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ABSTRACT

The MGR[v] algorithm of Ries, Trottenberg and Winter with v =20
and the Algorithm 2.1 of Braess are essentially the same multigrid
algorithm for the discrete Poisson equation: -AhU = f. In this report
we consider the extension to the general diffusion equation -V -pVu = f,
p = p(x,y) > Py > 0. In particular, we indicate the proof of the basic
result »p 5‘%-(1+Kh), thus extending the results of Braess and Ries,
Trottenberg and Winter. In addition to this theoretical result we pre-
sent computational results which indicate that other constant coefficient

estimates carry over to this case.
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Multigrid methods are proving themselves to be successful tools for the
solution of the algebraic equations associated with the discretization of
elliptic boundary-value problems. MNevertheless, it seems we are just
beginning to understand this powerful idea. Hence there is a need for
continued probing, experimentation and new proofs - less for the sake of
proof and more for the sake of insight.

Let Xn be a finite dimensional vector space of dimension n. Let An
be a non-singular linear operator mapping Xn onto Xn . We are concerned

with the problem
(1) AU=f.

Multigrid methods for the solution of (1) are based on the following set of
ideas. Suppose that (1) arises from the discretization of an elliptic
boundary value problem. Then U 1is an approximation to a "smooth function"
U(x,y). Moreover U(x,y) can also be approximated by other approximants
{Um} € {Xm} - with X~ a finite dimensional vector space of dimension m.
Thus U can be approximated by such a Um with m < n. At the same time,

most of the classical iterative methods for the solution of (1) converge very
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slowly. For these methods the spectral radius of the iteration matrix is

of the form

(2) p~1-c/n.

Indeed, ADI and SOR methods are considered exceptionally good because
(3) p~1-c//n .

The same analysis which yields (2) also shows that the eigenvectors associated
with this slow rate of convergence are converging (as n + x) to a very
smooth function. That is, these (not all) classical iterative schemes have
the effect of "smoothing" the error.

A multigrid method for the solution of (1) is based on the following

entities

(a) a smoothing operator S : Xn + X

n
S is an affine operator of the form

(4) Sv = Gv + Kf

where G and K are linear operators. And, if u is
the unique solution of (1) then u is a fixed point of

S, id.e.
(5) Su =6Gu + Kf =u.

(b) A subspace Xm with

(6) dim X_ =m << dim X_ = n .
m n



(c) two linear "communication" operators:

m

(7) ™
n

(8) Im Xm > Xn

(d) A course gird operator: a nonsingular operator Am’

Having Tisted these ingredients let us describe the multigrid iterative
scheme for the solution of (1).

Step 1. Let uO be a first guess.

Step 2. Su” =10, r=f - AU.

Step 3. LT e

Step 4. Solve

Step 5. ul =1 + A

Remark: It might appear that we have (merely) described a "two grid"

iterative method. However, true "multigrid" iterative schemes are described

by this outline. The operator Am may require the use of other spaces Xm"
In our discussion of these methods we follow a basic observation of S.

McCormick and J. Ruge [2]: we should focus our attention on the two basic

spaces
(10) R := Range I; s
(11) N := Nullspace I"A

nn’



A basic result is
Theorem 1: Suppose X = R®N and

_ N . m 8]
(12) Ay = A = TAI .

Pl

Suppose Am is nonsingular, and

(13) E:=U—ﬁ=n+1;11w
where

(14) nelN, welX .
Then

(15) e] = U - u] =1 .

With this theorem we see the "right way" to view (i) the smoothing
operator S and (ii) the coarse grid operator Am . That is, S should
make n "small" while Aé] should be a "good approximation" to ﬂ&] .

With this insight we study the MGR[v] multigrid methods. These
methods, the MultiGrid Reduction methods were developed independently by
Braess [1], and Ries, Trottenberg and Winter [3] for the Poisson Equation.

In [1] Braess proposed and analyzed a class of multi-grid methods.

In particular, he considered a particular algorithm for the Poisson Equation -

"Algorithm 2.1" of [1]. He shows that the contraction number p for a two-

grid method is given by

(16) p<



This result is valid in any polygonal region § provided that its corners
belong to the coarsest grid, and the corners are "even" points. In [3] Ries,
Trottenberg and Winter discuss the class of MGR[v] methods for the Poisson
Equation in a square. Using Fourier Analysis they obtain an explicit formula

for the corresponding contraction numbers p[v]. In particular, they obtain
2] .2

As it happens MGR[O] is the same as the "Algorithm 2.1" and the results of
[1] and [3] are consistent. The results of [3] are more precise for more
restricted problems.

