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ABSTRACT

A number of recent studies have examined the performance of concurrency control algorithms
for database management systems. The results reported to date. rather than being definitive, have
tended to be contradictory. In this paper, rather than presenting "yet another algorithm perfor-
mance study” . we critically investigate the assumptions made in the models used in past studies and
their implications. We employ a "complete” model of a database environment to study the relative
performance of three different approaches to the concurrency control problem under a variety of
modeling assumptions. We show how differences in the underlying assumptions explain the seem-
ingly contradictory performance results. We also examine how realistic the various assumptions

would be for "real” database systems.

1. INTRODUCTION

Research in the area of concurrency control for database systems has led to the development of many
concurrency control algorithms. Most of these algorithms are based on one of three basic mechanisms: /ock-
ing [Mena78. Rose78. Gray79. Lind79. Ston79]. rimesianps [Reed78. Thom79. Bern80b]. and oprimisiic
concurrency control (also called commit-time validation or certification) [Bada79. Casa79. Kung81, Ceri82].

Bernstein and Goodman [Bern81. Bern82] survey many of the algorithms that have been developed and

describe how new algorithms may be created by combining the three basic mechanisms.

Given the ever-growing number of available concurrency control algorithms, considerable research has
recently been devoted to evaluating the performance of the various concurrency control algorithms. The
behavior of locking has been investigated using both simulation [Spit76, Ries77, Ries79a, Ries79b. Lin82b]

and analytical models [Iran79, Poti80, Gray81, Good83. Reut83, Thom83, Tay84a. Tay84b]. A qualitative
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study that discussed performance issues for a number of distributed locking and timestamp algorithms was
presented in [Bern80a]. and an empirical comparison of several concurrency control schemes was given in
[Pein83]. Recently. the performance of different concurrency control mechanisms have been compared in a
number of simulation studies. The performance of locking was compared with the performance of basic
timestamp ordering in [Gall82] and with basic and multiversion timestamp ordering in [Lin83]. Results of
experiments comparing locking to the optimistic method appeared in [Robi82a. Robi82b]. and thg perfor-
mance of several variants of locking, basic timestamp ordering. and the optimistic method were compared in
[Care83. Care84]. Finally. the performance of several integrated concurrency control and recovery algo-

rithms were evaluated in [Agra83a. Agra83D].

These performance studies are informative. but the results that have emerged. instead of being defini-
tive. have been very contradictory. For example. studies by Carey and Stonebraker [Care84] and Agrawal
and DeWitt [Agra83a] suggest that an algorithm that uses blocking instead of restarts is preferable from a
performance viewpoint. but Tay [Tay84a. Tay84b] suggests that restarts lead to better performance than
blocking. Results reported in [Gall82] regarding locking versus basic timestamp ordering contradict those of
[Lin83]. Optimistic methods outperformed locking in [Fran83]. whereas the opposite results were reported

in [Agra83b. Care83].

Each of the previous studies employed a different performance model. and several of the studies were
based on assumptions that have no clear physical meaning. In this paper. instead of presenting "yet another
performance study”. we address the assumptions made in the models used in past studies and their implica-
tions. We begin by establishing a framework based on a complete and (we believe) "realistic” model of a
database management system. Our model captures all the main elements of a database environment, includ-
ing both users (i.e.. terminals. the source of transactions) and physical resources for storing and processing
the data (i.e.. disks and CPUs) in addition to the usual model components (workload and database charac-
teristics). Based on this framework, we show how differences in assumptions explain the apparently contrad-

ictory performance results from the previous studies. We also examine what assumptions are reasonable for



real systems, and how more realistic assumptions would have altered the conclusions of several of the earlier

studies.

In particular, we critically examine the common assumption of infinite resources. A number of analyti-
cal studies (for example, [Fran83. Tay84a. Ta784b]) and simulation studies (for example, [Lin82b, Lin83])
compare concurrency control algorithms under the assumption that transactions progress at a rate indepen-
dent of the number of concurrent transactions. In other words. they proceed in parallel rather than in an
interleaved manner. This is only really possible in a system with enough resources so that transactions never
have to wait for CPU or 1/Q service — hence our choice of the phrase "infinite resources”. We will investi-
gate this assumption by performing studies with truly infinite resources, with multiple CPU-1/O devices. and
with transactions that think while holding locks. The infinite resource case represents an "ideal” system. the
multiple CPU-1/0 device case models a class of multiprocessor database machines. and having transactions

think while executing models an interactive workload.

