children of .

the machine with that problem. The speedup ranges from
nV2 on optimally-sorted trees to n on pessimally-sorted
trees. where n is the number of machines. Akl and Bar-
nard? suggest a method that Finkel and Fishburn? call
“*mandatory work first”". in which subtrees can be
evaluated in two modes. full and partial. Only one subtree
(the one that appears most likely to succeed) is fully
evaluated: the others are partially evaluated and later fully
evaluated if it turns out that they have a chance to be the
best subtree. Allocation of work to machines is identical to
the *tree-splitting™” method described above. Although Akl
and Barnard report poor speedup. later analysis shows that
their method results in speedup approximately #08 for
optimally-sorted trees and 709 for pessimally-sorted frees.

given a degree about 40 for the lookahead tree and 2 for
the machine tree.

These tree-splitting methods require a fixed machine
tree. They suffer from machines sitiing idle while work is
still pending in other parts of the tree. They also allocate
identical amounts of processing power to large regions of
the tree. even though the left-most region is most likely to
yield results quickly.

Alpha-beta search seems to be the most heavily studied
tree-search algorithm. Branch-and-bound algorithms have
also been studied. One approach5 is to have each machine
compute one node of the search tree and then re-assign
work based on the current bounds and cost functions. The
amount of communication needed is quite high. Anomalies
have been noticed. both by Finkel and Fishburn and by
others®. in which super-linear speedups can be obtained if
a high-quality solution is found early in the search. Li and
Wah ' try to maximize the number of anomalies by suggest-

-ing an evaluation order on the tree. Moller-Nielsen and

Staunstrup have experimented with many different
multicomputer algorithms. including branch-and-bound.
and found that good speedups are possible when most of the
tree has to be traversed.

All of these approaches fit into a more general class of
‘quotient-network ™" algorithms”. in which a logical prob-
lem structure (here. a tree structure) is mapped in some
way onto the physical machines. (Under tree-splitting. the
map is dynamic. but the machines must be arranged as a
tree and the map respects tree level.) The DIB program
that we will describe allows a highly dynamic mapping
between logical subproblems and machines.

3. THE GENERAL CLASS OF PROBLEMS

In this section we give a brief description of the class
of problems that can be supported by DIB. DIB is still in
development stage: we expect 1o extend this class in the
future. The problems we consider are such that the com-
putation is performed by traversing a tree. The tree is usu-
ally built dynamically during the traversal. Each node of
the tree contains data that was received from its parent.
According to this data the node may decide to “*generate™”
several children and pass more data to them. or it may
decide that it is leaf. in which case it performs some com-
putation and passes the outcome 10 its parent.

The kind of outcome the computation yields depends
on the application. Branch-and-bound applications are
described by Lawler! Here. each node 1+ computes a
function. called the objective function. which depends on
values computed along the path from the root to v. We are
usually interested in finding the leaf with the minimum
value of this function. In many cases. it is possible to
determine a lower bound on the value of the objective func-
tion in a subtree rooted at a given internal node v. As a
result, if this lower bound exceeds the a value already
attained by a leaf then there is no need to explore further
and v can '"decide’” that it is a leaf. This is the **bound™
part of the branch-and-bound method.

In some applications the outcomes of all the leaves
have 10 be collected. The outcomes of the computation of
all the children of a particular node may have to be com-
bined in some way to produce the outcome for this node.
The outcome of the computation is then defined as the out-

come of the root. Examples of such algorithms are general
recursive procedures: the tree corresponds in this case to

the recursion tree.

The only major requirement of DIB is that the compu-
tation of each subtree (a subtree is defined as a node with
all its descendants) can be correctly performed without any
knowledge of outcome of any node from another subtree.
It may be the case that the outcome of another subtree may
affect the efficiency of the computation. but it must not
affect the correctness. This requirement is essential in
order to be able to divide the computation among the
machines. It gives us complete freedom to distribute the
work in any way we choose. While it rules out many
applications it still leaves a rather large class of programs.