In this report we consider the problem

it
-+

(18.a) =V + p(x,y)Vu in 9,  plxy)>py>0,

(18.b) 0 on 30 ,

[y
i

and its standard finite difference analog (see section 2). We consider a
class of multi-grid methods which generalize the MGR[v] methods. In par-
ticular, when p(x,y) =1 these methods include the MGR[v] methods. Our

basic result is the following: Consider the two-grid method. Then
1

where the constant K s determined by the C](Q) norm of the "diffusion
coefficient" p. Moreover, the proof of (19) indicates why one should expect

great improvement when more "smoothing" is introduced.



In section 2 we describe the basic discrete (finite-difference equations)
problem when & 1is the unit square. In section 3 we "analyze" the multigrid
algorithm developed in section 2. However, in fact, we do not provide a
correct analysis. Rather, we give a heuristic argument which is "almost" right
and is the basis of the correct, and very technical argument which will be
presented in [4]. Finally, in section 4 we present some computational results.
These computations were carried out on the CRAY I at the Los Alamos National

Laboratory, Los Alamos, New Mexico, U.S.A.



2. THE PROBLEM

For the purposes of expository simplicity we choose § to be the unit

square
(2.1) Q= {(x,y), 0<x,y<1}.
Let
(2.2) ho= o= ax = ay
mt N+1 ’

The function p(x,y) [of (18.a)] is to be smooth and satisfy
(2.3) p(x,y) > py > 0 .

Consider the difference scheme: for 0 < k,j < N

1

(2.42) ?E)ka%,j(UkH,j_Uk,j) P30 ¢
Doy Uy caa=Uy ) = py (U U, L )] = -t
h2 kaj'*'li kaj+] ksJ ksj"l/z kaJ k:j'1 kJ ?
(2.4b)
Ukj =0 if k or j is 0 or N+ 1,
and
(2.5) Prasg,j = PUkEa)LGh) o f o = F(kh,jh), etc.

We rewrite (2.5) as

(2.6) [LhU]kj = fkj'



We now turn to the question of the solution of these linear algebraic

equations, via a "two-grid method". Let

(2.7a) Q= {(kh,jh): 0 <k, j< N}
(2.7b) QE = {(kh,jh) € Qh: k+i = 0 (mod 2)}
(2.7¢) g = {(kh,jh) € Q kt+i =1 (mod 2)} .

Our two grids are Qh and QF. Let Sh and SE be the spaces of grid-
function defined on Qh and QE respectively. In both cases we assume

the functions vanish on the boundaries, i.e.

(2.8) U.=0 1if k or j=0 or N+1.,

kJ

Our first step is to set-up "communication" between these two spaces.

To be specific, we construct Tinear "interpolation” and "projection"
h

operators Iﬁ s IE so that

(2.9a) Ir: S, > Sg (Projection),

(2.9b) 12: Sg > Sy, - (Interpolation).
We define the interpolation operator 12 as follows

(i) if k+ 3 =0 (mod 2), then (Q‘GSE)

h -
(2.10a) [IEU]kj = Ukj



(ii) if k+ 3 =1 (mod 2), then

h =
e = [%k-%j“k-l,j+pk+%,j“k+1,j+pk,j-%”k,j—1 '
(2.10b) :
pk,j+%uk,J+1J ’
where
(2.10¢) Ci = Prosg, 5Py, 7P, 5435 Pic, 5]

The projection operator IE is defined by: if k+3j= 0 (mod 2) then
(U eSh)

E 1
[Ty = chj{%k-%,j”k—1,j+pk+%,j”k+1,j+pk,j-%“k,j—1 *

pk,j+%“k,j+1+ckj”ké} ‘

Remark: We note that

let

(2.12) R := Range Ig .

The choice of interpolation operator Ig enables us to characterize
the range R of 12 as follows:
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h
E

U = U(h) « S, isin R if and only if

Lemma 2.1: Let I.- be defined by (2.10a), (2.10b). Then, a function

11

(2.12) [LhUka =0 ¥(k,j) > k+3j=1 (mod 2) .

