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Abstract

We have constructed a system for monitoring the behavior of distributed programs. The meas-
urement system provides traces of the execution of programs and has been implemented on both the
DEMOS/MP and Berkeley UNIX 4.2BSD operating systems.

Among the analysis techniques that have been applied to the measurement traces is the compu-
tation of the amount of parallelism, or concurrent activity. in a program. There are a number of
interesting features of our parallelism measurements. First, the programs being measured can be
run on a system that is concurrently running other programs. For most cases. system loading does
not affect the measurements. Second. the measurement data can be used to predict the performance
of the program in other configurations (e.g.. different assignments of processes to processors). We
can also predict the performance of the program in an ideal distributed environment (infinitely fast
communications and unlimited processor resources). This prediction can be used as a upper-bound
reference on the program’s performance.
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mand under Contract No. N00039-8§2-C-0235






1. Intreduction

A common goal for creating a distributed program is to provide parallel execution. If a pro-
gram can be subdivided into parts whose execution can proceed in parallel then the elapsed time for
the program to complete can be decreased. A question of interest to the designer of such a program
is how much parallel execution will occur in the program. There are several approaches to deter-
mining the amount of parallelism. ranging from analysis of the algorithm used in the program. to

simulation of the program. to measurement of the program’s execution.

We have constructed a system for monitoring the behavior of distributed programs. This sys-
tem allows us to trace the behavior of a distributed program. providing data to analyze the program’s
behavior. We use this svstem to measure the amount of parallelism that occurs in the execution of a
distributed program. We can determine the amount of parallelism in a program. even when our pro-
gram executes on a computer that is currently executing other programs. In addition. our analysis of
parallelism allows us to predict the amount of parallelism for the program running with a different
assignment of processes to machines. varying machine loads. and different network characteristics.
We can also determine an upper bound on the amount of parallelism possible for a given execution

of a program.

The measurement and analyses presented in this paper apply to the performance of executing
programs. as opposed 10 the performance of algorithms or simulation of the performance of pro-
grams  The path from algorithm. to simulation. 10 program. describes the development of the pro-
gram. A complete development path would include the following steps. First. we develop a parallel
algorithm and analyze its performance. Next. we construct an analytic model of the program, pro-
viding more details on the performance of the algorithm and an initial view of the structure of the
program. Third, we build a simulation of the algorithm to measure its performance to provide more
details of what the final program will do. Last. we measure the performance of the running pro-
gram. The last step is necessary because the transition from algorithm (or simulation) to program

often contains many surprises. We should determine the performance of the final product. if only to



verify the models and simulations. and that the program is behaving as desired. Also. there will be
programmers (and this may be the more common case) that write programs that have not been simu-

lated and had their algorithms simulated.

A common method of measuring parallelism or speed-up is to determine the performance of a
program (or a simulation or an algorithm) on a single machine and compare that to the performance
on multiple machines. This performance measure has been used in studying parallel algorithms
[Baudet 78], distributed simulations [Chandy & Misra 78.Livny 85]. simulations of interconnection

networks [Fujimoto 83. Reed 1984]. and multiprocessor architectures [Kuck 78].

In Section 2. we describe our model of computation and the measurement facility used to col-
lect the data for the parallelism analysis. The data structures used for the analysis are described in
Section 3. Section 4 describes the computation of parallelism. and various extensions. Section 5
outlines two studies that have been performed using our measurement facility and the parallelism

analysis. The last section provides summary comments.

2. The Model of Computation and the Measurement Facility

This section provides a brief description of our model of distributed computation and the meas-
urement svstem that was used 1o gather the data necessary for the parallelism analysis. A complete

description of the measurement system can be found in [Miller ¢r o/ 84. Miller 84. Miller 85].

2.1. Model of Computation

Our model of distributed computation (see Figure 2.1) is intended to be general enough to
include a wide variety of systems. The model states that a process can only compute and communi-
cate. and that communication is via messages. The only blocking activity in this model is a message
receive. Processes do not share memory. The semantics of message passing may be synchronous or
asynchronous. provide blocking or non-blocking operations. be buffered or unbuffered. and provide
unidirectional or bidirectional message paths. The messages paths may be one-to-one or one-to-

many: though the current parallelism analysis only supports one-to-one message paths. Most forms



of message passing (or interprocess communication) in contemporary operating systems fit this

model.

