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ABSTRACT

In this paper we present a new algorithm. DBMIN. for managing the buffer pool of a relational data-
base management system. DBMIN is based on a new model of relational query behavior, the query locality
set model (QLSM). Like the hot set model. the QLSM has an advantage over the stochastic models due to
its ability to predict future reference behavior. However. the QLSM avoids the potential problems of the hot
set model by separating the modeling of reference behavior from any particular buffer management algo-
rithm. After introducing the QLSM and describing the DBMIN algorithm. we present a new performance
evaluation methodology for evaluating buffer management algorithms in a multiuser environment. This
methodology employed a hybrid model that combines features of both trace driven and distribution driven
simulation models. Using this new model, the performance of the DBMIN algorithm in a multiuser environ-
ment is compared with that of the hot set algorithm and four more traditional buffer replacement algorithms.







1. Introduction

In this paper we present a new algorithm, DBMIN. for managing the buffer pool of a relational data-
base management system. DBMIN is based on a new model of relational query behavior, the query locality
set model (QLSM). Like the hot set model [Sacc82]. the QLSM has an advantage over the stochastic
models due to its ability to predict future reference behavior. However, the QLSM avoids the potential prob-
lems of the hot set model by separating the modeling of reference behavior from any particular buffer
management algorithm. Afier introducing the QLSM and describing the DBMIN algorithm, the perfor-
mance of the DBMIN algorithm in a multiuser environment is compared with that of the hot set algorithm
and four more traditiona! buffer replacement algorithms.

A number of factors motivated this research. First. although Stonebraker [Ston81] convincingly
argued that conventional virtual memory page replacement algorithms (e.g. LRU) were generally not suitable
for a relational database environment. the area of buffer management has. for the most part, been ignored
(contrast the activity in this area with that in the concurrency control area). Second. while the hot set results
were encouraging they were. in our opinion. inconclusive. In particular. [Sacc82] presented only limited.
single user tests of the hot set algorithm. We felt that extensive. multiuser tests of the hot set algorithm and
conventional replacement policies would provide valuable insight into the effect of the buffer manager on
overall system performance.

In Section 2. we review earlier work on buffer management strategies for database systems. The
QLSM and DBMIN algorithm are described in Section 3. Our multiuser performance evaluation of alterna-
tive buffer replacement policies is presented in Section 4. Section 5 contains our conclusions and suggestions

for future research.

2. Buffer Management for Database Systems

While many of the early studies on database buffer management focused on the double paging prob-
lem [Fern78] [Lang77] [Sher76al [Sher76b] [Tuel76]. recent research efforts have been focused on finding
buffer management policies that understand database systems [Ston81] and know how to exploit the predicta-

bility of database reference behavior. We review some of these algorithms in this section.




2.1. Domain Separation Algorithms

Consider a query that randomly accesses records through a B-tree index. The root page of the B-tree
is obviously more important than a data page. since it is accessed with every record retrieval. Based on this
observation. Reiter [Reit76] proposed a buffer management algorithm, called the domain separation (DS)
algorithm. in which pages are classified into types. each of which is separately managed in its associated
domain of buffers. When a page of a certain type is needed. a buffer is allocated from the corresponding
domain. If none are available for some reason, e.g. all the buffers in that domain have I/O in progress, a
buffer is borrowed from another domain. Buffers inside each domain are managed by the LRU discipline.

Reiter suggested a simple type assignment scheme: assign one domain to each non-leaf level of the B-tree

structure, and one to the leaf level together with the data. Empirical data’ showed that this DS algorithm pro-
vided 8-10% improvement in throughput when compared with an LRU algorithm.

The main limitation of the DS algorithm is that its concept of domain is static. The algorithm fails to
reflect the dynamics of page references as the importance of a page may vary in different queries. It is obvi-
ously desirable to keep a data page resident when it is being repeatedly accessed in a nested loops join. How-
ever. it is not the case when the same page is accessed in a sequential scan. Second. the DS algorithm does
not differentiate the relative importance between different types of pages. An index page will be over-written
by another incoming index page under the DS algorithm. although the index page is potentially more impor-
tant than a data page in another domain. Memory partitioning is another potential problem. Partitioning
buffers according to domains. rather than queries. does not prevent interference among competing users.
Lastly. a separate mechanism needs to be incorporated to prevent thrashing since the DS algorithm has no
built-in facilities for load control.

Several extensions to the DS algorithm have been proposed. The group LRU (GLRU) algorithm,
proposed by Howthorn [Nybe84]. is similar to DS. except that there exists a fixed priority ranking among dif-
ferent groups (domains). A search for a free buffer always starts from the group with the lowest priority.

Another alternative. presented by Effelsberg and Haerder [Effe84]. is to dynamically vary the size of each

! In Reiter's simulation experiments, a shared buffer pool and a workload consisting of 8 concurrent
users were assumed.



domain using a working-set-like [Denn68]-partitioning scheme. Under this scheme, pages in domain i which
have been referenced in the last 7; references are exempt from replacement consideration. The "working set”
of each domain may grow or shrink depending on the reference behavior of the user queries. Although
empirical data indicated that dynamic domain partitioning can reduce the number of page faults (of the sys-

tem) over static domain partitioning. Effelsberg and Haerder concluded that there is no convincing evidence

that the page-type-oriented schemes- are distinctly superior to global algorithms. such as LRU and CLOCK.

2.2. ‘“‘New” Algorithm

In a study to find a bener buffer management algorithm for INGRES [Ston76], Kaplan [Kapi80]
made two observations from the reference patterns of queries: the priority to be given 1o a page is not a pr6~
perty of the page itself but of the relation to which it belongs: each relation needs a "working set”. Based on
these observations. Kaplan designed an algorithm. called the "new” algorithm. in which the buffer pool is
subdivided and allocated on a per-relation basis. In this “new” algorithm. each active relation is assigned a
resident set which is initiallv empty. The resident sets of relations are linked in a priority list with a global
free list on the top. When a page fault occurs. a search is initiated from the top of the priority list until a
suitable buffer is found. The faulting page is then brought into the buffer and added to the resident set of the
relation. The MRU discipline is employed within each relation. However. each relation is entitled to one
active buffer which is exempt from replacement consideration. The ordering of relations is determined, and
may be adjusted subsequently. by a set of heuristics. A relation is placed near the top if its pages are unlikely
to be re-used. Otherwise. the relation is protected at the bottom. Results from Kaplan's simulation experi-
ments suggested that the “new" algorithm performed much better than the UNIX buffer manager. However,
in a trial implementation [Ston82]. the "new" algorithm failed to improve the performance of an experimental
version of INGRES which uses an LRU algorithm.

The "new” algorithm presented a new approach to buffer management. an approach that tracks the
locality of a query through relations. However, the algorithm itself has several weak points. The use of

MRU is justifiable only in limited cases. The rules suggested by Kaplan for arranging the order of relations

2 The DS algorithm is called a page-type-oriented buffer allocation scheme in [Effe84].




on-the priority-list were based solely on:intuition. Furthermore: under high-memory contention, searching
through a priority list for a free buffer can be expensive. Finally, extending the "new” algorithm to a multi-
user environment presents additional problems as it is not clear how to establish priority among relations

from different queries that are running concurrently.

2.3. Hot Set Algorithm

The hot set model proposed by Sacco and Schkolnick [Sacc82] is a query behavior model for rela-
tional database systems that integrates advance knowledge on reference patterns into the model. In this
model. a set of pages over which there is a looping behavior is called a het set. If a query is given a buffer
large enough 10 hold the hot sets. its processing will be efficient as the pages referenced in a loop will stay in
the buffer. On the other hand. a large number of page faults may result if the memory allocated to a query is
insufficient to hold a hot set. Plotting the number of page faults as a function of buffer size. we can observe a
discontinuity around the buffer size where the above scenario takes place. There may be several such discon-
tinuities in the curve, each is called a hot point,

In a nested loops join in which there is a sequential scan on both relations. a hot point of the query is
the number of pages in the inner relation plus one. The formula is derived by reserving enough buffers to
hold the entire inner relation. which will be repeatedly scanned, plus one buffer for the outer relation. which
will be scanned only once. If. instead. the scan on the outer relation is an index scan. an additional buffer is
required for the leaf pages of the index. Following similar arguments. the hot points for different queries can
be determined.

Applying the predictability of reference patterns in queries. the hot set model provides a more accu-
rate reference model for relational database systems than a stochastic model. However. the derivation of the
hot set model is based partially on an LRU replacement algorithm. which is inappropriate for certain looping
behavior. In fact. the MRU (Most-Recently-Used) algorithm. the opposite to an LRU algorithm. is more
suited for cycles of references [Thor72], because the most-recently-used page in a loop is the one that will not
be re-accessed for the longest period of time. Going back to the nested loops join example. the number of

page faults will not increase dramatically when the number of buffers drops below the "hot point” if the’
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‘MRU -algorithm is used. In this respect. the hot set model does not truly reflect the inherent behavior of
some reference patterns, but rather the behavior under an LRU algorithm.

In the hot set algorithm. each query is provided a separate list of buffers managed by an LRU discip-
line. The number of buffers each query is entitled to is predicted according to the hot set model. That is. a
query is given a local buffer pool of size equal to its hot set size. A new query is allowed to enter the system
if its hot set size does not exceed the available buffer space.

As discussed above. the use of LRU in the hot set model lacks a logical justification. There exist
cases where LRU is the worse possible discipline under tight memory constraint. The hot set algorithm
avoids this problem by always allocating enough memory to ensure that references to different data structures
within a query will not interfere with one another. Thus it tends to over-allocate memory, which implies that
memory may be under-utilized. Another related problem is that there are reference patterns in which LRU
does perform well but is unnecessary since another discipline with a lower overhead can perform equally
well. Lastly, the hot set algorithm can not respond well to phase transitions of queries, since the algorithm

allocates the maximum amount of buffers ever needed by a query.

3. The DBMIN Buffer Management Algorithm

In this section. we first introduce a new query behavior model. the query locality set model
(QLSM). for database systems. Using a classification of page reference patterns, we show how the reference
behavior of common database operations can be described as a composition of a set of simple and regular
reference patterns. Like the hot set model. the QLSM has an advantage over the stochastic models due to its
ability to predict future reference behavior. However, the QLSM avoids the potential problems of the hot set
model by separating the modeling of reference behavior from any particular buffer management algorithm.

