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Abstract

A multi-resolution modeling technique is described for coarse-to-fine model-based object
recognition. Each two-dimensional object is modeled as a directed acyclic graph. Each node in the
graph stores a boundary segment of the object model at a selected level of spatial resolution. The
root node of the graph contains the coarsest resolution representation of the boundary of the complete
object. leaf nodes contain sections of the boundary at the highest resolution. and intermediate nodes
contain features at intermediate levels of resolution. Arcs are directed from boundary segments at one
fevel of resolution to spatiallv-related boundary segments at finer levels of resolution. A generalized
Hough transform is used to match the model nodes with regions in the corresponding level of
resolution in & given input image pyramid. First. the root node of the model graph is matched with
the coarsest level of the input image pyramid and an ordered list of hypothesized positions and
orientations for the object is generated. These hypotheses limit the area in which the search for
sub-objects {children nodes) should be conducted. If the sub-objects of one of the hypotheses are not
tound. the next best hvpothesis for the location and orientation of the object at the coarsest level is
ried  Advantages of this approach include the use of mulii-resolution descriptions to model different
parts of an object at differemt scales. the abilin 1o detect partially occluded objects. the ability to
control dvnamically over the coarse-to-fine matching process. and the increase in recognition speed

over conventional model-based recognition algorithms






1. Introduction

Most of the techniques developed to date for object recognition use a set of image features
computed at a single level of detail (resolution). Multi-resolution. or pyramid. image representations
make image features explicit at multiple scales. Such representations are important for several
reasons. First. different objects in a given scene often have different scales at which they are most
readilv apparent. For example. a surface sampled at too coarse a resolution may be too blurred or
miss important surface structure. while a surface sampled at too fine a resolution may be noisv and
contain fine details which confound the recognition of the dominant structure. Second. features
which are large and extended at one resolution can ofien be more simply defined and detected as
local features at a coarser level of resolution. Finally. by directing the search for objects based on

coarse resolution results. we can speed up recognition time.

Relativelv little work has attempted to use a pyramid as a multi-resolution representation for
modeling objects. and to serve as the basis for model-based object recogninon  (In contrast. many
researchers have studied pvramid-based image processing and feature detection methods: see. for
example. [1].) Several authors. including Kelly [2] and Yachida and Tsuji [3]. have defined simple
mo-level procedures for implementing coarse-tfine model descriptions. Crowley and Sanderson [4]
used i symbolic represemation of shape and a probabilistic matching algorithm for multiple

resolutions

In this paper we define a representation called the Hough pvramid. because it uses a pvramid
representation combined with the Hough transform matching algorithm [5]. A hierarchical model of
each two-dimensional object is constructed as a directed acvclic graph which contains at each node a
selected segment of the object boundary at one of the pyramid levels of resolution. Each boundary
segment is stored at a node in the form of a generalized Hough R-table [6] at a particular level of
spatial resolution. Arcs are directed from boundary features at one level of resolution to spatially-

related boundary features at finer levels of resolution.

[39)



The boundary segments of the entire object are stored at the root node at the coarsest level of
resolution and are matched first with the corresponding resolution level of the input image. The
results of this match are used to hypothesize a list of approximate positions and orientations of the
object. Next. the higher resolution nodes in the model graph are matched to sub-windows of the
larger. higher resolution images to verify the presence of finer boundary features and to determine
more preciselv their locations and orientations. The sub-windows are chosen according to the rough

estimates provided by the coarse level match positions

In the remainder of this paper we present the details of the Hough pvramid algorithm. Section
2 describes the detection of edges in the pvramid representation. Section 3 details the method of
constructing the model graph. Section 4 presents the hierarchical Hough maiching algorithm using
the feature pyramid and model graph. Results are presented in Section 5. Concluding remarks are

summarized in Section 6.




2. Feature Detection

One drawback of many object recognition algorithms is that objects are represented by
connected “chains” of boundarv pixels such as ribbons. skeletons. or concurves. These
representations are intuitively appealing and mayv require less memory than the edge point image
from which thev were derived. but they are time consuming to generate because of the serial
operations of linking and curve fitting. For example. the time to compute Perkins® concurve

representation |7] is considerably greater than the time used for matching.