Machine
boundary

Computation

Figure 2.1: A Distributed Computation

2.2. Measurement Facility

Our measurement model is concerned with the exiernal events in the life of a process. We
define an eveni to be an action performed by a process in a computation. External events are those
events in a process that affect other processes. Examples of external events are sending a message,
creating a process, or destroying a message path. [Infernal evenis are those events not visible outside
of a process. such as a process executing the statement

X=X + 1.

Our measurement system (called the Distributed Programs Monitor. or DPM) records the his-
tory of selected external events in the life of the processes in a computation. The data recorded about
the occurrence of an event is called a rrace record of the event (or more simply, a trace). In our
measurement model. the detection of external events is referred to as merering. A trace is produced
for each event that is detected. After the trace is produced. a decision is made whether or not to keep

the trace. If the trace is kept, it can then be processed to provide results that are used to understand



the behavior of the process (and the overall computation). The measure of parallelism presented in

this paper is an example of information that can be derived from the trace records.

A trace record is produced for each event occurring during the execution of a process. The
trace records consist of two parts. The first part is a header which contains information common to
all traces (including the event type). The second part of the trace is the body which contains infor-
mation particular to the event. A trace record is show in Figure 2.2. The header of the event trace
contains the fields in the following list. There are other fields in the header that are not relevant to

the analysis of parallelism.

MACHINEID The machine from which the trace came.

PROCTIME The amount of CPU time used by this process up to the time this trace was
generated. PROCTIME is independent of the load on the host system.

DATETIME This is wall clock time. It cannot be assumed that the clocks on various
machines are synchronized, so events happening at the same time on dif-
ferent machines may not have the same DATETIME field.

TRACETYPE The type of event described by this trace.

LOADAVERAGE This is the current load on this machine. Load is typically the number of
ready processes. computed as an average over a recent time interval.

The trace body contains the fields particular to the trace event type. Figure 2.2 shows an event
trace for a message send. This body identifies the sending and receiving process. and other fields

particular to the operating system from which this example was taken (DEMOS/MP).

Header Body
MACHINE | PROC | DATE | TRACE | LOAD FROM TO MSG | CHANNEL
1D TIME TIME | TYPE |AVERAGE LENGTH
23 120 1234 | Send 2.3 A B 258 1

Figure 2.2: Event Trace: Send Message



2.3. Implementation Notes

DPM is currently running on the DEMOS/MP [Baskett er al 77. Powell 77, Powell & Miller
83] and 4.2BSD UNIX [Joy er al 83] operating systems. The structure of these operating systems
are quite different, yet the implementation of DPM on the two systems is similar. The DEMOS/MP
version has been operational since September. 1983, and the 4.2BSD version since May, 1984.

Examples given in this paper come from both of these implementations.

3. Computation Graphs

The DPM measurement system provides a stream of traces from the execution of a distributed
computation. In particular. we use the trace of the message send and receive events. We must con-
vert this trace stream to a more convenient data structure before we can proceed with the analysis of
parallelism. The data structures described in this section are also used in other types of program

analyses. Descriptions of these analyses can be found in [Miller 84] and [Miller 85].

3.1. Constructing the Graph

A process execution is a sequence of events We represent a process as a list of external
events. with the events as nodes. and with directed arcs joining the nodes showing the flow of execu-
tion. The arcs joining the events in a process are called the process arcs. Figure 3.1 shows a com-
putation consisting of three processes with its events and process arcs. This lists of events is called a

compultation list.
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REC

4

RECY)

There are interactions between processes in a computation. These interactions take the form of
messages between the processes. The message interactions are added to the computation list to form
a directed graph. This graph is called the compuiaiion graph. Each message is represented as an arc
from the send event to the corresponding receive event (providing both events are present in the
graph). An arc representing a message interaction is called a message arc. Figure 3.2 shows the
sample computation with the message arcs added. Each node in the graph has an in-degree of at
most two. and an out-degree of at most two. Each message has exactly one sender and one receiver.
The computation graph is directed and acyclic. This is because the computation graph does not
describe the program itself. but the history of one execution of the program: following the directed

arcs through the graph reflects the passage of time.
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Figure 3.2: Computation with Message Arcs

3.2. Labeling the Graph

Given a computation graph. we label the arcs of the graph with the values that will be used in
the analysis of parallelism. We first label the process arcs. The value on the label represents the
amount of CPU time used by the process between the events. We next label the message arcs. The

value on the message arcs represents the time required to delivery the message.