Next we describe a new buffer management algorithm termed DBMIN based on the QLSM. In this
algorithm, buffers are allocated and managed on a per file instance basis. Each file instance is given a local
buffer pool to hold its locality set. which is the set of the buffered pages associated the file instance. DBMIN
can be viewed as a combination of a working set algorithm [Denn68] and Kaplan's "new"” algorithm in the

sense that the locality set associated with each file instance is similar to the working set associated with each




process. - However; the size of a locality-set is determined in-advance. and needs not be re-calculated as the
execution of the query progresses. This predictive nature of DBMIN is close to that of the hot set algorithm.
However. unlike the hot set algorithm which allocates buffers statically, DBMIN uses a dynamic partitioning
scheme, in which the total number of buffers assigned to a query may vary as files (relations) are opened and

closed.

3.1. The Query Locality Set Model

The QLSM is based on the observation that relational database systems support a limited set of opera-
tions and that the pattern of page references exhibited by these operations are very regular and predictable.
In addition. the reference pattern of a database operation can be decomposed into the composition of a
number of simple reference patterns. Consider. for example. an index join with an index on the joining attri-
bute of the inner relation. The QLSM will identify two locality sets for this operation: one for the sequential
scan of the outer relation and a second for the index and data pages of the inner relation. In this section. we
present a taxonomy for classifying the page reference patterns exhibited by common access methods and data-

base operations.

Sequential References

In a sequential scan, pages are referenced and processed one after another. In many cases. a
sequential scan is done only once without repetition. For example. during a selection operation on an unor-
dered relation. each page in the file is accessed exactly once. A single page frame provides all the buffer
space that is required. We shall refer to such a reference pattern as straight sequential (SS).

Local re-scans mav be observed in the course of a sequential scan during certain database operations.
That is. once in a while. a scan may back up a short distance and then start forward again. This can happen
in a merge join [Blas77] in which records with the same key value in the inner relation are repeatedly
scanned and matched with those in the outer relation. We shall call this pattern of reference clustered
sequential (CS). Obviously. records in a cluster (a set of records with the same key value) should be kept in
memory at the same time if possible.

In some cases. a sequential reference to a file may be repeated several times.” In a nested loops join.



for-instance, the-inner relation is repeatedly scanned untii the outer relation is exhausted. We shall call this a
looping sequential (LS) pattern. The entire file that is being repeatedly scanned should be kept in memory if
possible. If the file is too large to fit in memory. an MRU replacement algorithm should be used to manage

the buffer pool.

Random References

An independent random (IR) reference pattern consists a series of independent accesses. As an
example. during an index scan through a non-clustered index. the data pages are accessed in a random
manner. There are also cases when a locality of reference exists in a series of "random” accesses. This may
happen in the evaluation of a join in which a file with a non-clustered and non-unique index is used as the
inner relation, while the outer relation is a clustered file with non-unique keys. This pattern of reference is
termed clustered random (CR). The reference behavior of a CR reference is similar to that of a CS scan.

If possible. each page containing a record in a cluster should be kept in memory.

Hierarchical References

A hierarchical reference is a sequence of page accesses that form a traversal path from the root down
to the leaves of an index. If the index is traversed only once (e.g. when retrieving a single tuple), one page
frame is enough for buffering all the index pages. We shall call this a straight hierarchical (SH) reference.
There are two cases in which a tree traversal is followed by a sequential scan through the leaves: hierarchi-
cal with straight sequential (H/SS). if the scan on the leaves is SS. or hierarchical with clustered
sequential (H/CS). otherwise. Note that the reference patterns of an H/SS reference and an H/CS reference
are similar to those of an SS reference and a CS reference. respectively.

During the evaluation of a join in which the inner relation is indexed on the join field. repeated
accesses 1o the index structure may be observed. We shali call this pattern of reference as looping hierarch-
jcal (LH). In an LH reference. pages closer to the root are more likely to be accessed than those closer to
the leaves. The access probability of an index page at level i, assuming the root is at level 0, is inversely pro-
portional to the ith power of the fan-out factor of an index page. Therefore, pages at an upper level (which

are closer to the root) should have higher priority than those at a lower level. In many cases. the root is




perhaps the only page worth keeping:in-memory since the fan-out of an-index page is usually high.

3.2. DBMIN - A Buffer Management Algorithm Based on the QLSM

In the DBMIN algorithm, buffers are allocated and managed on a per file instance basis>. The set
of buffered pages associated with a file instance is referred to as its locality set. Each locality set is
separately managed by a discipline selected according to the intended usage of the file instance. If a buffer
contains a page that does not belong to any locality set. the buffer is placed on a global free list. For simpli-
city of implementation. we restrict that a page in the buffer can belong to at most one locality set. A file
instance is considered the owner of all the pages in its locality set. To allow for data sharing among con-
current queries. all the buffers in memory are also accessible through a global buffer table. The following

notation will be used in describing the algorithm:
N - the total number of buffers (page frames) in the system;

I - the maximum number of buffers that can be allocated to file instance j of query i;

ry - the number of buffers allocated to file instance j of query i.

Note that 1 is the desired size for a locality set while r is the actual size of a locality set.

At start up time. DBMIN initializes the global table and links all the buffers in the system on the glo-
bal free list. When a file is opened. its associated locality set size and replacement policy are given to the
buffer manager. An empty locality set is then initialized for the file instance. The two control variables r and
1 associated with the file instance are initialized to 0 and the given locality set size. respectively.

When a page is requested by a query. a search is made to the global table. followed by an adjustment

1o the associated locality set. There are three possible cases:

(1) The page is found in both the global table and the locality set: In this case. only the usage statistics
need to be updated if necessary as determined by the local replacement policy.

(2) The page is found in memory but not in the locality set: If the page already has an owner, the page
is simply given to the requesting query and no further actions are required. Otherwise. the page is
added to the locality set of the file instance. and r is incremented by one. Now if r > 1, a page is

3 active instances of the same file are given different buffer pools. which are independently managed.
However. as we will explain later, all the file instances share the same copy of a buffered page whenever pos-
sible through a global table mechanism. -



- chosen and-released backto the-global free list-according to thelocal replacement policy. and r is set to
1. Usage statistics are updated as required by the local replacement policy.

(3) The page is not in memory: A disk read is scheduled to bring the page from disk into a buffer allo-
cated from the global free list. After the page is brought into memory. proceed as in case 2.

Note that the local replacement policies associated with file instances do not cause actual swapping of pages.
Their real purpose is to maintain the image of a query’s "working set". Disk reads and writes are issued by
the mechanism that maintains the global table and the global free list.

The load controller is activated when a file is opened or closed. Immediately after a file is opened,

the load controller checks whether $31; < N for all active queries i and their file instances j. If so, the
i

query is allowed to proceed: otherwise. it is suspended and placed at the front of a waiting queue. When a
file is closed, buffers associated with its locality set are released back to the global free list. The load con-
troller then activates the first query on the waiting queue if this will not cause the above condition to be
violated.

What remains to be described is how the QLSM is used to select local replacement policies and esti-
mate sizes for the locality sets of each file instance.
Straight Sequential (SS) References

For SS references the locality set size is obviously 1. When a requested page is not found in the
buffer. the page is fetched from disk and overwrites whatever is in the buffer.
Clustered Sequential (CS) References

For CS references, if possible. all members of a cluster (i.e. records with the same key) should be
kept in memory. Thus, the locality set size equals the number of records in the largest cluster divided by the
blocking factor (i.e. the number of records per page). Provided that enough space is allocated, FIFO and
LRU both yield the minimum number of page faults.
Looping Sequential (LS) References

When a file is being repeatedly scanned in an LS reference pattern, MRU is the best replacement
algorithm. It is beneficial to give the file as many buffers as possible. up to the point where the entire file
can fit in memory. -Hence. the locality set size corresponds to the total number of pages in the file.

Independent Random (IR) References
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When the records of a file-are being randomly -accessed. say through a hash table. the choice of a
replacement algorithm is immaterial since all the algorithms perform equally well [King71] {Gele73]. Yao's
formula [Yao77], which estimates the total number of pages referenced b in a series of k random record
accesses, provides an (approximate) upper bound on the locality set size. In those cases where page refer-
ences are sparse. there is no need to keep a page in memory after its initial reference. Thus, there are two

reasonable sizes for the locality set. 1 and b, depending on the likelihood that each page is re-referenced.

b as the residual value of a page. The locality set size is 1 if r = B,

For example, we can define r = k-

and b otherwise; where B is the threshold above which a page is considered to have a high probability to be
re-referenced.
Clustered Random (CR) References

A CR reference is similar to that of a CS reference. The only difference is, in a CR reference,

records in a "cluster” are not physically adjacent. but randomly distributed over the file. The locality set size

in this case can be approximated by the number of records in the largest cluster?.
Straight Hierarchical (SH), H/SS, and H/CS References

For both SH and H/SS references each index page is traversed only once. Thus the locality set size
of each is 1 and a single buffer page is all that is needed. The discussion on CS references is applicable to
H/CS references. except that each member in a cluster is now a key-pointer pair rather than a data record.
Looping Hierarchical (LH) References

In an LH reference. an index is repeatedly traversed from the root to the leaf level. In such a refer-
ence. pages near the root are more likely to be accessed than those at the bottom [Reit76]. Consider a tree of
height h and with a fan-out factor f. Without loss of generality. assume the tree is complete. i.e. each non-
leaf node has f sons. During each traversal from the root at level 0 to a leaf at level h, one out of the ! pages
at level i is referenced. Therefore pages at an upper level (which are closer to the root) are more important
than those at a lower level. Consequently, an ideal replacement algorithm should keep the active pages of the

upper levels of a tree resident and multiplex the rest of the pages in a scratch buffer. The concept of

4 A more accurate estimate can be derived by applying Yao's formula to calculate the number of distinct
pages referenced in a cluster.
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"residual value”.(defined for the IR reference pattern) -can-be-used to estimate how many levels should be

kept in memory. Let b; be the number of pages accessed at level i as estimated by Yao's formula. The size

J k—b,
of the locality set can be approximated by (1+ S b;)+1. where j is the largest i such that b !
i=1 i

>B. In

many cases. the root is perhaps the only page worth keeping in memory. since the fan-out of an index page is
usually high. If this is true. the LIFO algorithm and 3-4 buffers may deliver a reasonable level of perfor-

mance as the root is always kept in memory.

4. Evaluation of Buffer Management Algorithms

in this section. we compare the performance of the DBMIN algorithm with the hot set algorithm
and four other buffer management strategies in a multiuser environment. The section begins by describing
the methodology used for the evaluation. Next. implementation details of the six buffer management algo-
rithms tested are presented. Finally, the results of some of our experiments are presented. For a more com-

plete presentation of our results. the interested reader should examine [Chou85].

4.1. Performance Evaluation Methodology

There were three choices for evaluating the different buffer management algorithms: direct measure-
ment. analvtical modeling. and simulation. Direct measurement. although feasible, was eliminated as too
computationally expensive. Analytic modeling. while quite cost-effective. simply could not model the different
algorithms in sufficient detail while keeping the solutions to the equations tractable. Consequently, we choose
simulation as the basis for our evaluation.