Corollary: IE is of full rank, i.e.

dim R = dim SE .

We are now ready to describe the class of two-grid methods under

discussion. Let G be a "smoother". That is, given uO e S, we con-

h
struct U via the formula

0

(2.14) = 6u’ = 9+ B(F-L )’

h
where B 1is a fixed, given matrix. The two-grid iteration procedure

(based on G) is given by:

Algorithm:

Step 1: Given uO € Sh form

(2.15) i =6 .

Step 2: From the function U given by: for k + j = 0 (mod 2)

(2.16a) ukj = ukj

for k+J =1 (mod 2) solve for Ug; from the equation

(2.16b) [Lhu]kj = fkj'



Note: 1in other words we "relax" the equations on the "odd" points

Step 3: Form

(2.17a) r=f- L
and
_ <E
(2.17b) re = Ihr
Step 4: Find the function ¢ « SE which satisfies
(1), _
(2.18a) LE ¢ = re
where L(]) is the difference operator described by:
E

For k + j =0 (mod 2)

(M) _
[Le "odis = =3y 5001, 521 7 Bk, 340k, 541
(2.18b)
P Y% 7 Pken, 3 fk-1,341 7 Pl 5okt 500
where
(2.18¢) S B L= 5 LS I E R S B
k=507 52 | o,; ©,3-1
(2.18d) b - Pk P19 e, g
' k-ds, 4% 2 1 s c,
h k"] :J k:\]+1
(2:180) Mg T gt Py e T Pk gon T e, ey

11
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Step 5: Set
u] =0 + IE¢
Step 6: Set
1 0
u -u and return to step 1.
The operator Lé]) chosen is Step 4, i.e., in (2.18a) is the easier

operator to analyze. However, it is not the right operator to use in
practical problems. It is more convenient to use the natural "skewed"

5-point difference operator on the even grid, that is if k+j = 0 (mod 2)

then
(2) -
(2.192) [Lp7'u],; = 2 P, 5k, 541 7 Py, 3ol 51
Prets, 3301, 521 7 Phetg, 0Pk, 541 SkiVks)
where
(2.196) S5 = EPiass, g3 ¥ Pl oty ¥ Proy, s Py o) -

Fortunately, the basic result (19) holds with this choice Léz) because

of the basic estimate

(2.20) (1-Kh) <Lé”¢),w> < <Lé2>¢,w> < (1+Kh)(Lé] o)
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3. ANALYSIS OF THE ALGORITHM

We begin our analysis with an observation which is essentially the

restatement of Theorem 1 (of the introduction) in our setup. Let

~ ._ <E -h
(3.1) LE := 1 LhIE .

Consider Steps 4-5 of the two-grid iteration. Suppose we replace LE by

tE’ i.e. suppose we find the function ¢ which satisfies

LE Y o= rE .
and set
u =u+t IEw
We claim that
1 _
Lhu = f,

i.e. u] is the desired solution! To see this we set

(3.2) E=0U-1
and observe that Step 2 implies that if k + j =1 (mod 2), then

(Lhe)kj = (LhU'Lhu)kj = (f—-Lhu)kj =0 .

Hence Lemma 2.1 asserts that there is a function V ¢ SE and
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We now verify that

LV - IE(LhIEV) - 1L e =y
Hence,
p =V
and
(3.2%) G- 10y =0-¢=ul
Unfortunately we have chosen Step 4 with Lé]) and not EE . This choice

was not merely pique on our part (or the part of Braes and Ries, Trottenberg

(1)

and Winter). The point is -- having chosen F as a five point star we can
now proceed to replace Step 4 with a new two grid step -- i.e. we can build
a true multi-grid.

In any case, the problem of Step 4 is seen to be

(K), _ ¢ -
(3.3) Le /o = Lpws K=1,2 .

~N

We now turn to a complete description of the operator LE .

Definition: Let EE be the difference operator defined on Sg by the

formula [k +3j =0 (mod 2)]

(3.4) - A - B

LVl = A, %2, 7 Aen,iVez,s ~ Be,i-1Y%,5-2

" B,an g F Dl



where
Pr+iiPr+3/,
(3.5a) Apgp ;= 2l Xt/z]
v +1.] g
JJ Ck+-l ’j
(3.5b) B, . = ok itk,§+Ys
k,j+l Ck,j+1
(3.5¢) %5 ™ Pt 5" 7B, Bk o)

Lemma 3.1: For "interior" points, (Xk’yj) with 2 <k,j <N-1,

we have the identity

RN,

1
L 5 Lp -

A~ B l (
(3.6) LE =5 Le

Proof: Direct Computation.