In order to avoid this serial image processing bottleneck. we represent objects as simple sets of
unconnected edge points in an image window. The features stored in the model graph are vectors
(stored in an R-table) corresponding to the edge points in selected windows of the zero-crossing (edge

point) pyramid

.

The zero-crossing pvramid is created using the Laplacian pyramid [8] as follows. First. a
Gaussian pyvramid is created by convolving the origimal image with a two-dimensional mask
appronimating the Gaussian probability distribution function to create a blurred. low-pass filtered
version of the original image. This blurred image is then sampled 2:1 to obtain the next coarser
level of the Gaussian pvramid. This process is repeated until a 16 by 16 image is created as the ape
of the pvramid. By subtracting two adjacent levels of the Gaussian pvramid (afier appropriate
expansion of the lower resolution image). the result is a bandpass filtered image similar o the

original image comvolved with a Laplacian operator. Performing this operation on all pairs of

adjacent Gaussian pvramid levels results in the Laplacian pyvramid.

The zero-crossing pvramid is created from the Laplacian pyramid by detecting at each level
those pixels with positive Laplacian value which have at least one negative neighbor. Thus each
zero-crossing image is a binary edge map of its corresponding Gaussian image. Because all steps
can be performed as iterative. local operations. the zero-crossing pyramid can be created very

efficiently.



Figure 1 shows an edge map of some keys and a washer. Figure 2 shows the zero-crossing

pyramid constructed from the original grayscale version of Figure 1.

Figure 1 A scene containing three keys,a washer,and a screw,




Figure 2 A four-level zero-crossing pyramid of Figure 1. Each level has been zoomed to a common
size for display

3. Model Graph Construction

Given a set of zero-crossing pyramids. one for each prototvpe object 1o be modeled. the goal of
this phase is 0 construct a modefs jeanre vrapiv ie.. a graph of local features in which subgraphs
specity individual object models. For simplicity of exposition. we assume there is only a single
object being modeled in the remainder of this section. The merging of object graphs into a single

composite models feature graph is straightforward.

Currently the user interactively selects at each level of the zero-crossing pyramid a set of
windows containing features of interest for the object being modeled. From each window. a node in
a directed acvclic graph is constructed. Each node stores the level of the pyramid from which the
window was taken. a the edge points in the window. pointers to child nodes. if any. and a weight
value used to indicate the significance of the feature contained in the window. The root node of the

graph always contains the entire low resolution (16 by 16) edge map of the complete object. Each



node in the graph may have zero or more child nodes. but the feature stored in each child node is
restricted to be contained in a sub-window of its parent’s window. Thus. beginning at the root node
and moving from parent to child. the feature stored in each node must be from a higher resolution

image of the object than its parent node.

It is not necessary that a child node contain a feature from the next higher resolution image of
the object. i.e . it is possible to skip levels of image resolution between adjacent nodes in the model
graph  This is not recommended. however. for the following reason. The hierarchical Hough
matching algorithm described in the next section uses the maximum peak in the accumulator array
for the current node to estimate the location of the window where the child node is expected to be
found. This estimate is based on the location of the centroid at the current node and is always
integral. having an accuracy of plus or minus one-half pixel. Assume that the location of the peak of
the accumulator array for the curremt node is the correct location (rounded to the nearest integer
coordinates) Since the resolution of each pvramid level is twice that of the previous level. the
location of the window where the child node should be found is onlv accurate 10 plus or minus one
pixel. Should the peak location in the parent's accumulator arrav be slightly in error. say by one
pixel. the location of the child's window will be off by wo pixels. plus or minus one. In this case.
our estimate will be off by up to three pixels. If the child node were associated with a window at
resolution higher than twice its parent’s resolution. then these errors are compounded even further.
Large errors in window position will often cause the matching algorithm to fail because the error size

becomes a significant percentage of the size of the window itself.

Each node in the graph contain the following fields:

R-table description of edge points in window

vector from window center to object centroid

pointers to child nodes

weight defining significance of current feature
o) Fond

resolution level of window

Each node stores the set of edge points in its associated window as an R-table {6]. using the window

center as the reference point of the R-table. To relate the location of the entire object to the sub-




object contained in the current node. a vector from the center of the window to the centroid of the
object is also stored in the node. The centroid of the object is calculated from the edge points in the
highest resolution zero-crossing image. with the centroid coordinates at each lower resolution level
derived directly from this highest resolution level. Each node in the model has the same structure.

and any node can be used as the root node of a subgraph if so desired.