We examine three concurrency control algorithms in this study. two locking algorithms and an optimis-
tic algorithm, which differ as to when and how they detect and resolve conflicts. Section 2 describes our
choice of concurrency control algorithms. We use a simulator based on a closed queuing model of a single-
site database system for our performance studies. The structure and characteristics of this simulator are
described in Section 3. Section 4 presents the performance experiments and our results. In Section 5 we

summarize the main conclusions of our study.

2. CONCURRENCY CONTROL STRATEGIES

A transaction T 1s a sequence of actions {al. Ay. oo an}. where a, is either read or write. Given a

concurrent execution of transactions, action a, of transaction Ti and action aj of Tj conflict if (i) a is read and
3 is write: or (i) a; is write and aj is read or write. The various concurrency control algorithms basically
differ in the time when they dereci conflicts and the way that they resolve conflicis [Bern81]. For this study we
have chosen to examine three concurrency control algorithms that represent extremes in conflict detection and

resolution:



Blocking. Transactions set read locks on objects that they read, and these locks are later upgraded to
write locks for objects which they also write. If a lock request is denied. the requesting transaction is
blocked. A waits-for graph of transactions is maintained [Gray79], and deadlock detection is performed each
time a transaction blocks. If a deadlock is discovered, the youngest transaction in the deadlock cycle is

chosen as the victim and restarted. Dynamic two-phase locking [Gray79] is an example of this strategy.

Immediate-Resiari. As in the case of blocking. transactions read-lock the objects that they read. and they
later upgrade these locks to write locks for objects which they also write. However, if a lock request is
denied. the requesting transaction is aborted and restarted after a restart delay. The delay period. which
should be on the order of the expected response time of a transaction, prevents the same conflict from re-

occurring repeatedly. A concurrency control strategy similar to this was considered in [Tay84a. Tay84b].

Opiimistic. Transactions are allowed to execute unhindered and are validated only after they have
reached their commit points. A transaction is restarted at its commit point if it finds that any object that it
read has been written by another transaction which committed during its lifetime. The optimistic method pro-

posed by Kung and Robinson [Kung81] is based on this strategy.

These algorithms represent two extremes with respect to when conflicts are detected. The blocking and
immediate-restart algorithms are based on dynamic locking. so conflicts are detected as they occur. The
optimistic algorithm. on the other hand. does not detect conflicts until transaction commit time. The three
algorithms also represent two different extremes with respect to conflict resolution. The blocking algorithm
blocks transactions to resolve conflicts. restarting them only when necessary because of a deadlock. The

immediate-restart and optimistic algorithms always use restarts to resolve conflicts.

One final note in regard to the three algorithms: In the immediate-restart algorithm, a restarted tran-
saction must be delayed for some time to allow the conflicting transaction to complete: otherwise. the same
lock conflict will occur repeatedly. For the optimistic algorithm, it is unnecessary to delay the restarted tran-
saction. as any detected conflict is with an already committed transaction. A restart delay is also unnecessary

for the blocking algorithm, as the same deadlock cannot arise repeatedly.



3. SIMULATION MODEL

Central to our simulator for studying concurrency control algorithm performance is the closed queuing
model of a single-site database system shown in Figure 1. This model is an extended version of the model
used in [Care83, Care84], which in turn had its origins in the model of [Ries77, Ries79a, Ries79b]. There
are a fixed number of terminals from which transactions originate. There is a limit to the number of transac-
tions allowed to be active at any time in the system. the multiprogramming level mpl. A transaction is con-
sidered active if it is either receiving service or waiting for service inside the database system. When a new
transaction originates. if the system already has a full set of active transactions. it enters the ready queue
where it waits for a currently active transaction to complete or abort (transactions in the ready queue are not
considered active). The transaction then enters the cc gueue (concurrency control queue) and makes the first
of its concurrency control requests. If the concurrency control request is granted, the transaction proceeds to
the object queue and accesses its first object. If more than one object is to be accessed prior to the next con-
currency control request, the transaction will cycle through this queue several times. When the next con-
currency control request is required. the transaction re-enters the concurrency control queue and makes the
request. It is assumed for modeling convenience that a transaction performs all of its reads before perform-
ing any writes. In one of the performance studies later in the paper. we examine the performance of con-
currency control algorithms under interactive workloads. The think path in the model provides an optional
random delay that follows object accesses for this purpose. More will be said about modeling interactive

transactions shortly.