Unfortunately, (3.6) does not hold on the points (Xk’yj) with k =1

or N and j =1 or N. The argument in [4] holds in very general domains.
But, as you an imagine, it is technically complicated. So, we shall simply
assume that (3.6) holds throughout 9.

Having (3.3) and (3.6) we obtain
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Using (3.2*) we see that

(3.8) el = ul - 0= 1(eey)
and, we recall that
(3.9) E=t-U=1"().

We now turn to an estimate which is an extension of the basic result

of Braess [1](see [4] also).

Theorem 3.1: Assume (3.6) holds throughout & Let the "smoother" &

b
of Step T in the MGR Algorithm satisfy ]lI—Bth[4§ 1. Let p denote

the spectral radius of this two grid iteration scheme (h -+ v/Zh). Then,

there is a constant K, depending only on Ivpll_, the maximum norm of

0
the first derivatives of the "diffusion coefficient" p(x,y), such that

1

Proof: From (3.7) we see that

1

I IR I B
b=g Vol Loy

1 -1
V-5 [I-10 Ty,

i

Thus, we turn to the spectrum of

(1 -Le L)

=1
T =5
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Let <(A,V)> be an eigenpair of T. Then an elementary computation yields

(3.11a) (1-2A)LEV = LEV
Hence

T T
(3.11h) (1-2x2) (Vv LEV) = (V LEV) .

Since both LE and EE are symmetric positive definite operators

(see Lemma 3.1)

(3.11¢) 1-22>0 and X < %-.

The proof of the theorem now follows from the following basic, but

elementary, lemma.
Lemma 3.1: Let V be a grid-vector defined on the EVEN points, i.e.
Vv = {ij}, k+3j=0(mod 2), 0<k,j<N+T,

Let (see Fig. 1)

O R a8 £ i
2T /2h

Wy = kel
nkd /2h

(3.12)

O L 5
x’kJj 2h

W) = itz
y'kJ 2h i



18

/N

N e g
N (k,j+2)
N @ (ks g -
®
=1.,3+ AN °+s.+
(k-1,3+1) N s (k+1,3+1)
N o {E:>>
(k,3) (k+2,3)
Figure 1
Then
T oy o ron2y v 2 2
(3.13a) V'LV = (2n%) ij [§k+%,j+% (Vc)kj + bk-%,j+% (Vn)ki} ,

(3.13b) V'LV = (40%) ] Ekﬂ,j(vx)kj ¥ Bk,j+1(vy)kﬂ'

Moreover
_

(3.74) = [0, * ]
-1 [

(3.74b) vy = 7 [(Vn)kﬂ,jﬂ ' (Vc)kﬂ .

Proof: The equalities (3.13a), (3.13b) follow from a direct computation
using summation by parts. The equalities (3.14a), (3.14b) are an immediate

result of the definitions (3.12).
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Proof of the Theorem: We observe that there is a constant K depending

only on ||p]] , and py such that
C

2 1
(3.15a) Ih Betsy, g 'ﬁ'pkjl < Kn ,
2 1
and Ih bki%,j$%'“§ pkjl < Kh
(3.15b) hZa = Lo+ o)
. ktk, itk 2 Tkj ’
h’h =L+ o(n)
and k5,57~ 2 Pkj ’
2 1
(3.16a) MAsr,5 = 7 Pyl < Koygh
(3.76b) In%B - Lo 0 < kp,
. k,jt1 = & Pyj kj
i.e.
2 =1
(3.176) h Aki.'l 2J - ) ka + O(h)
2 -1
(3.17b) h"By j+1 = 7 Py * 0(h) .