The fine feature matching process uses the Hough peak at a parent node to locate the position
and orientation of the sub-objects in each of its child nodes. To determine parent-child absolute
spatial relationships. each node stores its position and orientation relative to the centroid of the entire
object and the orientation of the object’s major axis. For example. assume that the object we are
modeling is a triangle. Sav we want to store each corner as a node with the vertex of a corner as the
reference point. First. every edge point associated with the corner is stored as a vector with its head
at the reference point and its tail at the edge point. Next. a vector from the reference point to the
triangle’s centroid is stored in the node. Finallv. all vectors are normalized by rotating them by —6

degrees. where 6 is the angle of the major axis of the triangle.

Also associated with each node is a weight indicating the significance of this feature for the
overall recognition of the object. Static weights are chosen by the user so that during the matching
process if there exists anv connected sub-graph of nodes with total weight greater than 1. then
sufficient evidence exists to indicate the detection of the object. Thus each such match-set of nodes
contains a sufficient number of features to uniquelv distinguish the object from other possible
objects. Specification of march-sets is important not only to speed the recognition process. but also to

correctlv detect objects which are partially occluded or noisy.

For example. if the object we are modeling is a room key. and the other objects of interest are
nuts and washers. one of the key's match-sets need only contains the root node and a low resolution
representation of the shaft of the key. However. if the other objects are also keys and are
distinguishable only by the pattern of their teeth. then the match-sets need to contain enough high

resolution detail of the teeth in order to discriminate this key from all other types. Currently. all



match-sets must include the root node due to restrictions in the matching algorithm. This condition
could easily be removed. however. in order to deal with images in which occlusion prevents

matching the root node with the coarsest resolution image.

The nodes in a match-set usually contain enough fine sub-features so that the high-resolution
nodes can verify the maiches of their low-resolution ancestors. Sometimes. however. match-sets
include nodes that are not sub-features of their parent nodes. These nodes usually have two or more
parents. and contain a sub-feature of one of the parents but not of the other. so that if one parent is

occluded but the other is not. the fine node can still be reached through the unoccluded node.

3.1. An Example

In this section we present in detail the process of building the model graph for a room key.
We will assume that four others objects are also to be recognized — two others kinds of keys. a
washer. and a screw. The zero-crossing pvramid of the key is assumed to contain four levels of

resolution: 16 by 16. 32 by 32. 64 by 64. and 128 bv 128

The first step in the modeling process is to compute the centroid of the key's edge points in the
128 by 128 image and the orientation of the major axis of these points. The corresponding centroid

at each of the three lower resolution levels is then compured

The root node of the kev model graph is simph the 16 by 16 level of the zero-crossing
pvramid. This is shown in Figure 3 as node 0. In each of the remaining three levels of the zero-
crossing pvramid. the user defines nodes as the children of lower resolution nodes by choosing a
rectangular window over the feature he wishes 1o include. Figure 4 shows two examples of an
interactive modeling session in which the operator has defined nodes at the appropriate resolution
levels of the pyramid displayed on the screen. In the current implementation. all nodes’ windows are
16 by 16. All the points within the window are then stored in the R-table of the node. with the center

of the window as the reference point.
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Figure 3 The model graph of a room key
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Figure 4 Interactive modeling. Node 1 of the 32 x 32 level and node 5 of the 128 x 128 level are
shown. The nodes are chosen interactively by the operator by windowing the areas of interest using
16 x 16 windows

For example. after the root node is stored. the 32 by 32 zero-crossing image is displayed and
the user selects windows which become children of the root. Figure 3 shows two nodes which have
been selected. corresponding to the head and shaft of the kev represented at the root. In general. it
is important 10 choose higher level nodes which quickly disprove false matches. In this case.
however. the 32 by 32 level is still 0o coarse to distinguish berween the given key and the other two
kev types. although it does contain enough detail 1o distinguish between the key and the washer and

the screw .