If the result of a concurrency control request is that the transaction must block. it enters the blocked
queue until it is once again able to proceed. If a request leads to a decision to restart the transaction, it goes
to the back of the ready queue, possibly after a randomly determined restart delay period of mean

restarL_delay (as in the immediate-restart algorithm). It then begins making all of the same concurrency con-

trol requests and object accesses over again.! Eventually the transaction may complete and the concurrency

control algorithm may choose to commit the transaction. If the transaction is read-only. it is finished. If it

1 The simulator maintains backup copies of transaction read and write sets
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Figure 1: Logical Queuing Model.

has written one or more objects during its execution, however. it first enters the updaie queuc and writes its
deferred updates into the database. Deferred updates are assumed here because our simulation framework is
intended to support any concurrency control algorithm — all algorithms operate correctly with deferred

updates. but not all algorithms work with recovery schemes that do in-place updates.

To further illustrate how transactions flow through the model, we briefly describe how the locking algo-

rithms and the optimistic algorithm are modeled. For locking. each concurrency control request corresponds



to a lock request for an object, and these requests alternate with object accesses. Locks are released together
at end-of-transaction (after the deferred updates have been performed). For optimistic concurrency control,
the first concurrency control request is granted immediately (i.e., it is a "no-op"); all object accesses are
then performed with no intervening concurrency control requests. Only after the last object access is finished
does a transaction return to the concurrency control queue in the optimistic case, at which time its validation

test is performed (followed, if successful, by its deferred updates).
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Figure 2: Physical Queuing Model.



Underlying the logical model of Figure 1 are two physical resources. the CPU and the 1/O (i.e.. disk)
resources. Associated with the concurrency control, object access, and deferred update services in Figure 1
are some use of one or both of these two resources. The amounts of CPU and 1/O time per logical service
are specified as simulation parameters. The physical queuving model is depicted in Figure 2, and Table 1
summarizes its associated simulation parameters. As shown. the physical model is a collection of terminals,
multiple CPU servers, and multiple I/O servers. The delay paths for the think and restart delays are also
reflected in the physical queuing model. Simulation parameters specify the number of CPU servers. the
number of 1/O servers. and the number of terminals for the model. When a transaction needs CPU service,
it is assigned a free CPU server; otherwise the transaction waits until one becomes free. Thus, the CPU
servers may be thought of as being a pool of servers. all identical and serving one global CPU queue.
Requests in the CPU queue are serviced FCFS (first-come. first-served). except that concurrency control
requests have priority over all other service requests. Our 1/O model is that of a partitioned database, where
the data in the database is spread out across all of the disks. There is a queue associated with each of the I/O
servers. When a transaction needs service. it chooses a disk (at random, with all disks being equally likely)
and waits in an I/O queue associated with the selected disk. The service discipline for the I/O queues is also

FCFS.

The parameters obj_io and obj_cpu are the amounts of 1/0 and CPU time associated with reading or
writing an object. Reading an object takes resources equal to obj_io followed by obj_cpu. Writing an object
takes resources equal to obj_cpu at the time of the write request and obj_io at deferred update time. as it is
assumed that transactions maintain deferred update lists in buffers in main memory. These parameters
represent constant service time requirements rather than stochastic ones for simplicity. The ext think_time
parameter is the mean of an exponential time distribution which determines the time delay between the com-
pletion of a transaction and the initiation of a new transaction from a terminal. Finally, the inLthink_ rime
parameter is the mean of an exponential time distribution which determines the intra-transaction think time
for the model (if any). To model interactive workloads. transactions can be made to undergo a thinking

period between finishing their reads and starting their writes.