Two types of simulations are widely used [Sher73]: trace driven simulations which are driven by
traces recorded from a real system. and distribution driven simulations in which events are generated by a
random process with certain stochastic structure. A trace driven model has several advantages. including
creditability and fine workload characterization which enables subtle correlations of events to be preserved.
However, selecting a "representative” workload is difficult in many cases. Furthermore, it is hard to charac-
terize the interference and correlation between concurrent activities in a multiuser environment so that the

trace data can be properly treated in an altered model with a different configuration. To avoid these prob-
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lems. we designed a hybrid simulation model that combines features of both trace driven and distribution-
driven models. In this hybrid model, the behavior of each individual query is described by a trace string. and
the system workload is dynamically synthesized by merging the trace strings of the concurrently executing
queries.

Another component of our simulation model is a simulator for database systems which manages three
important resources: CPU. an I/O device. and memory. When a new query arrives. a load controller (if it
exists) decides, depending on the availability of the resources at the time. whether to activate or delay the
query. After a query is activated. it circulates in a loop between the CPU and an 1/O device to compete for
resources until it finishes. After a query terminates. another new query is generated by the workload model.
An active query. however. may be temporarily suspended by the load controller when the condition of over-
loading is detected.

Although the page fault rate is frequently used to measure the performance of a memory management
policy. minimizing the number of page faults in a muhi-programmed environment does not guarantee optimal
system behavior. Thus. throughput. measured as the average number of queries completed per second, was
chosen as our performance metric. In the following sections. we shall describe three key aspects of the simu-

lation model (Figure 1): workload characterization. configuration model. and performance measurement.

4.1.1. Workload Synthesis

The first step in developing a workload was to obtain single-query trace strings by running queries

on the Wisconsin Storage Systcm5 (WiSS) [Chou83]. While WiSS supports a number of storage structures

[ Workload Model - Trace Strings ]
)

rConﬁguration Mode] - Database System Simulator |
1

[ Performance Measurement - Throughput J

A Simulation Model for Database Systems
Figure |

5 WiSS provides RSS-like [Astr76] capabilities in the UNIX environment.



13

- and their related scanning operations. WiSS does-not directly support a high-level query interface: hence, the
test queries were "hand coded”. A synthetic database [Bitt83] with a well-defined distribution structure, was
used in the experiments. Several types of events were recorded (with accurate timing information) during the
execution of each query. including page accesses, disk 1/0°s. and file operations (i.e. opening and closing of
files).

A trace string can be viewed as an array of event records. each of which has a tag field that identifies
the type of the event. There are six important event types: page read. page write, disk read, disk write, file
open. and file close. Disk read and write events come in pairs bracketing the time interval of a disk opera-
tion®. The corresponding record formats in the trace string are:

Page read and write

rpage read / write | file ID | page ID | time stamp

Disk read and write

[ disk read / write | file ID | page ID | time stamp |

File open

file open | file ID | locality set size | replacement polich

File close

file close | file ID |

The time stamps originally recorded were real (elapsed) times of the system. For reasons to be explained
later. disk read and wrile events were removed from the trace strings. and the time stamps of other events
were adjusted accordingly. In essence. the time stamps in a modified trace string reflect the virtual (or CPU)
times of a query.

Since accurate timing, on the order of 100 micro-seconds. is required to record the events at such

detailed level. the tracing were done on a dedicated VAX-11/750 under a very simple operating kernel.

6 The version of WiSS used for gathering the trace strings does not overlap CPU-and I/O execution.
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which is designed for the CRYSTAL multicomputer system [DeWig4]. To reduce the overhead of obtaining

the trace strings, events were recorded in main memory and written to a file (provided by WiSS) after tracing

had ended.

In the multiuser benchmarking methodology described in [Bora84]. three factors that affect

throughput in a multiuser environment were identified: the number of concurrent queries’ . the degree of data
sharing. and the query mix. The number of concurrent queries in each of our simulation runs was varied
from 1 to 32. To study the effects of data sharing. 32 copies of the test database were replicated. Each copy

was stored in a separate portion of the disk. Three levels of data sharing were defined according to the aver-

age number of concurrent queries accessing a copy of the database:
(1) full sharing. all queries access the same database:
(2) half sharing. every two queries share a copy of the database: and

(3) no sharing, every query has its own copy.

The approach to query mix selection used in [Bora84] is based on a dichotomy on the consumption of two
system resources. CPU cycles and disk bandwidth. For this study. this classification scheme was extended to
incorporate the amount of main memory utilized by the query (Table 1). After some initial testing, six

queries were chosen as the base queries for synthesizing the multiuser workload (Table 2). The CPU and

Query CPU ‘Disk Memory
Type | Requirement | Requirement Requirement

1 Low Low Low

II Low High Low
11 High Low Low
v High High Low

\Y High Low High
VI High High High

Query Classification
Table 1

7 The term. multiprogramming level (MPL), was used in [Bora84]. However, since it is desirable to
distinguish the external workload condition from the internal degree of multiprogramming. "number of con-
current queries” (NCQ) is used here-instead. Using our definitions. MPL = NCQ under a buffer manager

with load control.
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Query CPU Usage | Number of Disk | Hot Set Size
Number (seconds) Operations (4K -pages)
I .53 17 3
11 .67 99 3
I 2.95 53 5
v 3.09 120 5
\Y 3.47 55 17
VI 3.50 138 24

Representative Queries
Table 2

disk consumptions of the queries were calculated from the single-query trace strings. and the corresponding
memory requirements were estimated by the hot set modei (which are almost identical to those from the query
locality set model). Table 3 contains a summary description of the queries.

At simulation time. a multiuser workload is constructed by dynamically merging the single-query
trace strings according to a given probability vector. which describes the relative frequency of each query
type. The trace string of an active query is read and processed. one event at a time. by the CPU simulator
when the query is being served by the CPU. For a page read or write event. the CPU simulator advances the

query’s CPU time (according to the time stamp in the event record). and forwards the page request to the

Query Query Seiectivity Access Path Join Access Path
Number | Operations Factor of Selection Method of Join
| select(A) 1% clustered - -
index
11 select(B) 1% non-clustered - -
index
111 select(A) 2% clustered index clustered
join B index join index on B
v select(A”) 10% sequential index non-clustered
join B scan join index on B
v select(A) 3% clustered nested sequential
join B’ index loops scan over B’
Vi1 select(A) 4% clustered hash hash on result
join A’ index join of select(A)

A.B:10K tuples; A":1K tuples: B":300 tuples: 182 bytes per tuple.

Description of Base Queries
Tabie 3
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buffer manager. If the-requested page is not found in the buffer; the query is blocked while the page is being
fetched from the disk. The exact ordering of the events from the concurrent queries are determined by the

behavior of the simulated system and the time stamps recorded in the trace strings.

4.1.2. Configuration Model

Three hardware components are simulated in the model: a CPU. a disk. and a pool of buffers. A
round-robin scheduler is used for allocating CPU cycles to competing queries. The CPU usage of each
query is determined from the associated trace string, in which detailed timing information has been recorded.
In this respect. the simulator’'s CPU has thevcharacterislics of a VAX-11/750 CPU. The simulator’s kernel
schedules disk requests on a firsi-come-first-serve basis. In addition. an auxiliary disk queue is maintained
for implementing delayed asynchronous writes. which are initiated only when the disk is about to become
idle.

The disk times recorded in the trace strings tend to be smaller than what they would be in a "real”
environment for two reasons: (1) the database used in the tracing is relatively small: and (2) disk arm move-
ments are usually less frequent on a single user system than in a multiuser environment. Furthermore.
requests for disk operations are affected by the operating conditions and the buffer management algorithm
used. Therefore. the disk times recorded were replaced by a stochastic disk model, in which a random pro-
cess on disk head positions is assumed. In the disk simulator, the acceés time of a disk operation is calcu-
lated from the timing specifications of a Fujitsu Eagle disk drive [Fuji82]. On the average, it takes about
27.6 ms to access a 4K page.

The buffer pool is under the control of the buffer manager using one of the buffer management algo-
rithms. However. the operating system can fix a buffer in memory when an I/O operation is in progress.

The size of the buffer pool for each simulation run is determined by the formula:

}_‘,Pi‘ihi
1

Zpit
1
where p; is the ith element of the query mix probability vector and t; and h; are the CPU usage and the hot set

size of query i, respectively. The intent was to saturate the memory at a load of eight concurrent queries so
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that -the effect-of overloading on performance- under - different- buffer management algorithms could be

observed.

4.1.3. Statistical Validity of Performance Measurements

Batch means [Sarg76] was selected as the method for estimating confidence intervals. The number
of batches in each simulation run was set to 20. Analysis of the throughput measurements indicates that
many of the confidence intervals fell within 1% of the mean. For those experiments in which thrashing
occurred. the length of a batch was extended to ensure that all confidence intervals were within 5% of the

mean.

4.2. Buffer Management Algorithms

Six buffer management algorithms. divided into two groups. were included in the experiments. The
first group consisted of three simple algorithms: RAND, FIFO. and CLOCK. They were chosen because
they are typical replacement algorithms and are easy to implement. It is interesting to compare their perfor-
mance with that of the more sophisticated algorithms to see if the added complexity of these algorithms is war-
ranted. Beside DBMIN, WS (the working set algorithm), and HOT (the hot set algorithm) were included in
the second group. WS is one of the most efficient memory policies for virtual memory systems [Denn78]. It
is intriguing to know how well it performs when applied to database systems. The hot set algorithm was
chosen to represent the algorithms that have previously been proposed for database systems.

All the algorithms in the first group are global algorithms in the sense that the replacement discipline
is applied globally to all the buffers in the system. Common to all three algorithms is a global table that con-
tains. for each buffer, the identity of the residing page. and a flag indicating whether the buffer has an 1/0
operation in progress. Additional data structures or flags may be needed depending on the individual algo-
rithm. Implementations of RAND and FIFO are typical. and need no further explanation. The CLOCK
algorithm used in the experiments gives preferential treatment to dirty pages, i.e. pages that have been modi-
fied. During the first scan, an unreferenced dirty page is scheduled for writing. whereas an unreferenced
clean page is immediately chosen for replacement. If no suitable buffer is found in the first complete scan.

dirty and clean pages are treated equally during the second scan. None of the three algorithms has a built-in
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facility for load control. However.:we- will investigate' later how a load controller may be incorporated and
what its effects are on the performance of these algorithms.