Atter the user is finished with the 32 by 32 level. the 64 by 64 zero-crossing image is
displaved  All previoush stored nodes. starting with the root node. are displaved. giving the user the
opportuniny 1o create and link a new child node to any node at the levels above the current level.
Figure 3 shows nwo nodes containing windows at the 64 by 64 level. Node 3 corresponds to the hole
at the top of the head of the key and node 4 is a finer resolution view of the shaft. Note that in this
case both new nodes have been linked from both nodes at the 32 by 32 level. This was done for the
reason mentioned above. namely. to define match-sets which skip certain coarse resolution nodes
(i.e.. the nodes at the 32 by 32 level) in case occlusion or noise prevents a successful match at that

level.
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The same procedure is repeated at the 128 by 128 level. In Figure 3. nodes 5. 6 and 7
correspond to this level. defining boundary segments for the side of key head. the tip of the shaft.

and a section of teeth. respectivelyv.

Finally. weights are assigned to each node in the graph as shown in Figure 3. The root node
has been assigned a weight of 0 because we assume in the current implementation that it must be part
of everv match-set and must always be successfully matched in order to recognize the key. This
restriction is not crucial. however. and can easilv be removed with appropriate modifications in the
matching algorithm. With this assignment of weights there are eight match-sets implicitly defined.

Figure 3 shows each of these sub-graphs.
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Figure 5 The set of match-sets for the room key. One of the eight match-sets has to be successfully
match for recognition.
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4. Hierarchical Hough Matching

Our matching algorithm employs a top-down. coarse-to-fine search strategy to recognize
objects in a given input image. We consider here the particular problem of detecting one instance of
a given object specified by its model graph. Our method may be briefly summarized as foliows. The
initial best estimate of the location and orientation of the object is determined from information at the
coarsest level of resolution. and this estimate controls the search for higher resolution features. If
enough higher resolution features are found to uniquely identify the object. the matching succeeds.
If enough higher resolution features are not found. the previous estimate is discarded and the next
best estimate at the coarsest level is chosen and used to control the search for sufficient confirming
higher resolution features. This process continues until the all the nodes in some match-set are
matched (success) or until no more coarse level estimates remain (failure). In the remainder of this

section we present the details of this matching procedure

4.1. Coarse Level Hyvpothesis Formation

The first step in the matching process is to match the model graph’s root node with the coarsest
resolution level (16 by 16) of the input image’s zero-crossing pyramid. The generalized Hough
rransform is used for this purpose [6]. resulting in a three-dimensional accumulator array of size 16

by 16 by 16 of match values. (Thus we estimate orientation at this level in increments of 360/16 =

The peaks in the accumulator array indicate the best estimates of the location and orientation of
the object. Non-maximum suppression is performed on the accumulator array using a 3 by 3 by 3
neighborhood to aid in peak detection. Next. all peaks over a pre-determined threshold are sorted in
descending order. Each peak. beginning with the highest. is now hypothesized to be the actual

position and orientation of the object in the image.

14



4.2. Fine-Feature Verification Matching

Given a peak from the coarse matching process. the fine-feature matching process calculates
the position and orientation of the children of the root node. For each child of the root. a 16 by 16
window centered on its estimated position is extracted from its level in the input image’s zero-
crossing pyramid. Another generalized Hough transform is now applied using this window and the
R-table associated with the current model node. The resultant accumulator array in this case is 16
bv 16 bv 11 That is. orientation is now quantized to |1 values at multiples of 4.5 degrees centered

around its parent’s estimated orientation angle (which was quantized in steps of size 22.5 degrees).

The time required by the generalized Hough wansform is proportional to the number of edge
points in the window times the size of the node’s R-table times the number of orientations.
Consequently. our use of small 16 by 16 windows and small R-tables saves considerable time over

-

the brute-force method of trying all possible positions and orientations at the current level.

Following the completion of the Hough transform. if the maximum value in the accumulator
arrav divided by the size of the node’s R-table is greater than a predefined threshold. then the
window matches the current node. Otherwise. the match fails. If the match succeeds. then the
weight associated with the current node is added to the current match-set total. If that total now is
greater than 1. then the object has been detected: otherwise. the same procedure is used recursively
to trvoand match all children of the current node (using the updated position and orientation
associated with the maximum peak in the current node’s accumulator arrav). 1t should be noted that
the match threshold used here can be chosen fairlv conservativelv because “false positives” at one

node are quickly disproved by finer resolution children nodes.

