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ABSTRACT

It is shown that the satisfaction of a standard constraint qualification
of mathematical programming [5] at a stationary point of a nonconvex differ-
entiable nonlinear program provides explicit numerical bounds for the set of
all Lagrange multipliers associated with the stationary point. Solution of a
single linear program gives a sharper bound together with an achievable bound
on the 1-norm of the multipliers associated with the inequality constraints.
The simplicity of obtaining these bounds contrasts sharply with the
intractable NP-complete problem of computing an achievable upper bound on the
p-norm of the multipliers associated with the equality constraints for integer
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COMPUTABLE NUMERICAL BOUNDS FOR LAGRANGE MULTIPLIERS OF
STATIONARY POINTS OF NONCONVEX DIFFERENTIABLE
NONLINEAR PROGRAMS

0. L. Mangasarian
Consider the constrained optimization problem

(1) minimize £(x) subject to g(x) £ 0, h{x) =0

where f : R® * R, g : R® > R® and h : R » RX. It is well known that if a

standard constraint qualification [2, 5]

VgI(§)z < -e, Vh(x)z = 0 for some z € Rn, and
(2)

rows of Vh(x) are linearly independent

holds at a local solution x of (1) at which f, g and h are continuously

differentiable, I = {i | g,(x) = 0}, Vg(x), Vg (x) and Vh(x) are m x n,

m x n and k x n Jacobian matrices respectively, e is a vector of ones and

m is the number of elements in I, then x is a stationary point of (1),

that is it satisfies the Karush-Kuhn-Tucker conditions [2]

(3)  VE(x) + uVg(x) + vWh(x) = 0, ug(x) = 0, g(x) < 0, u » 0, h(x) = 0

for some Lagrange multipliers (E);S e R¥k,  ret %» denote the set of all

Lagrange multipliers which satisfy (3) for a fixed x. It follows from
Gauvin's theorem [1] that if ;V is a local solution of (1), then ﬁ‘ is
nonempty and bounded if and only if the constraint qualification (2) holds.
What we would like to point out in this note is that any =z in the set 2z of
points satisfying the constraint qualification (2) for a fixed ;~ provides an

explicit numerical bound for all (u,;B in W as follows:

(4) nEup < VE(x)z
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5 v VE(x)BI : % % (x
(5) v o < ?2¥{H f(x)BIp ; IT(VFE(x) + (Vf(x)z)VgJ(x))Bﬂp}

where B is the n X k matrix defined by

- T — - T -1
(6) B := Vh(x) (Vh(x)Vh(x)")
. m _ 1/p _
and Hunp denotes the p-norm ( X Iuj|p) for p e [1,%) and full =
_ 3=1
max ]u. . In particular we have the following.

1<j<m

1. Theorem. ILet x be a stationary point of (1). The corresponding non-

empty set of all Lagrange multipliers w satisfying the Karush-Kuhn-Tucker

conditions (3) is bounded if and only if the constraint qualification (2)

holds, in which case each (u,v) in W is bounded by (4) - (5) for

p € [1,x].

Proof. The nonempty set W is bounded if and only if there exists no (ug,v)

satisfying
(7) uIVgI(x) + vVh(x) = 0, ur 2 0, (ug,v) #0
which by a theorem of the alternative [3, Theorem 1(i') & (iii)], is

equivalent to the constraint qualification (2). Hence for such a case we have
for (u,v) € W and p € [1,*] that

(8) Ml < Wl ¢ max - feur | u Vg, (x) + vWh(x) + V£(x) = o, u; 2 0}

(uI,v)eR

(8a)

I

min {VE(x)z | Vg (x)z ¢ -e, Vh(X)z = 0}
z€R

_ (By linear programming duality)
VE(x)z for z € %

(17N

which establishes (4).

Now, for any (u,v) € W, z € 2 and p € [1,2] we have that

(9) l!vllP < max {HVHP | -vVh(x) = VE(x) + uIVgI(x), up 2 0}
v,u
I
¢ max (vl | v = =(V£(x) + u Vg (x))B, up 2 0, euy < VE(x)z}
v,u
I



[

max{H(Vf(;) + uIVgI(;5)B"p I u, 20, eu

u
I

T < Vif(x)z}

max {IVE(x)BI_ , I(VE(x) + (VE(x)z)Vg.(x))BI }

where the last equality follows from the fact that the maximum of a continuous
convex function on a bounded polyhedral set is attained at a vertex [7,

Corollary 32.3.4]. This establishes the bound (5).

2. Corollary. The bounds (4) - (5) of Theorem 1 can be sharpened by
replacing =z by ~; where ‘; is a solution of the solvable linear program
(8a).

We note that the bound (4) with p =1 and =z =';, where ;. is a
solution of (8a) is implicitly given in the elegant proof of Gauvin [1] which
characterizes the nonemptiness and boundedness of ﬁ. for a local solution x
of (1) by the satisfaction of the constraint qualification (2).

It is interesting to note that the first part of the constraint qualifi-
cation (2) (existence of z) gives an achievable bound on uﬂh1, whereas the

second part of (2) (linear independence of the rows of Vh(;5) gives a bound

on "V"P, which is not necessarily achievable. It is however possible (but

impractical for large k) to compute max _ vl by solving 2k linear
(u,v)ew
programs: max max _ % Vv,. However to obtain max ___Hvll1 one is faced
1igk (u,v)ew (u,v)ew

with the essentially impossible task (even for a moderate-sized k 2 15) of

solving 2K linear programs: max max _¢v, where C is the set of 2k

ceC (u,v)ew
vertices of the cube {y I y € Rk, -e <y £ el. 1In fact for integer p 2 1

the problem max vl has been shown to be an intractable NP-complete

(u,v)ew
problem [6]. We finally note that the methods of [4] could also be used to

obtain the bounds of this work.
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