Using these results together with (3.13a), (3.13b), (3.14a), (3.14b)

yields

2 2 1.2 e 2 2
WA, 0k = 2 07 [P O ||V )i 5 Z(Vn)k+2,j(vg)kj+(vc)ki]

an®s, )2 = Lu2ln o ][ )2 e ) (V) +(V_)2
S RS B LS A | (U R L O PR U F Ut
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Thus

20> 2 27 1
(3.18) 4 [hyg (V)5 + 510 0s] = 3 [P0 [Re 5#]

where

Ty 2 2 2
(3.08) Ry = [0Z 5+ ey i 2008
(3.18¢) Qg ZBVn)kﬂ 341 '(Vn)k+2,j](vc)kj '
Hence

2 2 2 2
(3.19)  4n Exkﬂ S +Bk,j+](Vy)k’j] < 295 (1) (V) +

2 2
Ps1, g (RO Db o Pry s (K (Y Dy 54y -

Similarly

2 2 2 PIVIRY 2
(3.20) 20 ap 5007+ bysy s ()7] 2 pi -km [0 + O]

Finally, from these estimates and (3.13a) and (3.13b) we obtain

VT < 2[}: P (1+Kh)l:(vc)§j +(vn)ﬁ:JJ

(1+Kh)| T
<2 {:1—Kh VLV .
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Therefore
‘ 1+Kh ,
T - 20 <29y 22+ Kh
and
(1+Kh)
0
....__—.___~2 _<_}\_

This estimate and (2.11c) prove the theorem.
It is of some interest to consider the role of "smoothing" before

solving (2.19a). We have

or

—
m
S
0
>

If "smoothing" is applied either on Sh or on SE we have

LE¢ = LEGu
and we are concerned with
L Gu-0]] _ ||Gu-¢]| ]| Gu]]
I ul] I

Therefore, smoothing can be advantageous either because

Gu
u
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is small or because

%L 7 - Gu]I/HGuH

is small. Quite clearly, this quantity is small when Gu is smooth.
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4. COMPUTATIONAL RESULTS

The theoretical results of the preceeding section extend the work of
Braess [1] for the MGR [0] iterative scheme and suggest the value of
additional smoothing steps i.e. MGR[v] with v > 1. We have undertaken
some computational experiments which study this case and illustrate and
document the theory.

The results of Ries, Trottenberg and Winter [3] for the case
p(x,y) =1 yield

(2\))2\)
(2v+])2v+1

(4.1) p[0] 7 %, o[1]17 %57, plV]17 %

The symbol # means that the corresponding p[v] 1increases to

. (Zv)Zv

2 (2v+1)2v+1

o(v) :=

as h{ 0.

Generally speaking the computational results indicate that (4.1) holds
with a possible error of 0(h). We give four illustrative results.

In all cases & is the unit square,

-1
(4.2) h=g-

Case 1: p(x,y) = e

u(x,y) = (1-e")(x-1)y cos 5y

Case 1.1: L= L), see (2.18b).



Case 1.2:

Case 2:

Case 2.1:

"
N 0 1 2 3
15 .4857 L0797 .0482 .0351
31 .4842 .0739 .0431 .0312
63 .4836 0714 .0399 .0278
o(v) .5000 L0741 .04170 .0283
- (2)
LE = LE , see (2.19) .
v
N 0 1 2 3
15 .4853 .0650 .0347 .0207
31 .4841 .0697 L0376 .0253
63 .4835 .0708 .0386 .0263
a(v) .5000 .0741 .0410 .0283
Ay L
p(X>}') - ('3'_7)(3_‘)/) ’
u(x,y) = e sin mx sin Ty
_ (1)
be = Lg

24
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15 4879 | .1084 | 0727 | ,0565

31 .4854 | .0901 .0582 | .0442

63 .4851 .0784 | .0473 | .0350

o(v) | .5000 | .0741 .0410 | .0283

Case 2.2: Lo =L

15 4869 | .0686 | .0377 | .0255

31 .4851 .0710 | .0390 | .0270

63 4850 | .0715 | ,0390 | .0270

o(v) | .5000 | .0741 .0410 | .0283

To compute the elements of Lé1) for points on the boundary of @

the following procedure was used. Use formula 2.18b to compute

h

akj 3

referring to points inside Qh and then rather then setting d to be

kj

the sum of the akj's, set dkj to be the average of d at the

k \].
£ set dkj to be
dkj from the entry of the nearest interior point. This approximation

two nearest interior points. At the corners of ©

to Lé]) differs from Lé]) by no more than 0(h) and as can be seen

from the computational results appears to work almost as well as Léz),

which is the 'ideal' choice.
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