4. USER INTERFACE

To write an application using DIB the user has to sup-
ply three procedures. Generate. FirstProb. and Prin-
tAnswer. All these procedures are very similar to the pro-
cedures one would expect to have in a sequential program
for this application. The main procedure is Generate, Hs
purpose is to generate children of a given node. thus build-
ing the computation tree. and to determine whether a node
is a leaf and what to do in this case. FirstProb defines the
root of the tree. and PrintAnswer generates the outpul.
The formal definitions of these procedures are given below.

procedure Generate(

var Done : Boolean; (* set by Generate to true if no
more children can be generated *)

First ; Boolean: (* if true. generate first child of
Parent: otherwise next sibling of Child *)

var Parent : ProblemType: (* this is variable since
some applications need to change the parent after
learning something about the children *)

var Child : ProblemType; (* the output of this pro-
cedure, unless Done = true ¥)

var Report : Boolean; (* set to true if an output is
required afier completing the computation in this
node ¥)

var Ans : AnswerType (* what to report, if Report is
true *)):

procedure FirstProb(var P
integer);

ProblemType: Size

procedure PrintAnswer(P : AnswerType);

The application may supply several additional pro-:
cedures.

Printing procedures
used for debugging.

NonTrivial
returns true if the given subproblem is expected to
require substantial amount of time. DIB will only
attempt to divide and distribute nontrivial problems.
even though there may be idle machines. If the appli-
cation does not supply this procedure. the default
value is true.

UseNewlinfo
accepts new information that has been broadcast by
another node. (DIB provides Broadcastinfo. which
allows a node to broadcast information. such as a new
bound in branch-and-bound. to other nodes.)

Appliclnit
Initializes data and distributes it to all machines at the
beginning of the computation.

Combine

given the outcomes of all children of a particular

node. computes the resulting outcome of that node.
An example of an application is given in Appendix 1.

DIB also provides a test procedure which. given a DIB
application. produces a sequential program. The fest pro-
cedure is used in the initial debugging phase. Most errors
can thus be eliminated before resorting to distributed
debugging which is much harder.

5. THE UNDERLYING DISTRIBUTED ALGORITHM

We begin with some notation. Let 7 denote the com-
putation tree, We associate with each node v of T a prob-
lem P,. which corresponds to the computation of the sub-
tree rooted at v. We assume that a description of P,
includes all the data required to perform the computation.
Proo; is the problem we want 1o solve. Let P, be a problem
such that v is an internal node and let wy. u). u; be
the children of v. To solve P, one has to solve
Pu.i=12... & and then combine the oulcomes. '

The algorithm is based on a depth-first search of the
tree. If there is only one machine then the computation is
straightforward. Assume that there are a active machines
My, My, My. n > 1. Each machine M; maintains two
tables. WorkGonen and WorkGiven. WorkGoten contains a
set of problems that were received from other machines.
M; is said 1o be responsible for these problems. A problem
is kept in WorkGotten until it is solved (by M; ar other
machines). in which case the outcome is reported to its
parent problem. WorkGiven contains a set of problems that
M; has given to other machines. The purpose of these
tables is twofold. First. they are necessary for applications
in which the outcomes of the children are collected and
combined at the parent (that is. the computation proceeds
up the tree as well as down the tree). Second. if several
machines fail. then the remaining machines can determine
which problems have not been solved and solve them. A
subset of the DIB package handles the simpler case of com-
putations that do not require these tables.

The user may associate priorities with subproblems
according to their likely chances to lead 10 best solutions.
Such priorities are commonly used in different heuristics
for branch-and-bound algorithms. Each machine M,
maintains a /eap that contains all the outstanding problems
M; has. (There is some redundancy in the purposes of the
heap and WorkGotien: it turns out 10 be easier both con-
ceptually and in terms of the implementation.) The order-
ing of problems in the heap is based on their priority and
their depth. M; takes problems from its heap and performs
the necessary computation. If the heap is empty. M; sends
requests for work 10 other machines. which are selected by
an algorithm that will be described later.