The algorithms in the second group are all local policies. in which replacement decisions are made
locally. There is a local table associated with each query or file instance for maintaining its resident set.
Buffers that do not belong to any resident set are placed in a global LRU list. To allow for data sharing
among concurrent queries. a global table, similar to the one for the global algorithms, is also maintained by
each of the local algorithms in the second group. When a page is requested. the global table is searched first,
and then the appropriate local table is adjusted if necessary. As an optimization. an asynchronous write
operation is scheduled whenever a dirty page is released back to the global free list. All three algorithms in
the second group base their load control on the (estimated) memory demands of the submitted queries. A
new query is activated if there is sufficient free space left in the system. On the other hand. an active query is
suspended when over-commitment of main memory has been detected. We adopted the deactivation rule

implemented in the VMOS operating system [Foge74] in which the faulting process (i.e. the process that was

asking for more memory) is chosen for suspension®. In the following section. we discuss implementation

decisions that are pertinent to each individual algorithm in the second group.

Working Set Algorithm

To make WS more competitive. a two-parameter WS algorithm was implemented. That is. each pro-
cess is given one of the two window sizes depending on which is more advantageous 10 it. The two window
sizes. 7, = 10ms and 7, = 15ms. were determined from an analysis of working set functions on the single-
query trace strings. Instead of computing the working set of a query after each page access, the algorithm
re-calculates the working set only when the query encounters a page fault or has used up its current time

quantum.

8 We also implemented the deactivation rule suggested by Opderbeck and Chu [Opde74] which deac-
tivates the process with the least accumulated CPU time. However. no noticeable differences in performance
were observed.
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Hot Set Algorithm
The hot set algorithm was implemented according to the outline described in {Sacc82]. The hot set
sizes associated with the base queries were hand-calculated according to the hot set model (see Table 2

above). They were then stored in a table. which is accessible to the buffer manager at simulation time.

DBMIN Algorithm

The locality set size and the replacement policy for each file instance were manually determined.
They were then passed (by the program that implemented the query) to the trace string recorder at the
appropriate points when the single-query trace strings were recorded. At simulation time, the DBMIN algo-
rithm uses the information recorded in the trace strings to determine the proper resident set size and replace-

ment discipline for a file instance at the time the file is opened.

4.3. Simulation Results

Although comparing the performance of the algorithms for different query types provides insight into
the efficiency of each individual algorithm, it is more interesting to compare their performance under a work-
load consisting of a mixture of query types’. Three query mixes were defined to cover a wide range of work-

loads:
MI - in which all six query types are equally likely to be requested:
M2 - in which one of the two simple queries (I and II) is chosen half the time:
M3 - in which the two simple queries have a combined probability of 75%.

The specific probability distributions for the three query mixes is shown in Table 4.

The first set of tests were conducted without any data sharing between concurrently executing
queries. In Figure 2. the throughput for the six buffer management algorithms is presented for each mix of
queries. In each graph, the x axis is the number of concurrent queries and the y axis is the throughput of the

system measured in queries per second. The presence of thrashing for the three simple algorithms is evi-

9 The performance of the single query type tests are contained in {Chou85]. In general the behavior of
the algorithms for these tests are similar to the three mixes.




Throughput

0.50 4
—— RAND
- — - FIFO
040 + CLOCK
e — WS
wvvo--- HOT
0.30 A ——— DBMIN
020 4
0.10 A
0.00 } | ! } | } } 4 # of Concurrent
0 4 8 12 16 20 24 28 3 Queries
Query Mix M1 (100 Buffers, No Data Sharing)
Throughput
0.50 4
e RAND)
- — - FIFO
040 A e CLOCK
e WS
------- HOT
030 + — DBMIN
020 { A s
RN
—~
0.10 +
0.00 } | | | } } ! | # of Concurrent
0 4 8 12 16 20 24 28 32 Queries
Query Mix M2 (80 Buffers, No Data Sharing)
Throughput
0.0 +
e el e ———— RAND
- — - FIFO
0.40 4 —eemr CLOCK
— e . e - see— WS
«w»-- HOT
0.30 +4 ———  DBMIN
N
\\
020 - AR
N
\
010 +
0.00 ! } | | # of Concurrent

| ] } |
o 4 8 12 16 20 24 28 32 Queries
Query Mix M3 (60 Buffers, No Data Sharing)

Figure 2



20

Query Type Type Type Type Type Type
Mix 1 11 111 v \ VI
M1 16.67% | 16.67% | 16.67% | 16.67% | 16.66% | 16.66%
M2 25.00% | 25.00% | 12.50% | 12.50% | 12.50% | 12.50%
M3 37.50% | 37.50% 6.25% 6.25% 6.25% 6.25%

Composition of Query Mixes
Table 4

dent!?. A relatively sharp degradation in performance can be observed in most cases. RAND and FIFO
yielded the worst performance. although RAND is perhaps more stable than FIFO in the sense than its curve
is slightly smoother than that of FIFO. Before severe thrashing occurred, CLOCK was generally better than
both RAND and FIFO. |

WS did not perform well because it failed to capture the main loops of the joins in queries V and V1.
Its performance improved as the frequency of queries V and V1 decreased. The efficiency of the hot set algo-
rithm was close to that of DBMIN. When the system was lightly loaded, DBMIN was only marginally better

than the rest of the algorithms. However, as the number of concurrent queries increased to 8 or more.
DBMIN provided more throughput than the hot set algorithm by 7 to 13%'! and the WS algorithm by 25 to

45% .

Effect of Data Sharing

To study the effects of data sharing on the performance of the algorithms, two more sets of experi-
ments. each with a different degree of data sharing, were conducted. The results are plotted in Figures 3 and
4. Tt can be observed that. for each of the algorithms. the throughput increases as the degree of data sharing
increases. This reinforces the view that allowing for data sharing among concurrent queries is important in a
multi-programmed database system [Reit76] [Bora84].

The relative performance of the algorithms for half data sharing is similar to that for no data sharing.

However, it is not the case for full data sharing. For query mixes M1 and M2. the efficiencies of the

10 Data points for the three simple algorithms were gathered only up to 16 concurrent queries as it is
very time-consuming to gather throughput measurements with a = 5% confidence interval when the simulat-
ed system is trapped in a thrashing state.

11 The percentages of performance difference were calculated relative to the better algorithm.
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mechanism which arise from the feedback nature of the load controller:

(1) Run-time overhead can be expensive if sampling is done t00 frequently. On the other hand, the optim-
izer may not respond fast enough to adjust the load effectively if analyses of the measurements are not

done frequently enough.

(2) Unlike the predictive load controllers. a feedback controller can only respond after an undesirable con-
dition has been detected. This may result in unnecessary process activations and deactivations that

might otherwise be avoided by a predictive load control mechanism.

(3) A feedback load controller does not work well in an environments with a large number of small transac-
tions which enter and leave the system before their effects can be assessed. This effect can be seen in
Figure 5 as the percentage of small queries increases. Note that the so-called "small queries” (i.e.
queries 1 and II) in our experiments still retrieve 100 tuples from the source relation. The disadvan-
tages of a feedback load controller are likely to become even more apparent in a system with a large

number of single-tuple queries.

AS. Conclusions

In this paper we presented a new algorithm. DBMIN. for managing the buffer pool of a relational
database management system. DBMIN is based on a new model of relational query behavior, the query
locality set model (QLSM). Like the hot set model. the QLSM allows a buffer manager to predict future
reference behavior. However. unlike the hot set model, the QLSM separates the modeling of referencing
behavior from any particular buffer management algorithm. The DBMIN algorithm manages the buffer pool
on a per file basis. The number of buffers allocated to each file instance is based on the locality set size of
the file instance and will varies depending on how the file is being accessed. In addition. the buffer pool
associated with each file instance is managed by a replacement policy that is tuned to how the file is being
accessed.

We also presented a new performance evaluation methodology for evaluating buffer management
algorithms in a multiuser environment. This methodology employed a hybrid model that combines features

of both trace driven and distribution driven simulation models. Using this new model, we compared the




Throughput

0.80 +

070 +
—~-—~— RAND
- — . FIFO

0680 4+ e CLOCK
s WS
-------- HOT

0.50 4 ——— DBMIN

040

0.30 -

0.20 i | } } } ! | l- # of Concurrent

0 4 8 12 16 20 24 28 32 Queries
Query Mix M1 (100 Buifers, Full Date Sharing)

Throughput

0.80 +

0.70 +
—em—— RAND
- = - FIFO

060 -+ -mm—. CLOCK
ce—— WS
------- HOT

050 4 e e DBMIN

040 +

0.30

0.20 I | } } i } | |- # of Concurrent

0 4 8 12 16 20 24 28 32 Queries
Query Mix M2 (80 Buffers, Full Dala Sharing)

Throughput

080 +

0.70 4
e — RAND
- — - FIFO

0.60 4 ——.. CLOCK
e -— WS
------- HOT

050 - DBMIN

040 4

0.30 4

0.20 } ] J } | + # of Concurrent

% T 1 1 1 !
0 4 8 12 16 20 24 28 32 Queries
Query Mix M3 (60 Buffers, Full Data Sharing).

Figure 4



21

different algorithms were close. Because every query accessed the same copy of the database, it was easy for
any algorithm to keep the important portion of the database in memory. With no surprises, RAND and FIFO
performed slightly worse than other algorithms due to their inherent deficiency in capturing locality of refer-
ence. For query mix M3. however. the performance of the different algorithms again diverged. This may be
attributed to the fact that small queries dominated the performance for query mix M3. The "working" por-
tion of the database becomes less distinct as manv small queries are entering and leaving the system. (In con-
trast. the larger queries. which intensively access a limited set of pages over a relatively long period of time,
played a more important role for query mixes M1 and M2.) Therefore, algorithms that made an effort to

identify the localities performed better than those that did not.

Effect of Load Control

As was observed in the previous experiments. the lack of load control in the simple algorithms had
led to thrashing under high workloads. It is interesting to find out how effective those algorithms will be
when a load controller is incorporated. The “50% rule” [Lero76]. in which the utilization of the paging dev-
ice is kept busy about half the time, was chosen partly for its simplicity of implementation and partly because
it is supported by empirical evidence [Denn76].