Parameter Meaning

db_size number of objects in database

tran..size mean size of transaction

max..size size of largest transaction

min_size size of smallest transaction

wrile_prob Pr(write X | read X)

restart_delay mean transaction restart delay (optional)
nunLlerins number of terminals

mpl multiprogramming level

ext_think_time | mean time between transactions (per terminal)
ini_think_time | mean intra-transaction think time (optional)
obj_io 1/0 time for accessing an object

obj.cpu CPU time for accessing an object

UL CPUS number of cpus

nuim disks number of disks

Table 1: Simulation Parameters.

A transaction is modeled according to the number of objects that it reads and writes. The parameter
tran_size is the average number of objects read by a transaction. the mean of a uniform distribution between
min_size and max_size (inclusive). These objects are randomly chosen (without replacement) from among all

of the objects in the database. The probability that an object read by a transaction will also be written is

determined by the parameter write_prob. The size of the database is assumed to be db_size.

4. PERFORMANCE EXPERIMENTS

We performed a number of simulation experiments to study the implications of different assumptions on
the performance of the three concurrency control algorithms described in Section 3. We first examined the
performance of the three strategies in the case of very low conflicts. We then investigated the performance
under the infinite resources assumption, with limited resources. and with multiple CPUs and disks. Last. we

examined the case of an interactive workload.

Table 2 gives the simulation parameter values used for the experiments reported here (except where
otherwise noted). The parameters that vary from experiment to experiment are not listed in the table, but will
instead be given in the description of the experiments. The database and transaction sizes were selected so as

to jointly yield a region of operation which allows the interesting performance effects to be observed without
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Parameter Value

db_size 1000 pages

tran_size 8 page readset

max_size 12 page readset (maximum)
min_size 4 page readset (minimum)
wrile_prob 0.25

num.terms 200 terminals

mpl 5, 10, 25. 50, 75, 100, and 200 transactions
ext_think_time | 1 second

obj_io 35 milliseconds

obj_cpu 15 milliseconds

Table 2: Simulation Parameter Settings.

necessitating impossibly long simulation times. These sizes are expressed in pages. as we equate objects and
pages in this study. The multiprogramming level is varied between a limit of 5 transactions and a limit of the
total number of terminals. set to 200 in this study, to allow a range of conflict probabilities to be investigated.
The object processing costs were chosen based on our notion of roughly what realistic values might be. We
employed a modified form of the batch means method [Sarg76] for our statistical data analyses, and each
simulation was run for 20 batches with a large batch time to produce sufficiently tight 90% confidence inter-
vals.? The actual batch time varied from experiment to experiment. but the throughput confidence intervals
were typically in the range of plus or minus a few percent of the mean value. more than sufficient for our
purposes. We discuss only the statistically significant performance differences when summarizing our

results.,

Throughout the paper we use a fixed set of symbols for representing the data points obtained from the
three different concurrency control algorithms. These symbols are summarized at the top of each of the

pages with graphs.

4.1. Experiment 1: Low Conflict Situation

For the first experiment. we used a larger database size of 10.000 objects. Due to the large database

size and the relatively small transaction size. there were few conflicts in this experiment. larger The

2 More information on the details of the modified batch means method may be found in [Care83)].
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throughput results for a system with infinite resources and a system with finite resources (1 CPU and 2 disks)
are shown in Figures 3 and 4 respectively. The performance of the three concurrency control strategies was
close in both cases, confirming the results in [Care83, Care84, Agra83a, Agra83b] — if conflicts are rare. it
makes little difference which concurrency control algorithm is used. In both cases, blocking outperformed

the other two algorithms by a small amount.

Since we were interested in investigating differences in concurrency control strategies, we decreased the
database size to 1000 objects (as shown in Table 2) to create a situation where conflicts are more frequent.

The rest of the experiments were performed using this database size.

4.2. Experiment 2: Infinite Resources

The next experiment examined the performance characteristics of the three strategies assuming infinite
resources for a variety of multiprogramming levels. With infinite resources. as the multiprogramming level
is increased. the throughput should also increase in the absence of data contention. However. for a given
size database. the probability of conflicts increases as the multiprogramming level increases. For blocking,
the increased conflict probability will manifest itself in the form of more blocking due to denial of lock
requests and an increased number of restarts due to deadlocks. For the restart-oriented strategies, the higher

probability of conflicts will result in a larger number of restarts.