A machine M; that receives a request for work can
granr this request by sending away some problems. M;
selects the problems it sends away by first checking its
heap. If the heap is not empty then a portion of it is sent.
Otherwise. if the current problem M; is working on. P,. is
not trivial (see the previous section), P, is divided. a por-
tion of it is given away. and the rest is put in the WorkGor-
fen 1able (as being *‘gotten’” from M;) and in the heap.
Hence. a request is not granted only if it is not worthwhile
to divide the current problem.

Subproblems with higher priorities will be given away
sooner and will be worked on sooner. Obviously, we can-
not guarantee any particular order of execution because of
the nondeterministic nature of the distribution of work.
We only make particular orders more likely.

We are currently experimenting with several algo-
rithms for determining which machine to ask for work.
how much work should be given away. and what to do if a
request cannot be granted. Several tradeoffs are involved.
We obviously want to minimize the number of request and
work messages. On the other hand. we want t0 minimize
the idle time of machines that are waiting for work and
make the algorithm robust so that it is not dependent on the
cooperation of all machines. In addition. the algorithm
should detect termination efficiently.

A similar general problem was studied by Manber! !,
who suggested several algorithms and proved lower bounds.
Only worst-case behavior was considered. One feature of
these algorithms that we use here is sending a constant por-
tion of the available work (usually about a half) instead of
one unit. This policy minimizes the number of messages
but it increases their sizes. In many cases. the overhead in
preparing. sending. and receiving one message outweighs
the extra cost of larger messages. Also. since the tree is
generally not random. one can describe several subprob-
lems with a short description (for example. *‘all the chil-
dren from i/ to ;).
(which are measured by the time spent on communication-
related activities. including waiting) can increase by a fac-
tor of up to 3 when the portion of work given is small (less
then 5%).

The first algorithm for sending request messages that
we tried is similar to the simpler algorithm given by

We found that communication cosls.

Manber. Each machine M; keeps a variable called Helper.
Helper is initially set o (i mod n)+ 1. which is called the
successor of M. M; sends a request for work 1o Helper. If
Helper cannot grant the request then it forwards the request
to its successor. Once the request is granted. M; sets the
new value of Helper to be the successor of the machine that
granted the request. This way requests are distributed
fairly evenly around the ring. The machine responsible for
the problem associated with the root sends out termination
messages 1o all other machines when the results of all the
children of the root come in. There are two main draw-
backs in this algorithm. Near termination. most machines
have no work. causing most request messages to be for-
warded many times. If there are many machines they can
flood the network before they detect termination. In addi-
tion. the algorithm is not robust. If one machine fails. all
requests may stop there,

In the second algorithm. each machine sends requests
for work to 4 other machines that are either selected in the
same way as the first algorithm or at random. 4 >1 is a
constant which may depend on #n and on the application.
We used k=2. since n was small. Requests are never for-
warded: if there is no work to give then the requests are
ignored. This way the number of messages is always small
even close 1o termination. The drawback of this algorithm
is that a machine might send requests 10 & other machines
that have also asked for work at the same time. None will
respond. so the first machine will “*give up’". We have
found several ways to avoid this possibility. but we also
found that in general it is unlikely except close to termina-
tion. when it makes no difference. In all the applications
we tried the amount of time spent in communication related
activities was very small (see section 6.2).

We are currently in the middle of implementing fauh
tolerance in DIB. When a machine M; finishes its work
and its WorkGiven table is not empty, then it is likely that
the work that M; gave away went to a failing machine.
While M; is looking for more work it also starts to redo the
outstanding work in its WorkGiven table. The implementa-
tion of the recovery part has not yet been completed. and
we omit the details. We are also looking at the more com-
plicated tree algorithms in!!.