A load controller which is based on the "50% rule” usually consists of three major components:
(1) an estimalor that measures the utilization of the device,

(2) an optimizer that analyzes the measurements provided by the estimator and decides what load adjust-

ment is appropriate, and

(3) a conirol swilch that activates or deactivales processes according to the decisions made by the optim-
izer.
In Figure 5. the effects of a load control mechanism on the three simple buffer management algorithms is
shown. A set of initial experiments established that throughput was maximized with a disk utilization of 87%.
With load control. every simple algorithm in the experiments out-performed the WS algorithm. The perfor-
mance of the CLOCK algorithm with load control came very close to that of the hot set algorithm. However.

the results should not be interpreted literally. There are several potential problems with such a load control
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performance of six buffer management algorithms. Severe thrashing was observed for the three simple algo-
rithms: RAND. FIFO. and CLOCK. Although the introduction of a feedback load controller alleviated the
problem, it created new potential problems. As expected. the three more sophisticated algorithms - WS.
HOT. and DBMIN - performed better than the simple algorithms. However, the WS algorithm did not per-
form as well as advertised for virtual memory systems [Denn78]. The last two algorithms, the hot set algo-
rithm and DBMIN. were successful in demonstrating their efficiency. In comparison, DBMIN provided 7 to
13% more throughput than the hot set algorithm over a wide range of operating conditions for the tests con-
ducted.

In [Chou85] we also examined the overhead associated with each of the WS. hot set. and DBMIN
algorithms. Based on our analysis, the cost of the WS algorithm is higher than that of HOT unless the page
fault rate is kept very low. In comparison, DBMIN is less expensive than both WS and the hot set algorithm

as less usage statistics need 10 be maintained.
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ABSTRACT

In this paper we present a new algorithm. DBMIN. for managing the buffer pool of a relational data-
base management system. DBMIN is based on a new model of relational query behavior, the query locality
set model (QLSM). Like the hot set model. the QLSM has an advantage over the stochastic models due to
its ability to predict future reference behavior. However. the QLSM avoids the potential problems of the hot
set model bv separating the modeling of reference behavior from any particular buffer management algo-
rithm. After introducing the QLSM and describing the DBMIN algorithm. we present a new performance
evaluation methodology for evaluating buffer management algorithms in a multiuser environment. This
methodology employed a hybrid model that combines features of both trace driven and distribution driven
simulation models. Using this new model, the performance of the DBMIN algorithm in a multiuser environ-
ment is compared with that of the hot set algorithm and four more traditional buffer replacement algorithms.




1. Introduction

In this paper we present a new algorithm, DBMIN. for managing the buffer pool of a relational data-
base management system. DBMIN is based on a new model of relational query behavior, the query locality
set model (QLSM). Like the hot set model [Sacc82]. the QLSM has an advantage over the stochastic
models due to its ability to predict future reference behavior. However, the QLSM avoids the potential prob-
lems of the hot set model by separating the modeling of reference behavior from any particular buffer
management algorithm. After introducing the QLSM and describing the DBMIN algorithm, the perfor-
mance of the DBMIN algorithm in a multiuser environment is compared with that of the hot set algorithm
and four more traditional buffer replacement algorithms.

A number of factors motivated this research. First. although Stonebraker [Ston81] convincingly
argued that conventional virtual memory page replacement algorithms (e.g. LRU) were generally not suitable
for a relational database environment. the area of buffer management has. for the most part, been ignored
(contrast the activity in this area with that in the concurrency control area). Second. while the hot set results
were encouraging they were. in our opinion. inconclusive. 1In particular, [Sacc82] presented only limited,
single user tests of the hot set algorithm. We felt that extensive, multiuser tests of the hot set algorithm and
conventional replacement policies would provide valuable insight into the effect of the buffer manager on
overall system performance.

In Section 2. we review earlier work on buffer management strategies for database systems. The
QLSM and DBMIN algorithm are described in Section 3. Our multiuser performance evaluation of alterna-

tive buffer replacement policies is presented in Section 4. Section 5 contains our conclusions and suggestions

for future research.

2. Buffer Management for Database Systems

While many of the early studies on database buffer management focused on the double paging prob-
lem [Fern78] [Lang77] [Sher76a] [Sher76b] [Tuel76]. recent research efforts have been focused on finding
buffer management policies that understand database systems [Ston81] and know how to exploit the predicta-

bility of database reference behavior. We review some of these algorithms in this section.



2.1. Domain Separation Algorithms

Consider a query that randomly accesses records through a B-tree index. The root page of the B-tree
is obviously more important than a data page. since it is accessed with every record retrieval. Based on this
observation. Reiter [Reit76] proposed a buffer management algorithm, called the domain separation (DS)
algorithm. in which pages are classified into types. each of which is separately managed in its associated
domain of buffers. When a page of a certain type is needed. a buffer is allocated from the corresponding
domain. If none are available for some reason, e.g. all the buffers in that domain have 1/O in progress, a
buffer is borrowed from another domain. Buffers inside each domain are managed by the LRU discipline.

Reiter suggested a simple type assignment scheme: assign one domain to each non-leaf level of the B-tree

structure, and one to the leaf level together with the data. Empirical data' showed that this DS algorithm pro-
vided 8-10% improvement in throughput when compared with an LRU algorithm.

The main limitation of the DS algorithm is that its concept of domain is static. The algorithm fails to
reflect the dynamics of page references as the importance of a page may vary in different queries. It is obvi-
ously desirable to keep a data page resident when it is being repeatedly accessed in a nested loops join. How-
ever. it is not the case when the same page is accessed in a sequential scan. Second, the DS algorithm does
not differentiate the relative importance between different types of pages. An index page will be over-written
by another incoming index page under the DS algorithm. although the index page is potentially more impor-
tant than a data page in another domain. Memory partitioning is another potential problem. Partitioning
buffers according to domains, rather than queries. does not prevent interference among competing users.
Lastly, a separate mechanism needs to be incorporated to prevent thrashing since the DS algorithm has no
built-in facilities for load control.

Several extensions to the DS algorithm have been proposed. The group LRU (GLRU) algorithm,
proposed by Howthorn [Nybe84], is similar to DS. except that there exists a fixed priority ranking among dif-
ferent groups (domains). A search for a free buffer always starts from the group with the lowest priority.

Another alternative, presented by Effelsberg and Haerder [Effe84]. is to dynamically vary the size of each

1 In Reiter's simulation experiments, a shared buffer pool and a workload consisting of 8 concurrent
users were assumed.



domain-using a working-set-like [Denn68] partitioning scheme. Under this scheme, pages in domain i which
have been referenced in the last 7; references are exempt from replacement consideration. The "working set”
of each domain may grow or shrink depending on the reference behavior of the user queries. Although
empirical data indicated that dynamic domain partitioning can reduce the number of page faults (of the sys-

tem) over static domain partitioning. Effelsberg and Haerder concluded that there is no convincing evidence

that the page-type-oriented schemes” are distinctly superior to global algorithms. such as LRU and CLOCK.

2.2. ““New” Algorithm

In a study to find a better buffer management algorithm for INGRES [Ston76]. Kaplan [Kapl80]
made two observations from the reference patterns of queries: the priority to be given to a page is not a pro-
perty of the page itself but of the relation to which it belongs; each relation needs a "working set”. Based on
these observations. Kaplan designed an algorithm. called the "new” algorithm, in which the buffer pool is
subdivided and allocated on a per-relation basis. In this "new” algorithm. each active relation is assigned a
resident set which is initially empty. The resident sets of relations are linked in a priority list with a global
free list on the top. When a page fault occurs. a search is initiated from the top of the priority list until a
suitable buffer is found. The faulting page is then brought into the buffer and added to the resident set of the
relation. The MRU discipline is employed within each relation. However. each relation is entitled to one
active buffer which is exempt from replacement consideration. The ordering of relations is determined, and
may be adjusted subsequently. by a set of heuristics. A relation is placed near the top if its pages are unlikely
to be re-used. Otherwise. the relation is protected at the bottom. Results from Kaplan's simulation experi-
ments suggested that the "new” algorithm performed much better than the UNIX buffer manager. However,
in a trial implementation [Ston82]. the "new” algorithm failed to improve the performance of an experimental
version of INGRES which uses an LRU algorithm.

The "new” algorithm presented a new approach to buffer management, an approach that tracks the
locality of a query through relations. However, the algorithm itself has several weak points. The use of

MRU is justifiable only in limited cases. The rules suggested by Kaplan for arranging the order of relations

2 The DS algorithm is called a page-type-oriented buffer allocation scheme in [Effe84].



_on:the priority-list were: based: solely on:intuition. -Furthermore; under high memory contention, searching
through a priority list for a free buffer can be expensive. Finally, extending the "new" algorithm to a multi-
user environment presents additional problems as it is not clear how to establish priority among relations

from different queries that are running concurrently.

2.3. Hot Set Algorithm

The hot set model proposed by Sacco and Schkolnick [Sacc82] is a query behavior model for rela-
tional database systems that integrates advance knowledge on reference patterns into the model. In this
model. a set of pages over which there is a looping behavior is called a hot set. If a query is given a buffer
large enough to hold the hot sets, its processing will be efficient as the pages referenced in a loop will stay in
the buffer. On the other hand. a large number of page faults may result if the memory allocated to a query is
insufficient to hold a hot set. Plotting the number of page faults as a function of buffer size., we can observe a
discontinuity around the buffer size where the above scenario takes place. There may be several such discon-
tinuities in the curve, each is called a hot point.

In a nested loops join in which there is a sequential scan on both relations, a hot point of the query is
the number of pages in the inner relation plus one. The formula is derived by reserving enough buffers to
hold the entire inner relation. which will be repeatedly scanned, plus one buffer for the outer relation. which
will be scanned only once. If. instead. the scan on the outer relation is an index scan, an additional buffer is
required for the leaf pages of the index. Following similar arguments, the hot points for different queries can
be determined.

Applying the predictability of reference patterns in queries. the hot set model provides a more accu-
rate reference model for relational database systems than a stochastic model. However, the derivation of the
hot set model is based partially on an LRU replacement algorithm. which is inappropriate for certain looping
behavior. In fact, the MRU (Most-Recently-Used) algorithm. the opposite to an LRU algorithm, is more
suited for cycles of references [Thor72], because the most-recently-used page in a loop is the one that will not
be re-accessed for the longest period of time. Going back to the nested loops join example, the number of

page faults-will-not increase dramatically when the: number of buffers drops below the "hot point” if the™
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MRU algorithm is used. In this respect. the  hot set model does not truly reflect the inherent behavior of
some reference patterns, but rather the behavior under an LRU algorithm.

In the hot set algorithm, each query is provided a separate list of buffers managed by an LRU discip-
line. The number of buffers each query is entitled to is predicted according to the hot set model. That is, a
query is given a local buffer pool of size equal to its hot set size. A new query is allowed to enter the system
if its hot set size does not exceed the available buffer space.