In general. the coarse resolution nodes help to rapidly disprove faise hypotheses and to make
fine adjustments in the hypothesized position of the object’s true position and orientation. There is
not usuallv enough information in the coarser nodes to verify the presence of the object in the image.
and coarser nodes mav maich similar features of the wrong object. A coarse representation of the

shaft of a kev. for example. may not match well with a washer in the image. thus quickly disproving




this hvpothesis. but it may match well with the shaft of a bolt. and so cannot be used to verify the
presence of the key in the image. If an hypothesis is correct. the coarse nodes reduce the error in

the object’s centroid and orientation estimates.

The fine resolution nodes generally serve to verify an hypothesis. Fine nodes rarely give false
matches: in order for a fine node 10 match at all. the feature must be small (relative to the size of the
image) and at roughly the correct orientation. If the features in the fine nodes are chosen judiciously.
this is unlikelv 1o happen except with the correct hvpothesis. As a result of these observations. the
weights associated with nodes in a model graph should be chosen so that match-sets include mostly
coarse and intermediate level nodes plus a few fine nodes 1o complete the verification of at least

selecred parts of the object

In our prototype system. we have used a breadth-first strategy to search the model-graph. but
anv graph search algorithm can be used. If a node has been correctly matched. its children are
placed at the end of a queue and the next node in the queue is tested. Child nodes inherit the
centroid and orientation estimates of their parents. appropriately scaled to the resolution level of the
child When all the nodes in a match-set are correctly matched. their estimates of the centroid and
orientation are compared to make sure they agree 1o within a predefined error tolerance. If they

agree. the object is successfully detected.

If no match-set is successfully maiched. the current hypothesis fails and the next highest peak
from the root node s list becomes the new hvpothesis. Hypotheses that have failed are never retried.
This sequence of wving and discarding hypotheses continues until one hypothesis results in the

matching of a match-set. or until there are no more hypotheses.

4.3. Other Strategies

4.3.1. Failure Recovery

As our svstem is currentlv implemented. there is no recovery from failure. That is. if the

matching process fails to find a maich-set for anv of the hypotheses. the system reports failure and

16



quits. Alternatively. the system could keep track of all nodes successfully matched by each
hypothesis. The hypothesis that correctly matches nodes deepest in the graph (at the finest resolution
nodes) would be considered the best guess. This modification would be useful when an object is so
occluded that no match-set succeeds but enough fine features are detected to indicate that the object is

probably present.

There is nothing inherent in structure of the root node that distinguishes it from any other
node. Therefore we could also use each of the root node’s children as new root nodes. and try to
match each 1o the complete image at the appropriate resolution. The peaks from these matches would

then be used as before as hvpotheses which are confirmed or denied by finer resolution nodes.

4.3.2. Speed-ups

In the current implementation. a node is either correctly matched ot it is not. That is. if the
match measure exceeds a predefined threshold. then it matches. Alternatively. it may be
advantageous to make match-sets dependent upon the combined measure of maich (i.e. Hough peak
size) of some or all its member nodes. If the match measure of a coarse-level node is only slightly
above the threshold. it mav not indicate that the feature is necessarilv present. However. if it is

significantiv greater than the threshold. it should increase the likelihood that the hvpothesis is
correct. In this case. it mayv not be necessary to match nodes that are sub-features of this node. and
the maich-set could be modified dvnamically 10 take this into account  This dvnamic pruning of the

match-set could save considerable time because fewer nodes would need to be matched in order to

verify the presence of simple. unoccluded objects.

A second speed-up could be obtained bv modifving the matching algorithm used at non-root
nodes. At each of these nodes an hypothesized position and orientation of match is already known
from its parent's match. This information can be used to minimize the number of points needed in
the accumulator array of the current node to confirm the location and orientation of the match.
Since the number of candidate points is relatively small. we could in fact replace the Hough

transform algorithm with a simple template matching procedure at each of the candidate positions and

17




orientations.