Each process. i. consists of a list of events. ¢; ;. ¢; 5. .... ¢ ,. The trace record for event

C:

;,j contains a PROCTIME, ; field. which is the total amount of CPU time used by process i/ up

until event ¢, ;. We label the arc between event ¢; ; and ¢; ;1 with Ay ;. where

A



At ;= PROCTIME; ;. — PROCTIME; ;.

We next label the message arcs in the computation graph with the message delivery time. Mes-
sage delivery time is a function. MTIME (len .src.dsr). where len is the length of the message in
bytes. src is the machine originating the message, and ds/ is the machine receiving the message.
Estimates of the time for a message delivery for the MTIME function can be obtained by sample
measurements on the system where the traces were obtained. as described below. The message
delivery time varies depending on which machines are involved in the message exchange. and length

of the message. For each message arc in the graph. we compute the MTIME from these values and

label the message arc with the result.

1t is not possible to obtain the message delivery time from the message traces themselves. even
though the traces have a field containing wall clock time. If a message was sent from a process
residing on one machine to a process on another machine. the send and receive times would come
from independent clocks. These clocks cannot be synchronized closely enough so that the times on
the two machines can be compared. We obtained the values for the M7IME functions by measuring
the message delivery times on the system that we are using. Measurements are made between the
various types of machines and for different message lengths. These measurements need only be done
once for each system. Message delivery time is calculated from a message sent from one machine to

another. then back. The delivery time is considered to be a half of the round trip time

These message delivery times are considered typical. and it is expected that there will be some
variance in actual delivery times. If more accuracy is needed in calculating these values. the

MTIME function can be extended to simulate more complex network behavior.

3.3. External Actions

Computations are not always self-sufficient. Processes in a computation may need to interact
with other processes or parts of the host system that are not part of the computation being studied.
There is no way for us to analyze activities that happen outside the available trace data. The problem

becomes important when some process in the computation must wait for a response from an external



process (or part of the host system). Figure 3.3A shows that the time through the external process
could be longer than the process time from the SEND to the RECV. If the communication with the
external process is a synchronous request, the process time between the SEND and RECV would be
close to zero. and the time taken in the outside process becomes important. We can model this prob-
lem by modifying the computation graph as in Figure 3.3B. The label of the new arc would be the

difference in elapsed time (not process time) between the send and receive event.

System loads can affect the elapsed time between the SEND and RECV events. This is true for
the case where the external process is sharing a machine with our computation. and for the case

when it is on a separate machine. Therefore. the elapsed time can only be considered an approxima-

10

tion to the path length through the external process.
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Figure 3.3: Computation Graph with External Event

4. The Parallelism Factor

Given the labeled computation graphs. we are ready to use these graphs to compute the amount

of parallelism in the execution of the program represented by the graphs. We first define our metric

e’

AU

External send/recv
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of parallelism. P. This definition gives the basic method of computing the amount of parallelism.
We next consider the problems of calculating the amount of parallelism when processes share
machines, calculating the effect of other loads on the system, and projecting the best case (upper

bound) performance for the program’s execution.

4.1. Calculating P

To measure parallelism in a computation. we first need to define parallel execution. This
definition will be in terms of the trace events that we measure. Each executing process consumes

machine cycles. We define process iime for process i. 1., . to be the number of units of CPU time
1

that a process consumes over its lifetime. or

’/n‘mi = E AIi./"

The 1otal time. T . for a computation is the sum of the process times for all the processes in the com-

putation.

/

M
/ i

~
|
~ b

In a graph for a compuation with N processes. there are exactlv N nodes with an in-degree of
zero. These nodes represent the start of computation for each process and are called initial nodes.
The graph also contains at most N nodes with out-degree of zero. These nodes represent the termi-
nation of computation and are called icrmination nodes. We define the maximum path to be the
directed path from an initial node to a termination node that gives the greatest weighted path length.

The value of this greatest weighted path is 7,.,..

For a given execution of a computation, if 7 equals ¢ then there has been no parallel exe-

Xt

cution. This would be the case if the entire computation were run on a single machine: the machine

could execute the computation in no less time than the total process time used (7). If 1, ~equals
i
Imax- fOr all i, then we are achieving 100% parallel execution: the computation has been split into

uniform size pieces (processes) and all the pieces are executing concurrently.
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Thus, we define the parallelism factor. P, to be

7

P:

! max

The case where there is no parallel execution gives a P of 1, and the case of 100% parallel execution
gives a P of N. for a computation consisting of N processes. If all the processes in a computation
were executing on a single machine. and there were no interactions between the processes. we would
have a P of 1. Itis likely that if the processes were in the same computation. there would be some
interaction. Given interaction between the processes. execution on a single machine. and non-zero

message delivery time. it is possible to have a P of less than 1.