Figure 5 shows the throughput results for Experiment 2. Blocking starts thrashing as the multipro-
gramming level is increased beyond a certain level. whereas the throughput keeps increasing for the optimis-
tic algorithm. These results agree with predictions in [Fran83] that were based on similar assumptions. Fig-
ure 6 shows the average number of times that a transaction was blocked and restarted per commit, called the
block ratio (dotted line) and the restart ratio (solid lines). for the three concurrency control algorithms. Note
that the thrashing in blocking is due to the large increase in the number of times that a transaction is blocked,
which reduces the effective multiprogramming level. rather than to an increase in the number of restarts.
This result is in agreement with the assertion in [Tay84a. Tay84b] that under low resource contention and a
high level of multiprogramming. blocking may start thrashing before restarts do. Although the restart ratio

for the optimistic algorithm increases quickly with an increase in the multiprogramming level. new
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transactions start executing in place of the restarted ones, keeping the effective multiprogramming level high

and thus entailing an increase in throughput.

Unlike the other two algorithms, the throughput of the immediate-restart algorithm reaches a plateau.
This happens for the following reason: When a transaction is restarted in the immediate-restart strategy, a
restart delay is invoked to allow the conflicting transaction to complete before the restarted transaction is
placed back in the ready queue. The duration of the restart delay is exponential with a mean equal to the run-
ning average of the transaction response time — that is, the duration of the delay is adaptive. depending on
the observed average response time. We chose to employ an adaptive delay after performing a sensitivity
analysis that showed us that the performance of immediate-restarts is sensitive to the restart delay time, partic-
ularly in the infinite resource case. Our experiments indicated that a delay of about one transaction time is
best. and that throughput begins to drop off rapidly when the delay exceeds more than a few transaction
times. Because of this adaptive delay. then, the immediate-restart algorithm reaches a state where increasing
the multiprogramming level does not result in an actual increase in the number of active transactions — there
are no transactions waiting in the ready queue, so increasing the allowed population has no effect. All of the

non-active transactions are either in a terminal thinking state or a restart delay state.

Figure 7 shows the mean response time (solid lines) and the standard deviation of response time (dotted
lines) for each of the three algorithms. The response times are basically what one would expect, given the
throughput results plus the fact that we have employed a closed queuing model. This figure does illustrate
one interesting phenomenon that occurred in nearly all of the experiments reported in this paper: The stan-
dard deviation of the response time is smaller for blocking than for the immediate-restart algorithm over most
of the multiprogramming levels explored — the response time variance for the immediate-restart algorithm is

quite significant. A high variance in response time is undesirable from a user’s standpoint.

4.3. Experiment 3: Resource-Limited Situation

In Experiment 3 we analyzed the impact of finite resources on the performance characteristics of the
three concurrency control algorithms. A database system with 1 CPU and 2 disks was assumed for this

experiment. The throughput results are presented in Figure 8.
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Observe that for all three algorithms, as the multiprogramming level is increased, the throughput first
increases, then reaches a peak, and then finally either decreases or remains roughly constant. In a system
with finite CPU and I/0 resources. the achievable throughput may be constrained by one or more of the fol-
lowing factors: It may be that not enough transactions are available to keep the system resources busy.
Alternatively, it may be that enough transactions are available. but because of data contention, the "useful”
number of transactions is less than what is required to keep the resources "usefully” busy. That is, transac-
tions that are blocked due to lock conflicts are not useful; similarly, the use of resources to process transac-
tions that are later restarted is not useful. Finally, it may be that enough useful. non-conflicting transactions

are available. but that the available resources are already saturated.

