COMPUTABLE NUMERICAL BOUNDS FOR LAGRANGE MULTIPLIERS OF STATIONARY POINTS OF NONCONVEX DIFFERENTIABLE NONLINEAR PROGRAMS

bу

O. L. Mangasarian

Computer Sciences Technical Report #569

December 1984

UNIVERSITY OF WISCONSIN - MADISON COMPUTER SCIENCES DEPARTMENT

COMPUTABLE NUMERICAL BOUNDS FOR LAGRANGE MULTIPLIERS
OF STATIONARY POINTS OF NONCONVEX
DIFFERENTIABLE NONLINEAR PROGRAMS

O. L. Mangasarian

Technical Report #569

December 1984

ABSTRACT

It is shown that the satisfaction of a standard constraint qualification of mathematical programming [5] at a stationary point of a nonconvex differentiable nonlinear program provides explicit numerical bounds for the set of all Lagrange multipliers associated with the stationary point. Solution of a single linear program gives a sharper bound together with an achievable bound on the 1-norm of the multipliers associated with the inequality constraints. The simplicity of obtaining these bounds contrasts sharply with the intractable NP-complete problem of computing an achievable upper bound on the p-norm of the multipliers associated with the equality constraints for integer $p \ge 1$.

AMS (MOS) Subject Classification: 90C30

Key Words: Nonlinear programming, Lagrange multipliers

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is based upon work sponsored by the National Science Foundation under Grant No. MCS-8200632.

COMPUTABLE NUMERICAL BOUNDS FOR LAGRANGE MULTIPLIERS OF STATIONARY POINTS OF NONCONVEX DIFFERENTIABLE NONLINEAR PROGRAMS

O. L. Mangasarian

Consider the constrained optimization problem

(1) minimize f(x) subject to $g(x) \le 0$, h(x) = 0 where $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R}^n \to \mathbb{R}^m$ and $h: \mathbb{R}^n \to \mathbb{R}^k$. It is well known that if a standard constraint qualification [2, 5]

(2)
$$\sqrt{ \nabla g_{\underline{I}}(x)z} \leq -e, \nabla h(x)z = 0 \text{ for some } z \in \mathbb{R}^n, \text{ and }$$
 rows of $\nabla h(x)$ are linearly independent

holds at a local solution x of (1) at which f, g and h are continuously differentiable, $I = \{i \mid g_i(x) = 0\}$, $\nabla g(x)$, $\nabla g_I(x)$ and $\nabla h(x)$ are $m \times n$, $m \times n$ and $k \times n$ Jacobian matrices respectively, e is a vector of ones and m is the number of elements in I, then x is a stationary point of (1), that is it satisfies the Karush-Kuhn-Tucker conditions [2]

(3) $\nabla f(x) + u \nabla g(x) + v \nabla h(x) = 0$, ug(x) = 0, $g(x) \leq 0$, $u \geq 0$, h(x) = 0 for some Lagrange multipliers $(u,v) \in \mathbb{R}^{m+k}$. Let W denote the set of all Lagrange multipliers which satisfy (3) for a fixed x. It follows from Gauvin's theorem [1] that if x is a local solution of (1), then W is nonempty and bounded if and only if the constraint qualification (2) holds. What we would like to point out in this note is that $\underline{any} = z$ in the set z of points satisfying the constraint qualification (2) for a fixed x provides an explicit numerical bound for all (u,v) in W as follows:

(4)
$$\|\overline{\mathbf{u}}\|_{\mathbf{p}} \leq \nabla \mathbf{f}(\mathbf{x})\mathbf{z}$$

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is based upon work sponsored by the National Science Foundation under Grant No. MCS-8200632.

(5)
$$\|\mathbf{v}\|_{\mathbf{p}} \leq \max\{\|\nabla f(\mathbf{x})\mathbf{B}\|_{\mathbf{p}}, \|(\nabla f(\mathbf{x}) + (\nabla f(\mathbf{x})\mathbf{z})\nabla g_{\mathbf{j}}(\mathbf{x}))\mathbf{B}\|_{\mathbf{p}}\}$$

where B is the $n \times k$ matrix defined by

(6)
$$B := \nabla h(\overline{x})^{\mathrm{T}} (\nabla h(\overline{x}) \nabla h(\overline{x})^{\mathrm{T}})^{-1}$$

and $\|u\|_p$ denotes the p-norm $\left(\sum\limits_{j=1}^m \left|u_j\right|^p\right)^{1/p}$ for $p \in [1,\infty)$ and $\|u\|_\infty = \max_j \left|u_j\right|$. In particular we have the following.

1. Theorem. Let x be a stationary point of (1). The corresponding non-empty set of all Lagrange multipliers \overline{W} satisfying the Karush-Kuhn-Tucker conditions (3) is bounded if and only if the constraint qualification (2) holds, in which case each $(\overline{u},\overline{v})$ in \overline{W} is bounded by (4) - (5) for $p \in [1,\infty]$.