4.2, CPU Sharing and Contention

The calculation for P in the preceding section assumes that each process in a computation
resides on its own machine. but this is not always the case. When more than one process executes
on a machine. there is competition for use of the CPU. The number of processes competing for the
CPU varies over the execution of the computation. Several factors determine how many processes
are running. The first factor is how many processes are currently assigned to the machine. Other
factors are process creation. fermination. and processes migrating from their current location. The
number of processes currently assigned to a machine forms the upper bound for the number that are

able to run at anv given instant,

Given the number of processes that could be run (the number currently on a particular
machine). the problem is to determine when a process is running and when it is blocked from execu-
tion. A process is blocked from execution when it is attempting to receive a message that has not yet
arrived. Figure 4.1 shows the sample trace of a computation. and we will consider the case in which
all three processes execute on the same machine. Before the time at which the indicated SEND
operation for process A occurs. process B cannot continue past the indicated RECV. If process B
reaches this event before the message is sent (and arrives). then process B is blocked. thus reducing

by one the number of processes that are contending for the CPU.
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Process A Process B Process C
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40

Figure 4.1: Computation with Corresponding SEND/RECV Events Marked

The algorithm that factors in the CPU sharing relabels the process time arcs with a new weight
calculated from the number of processes currently able to run. Figure 4.2 shows the sample compu-
tation graph redrawn with concurrent time intervals (sfices) for the three processes. Note that the
time scale on the left side of the figure is elapsed time (for each process. if it were on its own
machine).. For a given interval of 7 units of time, with 4 processes currently able to run, the time
interval is relabeled with a value of & X /. A process arc is labeled with the sum of the new values
for the intervals during which the process was not blocked. There is a separate value of & for each
machine, and these values changes over the life of the computation. If a process moves to a different
machine during its execution. it contributes its load to the 4 for the new machine. Figure 4.3 shows

the sample graph after the relabeling has been completed. The calculation of P from this relabeled
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graph give a value that reflects the actual execution of the program. This part of the analysis
assumes that the machines are processor sharing; i.e., using round-robin sharing of the CPU with a

microscopic time slice. The complete algorithm for relabeling the graph is given in [Miller 84].

Process A Process B Process C
SEND SEND SEND
Interval l Scaled
10 (30
——————————————— REEV-————-——=—f-—~~
10 (30)
______________________________ A,

o _SE};\LD......_...___,___.__.__(_IO)
10 (20)
_________________ !l___._._________RE.CV___.

5 . &_ 30
5 (5)
——————————————————————————— SEND —-
10 / (0)
——————————————— RECV——————————————
10 l (10
--------------- SEND ————— e

(0)
,,_Rffwﬁftffffj ___________________

Figure 4.2: Computation Showing Intervals of CPU Sharing
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Process A Process B Process C

100

Figure 4.3: Computation with Relabeled Arcs

4.3. Projections and Upper Bounds

The parallelism analvsis computes values for P based on an assignment of processes to
machines and the labeling of the computation graph. The assignment of process to machines deter-
mines the src and dsi parameters to the MTIME functions and which processes will compete for the
same CPU. When we compute P, what assignment of process to machines should we use? The
natural decisions to take the actual assignment from the execution of the program. This information
is available in the trace data. However, we are not restricted to calculating P for the actual assign-
ment. Processes can be assigned (in the analysis) to other configurations for the parallelism

analysis. For each new assignment of processes to machines. new weights must be assigned to the



16

message arcs and the longest path calculations must be repeated.

The ability to vary the configuration allows the programmer to predict the performance of
his/her program in different situations. If a program consists of processes that spend most of their
time computing and very little time communicating. then it would probably be best to give each pro-
cess its own machine. If two (or more) processes communicate frequently, then these processes may
be best on the same or nearby machines. The programmer can examine many different configura-
tions without having to re-run the program for each configuration. In addition. we can vary the
values produced by the MTIME function to reflect different communications networks. This is simi-

lar to network simulators such as those of Fujimoto [Fujimoto 83] and Reed [Reed 1984].