6. EXPERIMENTS

6.1. The Crystal Multicomputer

The Crystal multicomputer is discussed in detail else-
where!2: It is a collection of VAX-11/750 computers
(currently there are 20) with 2MB of memory each. con-
nected by a 10 Mb/sec token ring. Crystal is a vehicle that
serves a variety of research projects involving distributed
computation. It can be used simultaneously by muliple
research projects by partitioning the available machines
according to the requirements of each project.

Users can employ the Crystal multicomputer in a
number of ways. Projects that need direct control of
machine resources can be implemented using a reliable

communication service (the “‘nugget™*) that resides on each
machine. DIB is implemented with the assistance of a
library package (the ‘‘simple-application package'’) that
interacts with the nugget. Projects that prefer a higher-
level interface can be implemenied using the Charlotte dis-
tributed operating system. Development. debugging, and
execution of projects takes place remotely through any of
several VAX-11/780 hosts running Berkeley Unix 4.2.
Acquiring a partition of machines. resetting each machine
of the partition. and then loading an application onto each
machine may be performed interactively from any host
machine,

6.2. Preliminary experimental results
So far we have tried the following applications. which
use typical backtracking algorithms.,
The eight queens problem
Find all possible arrangements of N (chess) queens on
an Nx N board such that no queen can attack another
queen.

knights tour
Find all possible tours a (chess) knight can take cover-
ing the whole board except & squares without repeat-
ing a square. (This is basically an Hamiltonian path
problem.)

The traveling-salesman problem
Find a minimal-cost tour of cities. Inter-city costs are
initialized from a uniform distribution in [0.1]. We
used the straightforward implementation trying all pos-
sible tours; at every node of the tree the cost of the
partial tour is compared to the current minimum: a
new minimum is broadcast to all machines.

Petri nets reachability problems
Given a Petri net and a state find all states reachable
from this state. Only simple algorithms have been
implemented so far.

knapsack
Given a set of items. each having a size and value,
find a subset of items such that the sum of the sizes is
bounded by a given constant and the sum of the values
is maximized.

Figure I displays total running times for the traveling
salesman problem on 11 cities for 1 10 16 machines. Fig-
ure 2 shows similar results for a version of traveling sales-
man that sorts the children. always visiting the closest city
first. The times are given in seconds: they were measured
by the host machine. Distribution of work was handled by
the first algorithm described in the previous section,

The distances among the cities were selected at ran-
dom. The underlying algorithm is the straightforward
naive algorithm that tries all possibilities except when a
bound cuts off a subtree. Its performance is far from that
of more sophisticated algorithms. It is used here to demon-

* Unix iy o trademark of Bell Labs

Frgure I: Traveling Saksman Problem
OO 7o wmmmerem e s mm oo e et

1400 1 e et

120044 s B U

Efficiency
1000 1 oo oo f e e

Leaves

R R T ree— B o SR e —————

400 T N e

200 4 e A

: 10
Number of Machines

Figure 2: Sorted Traveling Salesman Problem

QOO e e e
300 - e
200 ”.w.".HAH,W,HUMHM»“.”_W»”.M.”»M.”,w.”u“hLééQES/3
_4__*da*’*“‘”’*“V/A\\V/’—dﬁﬂ*
1007 o wucnc\
Time
O T T T —
0 4 8 12 16

Number of Machines

strate the characteristics of DIB. which. as a result of jts
generality, cannot compete with very well wned implemen-
tations.

The figures also show the efficiency. which is defined
as the speedup divided by the number of machines. A
score of 1000 (Figure 1) or 100 (figure 2) represents per-
fect efficiency. This figure demonstrates that the efficiency
and the amount of work (as shown by the number of leaves
examined) mirror each other.