As discussed above. the use of LRU in the hot set model lacks a logical justification. There exist
cases where LRU is the worse possible discipline under tight memory constraint. The hot set algorithm
avoids this problem by always allocating enough memory to ensure that references to different data structures
within a query will not interfere with one another. Thus it tends to over-allocate memory, which implies that
memory may be under-utilized. Another related problem is that there are reference patterns in which LRU
does perform well but is unnecessary since another discipline with a lower overhead can perform equally
well. Lastly, the hot set algorithm can not respond well to phase transitions of queries, since the algorithm

allocates the maximum amount of buffers ever needed by a query.

3. The DBMIN Buffer Management Algorithm

In this section. we first introduce a new query behavior model. the query locality set model
(QLSM), for database systems. Using a classification of page reference patterns, we show how the reference
behavior of common database operations can be described as a composition of a set of simple and regular
reference patterns. Like the hot set model, the QLSM has an advantage over the stochastic models due to its
ability to predict future reference behavior. However, the QLSM avoids the potential problems of the hot set
model by separating the modeling of reference behavior from any particular buffer management algorithm.

Next we describe a new buffer management algorithm termed DBMIN based on the QLSM. In this
algorithm, buffers are allocated and managed on a per file instance basis. Each file instance is given a local
buffer pool to hold its locality set, which is the set of the buffered pages associated the file instance. DBMIN
can be viewed as a combination of a working set algorithm [Denn68] and Kaplan’s "new” algorithm in the

-sense that the locality set associated with each file instance is similar to the -working set associated with each



-process. - However; thesize-of a locality-set-is determined in-advanee::and-needs not be re-calculated as the
execution of the query progresses. This predictive nature of DBMIN is close to that of the hot set algorithm.
However. unlike the hot set algorithm which allocates buffers statically, DBMIN uses a dynamic partitioning
scheme, in which the total number of buffers assigned to a query may vary as files (relations) are opened and

closed.

3.1. The Query Locality Set Model

The QLSM is based on the observation that relational database systems support a limited set of opera-
tions and that the pattern of page references exhibited by these operations are very regular and predictable.
In addition. the reference pattern of a database operation can be decomposed into the composition of a
number of simple reference patterns. Consider, for example. an index join with an index on the joining attri-
bute of the inner relation. The QLSM will identify two locality sets for this operation: one for the sequential
scan of the outer relation and a second for the index and data pages of the inner relation. In this section, we

present a taxonomy for classifying the page reference patterns exhibited by common access methods and data-

base operations.

Sequential References

In a sequential scan, pages are referenced and processed one after another. In many cases, a
sequential scan is done only once without repetition. For example, during a selection operation on an unor-
dered relation. each page in the file is accessed exactly once. A single page frame provides all the buffer
space that is required. We shall refer to such a reference pattern as straight sequential (SS).

Local re-scans may be observed in the course of a sequential scan during certain database operations.
That is, once in a while, a scan may back up a short distance and then start forward again. This can happen
in a merge join [Blas77] in which records with the same key value in the inner relation are repeatedly
scanned and matched with those in the outer relation. We shall call this pattern of reference clustered
sequential (CS). Obviously, records in a cluster (a set of records with the same key value) should be kept in
memory at the same time if possible.

In some cases, a sequential reference to a file may be repeated several times. In a nested loops join,




for-instance, the:inner felation is-repeatedly scanned untilthe outer relation is exhausted. We shall call this a
looping sequential (LS) pattern. The entire file that is being repeatedly scanned should be kept in memory if
possible. If the file is too large to fit in memory. an MRU replacement algorithm should be used to manage

the buffer pool.

Random References

An independent random (IR) reference pattern consists a series of independent accesses. As an
example. during an index scan through a non-clustered index, the data pages are accessed in a random
manner. There are also cases when a locality of reference exists in a series of "random” accesses. This may
happen in the evaluation of a join in which a file with a non-clustered and non-unique index is used as the
inner relation, while the outer relation is a clustered file with non-unique keys. This pattern of reference is
termed clustered random (CR). The reference behavior of a CR reference is similar to that of a CS scan.

If possible, each page containing a record in a cluster should be kept in memory.

Hierarchical References

A hierarchical reference is a sequence of page accesses that form a traversal path from the root down
to the leaves of an index. If the index is traversed only once (e.g. when retrieving a single tuple), one page
frame is enough for buffering all the index pages. We shall call this a straight hierarchical (SH) reference.
There are two cases in which a tree traversal is followed by a sequential scan through the leaves: hierarchi-
cal with straight sequential (H/SS). if the scan on the leaves is SS. or hierarchical with clustered
sequential (H/CS). otherwise. Note that the reference patterns of an H/SS reference and an H/CS reference
are similar to those of an SS reference and a CS reference. respectively.

During the evaluation of a join in which the inner relation is indexed on the join field, repeated
accesses to the index structure may be observed. We shall call this pattern of reference as looping hierarch-
ical (LH). In an LH reference, pages closer to the root are more likely to be accessed than those closer to
the leaves. The access probability of an index page at level i, assuming the root is at level 0, is inversely pro-
portional to the ith power of the fan-out factor of an index page. Therefore, pages at an upper level (which

are closer to the root) should have higher priority than those at a lower level. In many cases, the root is



.perhaps:the only page worth keeping:in-memory since the fan-out of an-indexpage is usually high.

3.2. DBMIN - A Buffer Management Algorithm Based on the QLSM

In the DBMIN algorithm. buffers are allocated and managed on a per file instance basis3. The set
of buffered pages associated with a file instance is referred to as its locality set. Each locality set is
separately managed by a discipline selected according to the intended usage of the file instance. If a buffer
contains a page that does not belong to any locality set. the buffer is placed on a global free list. For simpli-
city of implementation. we restrict that a page in the buffer can belong to at most one locality set. A file
instance is considered the owner of all the pages in its locality set. To allow for data sharing among con-
current queries. all the buffers in memory are also accessible through a global buffer table. The following

notation will be used in describing the algorithm:
N - the total number of buffers (page frames) in the system;

I - the maximum number of buffers that can be allocated to file instance j of query i;

ry; - the number of buffers allocated to file instance j of query i.

Note that 1 is the desired size for a locality set while r is the actual size of a locality set.

At start up time. DBMIN initializes the global table and links all the buffers in the system on the glo-
bal free list. When a file is opened. its associated locality set size and replacement policy are given to the
buffer manager. An empty locality set is then initialized for the file instance. The two control variables r and
1 associated with the file instance are initialized to 0 and the given locality set size. respectively.

When a page is requested by a query. a search is made to the global table. followed by an adjustment

to the associated locality set. There are three possible cases:

(1) The page is found in both the global table and the locality set: In this case. only the usage statistics
need to be updated if necessary as determined by the local replacement policy.

(2) The page is found in memory but not in the locality set: If the page already has an owner, the page
is simply given to the requesting query and no further actions are required. Otherwise, the page is
added to the locality set of the file instance, and r is incremented by one. Now if r > 1, a page is

3 Active instances of the same file are given different buffer pools, which are independently managed.
However, as we will explain later, all the file instances share the same copy. of a buffered page whenever pos-
sible through a global table mechanism.




" chosen and released back-to-the: global free list-according to the local replacement policy, and r is set to
1. Usage statistics are updated as required by the local replacement policy.

(3) The page is not in memory: A disk read is scheduled to bring the page from disk into a buffer allo-
cated from the global free list. After the page is brought into memory. proceed as in case 2.

Note that the local replacement policies associated with file instances do not cause actual swapping of pages.
Their real purpose is to maintain the image of a query’s "working set”. Disk reads and writes are issued by
the mechanism that maintains the global table and the global free list.

The load controller is activated when a file is opened or closed. Immediately after a file is opened,

the load controller checks whether 1. < N for all active queries i and their file instances j. If so, the

Ik

query is allowed to proceed; otherwise. it is suspended and placed at the front of a waiting queue. When a
file is closed, buffers associated with its locality set are released back to the global free list. The load con-
troller then activates the first query on the waiting queue if this will not cause the above condition to be
violated.

What remains to be described is how the QLSM is used to select local replacement policies and esti-
mate sizes for the locality sets of each file instance.
Straight Sequential (SS) References

For SS references the locality set size is obviously 1. When a requested page is not found in the
buffer. the page is fetched from disk and overwrites whatever is in the buffer.
Clustered Sequential (CS) References

For CS references, if possible, all members of a cluster (i.e. records with the same key) should be
kept in memory. Thus, the locality set size equals the number of records in the largest cluster divided by the
blocking factor (i.e. the number of records per page). Provided that enough space is allocated, FIFO and
LRU both yield the minimum number of page faults.
Looping Sequential (LS) References

When a file is being repeatedly scanned in an LS reference pattern, MRU is the best replacement
algorithm. It is beneficial to give the file as many buffers as possible, up to the point where the entire file

~can fit in memory. -Hence. the locality set size corresponds to the total number of pages in the file.

Independent Random (IR) References
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When the records of a file-are -being randomly -accessed. say through a hash table, the choice of a
replacement algorithm is immaterial since all the algorithms perform equally well [King71] [Gele73]. Yao's
formula [Yao77], which estimates the total number of pages referenced b in a series of k random record
accesses, provides an (approximate) upper bound on the locality set size. In those cases where page refer-
ences are sparse, there is no need to keep a page in memory after its initial reference. Thus, there are two

reasonable sizes for the locality set. 1 and b, depending on the likelihood that each page is re-referenced.

For example, we can define r = k-b as the residual value of a page. The locality set size is 1 if r = B,

and b otherwise; where B is the threshold above which a page is considered to have a high probability to be
re-referenced.
Clustered Random (CR) References

A CR reference is similar to that of a CS reference. The only difference is, in a CR reference,

records in a "cluster” are not physically adjacent. but randomly distributed over the file. The locality set size

in this case can be approximated by the number of records in the largest cluster®.
Straight Hierarchical (SH), H/SS, and H/CS References

For both SH and H/SS references each index page is traversed only once. Thus the locality set size
of each is 1 and a single buffer page is all that is needed. The discussion on CS references is applicable to
HI/CS references. except that each member in a cluster is now a key-pointer pair rather than a data record.
Looping Hierarchical (LH) References

In an LH reference. an index is repeatedly traversed from the root to the leaf level. In such a refer-
ence. pages near the root are more likely to be accessed than those at the bottom [Reit76]. Consider a tree of
height h and with a fan-out factor f. Without loss of generality, assume the tree is complete, i.e. each non-
leaf node has f sons. During each traversal from the root at level 0 to a leaf at level h, one out of the f! pages
at level i is referenced. Therefore pages at an upper level (which are closer to the root) are more important
than those at a lower level. Consequently, an ideal replacement algorithm should keep the active pages of the

upper levels of a tree resident and multiplex the rest of the pages in a scratch buffer. The concept of

4. A more accurate estimate can be derived by applying Yao’s formula to calculate the number of distinct
pages referenced in a cluster.
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"residual value”.(defined for-the IR reference’ pattern)-can-be -used to estimate how many levels should be

kept in memory. Let b; be the number of pages accessed at level i as estimated by Yao’s formula. The size

J k—b,
of the locality set can be approximated by (1+ b))+ 1. where j is the largest i such that b !
i=1 i

> 3. In

many cases. the root is perhaps the only page worth keeping in memory. since the fan-out of an index page is

usually high. If this is true, the LIFO algorithm and 3-4 buffers may deliver a reasonable level of perfor-

mance as the root is always kept in memory.