There is another type of performance prediction that can be done with the parallelism analysis.
First. we make MT/ME a constant function whose value is always zero (i.e. instantaneous message
delivery). and assign each process in a computation to its own machine. Then. we calculate the new

value for 7., and P. This calculation results in the maximum value for P. called P Neither the

Max
addition of machines nor a faster communications media could result in a greater value. P .. gives a

reference for the best possible performance of the execution of the program being measured. If

better performance is needed. the program must be rewritten or a faster computer must be used.

There is the implicit assumption in the preceding discussion that the reassignment of processes
1o machines will not change the execution order of events. We must make this assumption because
our results come from analyzing program executions. rather than the programs themselves. This
assumption is valid if the order of interactions between the processes in the computation is deter-
ministic. This is not always the case. A computation structured as a server. receiving requests from

many independent sources. would not fit the deterministic assumption.

We can make a slightly weaker assumption about our computations. That is. that each process
in the computation is deterministic with respect to its inputs. This means that a process will behave
the same way independent of when it receives a given input. When processes are reassigned (in the

parallelism analysis) to different machines than those on which they were really executed. the order
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of execution of events in the computation could change. Given our weaker assumption about deter-
minism in a process, this change of execution order should not have a large effect on the overall

computation.

This weaker assumption does not always hold. The order of interaction can affect such things
as the order of inserting elements into a database. However. the overall effect of these factors should
be small enough in actual computations that the results for reassignment will be valid. Section 5 pro-

vides experimental results from the DEMOS/MP file system that support this argument.

There are also algorithms that behave much differently given a different machine assignment.
An example of this is «-f search |AkI1980. Finkel & Fishburn 82]. This is a search problem that is
partitioned. with each of several processes performing part of the search. The first process to
succeed in the search notifies the others that they can halt. For these algorithms. the parallelism
analysis can report the actual amount of parallelism. but it may not be accurate for performance

prediction in other configurations.

4.4. System Loads

The parallelism analvsis does not consider that the computation being measure may share a
machine with processes that are not part of the computation. The analysis is independent of other
loads on the machines because it is based on process time. However. there may be cases where we
want to predict the behavior of our computation on machines that are being shared by other computa-
tions. This affect of other computations can be added to the parallelism analysis in several ways.
The simplest way is to estimate what percentage of machine cycles for each machine is available to
our computation. This percentage is then used as a scaling factor when we relabel the computation

graphs.

A more accurate method uses the machine load information (from the LOADAVERAGE field)
included in the trace message header of each event trace. As the load on each machine changes over

time. this value can be used as scaling factor that varies over the life of the computation.
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4.5. Utilization

While P appears to be a useful metric for evaluating the performance of a distributed computa-
tion. this metric alone is not sufficient. By using P as our only evaluation criterion, we have stated:

faster is better. This view of performance dictates that an increase in parallelism is our only goal.

It may also be important to know how well we are using our computing resources. This can be
stated as: how much of our available computing resources are we using. or how much of the
machines (CPU's) involved in the computation are we utilizing? We can compute CPU utilization

from the parallelism factor. We calculate utilization. p, as

P
M

where M is number of machines used for in the computation.

p o=

5. Sample Results

The analysis of parallelism presented in this paper is based on the measurement of real pro-
grams. In this section we present the results of two studies using data collected by DPM and sub-
Jected to our parallelism analysis. The first study is of the development of a parallel program to find
solutions 1o the Traveling Salesman Problem. The second study is an analysis of the parallelism in

the DEMOS/MP file system.

5.1. Study 1: The Traveling Salesman Problem

This study is intended to evaluate how well a particular algorithm performs at varying levels of
concurrency. The Traveling Salesman Problem (TSP) [Christofides 79] is a well studied problem
and can be decomposed into parts that can be computed concurrently. A complete description of our
study of the problem is given in [Lai & Miller 84]. and we present only a summary of the results

here.

Briefly described, TSP is the problem of finding the minimum cost for visiting each of N cities
exactly once. given the costs of traveling from one city to another. If we consider the cities to be the

N vertices. V. in a graph. and the paths between cities (with associated travel costs) to be the M
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edges, E, then the problem is described by the directed graph G = (V. E). The solution to TSP is

the Hamiltonian circuit with the minimum cost.