<u>Proof.</u> The nonempty set \overline{W} is bounded if and only if there exists \underline{no} ($u_{\underline{I}}$,v) satisfying

$$u_{\underline{I}} \nabla g_{\underline{I}}(x) + v \nabla h(x) = 0, u_{\underline{I}} \ge 0, (u_{\underline{I}}, v) \ne 0$$

which by a theorem of the alternative [3, Theorem 1(i') & (iii)], is equivalent to the constraint qualification (2). Hence for such a case we have for $(u,v) \in W$ and $p \in [1,\infty]$ that

(8)
$$\|\mathbf{u}\|_{\mathbf{p}} \leq \|\mathbf{u}\|_{1} \leq \max_{(\mathbf{u}_{\mathbf{I}}, \mathbf{v}) \in \mathbb{R}^{m+k}} \{ e\mathbf{u}_{\mathbf{I}} \mid \mathbf{u}_{\mathbf{I}} \nabla \mathbf{g}_{\mathbf{I}}(\mathbf{x}) + \mathbf{v} \nabla \mathbf{h}(\mathbf{x}) + \nabla \mathbf{f}(\mathbf{x}) = 0, \mathbf{u}_{\mathbf{I}} \geq 0 \}$$

which establishes (4).

Now, for any $(u,v) \in W$, $z \in Z$ and $p \in [1,\infty]$ we have that

$$(9) \quad \|\mathbf{v}\|_{\mathbf{p}} \leq \max_{\mathbf{v}, \mathbf{u}_{\mathbf{I}}} \{\|\mathbf{v}\|_{\mathbf{p}} \mid -\mathbf{v}\nabla h(\mathbf{x}) = \nabla f(\mathbf{x}) + \mathbf{u}_{\mathbf{I}}\nabla g_{\mathbf{I}}(\mathbf{x}), \mathbf{u}_{\mathbf{I}} \geq 0\}$$

$$\leq \max_{\mathbf{v}, \mathbf{u}_{\mathbf{I}}} \{\|\mathbf{v}\|_{\mathbf{p}} \mid \mathbf{v} = -(\nabla f(\mathbf{x}) + \mathbf{u}_{\mathbf{I}}\nabla g_{\mathbf{I}}(\mathbf{x}))\mathbf{B}, \mathbf{u}_{\mathbf{I}} \geq 0, \mathbf{e}\mathbf{u}_{\mathbf{I}} \leq \nabla f(\mathbf{x})\mathbf{z}\}$$

$$= \max\{\|(\nabla f(\overline{x}) + u_{\overline{1}} \nabla g_{\overline{1}}(\overline{x}))B\|_{p} \mid u_{\overline{1}} \ge 0, \text{ eu}_{\overline{1}} \le \nabla f(\overline{x})z\}$$

$$= \max\{\|\nabla f(\overline{x})B\|_{p}, \|(\nabla f(\overline{x}) + (\nabla f(\overline{x})z)\nabla g_{\overline{1}}(\overline{x}))B\|_{p}\}$$

$$\text{jet}$$

where the last equality follows from the fact that the maximum of a continuous convex function on a bounded polyhedral set is attained at a vertex [7, Corollary 32.3.4]. This establishes the bound (5).

2. Corollary. The bounds (4) - (5) of Theorem 1 can be sharpened by replacing z by z where z is a solution of the solvable linear program (8a).

We note that the bound (4) with p=1 and $z=\overline{z}$, where z is a solution of (8a) is implicitly given in the elegant proof of Gauvin [1] which characterizes the nonemptiness and boundedness of \overline{w} for a local solution \overline{x} of (1) by the satisfaction of the constraint qualification (2).

It is interesting to note that the first part of the constraint qualification (2) (existence of z) gives an achievable bound on $\|\mathbf{u}\|_{1}$, whereas the second part of (2) (linear independence of the rows of $\nabla h(x)$) gives a bound on $\|\mathbf{v}\|_{\mathbf{D}}$, which is not necessarily achievable. It is however possible (but max $_{-}$ $\| \mathbf{v} \|_{\infty}$ by solving 2k linear impractical for large k) to compute (u,v)ew $\max_{i} \pm v_i$. However to obtain $\max_{i} - \|v\|_1$ one is faced programs: 1≤i≤k (u,v)eW with the essentially impossible task (even for a moderate-sized $k \ge 15$) of solving 2^k linear programs: max max _ cv, where C is the set of 2^k ceC (u,v)eW vertices of the cube $\{y \mid y \in R^k, -e \leq y \leq e\}$. In fact for integer $p \geq 1$ the problem $\max_{v \in \mathbb{R}^n} \|v\|_p$ has been shown to be an intractable NP-complete problem [6]. We finally note that the methods of [4] could also be used to obtain the bounds of this work.

REFERENCES

- 1. J. Gauvin: "A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming", Mathematical Programming 12, 1977, 136-138.
- 2. O. L. Mangasarian: "Nonlinear programming", McGraw-Hill, New York, New York 1969.
- 3. O. L. Mangasarian: "A stable theorem of the alternative: an extension of the Gordan theorem", Linear Algebra and Its Applications 41, 1981, 209-223.
- 4. O. L. Mangasarian: "Simple computable bounds for solutions of linear complementarity problems and linear programs", University of Wisconsin Computer Sciences Technical Report #519, October 1983, to appear in Mathematical Programming Study.
- 5. O. L. Managasarian and S. Fromovitz: "The Fritz John necessary optimality conditions in the presence of equality and inequality constraints",

 Journal of Mathematical Analysis and Applications 17, 1967, 37-47.
- 6. O. L. Mangasarian and T.-H. Shiau: "A variable-complexity norm maximization problem", University of Wisconsin Computer Sciences Technical Report #568, December 1984.
- 7. R. T. Rockafellar: "Convex analysis", Princeton University Press,
 Princeton, New Jersey 1970.

OLM/jvs