The algorithm reaches a leaf only if the cost of a par-
tial tour without the leaf is still smaller than the current
lower bound. The sooner good lower bounds are found the
less work the algorithm has to perform. Sometimes. by
dividing the problem differently among the machines. the
best tour is found earlier and the performance of the algo-
rithm is substantially improved. As a result. it is possible
to get better than a linear speedup on the one hand. and
““slowdown"" when the number of machines increases on
the other hand. The number of leaves the algorithm
reaches is thus a measure of the amount of work per-
formed. Both figures show the number of leaves: Figure
two divides the number by 3 1o fit on the same graph. The
efficiency and the number of leaves are roughly mirror
images.

Table 1: Distribution of work

Machine | computation time communication time
] 549.606 2.780
2 549.316 2.881
3 549,585 2.688
4 549.292 2.909
5 549,338 2.912
6 549.001 3.227
7 549.425 2.894
8 549.019 3.299
9 548.648 3.627

10 549,592 2.755
Il 549,544 3.125
12 549,325 3.291
13 549.100 3.533
14 549.513 3.155
15 549.289 3.321
16 549.672 3.024

Table 1 presents the individual machine running times
for the 14-city travelling salesman problem executing on 16
machines. The most striking feature of the algorithm is its
success in dynamically distributing work evenly among the
machines. The running times of any application were
divided into three parts: computation time. inter-machine
communication time. and communication 10 the host.
Communication to the host included basically only I/0. and
since we only output the number of leaves and the best
tour. this part was negligible. Inter-machine communica-
tion included the time it takes for a machine to perform all
the activities connected with communication. We measured
all the overhead resulting from the communication instead
of just measuring the delay time directly in the network.
We included the time it takes 10 generate a message. 10 wail
for an answer. and 10 receive. relay. and process a mes-
sage.

7. FURTHER RESEARCH
There are scveral directions for. advancing this
research. We are currently looking at the following areas.
® Adapting DIB to more applications by supplying more
routines for svnchronization. broadeast. and distribu-
tion of work.

® Implementing robust fault tolerant facilities. In partic-
ular. we are studying recovery mechanisms that do not
require timeouts. In an environment of personal
workstations failures can be caused by the “*owner’" of
the machine who decides to stop all the “*foreign™’
processes. Hence. the likelyhood of failures is
independent on the hardware.

® Analyzing the performance of the various algorithms
for work distribution. distributed termination. and
fault tolerance.

® Tuning the algorithms to particular applications,

Adapting DIB to be used as an instructional tool in
networking and distributed computing courses.

8. CONCLUSIONS

DIB is a first attempt at providing an easily used facil-
ity for writing distributed programs involving backtracking.
The distributed part of DIB is completely hidden from the
user. making it especially suitable for programmers without
expertise in distributed or parallel programming. Iy
requires minimal support from the distributed operating
system and. as a result. it should be relatively poriable.
Our results so far indicate that for simple programs DIB is
an efficient and very €asy to use tool to automatically distri-
bute work in a distributed environment.

REFERENCES

I. G. M. Baudet. The Design and Analvsis of Algorithms
Jor Asynchronous Multiprocessors. Department of Com-
puter Science. Carnegie-Mellon University (April
1978).

R. A. Finkel and J. P. Fishburn. *-Parallelism in
Alpha-Beta Search.”" Journal of Aniificial Intelligence
19(1)(September 1982).

3. S. G. AKl. D. T. Barnard. and R. J. Doran. **Simula-
tion and analysis in deriving time and storage require-
ments for a parallel alpha-beta algorithm.™" Proc. 1980
International Conference on Parallel Processing. pp.
231-234 (August 1980).

4. R. A. Finkel and J. P. Fishburn. “Improved speedup
bounds for parallel alpha-beta search.”* IEEE Transac-
tions on Partern Analvsis and Machine Intelligence
PAMI-5¢(] J(January 1983).

5. G. B. Adams Il and H. J. Siegel. M. Imai. T.
Fukumura. and Y. Yoshida. ‘A parallelized branch-
and-bound algorithm: implementation and efficiency,™
Systems. Compuiers, Controls 10(3) pp. 270-277
(1979).

2]

T-H Lai and S. Sahni. *‘Anomalies in parallel
branch-and-bound algorithms.”” CACM 27(6) pp.
594-602 (Junc 1984).