We measured a TSP program running on 4.2BSD UNIX operating system. The computation
was structured as a collection of processes executing concurrently and communicating via messages.
The TSP implementation used is similar to the one described in [Mohan 82]. The minimum path is
found by dividing the set of possible paths into smaller sets of paths. The path that appears to provide
the best solution is picked from this smaller set of paths. If this choice proves not to be best. then
the algorithm backtracks and tries another choice. This procedure is repeated until a solution is
obtained. The cost for a single choice within a set of paths can be computed independently. The
computation is performed by p processes. where p = N. This means that up to p simultaneous

computations can be performed.

If there is no backtracking in the computation (i.e.. if our choice of the best solution was
always correct). then the computation is first divided into N—1 pieces and the N~ 1 pieces are com-
puted concurrently. The computation is then divided in N—2 pieces and the procedure is repeated.

The entire operation continues until a complete path is found.

Our computation is structured into a conrrolier process and up to p server processes. The con-
troller is responsible for dividing the computation into pieces 10 be executed by the servers. The
main data structure used by the TSP computation is an N X N matrix. When the computation
starts. a copy of this matrix is sent to each server. After this initial distribution. the only communi-
cations between the controller and the servers are messages from the controller instructing the
servers to compute some part of the problem (a subset of the matrix). and the messages from the

servers to the controller indicating completion of their assigned computation.

We implemented a preliminary version of the TSP program (called "Version 1”). and ran this
program varying the size of the problems (number of vertices in the graph. or equivalently. the size
of the matrix) and the number of processes used to compute the solution. The problem was com-

puted for problem sizes from 8. 12. 16. and 20 vertices. For each size. we computed the solution
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using 4, 8, 12, and 16 server processes.

Three values of P were calculated for each of the above variations: P with one server process
on each machine, P with two server processes on each machine. and P a- These values are plotted

in Figure 5.1, Figure 5.2, and Figure 5.3. respectively.
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Figure 5.1: Parallelism vs. Matrix Size, One Process per Machine
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Figure 5.2: Parallelism vs. Matrix Size, Two Processes per Machine
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Figure 5.3: Upper Bound Parallelism of the Non-Blocking TSP Program
Version 1 of the TSP program was then modified based on the parallelism analysis and other
performance metrics (such as CPU consumed by each process and message counts, also available
from DPM). The second version of the TSP program cached intermediate calculations so that if

backtracking was necessary certain repetitions of calculation could be avoided. The code in the mas-
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ter process was also rewritten to be more efficient. This version (called "Low-Node Caching") was
run and monitored in the same manner as Version 1. The Low-Node Caching version was further
modified so that the master process would overlap requests to the slave processes by initially sending
multiple requests to each slave. This avoided some of the time lost waiting for communication
delays. This version (called "Overlapping Requests”) was also run and monitored. The results of
these measurements are summarized in Figure 5.4. The graph compares the values of P for the
three versions of the TSP program. The values are plotted for one server process per machine. two

server processes per machine. and P Each case is the solution to a 16 X 16 matrix. This graph

madx

shows the performance increase for each subsequent version of the program. It provides a concrete

indication of the change (improvement) as we modified the program.

P was not enough to evaluate the three versions of the TSP program. In our development of
the program. we also used 7. the total CPU time. When comparing values of 7 for the three ver-
sions. the change from Version 1 to Low-Node Caching decreased 7 by 15-20% (for the problem
sizes that were compared), and the change from Low-Node Caching to Overlapping Requests brought
no significant change. The first change produced a version with not only more parallel activity. but
one that used less CPU resources. The second change also produced more parallel activity. but

used the same amount of CPU resources.
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Figure 5.4: Comparison of the Three Implementations - 16 X 16 matrix

5.2. Study 2: The DEMOS/MP File System

The DEMOS file svstem [Powell 77] provides an interesting case study for several reasons.
The first reason is that it is a multiprocess computation 1t consists of over 20.000 lines of high-level
language code organized into four processes. Secondly. it performs a complex function used by a
significant portion of the system. The file system interacts with both user (non-system) processes
and with the operating svstem kernel. The third reason is that it is long lived. since it is available to
be studied for as long as the operating system is running. A fourth reason is that it provides a pro-
gram of significantly different structure than the TSP study. A summary of the results of the

DEMOS/MP file system study are presented here. A complete discussion is given in [Miller 84].