4. Evaluation of Buffer Management Algorithms

In this section. we compare the performance of the DBMIN algorithm with the hot set algorithm
and four other buffer management strategies in a multiuser environment. The section begins by describing
the methodology used for the evaluation. Next. implementation details of the six buffer management algo-
rithms tested are presented. Finally, the results of some of our experiments are presented. For a more com-

plete presentation of our results. the interested reader should examine [Chou85].

4.1. Performance Evaluation Methodology

There were three choices for evaluating the different buffer management algorithms: direct measure-
ment. analytical modeling, and simulation. Direct measurement. although feasible, was eliminated as too
computationally expensive. Analytic modeling. while quite cost-effective, simply could not model the different
algorithms in sufficient detail while keeping the solutions to the equations tractable. Consequently, we choose
simulation as the basis for our evaluation.

Two types of simulations are widely used [Sher73]: trace driven simulations which are driven by
traces recorded from a real system, and distribution driven simulations in which events are generated by a
random process with certain stochastic structure. A trace driven model has several advantages, including
creditability and fine workload characterization which enables subtie correlations of events to be preserved.
However, selecting a "representative” workload is difficult in many cases. Furthermore, it is hard to charac-
terize the interference and correlation between concurrent activities in a multiuser environment so that the

trace-data can be properly treated in an altered model with a different configuration. To avoid these prob-
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lems. we designed a hybrid simulation model that combines features of both trace driven and distribution-
driven models. In this hybrid model, the behavior of each individual query is described by a trace string, and
the system workload is dynamically synthesized by merging the trace strings of the concurrently executing
queries.

Another component of our simulation model is a simulator for database systems which manages three
important resources: CPU, an I/O device. and memory. When a new query arrives. a load controller (if it
exists) decides, depending on the availability of the resources at the time. whether to activate or delay the
query. After a query is activated. it circulates in a loop between the CPU and an 170 device to compete for
resources until it finishes. After a query terminates, another new query is generated by the workload model.
An active query, however. may be temporarily suspended by the load controller when the condition of over-
loading is detected.

Although the page fault rate is frequently used to measure the performance of a memory management
policy, minimizing the number of page faults in a multi-programmed environment does not guarantee optimal
system behavior. Thus. throughput. measured as the average number of queries completed per second, was
chosen as our performance metric. In the following sections. we shall describe three key aspects of the simu-

lation model (Figure 1): workload characterization, configuration model. and performance measurement.

4.1.1. Workload Synthesis

The first step in developing a workload was to obtain single-query trace strings by running queries

on the Wisconsin Storage System5 (WiSS) [Chou83]. While WiSS supports a number of storage structures

| Workload Model - Trace Strings |
i

l Configuration Model - Database System Simulator |
i

l Performance Measurement - Throughput J

A Simulation Model for Database Systems
Figure 1

3 WiSS provides RSS-like [Astr76] capabilities in the UNIX environment.
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- -+and their related: scanning operations. WiSS does-not directly support a high-level query interface; hence, the
test queries were "hand coded”. A synthetic database [Bitt83] with a well-defined distribution structure, was
used in the experiments. Several types of events were recorded (with accurate timing information) during the
execution of each query, including page accesses, disk 1/Os. and file operations (i.e. opening and closing of
files).

A trace string can be viewed as an array of event records. each of which has a tag field that identifies
the type of the event. There are six important event types: page read. page write, disk read, disk write, file
open. and file close. Disk read and write events come in pairs bracketing the time interval of a disk opera-
tion®. The corresponding record formats in the trace string are:

Page read and write

fpage read / write | file ID | pageID | time stampJ

Disk read and write

{ disk read / write | fileID | pageID | time stampj

File open

fﬁle open | file ID l locality set size | replacement policy

File close

file close I file ID I

The time stamps originally recorded were real (elapsed) times of the system. For reasons to be explained
later. disk read and wriie events were removed from the trace strings. and the time stamps of other events
were adjusted accordingly. In essence, the time stamps in a modified trace string reflect the virtual (or CPU)
times of a query.

Since accurate timing, on the order of 100 micro-seconds, is required to record the events at such

detailed level, the tracing were done on a dedicated VAX-11/750 under a very simple operating kernel,

6 The version of WiSS used for gathering the trace strings does not overlap CPU and I/O execution.
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~which is designed for the CRYSTAL multicomputer system [DeWi84]. To reduce the overhead of obtaining
the trace strings, events were recorded in main memory and written to a file (provided by WiSS) after tracing
had ended.

In the multiuser benchmarking methodology described in [Bora84]. three factors that affect
throughput in a multiuser environment were identified: the number of concurrent queries7, the degree of data
sharing. and the query mix. The number of concurrent queries in each of our simulation runs was varied
from 1 to 32. To study the effects of data sharing, 32 copies of the test database were replicated. Each copy
was stored in a separate portion of the disk. Three levels of data sharing were defined according to the aver-

age number of concurrent queries accessing a copy of the database:
(1) full sharing. all queries access the same database:
(2) half sharing, every two queries share a copy of the database; and
(3) no sharing, every query has its own copy.

The approach to query mix selection used in [Bora84] is based on a dichotomy on the consumption of two
system resources, CPU cycles and disk bandwidth. For this study, this classification scheme was extended to
incorporate the amount of main memory utilized by the query (Table 1). After some initial testing, six

queries were chosen as the base queries for synthesizing the multiuser workload (Table 2). The CPU and

Query CPU Disk Memory
Type Requirement | Requirement | Requirement
1 Low Low Low
I Low High Low
111 High Low Low
Iv High High Low
\% High Low High
VI High High High

Query Classification
Table 1

7 The term, multiprogramming level (MPL), was used in [Bora84]. However, since it is desirable to
distinguish the external workload condition from the internal degree of multiprogramming. “number of con-
current: queries” (NCQ). is used here-instead. . Using our definitions, MPL = .NCQ under a buffer manager
with load control.
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Query CPU Usage | Number of Disk | Hot Set Size
Number (seconds) Operations (4K -pages)
I .53 17 3
11 .67 99 3
111 2.95 53 5
v 3.09 120 5
v 3.47 55 17
VI 3.50 138 24

Representative Queries
Table 2

disk consumptions of the queries were calculated from the single-query trace strings, and the corresponding
memory requirements were estimated by the hot set model (which are almost identical to those from the query
locality set model). Table 3 contains a summary description of the queries.

At simulation time, a multiuser workload is constructed by dynamically merging the single-query
trace strings according to a given probability vector, which describes the relative frequency of each query
type. The trace string of an active query is read and processed. one event at a time, by the CPU simulator
when the query is being served by the CPU. For a page read or write event. the CPU simulator advances the

query’s CPU time (according to the time stamp in the event record). and forwards the page request to the

Query Query Selectivity Access Path Join Access Path
Number | Operations Factor of Selection Method of Join
I select(A) 1% clustered - -
index
11 select(B) 1% non-clustered - -
index
i select(A) 2% clustered index clustered
join B index join index on B
v select(A”) 10% sequential index non-clustered
join B scan join index on B
Vv select(A) 3% clustered nested sequential
join B’ index loops scan over B’
Vi select(A) 4% clustered hash hash on result
join A’ index join of select(A)

A,B:10K tuples; A’:1K tuples; B":300 tuples: 182 bytes per tuple.

Description of Base Queries
Table 3
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“buffer manager- - If thesrequested page is not-found in the buffer; the query-is blocked while the page is being
fetched from the disk. The exact ordering of the events from the concurrent queries are determined by the

behavior of the simulated system and the time stamps recorded in the trace strings.

4.1.2. Configuration Model

Three hardware components are simulated in the model: a CPU. a disk. and a pool of buffers. A
round-robin scheduler is used for allocating CPU cycles to competing queries. The CPU usage of each
query is determined from the associated trace string, in which detailed timing information has been recorded.
In this respect. the simulator’s CPU has the characteristics of a VAX-11/750 CPU. The simulator’s kernel
schedules disk requests on a first-come-first-serve basis. In addition. an auxiliary disk queue is maintained
for implementing delayed asynchronous writes, which are initiated only when the disk is about to become
idle.

The disk times recorded in the trace strings tend to be smaller than what they would be in a “real”
environment for two reasons: (1) the database used in the tracing is relatively small: and (2) disk arm move-
ments are usually less frequent on a single user system than in a multiuser environment. Furthermore.
requests for disk operations are affected by the operating conditions and the buffer management algorithm
used. Therefore, the disk times recorded were replaced by a stochastic disk model, in which a random pro-
cess on disk head positions is assumed. In the disk simulator, the access time of a disk operation is calcu-
lated from the timing specifications of a Fujitsu Eagle disk drive [Fuji82]. On the average, it takes about
27.6 ms to access a 4K page.

The buffer pool is under the control of the buffer manager using one of the buffer management algo-
rithms. However. the operating system can fix a buffer in memory when an 1/0 operation is in progress.

The size of the buffer pool for each simulation run is determined by the formula:

=pith;
1
2Pt
1
where p, is the ith element of the query mix probability vector and t; and h; are the CPU usage and the hot set

size of query i, respectively. The intent was to saturate the memory at a load of eight concurrent queries SO
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that the effect-of overloading on' performance- under - different " buffer management algorithms could be

observed.

4.1.3. Statistical Validity of Performance Measurements

Batch means [Sarg76] was selected as the method for estimating confidence intervals. The number
of batches in each simulation run was set to 20. Analysis of the throughput measurements indicates that
many of the confidence intervals fell within 1% of the mean. For those experiments in which thrashing

occurred, the length of a batch was extended to ensure that all confidence intervals were within 5% of the

mean.

4.2. Buffer Management Algorithms

Six buffer management algorithms. divided into two groups. were included in the experiments. The
first group consisted of three simple algorithms: RAND, FIFO, and CLOCK. They were chosen because
they are typical replacement algorithms and are easy to implement. It is interesting to compare their perfor-
mance with that of the more sophisticated algorithms to see if the added complexity of these algorithms is war-
ranted. Beside DBMIN, WS (the working set algorithm), and HOT (the hot set algorithm) were included in
the second group. WS is one of the most efficient memory policies for virtual memory systems [Denn78]. It
is intriguing to know how well it performs when applied to database systems. The hot set algorithm was
chosen to represent the algorithms that have previously been proposed for database systems.