As the multiprogramming level was increased, the throughput first increased for all three concurrency
control algorithms. as there were not enough transactions to keep the resources utilized at low levels of mul-
tiprogramming. Figure 9 shows the total (solid lines) and useful (dotted lines) disk utilizations for this exper-
iment. The useful utilizations indicate the fraction of the resources used to do work that actually completed
(i.e.. they exclude the fraction used for work that was later undone by restarts). The utilization of the disks
is selected here because the disks are the bottleneck resource with our parameter settings. For blocking, the
throughput peaks at mp/ = 25. where the disks are being 97.2% utilized, with a useful utilization of 92.1%..
Increasing the multiprogramming level further only increases data contention, and the throughput decreases
as the amount of blocking and the number of restarts increase at a much faster rate. For the optimistic algo-
rithm, the useful utilization of the disks peaks at mp/ = 10. and the throughput decreases with an increase in
the multiprogramming level because of the increase in the restart ratio. This restart ratio increase means that
a larger fraction of the disk time is spent on processing objects that will be redone later. For the immediate-
restart algorithm. the throughput also peaks at mp/ = 10 and then decreases. remaining roughly constant
beyond 50. The thoughput remains constant for this algorithm for the same reason as described in the last
experiment — increasing the allowable number of transactions has no effect beyond 50, as all of the non-

active transactions are either thinking or in a restart delay state.
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With regards to the throughput for the three strategies. several observations are in order. First, the
maximum throughput (i.e., the best global throughput) was obtained with the blocking algorithm. Second,
immediate-restarts performed as well as or better than the optimistic algorithm. There were more restarts
with the optimistic algorithm, and each restart was more expensive; this is reflected in the relative useful disk
utilizations for the two strategies. Finally, the throughput achieved with the immediate-restart strategy for mp!
= 200 was somewhat better than the throughput achieved with either blocking or with the optimistic algo-

rithm.

Figure 10 gives the average and the standard deviation of response time for the three algorithms in the
finite resource case. The differences are even more noticeable than in the infinite case. Blocking has the
lowest response time over most of the multiprogramming levels. and it has the lowest response time globally.
The immediate-restart algorithm is next. and the optimistic algorithm has the worst response time. As for the
standard deviations. blocking is the best, immediate-restarts is the worst. and the optimistic algorithm is in
between the two. As in Experiment 1, the immediate-restart algorithm exhibits a very high response time

variance.

One of the points raised earlier merits further discussion. Should the performance of the immediate-
restart algorithm at mp/ = 200 lead us to conclude that immediate-restart is a better strategy at high levels of
multiprogramming? We believe that the answer is no. for several reasons. First. the multiprogramming
level is internal to the database system. controlling the number of transactions that may concurrently compete
for data and resources. and has nothing to do with the number of users that the database system may support;
the latter is determined by the number of terminals. Thus. one should configure the system to control the
multiprogramming at a level which gives the best performance. In our experiment, the highest throughput
and smallest standard deviation of response time were achieved using the blocking algorithm at mp/ = 50.
Second, the restart delay in the immediate-restart strategy is there so that the conflicting transaction can com-
plete before the restarted transaction is placed back into the ready queue. However, an unintended side effect
of this restart delay in a system with a finite number of users is that it limits the actual multiprogramming

level, and hence also limits the number of conflicts and resulting restarts due to reduced data contention.
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Although the multiprogramming level was increased to the total number of users (200), the actual average
multiprogramming level never exceeded about 60. Thus, the restart delay provides a crude mechanism for
limiting the multiprogramming level when restarts become overly frequent, and adding a restart delay to the

other two algorithms should improve their performance at high levels of multiprogramming as well.

To verify this latter argument, we performed another experiment where the adaptive restart delay was
used for restarted transactions in both the blocking and optimistic algorithms as well. The throughput results
that we obtained are shown in Figure 11. It can be seen that introducing an adaptive restart delay helped to
limit the multiprogramming level for the blocking and optimistic algorithms under high conflicts. as it does
for immediate-restarts. reducing data contention at the upper end of the curves. Blocking emerges as the
clear winner, and the performance of the optimistic algorithm becomes comparable to the immediate-restart
strategy. The one negative effect that we observed from adding this delay was an increase in the standard
deviation of the response times for the blocking and optimistic algorithms. Since a restart delay only helps
performance for high multiprogramming levels. it seems that a better strategy is to enforce a lower multipro-
gramming level limit to avoid thrashing due to high contention and to maintain a small standard deviation of

response time.