DEMOS/MP is a message-baséd operating system, and the file system is structured as a file

server. processes send request messages to one of the file system processes and receive response
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messages when the service is accomplished. The file system processes may reside on different
machines. The processes are the Request Interpreter. Directory Manager. Buffer Manager, and

Disk Interface.

Our study examined the amount of parallelism in the file system under increasing loads
(number of user processes making requests to the file system). The measurement environment was
the DEMOS/MP operating system running on seven machines. The Disk Interface and Buffer
manager were on one machine. and the Request Interpreter and Directory Manager were on another
machine. Measurements started at the beginning of the file system’s execution. This means that the
file system’s initialization activity was included. The user processes that made requests to the file
system were active on the various machines over the period of the test. All user processes were
started at the same time and the test was complete when these processes terminated. The user
processes were test programs of two different classes. Each of these classes performed a different

mix of computation and file 1/O.

The first class of user processes performed repeated sequential accesses to a file: first writing
the entire file. and then reading it. The second class of user processes did repeated random accesses
to a file. These accesses consist of both reading and writing. The user processes start at the begin-
ning of the test and terminate when they have completed their task. There were no other users dur-

ing this test.

The test was repeated for increasing numbers of user processes (from 1 to 7) simultaneously
making request to the file system. In each case. the file system was monitored by DPM and P was
calculated from the event traces. Figure 5.5 summarizes the results from these measurements. This
graph shows the saturation point of the file system (4 user processes). The saturation point can be

interpreted as the maximum number of requests on which the file system can work simultaneously.
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Figure 5.5: DEMOS/MP File System: P vs. # of User Processes

An additional measurement was performed with the DEMOS/MP file system. This was to
measure the accuracy of the parallelism factor. P. as a predictor of performance. When we measure
a computation. traces are collected from processes that execute on particular machines. Parallelism
analysis gives us the ability to compute the amount of parallelism in a program for some assignment
of processes to machines. Usually. we start by assigning (in the analysis) the processes to the
machines on which they aciually ran. This gives us the P for the measured configuration. Using the
same trace data. we can assign (in the analysis) processes to different machines and recompute P.
This gives us the predicied value for P if we had actually run the processes in this new configuration.

The question is how well the predicted values of P match what would really occur.

Data was collected for the file system running in each of three configurations (shown in Figure
5.6ABC). The measurements were made and the parallelism factor was then calculated for each of
the three configurations. The data for each configuration was then used for two more analyses. For
example. the data collected from the configuration in Figure 5.6A was analyzed (and the value of P
obtained) using the machine assignment from the configurations in Figure 5.6B and C to predicted
the value for P. The same was done for the other two configurations. The result was nine values for

P in a three by three matrix. Figure 5.7 shows the percent differences between the predicted values
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of P and the values calculated for the measured configuration. For example, data was collected for
configuration A, and P was calculated from this data based on the measured configuration. P was
also calculated from data collected for configurations B and C, but assigning (in the analysis) the
processes to machines as in configuration A. The results were differences of -3% and 2% between
the measured and predicted values. Similar results were obtained for all of these analyses. These
variations show no excessive loss of accuracy due to analyzing the trace data in configurations dif-
ferent from that in which it was collected. These results are not conclusive. but they provide an indi-

cation of the validitv of the predictive part of our parallelism analysis techniques.
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Figure 5.7: Variation in P for the Three Configurations

6. Conclusion

Parallelism is an important metric when considering the performance of a distributed program.
We have provided a means for programmers to determine the amount of parallelism in their pro-
grams. and 10 do so on machines shared with other users. Our parallelism analysis provides the
ability to predict the program’s performance for different assignments of processes to machines (even

dynamically moving processes). The upper bound. P provides a reference for the limits of the

et -
performance of a program. This is important in order to know when to stop attempting minor

changes (such as different assignments of processes to machines) and when to change the structure

of the program or try a new algorithm.

Knowing P for a given program is not enough. Consicier the case where we have two pro-
grams. .4 and B. that calculate the same function. We discover that when executing on 10
machines. program A4 has a P of 9.5 and that program 5 has a P of 1.5 It is tempting to say that
program A is clearly better than 5. But other performance metrics must be considered. such as
machine utilizations or total CPU time used by a program. In our example. if we discovered that
program A uses 1.000 CPU seconds and B uses 10 CPU seconds. we may decide to use B. even

though it exhibits less parallel activity.

In general. it is important to be able to determine the performance of the programs that we

write, and the parallelism metric is useful as one measure of performance for distributed programs.
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