G-J Li and B. W. Wah. "*Computational efficiency of
paraliel approximate branch-and-bound algorithms, "™
Proceedings of the International C. onference on Parallel
Processing. (August 1984.).

P. Moller-Nielsen and J. Staunstrup. **Experiments
with a Multiprocessor."” Technical Report PB-185.
Computer Science Department. AArhus University,
(November 1984).

J. A. Fishburn and R. A. Finkel. **Quotient net-
works. ™" IEEE Transactions on Compuiers
C-31(4)(April 1981).

E. L. Lawler and D. Wood. *‘Branch and Bound
methods: a survey.”" Operations Research 14(4) pp.
699-719 (1966).

U. Manber, **On Maintaining Dynamic Information
in a Concurrent Environment." Sivieenth Annual ACM
Symposium on Theory of Computing. pp. 273-278
(April 1984). revised January 1985

D. DeWitt. R. Finkel. and M. Solomon. **The Crystal
multicomputer: Design and implementation experi-
ence.”” Technical Report 553. University of
Wisconsin-Madison Computer Sciences (September
1984).

R. Cook. R. Finkel. D. DeWin. L. Landweber. and
T. Virgilio. **The crystal nugget: Part 1 of the first
report on the crystal project.”” Technical Report 499,
Computer Sciences Department. University of
Wisconsin (April 1983),

Raphael Finkel. Robert Cook. David DeWit. Nancy
Hall. and Lawrence Landweber, **Wisconsin Modula:
Part 111 of the First Report on the crystal project., ™’
Technical Report 501, University of
Wisconsin-Madison Computer Sciences (April 1983).

Appendix I: a sample application program

which we have done our experiments

This example is presented in Modula. the language in
For conciseness.

we omit the formal-argument declarations for Generate.
since we have already presented them earlier in the paper.

module queens:

const
MaxProbSize = 20:
fype
QueenArray = array |:MaxProbSize of integer:
ProblemType =
record
Size : integer:
Length : integer:
Queens : QueenArray
end:
AnswerType = ProblemType;

procedure PrintAnswer(const P ; ProblemType):
var
Seq : integer:

begin
with P do
Seq:=1:
while Seq < = Length do
printf(” ‘/'E«d".Queens[Seq]):
inc(Seq):
end:
printf("0y:
end:
end PrintAnswer:

procedure Generate : (* parameters were defined in section 4 *)
var
Seq : integer:
ThisQueen. ThatQueen ; integer:
Bad : Boolean:
begin
if First and (Parent Length = Parent Size) then
Report : = true:
Done : = true:
Ans := Parent:
else
(* not a leal *)
Report : = false:
if First then
Child : = Paren:
with Child do
inc(Length):
Queens|[Length] 1= Q:
end:
First : = false:
end:
with Child de
loop (* search for a reasonable place for current queen *)
inc(Queens[Lengthl);
ThisQueen : = Queens|Length]:
when ThisQueen > Size do
Done : = 1rue:

exit:
Seq:= 1:
Bad : = false:

while Seq < Length do
(* check if Queens[Seq) conflicts with Queens[Length] *)
ThatQueen : = Queens|Seq]:
when (ThaiQueen = ThisQueen) or
(ThatQueen + Seq - Length = ThisQueen) or
(ThatQueen - Seq + Length = ThisQueen) do
Bad : = true:
exit: (* not a solution *)
inc(Seq):
end: (* while Seq < Length *)
when not Bad do
Done : = fajse:
exit:
end: (* search for reasonable place for current queen #)
end; (* with Child *)
end: (* not a leaf *)
end Generate:

procedure NonTrivial(const P : ProblemType):
begin

NonTrivial : = P.Length < P.Size-2:
end NonTrivial:

procedure FirstProb(var P : ProblemType):
begin

P.Size : = Size:

P Length := 0:
end FirstProb:

- end queens.