4.4. Experiment 4: Multiple Resources

In this experiment we moved the system from finite resources towards infinite resources. We increased
the number of resources available to 5 CPUs and 10 disks and then to 25 CPUs and 50 disks to determine
where finite resources start behaving like infinite resources in a multiprocessor database machine environ-

ment.

For 5 CPUs and 10 disks. the behavior of the three concurrency control strategies was fairly similar to
the behavior in the case of 1 CPU and 2 disks. The throughput results for this case are shown in Figure 12,
and the disk utilization figures for this case are given in Figure 13. Blocking again provided the highest
overall throughput. For large multiprogramming levels, however. the immediate-restart strategy provided
better throughput than blocking, but not enough to beat the highest throughput provided by the blocking algo-

rithm. In this resource configuration, the maximum useful utilizations of the disks with the blocking,
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immediate-restarts. and the optimistic algorithm were 55.5% . 44.6%, and 46.6% respectively, whereas the
maximum total disk utilizations were 61.8% . 72.6%. and 94.1%. Note that, due to restarts, the total utiliza-
tions for the restart-oriented algorithms are higher than those for blocking; the difference is partially due to
wasted resources. By "wasted resources” here, we mean resources used to process objects that were later
undone due to restarts — these resources are wasted in the sense that they were consumed, making them

unavailable for other purposes such as background tasks.

For 25 CPUs and 50 disks, the maximum throughput obtained with the optimistic algorithm beats the
maximum throughput obtained with blocking (although not by very much). The throughput results for this
case are shown in Figure 14. and the utilizations are given in Figure 15. The total and the useful disk utili-
zations for the maximum throughput point for blocking were 33.5% and 30.1% (respectively) whereas the
corresponding numbers for the optimistic algorithm were 62.6% and 32.6% . Thus. the optimistic algorithm
has become attractive because a large amount of otherwise unused resources are available. and thus the
resources wasted due to restarts does not adversely affect performance. In other words, with useful utiliza-

tions in the 30% range, the system begins to behave somewhat like it has infinite resources.

Another interesting observation from these results is that, with blocking. resource utilization decreases
as the level of multiprogramming increases and hence throughput decreases. This is a further indication that
blocking may thrash due to waiting for locks before it thrashes due to the number of restarts [Tay84a.
Tay84b]. as we saw in the infinite resource case. On the other hand. with the optimistic algorithm. as the
multiprogramming level increases. the total utilization of resources and resource waste increases. and the
throughput decreases somewhat. Thus, this strategy eventually thrashes due to the number of restarts (i.e..
because of resources). With immediate-restarts, as explained earlier. a plateau is reached for throughput and
resource utilization because the actual multiprogramming level is limited by the restart delay under high data

contention.

4.5. Experiment 5: Interactive Workloads

In our last experiment, we modeled interactive transactions that perform a number of reads. think for

some period of time, and then perform their writes. This model of interactive transactions was motivated by a
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large body of form-screen applications where data is put up on the screen, the user may change some of the
fields after staring at the screen for a while, and then the user types "enter” causing the updates to be per-
formed. The intent of this experiment was to find out whether large intra-transaction — internal — think
times can cause a system with finite resources to behave like it has infinite resources. The interactive work-
load experiment was performed for internal think times of 1, 5, and 10 seconds. At the same time, the exter-
nal think times were increased to 3. 11, and 21 seconds (respectively) in order to keep roughly the same ratio
of thinking transactions to active transactions. We have assumed a finite resource environment with 1 CPU

and 2 disks for the system in this experiment.

Figure pairs (16. 17). (18. 19). and (20, 21) show the throughput and disk utilizations obtained for the
1. 5. and 10 second inter-transaction think time experiments (respectively). On the average. a transaction
requires 150 milliseconds of CPU time and 350 milliseconds of disk time, so internal think times of 1, 5. and
10 seconds thus considerably increase the duration for which a locks are held. This causes the resource utili-
zation for blocking to decrease as the internal think time increases. With the optimistic algorithm. the
demand for resources is also reduced due to large think times, and the resources start behaving as though
they were infinite resources. Consequently, for large think times, the optimistic algorithm performs better
than the blocking strategy (see Figures 18 and 20). For an internal think time of 21 seconds. the useful utili-
zation of resources is much higher with the optimistic algorithm than the blocking strategy, and the highest
throughput value is also considerably higher. For 5 seconds of internal think time. the throughput and the
useful utilization with the optimistic algorithm is also better than for blocking. For a | second internal think
time, however. blocking performs better (see Figure 16). The resource utilizations here are such that wasted

resources due to restarts makes the optimistic algorithm the loser.