All the algorithms in the first group are global algorithms in the sense that the replacement discipline
is applied globally to all the buffers in the system. Common to all three algorithms is a global table that con-
tains. for each buffer, the identity of the residing page. and a flag indicating whether the buffer has an I/O
operation in progress. Additional data structures or flags may be needed depending on the individual algo-
rithm. Implementations of RAND and FIFO are typical. and need no further explanation. The CLOCK
algorithm used in the experiments gives preferential treatment to dirty pages, i.e. pages that have been modi-
fied. During the first scan, an unreferenced dirty page is scheduled for writing, whereas an unreferenced
clean page is immediately chosen for replacement. If no suitable buffer is found in the first complete scan,

dirty and clean pages are treated equally during the second scan. None of the three algorithms has a built-in
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. facility. for load control. -However:: we:will investigate-later-how a load controller may be incorporated and
what its effects are on the performance of these algorithms.

The algorithms in the second group are all local policies, in which replacement decisions are made
locally. There is a local table associated with each query or file instance for maintaining its resident set.
Buffers that do not belong to any resident set are placed in a global LRU list. To allow for data sharing
among concurrent queries. a global table, similar to the one for the global algorithms, is also maintained by
gach of the local algorithms in the second group. When a page is requested, the global table is searched first,
and then the appropriate local table is adjusted if necessary. As an optimization, an asynchronous write
operation is scheduled whenever a dirty page is released back to the global free list. All three algorithms in
the second group base their load control on the (estimated) memory demands of the submitted queries. A
new query is activated if there is sufficient free space left in the system. On the other hand, an active query is
suspended when over-commitment of main memory has been detected. We adopted the deactivation rule

implemented in the VMOS operating system [Foge74] in which the faulting process (i.e. the process that was
asking for more memory) is chosen for suspension®. In the following section. we discuss implementation

decisions that are pertinent to each individual algorithm in the second group.

Working Set Algorithm

To make WS more competitive, a two-parameter WS algorithm was implemented. That is, each pro-
cess is given one of the two window sizes depending on which is more advantageous to it. The two windpw
sizes. 7, = 10ms and 75 = 15ms. were determined from an analysis of working set functions on the single-
query trace strings. Instead of computing the working set of a query after each page access, the algorithm
re-calculates the working set only when the query encounters a page fault or has used up its current time

quantum.

8 We also implemented the deactivation rule suggested by Opderbeck and Chu [Opde74] which deac-
tivates the process with the least accumulated CPU time. However, no noticeable differences in performance
. were observed.
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- Hot Set-Algorithm
The hot set algorithm was implemented according 10 the outline described in [Sacc82]. The hot set
sizes associated with the base queries were hand-calculated according to the hot set model (see Table 2

above). They were then stored in a table. which is accessible to the buffer manager at simulation time.

DBMIN Algorithm

The locality set size and the replacement policy for each file instance were manually determined.
They were then passed (by the program that implemented the query) to the trace string recorder at the
appropriate points when the single-query trace strings were recorded. At simulation time, the DBMIN algo-
rithm uses the information recorded in the trace strings to determine the proper resident set size and replace-

ment discipline for a file instance at the time the file is opened.

4.3. Simulation Results
Although comparing the performance of the algorithms for different query types provides insight into
the efficiency of each individual algorithm, it is more interesting to compare their performance under a work-
load consisting of a mixture of query typesg, Three query mixes were defined to cover a wide range of work-
loads:
M1 - in which all six query types are equally likely to be requested:
M2 - in which one of the two simple queries (I and II) is chosen half the time:

M3 - in which the two simple queries have a combined probability of 75%.

The specific probability distributions for the three query mixes is shown in Table 4.

The first set of tests were conducted without any data sharing between concurrently executing
queries. In Figure 2, the throughput for the six buffer management algorithms is presented for each mix of
queries. In each graph, the x axis is the number of concurrent queries and the y axis is the throughput of the

system measured in queries per second. The presence of thrashing for the three simple algorithms is evi-

9 The performance of the single query type tests are.contained in [Chou85]. In general, the behavior of
the algorithms for these tests are similar to the three mixes.
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Query Type Type Type Type Type Type
Mix I 11 III v N VI
Mi 16.67% | 16.67% | 16.67% | 16.67% | 16.66% | 16.66%
M2 25.00% | 25.00% | 12.50% | 12.50% | 12.50% | 12.50%
M3 37.50% | 37.50% 6.25% 6.25% 6.25% 6.25%

Composition of Query Mixes
Table 4

dent!®. A relatively sharp degradation in performance can be observed in most cases. RAND and FIFO
yielded the worst performance. although RAND is perhaps more stable than FIFO in the sense than its curve
is slightly smoother than that of FIFO. Before severe thrashing occurred, CLOCK was generally better than
both RAND and FIFO.

WS did not perform well because it failed to capture the main loops of the joins in queries V and VI.
Its performance improved as the frequency of gueries V and VI decreased. The efficiency of the hot set algo-
rithm was close to that of DBMIN. When the system was lightly loaded, DBMIN was only marginally better

than the rest of the algorithms. However, as the number of concurrent queries increased to 8 or more,
DBMIN provided more throughput than the hot set algorithm by 7 to 13%!! and the WS algorithm by 25 to

45%.

Effect of Data Sharing

To study the effects of data sharing on the performance of the algorithms, two more sets of experi-
ments. each with a different degree of data sharing, were conducted. The results are plotted in Figures 3 and
4. Tt can be observed that, for each of the algorithms, the throughput increases as the degree of data sharing
increases. This reinforces the view that allowing for data sharing among concurrent queries is important in a
multi-programmed database system [Reit76] [Bora84].

The relative performance of the algorithms for half data sharing is similar to that for no data sharing.

However, it is not the case for full data sharing. For query mixes M1 and M2, the efficiencies of the

10 pata points for the three simple algorithms were gathered only up to 16 concurrent queries as it is
very time-consuming to gather throughput measurements with a = 5% confidence interval when the simulat-
ed system is trapped in a thrashing state.

11 The percentages of performance difference were calculated relative to the better algorithm.
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- different algorithms were close. Because every query accessed the same copy of the database, it was easy for
any algorithm to keep the important portion of the database in memory. With no surprises, RAND and FIFO
performed slightly worse than other algorithms due to their inherent deficiency in capturing locality of refer-
ence. For query mix M3. however. the performance of the different algorithms again diverged. This may be
attributed to the fact that small queries dominated the performance for query mix M3. The "working" por-
tion of the database becomes less distinct as many small queries are entering and leaving the system. (In con-
trast, the larger queries. which intensively access a limited set of pages over a relatively long period of time,
played a more important role for query mixes M1 and M2.) Therefore, algorithms that made an effort to

identify the localities performed better than those that did not.

Effect of Load Control

As was observed in the previous experiments. the lack of load contro! in the simple algorithms had
led to thrashing under high workloads. It is interesting to find out how effective those algorithms will be
when a load controller is incorporated. The "50% rule” [Lero76]. in which the utilization of the paging dev-
ice is kept busy about half the time, was chosen partly for its simplicity of implementation and partly because
it is supported by empirical evidence [Denn76].

A load controller which is based on the "50% rule” usually consists of three major components:

(1) an estimator that measures the utilization of the device,

(2) an oprimizer that analyzes the measurements provided by the estimator and decides what load adjust-

ment is appropriate, and

(3) a control swiich that activates or deactivates processes according to the decisions made by the optim-

izer.
In Figure 5. the effects of a load control mechanism on the three simple buffer management algorithms is
shown. A set of initial experiments established that throughput was maximized with a disk utilization of 87%.
With load control. every simple algorithm in the experiments out-performed the WS algorithm. The perfor-

mance of the CLOCK algorithm with load control came very close to.that of the hot set algorithm. However,

the results should not be interpreted literally. There are several potential problems with such a load control
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mechanism which arise from the -feedback nature-of-the-Joad- controller:

(1) Run-time overhead can be expensive if sampling is done 100 frequently. On the other hand, the optim-
izer may not respond fast enough to adjust the load effectively if analyses of the measurements are not

done frequently enough.

(2) Unlike the predictive load controllers, a feedback controller can only respond after an undesirable con-
dition has been detected. This may result in unnecessary process activations and deactivations that

might otherwise be avoided by a predictive load control mechanism.

(3) A feedback load controller does not work well in an environments with a large number of small transac-
tions which enter and leave the system before their effects can be assessed. This effect can be seen in
Figure 5 as the percentage of small queries increases. Note that the so-called "small queries” (i.e.
queries 1 and II) in our experiments still retrieve 100 tuples from the source relation. The disadvan-
tages of a feedback load controller are likely to become even more apparent in a system with a large

number of single-tuple queries.

5. Conclusions

In this paper we presented a new algorithm, DBMIN, for managing the buffer pool of a relational
database management system. DBMIN is based on a new model of relational query behavior, the query
locality set model (QLSM). Like the hot set model, the QLSM allows a buffer manager to predict future
reference behavior. However. unlike the hot set model, the QLSM separates the modeling of referencing
behavior from any particular buffer management algorittm. The DBMIN algorithm manages the buffer pool
on a per file basis. The number of buffers allocated to each file instance is based on the locality set size of
the file instance and will varies depending on how the file is being accessed. In addition, the buffer pool
associated with each file instance is managed by a replacement policy that is tuned to how the file is being
accessed.

We also presented a new performance evaluation methodology for evaluating buffer management
algorithms in a multiuser environment. This methodology employed a hybrid model that combines features

of both trace driven and distribution driven simulation models. Using this new model, we compared the
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~.performance of six buffer- management. algorithms. Severe thrashing was ‘observed for the three simple algo-
rithms: RAND, FIFO, and CLOCK. Although the introduction of a feedback load controiler alleviated the
problem, it created new potential problems. As expected, the three more sophisticated algorithms - WS.
HOT. and DBMIN - performed better than the simple algorithms. However, the WS algorithm did not per-
form as well as advertised for virtual memory systems [Denn78]. The last two algorithms, the hot set algo-
rithm and DBMIN. were successful in demonstrating their efficiency. In comparison, DBMIN provided 7 to
13% more throughput than the hot set algorithm over a wide range of operating conditions for the tests con-
ducted.

In [Chou85] we also examined the overhead associated with each of the WS. hot set. and DBMIN
algorithms. Based on our analysis, the cost of the WS algorithm is higher than that of HOT unless the page
fault rate is kept very low. In comparison, DBMIN is less expensive than both WS and the hot set algorithm

as less usage statistics need to be maintained.
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Figure 5.b