Of course. this increase in speed is at the cost of increased errors in the estimated position and
orientation computed at each node. If the actual position of the object is greater than the estimated
worst case distance. the match may either fail. or succeed but estimate inaccurately the feature's
position and orientation. This modification is most appropriate for fine-level nodes. where the
assumption is that errors in the hypothesis have been corrected bv ancestor nodes. It is probably not

appropriate for coarse-level nodes. where location errors must be corrected.
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5. Results

The following table shows the results of the procedure on three test images containing keys and
washers. Image 1 is shown in Figure 6. Image 2 is shown in Figure 7. and Image 3 is shown in
Figure 1. The model graph shown in Figure 3 was used to recognize the room key in each image
(the lower-left key in Figure 1). The total size of all R-tables in the graph is 295. With both Image
1 and Image 2. the first hypothesis selected was the correct one. and the matching process examined
five nodes. with one failure. to find the kev The failure node in both cases contained a feature
which was occluded. In the more complicated image. Image 3. the system had to try ten different
hypotheses before finding the correct one. The strongest hypothesis had a match measure of 0.84
while the correct hvpothesis had a match measure of 0.77. For Image 3. 28 nodes were tested

before a match-set was completely matched.

Image | # hypotheses tested | # nodes tested | Avg. # nodes to disprove a false hvpothesis

] | 5 0
2 | 5 0
3 10 28 3.1

To roughh estimate the speed-up of this method over a single-level generalized Hough
approach. consider Image 3. There were about 100 edge points in everv window selected from
Image 3's prramid.  Thus the total computation time for this example was proportional to
29511 %100 = 3*10° In contrast. using the generalized Hough transform with the finest resolution
image (128 by 128) and a fine resolution R-table for the key. the time would be proportional to 1400
(the number of edge points in the image) times 312 (the size of the R-table) times 80 (= 360/4.5

possible orientations). or about 3%#107.
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Figure 6 and 7 Two test images

6. Concluding Remarks

A model-based object recognition procedure has been presented which models 2-D objects in
terms of parts. each part represented at its most appropriate level of resolution The top-down
matching algorithm using this model is shown 1o effectively identifv objects which are substantially

occluded in a scene and are represented by noisy edge point data in an image

In conclusion. the advantages of using a Hough pyvramid for model-based object recognition

include the following:

] Hierarchical object modeling. In general. no one level of resolution is best for describing all
aspects of an object to be modeled and recognized. By computing multiple scales of description
in the pyramid. we can select the most appropriate level for representing each mode! feature.
For example. a model of a "kev” may describe the "shaft”. "head”. "hole” and "teeth”. The
shaft and head may best be described at a relatively coarse level in which the shaft is described
as a rectangle and the head as a circle. The hole may be appropriately defined at an

intermediate level of resolution and the teeth at a fine level. Trying to create a model which
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includes each of these features at a single level of resolution would not only be less natural. but
would also require more space since the finest resolution would be used for describing all

features.

Increased control. The graph model structure enables the algorithm to locate partially occluded

objects by verifving the presence of only a sufficient subgraph of distinguishing features.

Coarse-1o-fine maiching speeds recognition. Maiching can be performed by first comparing
coarse features to quickly determine candidate models and their locations: successively finer
features can then be used to verify the model. Using a Hough approach at the finest level of
resolution. the time required is O(nro). where 1 is the number of edge points. r is the size of
the Hough R-table. and o is the number of possible orientations. Using a pyramid. we can
drastically reduce at each level the size of n and o by using only a small sub-window of the
image and a restricted number of candidate orientations based on the predicted orientation
obtained at a coarser resolution. We can also restrict the size of r by matching large features
at coarse resolutions and small features at fine resolutions. Because n.r. and o are small
compared to what they would be if a single template of the entire object boundary was matched
at the highest resolution and all possible angles. the total time is drastically reduced. For
example. given a 128 by 128 image with 7= 350. n=700. and ¢ =80. the single level Hough
algorithm requires time proportional 10 107 Using a Hough pvramid mode! graph containing
8 nodes. with r=50. n1=60. and o= 16. the total time reguired is proportional to 10"

Common feaures are stored uniquelv. Common intra- and inter-model features are stored
uniquely in a single node of the composite graph describing all of the model objects. This
provides a concise description of multiple models when features are common (e.g. holes and

corners. especially at coarse resolutions).

The Hough transform is a robusi maiching algorithm. One of the advantages of the Hough
transform compared to other patiern matching algorithms is that it is relatively insensitive to

noisy or broken contours. Edge points can be missing and it will still give a good match as




long as most of the points are present.
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