The highest throughput obtained with the optimistic algorithm was consistently better than that for
immediate-restarts. although for higher levels of multiprogramming the throughput obtained with immediate-
restarts was better than the throughput obtained with the optimistic algorithm due to the multiprogramming-
limiting effect of immediate-restart’s restart delay. As noted before. this high multiprogramming level differ-

ence could be reversed by adding a restart delay to the optimistic algorithm.
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5. CONCLUSIONS AND IMPLICATIONS

One major conclusion of this study is that for medium to high levels of resource utilization, a blocking
algorithm like dynamic two-phase locking is a better choice than a restart-oriented concurrency control like
the immediate-restart or optimistic algorithms. However. if resource utilizations are sufficiently low that a
large amount of wasted resources can be tolerated. and in addition there are a large number of transactions
available to execute. then a restart-oriented algorithm is a better choice. We found the optimistic algorithm to
be the best choice under these conditions. Such low resource utilizations could arise in a database machine
with a large number of CPUs and disks and a number of terminals similar to what one finds on typical
timesharing systems today. They could also arise in primarily interactive applications where very large think
times occur and the number of terminals is such that the utilization of the system is low as a result. It is an
open question whether or not such utilizations could really occur in real systems (i.e.. whether it will ever be
cost effective to run at such low utilizations). If not, blocking algorithms will remain the preferred method

for database concurrency control.

Another result of this study is that we have re-confirmed the results of a number of other studies,
including those reported in [Agra83a. Agra83b. Care83, Care84, Fran83, Tay84a. Tay84b]. We have
shown that seemingly contradictory results. some of which favor blocking algorithms and others of which
favor restarts, are not contradictory at all. The studies are all correct within the limits of their assumptions,
particularly their assumptions about system resources. While it is possible to study the effects of data conten-
tion and resource contention separately in some models [Tay84a. Tay84b]. it appears not to be worth doing
so if the goal is to select a concurrency control algorithm for a real system — the proper algorithm choice is

resource-dependent.

An interesting side result of this study is that the level of multiprogramming in database systems should
be carefully controlied. We refer here to the multiprogramming level internal to the database system. con-
trolling the number of transactions that may concurrently compete for data, CPU, and I/O services. As in
the case of paging operating systems. if the multiprogramming level is increased beyond a certain level. the

blocking and optimistic concurrency control strategies start thrashing. We have confirmed the results of
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[Fran83, Tay84a, Tay84b] for locking in the low resource contention case, but more importantly we have
also seen that the effect can be significant for both locking and optimistic concurrency control under higher
levels of resource contention. We found that when we delayed restarted transactions by an amount equal to
the running average response time, it had the beneficial side effect of limiting the actual multiprogramming
level, and the degradation in throughput was arrested (albeit a little bit late). Since the use of a restart delay
to limit the multiprogramming level is at best a crude strategy, adaptive algorithms that dynamically adjust the
multiprogramming level in order to maximize system throughput need to be designed. Some performance
indicators that might be used in the design of such an algorithm are useful resource utilization, running aver-

ages of throughput or response time, etc. The design of such adaptive algorithms is an open problem.

In closing, we wish to leave the reader with the following thoughts about the future. due to Bill Wulf

[Wulf81]:

"Although the hardware cosis will continue to fall dramatically and machine speeds will increase equal-
ly dramatically, we musi assume that our aspirations will rise even more. Because of this, we are not
about 1o face either a cycle or memory surplus. For the near-ierm future, the dominani effect will not be
machine cosi or speed alone, bul rather a continuing atiempt lo increase the return from a finile
resource — thai is, a particular compuiter at our disposal.”
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