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ABSTRACT

PIPE (Parallel Instruction and Pipelined Execution) is a high performance computer
architecture with several features that make it well-suited for VLSI implementation.
A PIPE machine consists of a memory controller and two co-processors. An exe-
cute processor computes operand addresses for the execute processor that performs
the main calculations of a program running on the PIPE system. To study PIPE’s
performance. we implemented a simulator through which we ran a set of hand-
coded benchmarks. The dependence of performance on both program and hardware
characteristics is investigated. Various parameters and execution modes of the PIPE
architecture are considered. Simulation results demonstrate the usefulness ot archi-
tectural queues and decoupled architectures. Simulation results also show that the
PIPE architecture pertorms very well on the benchmark programs.
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1. Introduction

PIPE (Parallel Instruction and Pipelined Execution) is a decoupled computer architecture with
several features that make it well suited for VLSI implementation. PIPE was first proposed in
[SPKG83] as a research vehicle for studying high performance VLSI architecture and organization.
Since then, a great amount of effort has been devoted to the study of various aspects of this architec-
ture. The PIPE processor is intended for state-of-the-art single-chip VLSI fabrication. The design
of a prototype PIPE processor was described in [CGKP83]. Several major portions ot the processor
have been laid out in nMOS technology and submitted for fabrication and many software tools have

been developed for studying the PIPE architecture.

Very Large Scale Integration (VLSI) is the current trend in computer technology [MeCo80].
A very powerful single-chip processor is a good candidate for use of the large number ot electronic
devices provided on a silicon chip [PaSe80]. Well-established pipelining design philosophy
[Kogg8l. RaLi77] and VLSI technology are a good match. A pipelined computer organization
requires more logic than a serial one. but it does not necessarily require more interface pins. The
additional logic required for pipelining contributes significantly to system performance by allowing

parallel execution in the pipeline stages.

High performance machine design should exploit parallelism at all system levels. both within
processors and among processors. PIPE is a decoupled architecture that allows parallel execution of
a single task in two processors. A decoupled architecture provides a clean partition of computing
functionals so that they can be implemented in two cooperating processors. Communication among
the processors and the main memory is buffered by architectural queues that smooth out temporary

congestion in busses and allow “‘elastic’” coupling between the two processors.

To validate the features of the PIPE architecture, we decided to perform detailed simulation of
the system. For such a study. a functional interpreter and performance simulator were implemented.
In order to justify the design rationale and to identify possible weaknesses of the PIPE architecture.

we decided to evaluate the performance of the PIPE system in a particular application environment.



To this end. we used the Lawrence Livermore Laboratories: [00ps (McMa72] as benchmark pro-

grams.

The rest of the paper is organized as follows. In the next section. we give more details of the
PIPE architecture. Section 3 describes the performance simulator and some implementation details
of a PIPE system. As benchmarks. we used hand-coded Lawrence Livermore loops and these are
discussed in Section 4. Simulation results of the Lawrence Livermore loops are presented in Section
5. We also analyze the results and discuss some programming techniques and performance/

hardware trade-off. Section 6 contains a conclusion.

2. The PIPE Architecture

The PIPE (Parailel Instruction and Pipelined Execution) architecture is intended for very-
high-performance VLSI computers. The architecture. the motivation behind it. and some of the
features of its planned implementation are discussed in [SPKG83]. More details on implementing a
prototype PIPE processor are described in [CGKP83]. In this section. we briefly describe the
important features of PIPE and some related architectures. More implementation details will be dis-

cussed in a later section. in conjunction with the PIPE simulator.

Some known impediments to computer performance have been taken into consideration in the
design of the PIPE architecture. In a conventional von Neumann architecture, the CPU interacts
with one memory over one bus. Both instructions and operands are transferred via this bus. In the
VLSI environment. bus width is usually limited to the processor’s word size. The speed of bus com-
munications is limited by the power-delay product [MeCo80] of the circuit. The von Neumann
bottleneck is the limitation on the bus traffic posed by the bus bandwidth. An on-chip instruction
cache is implemented for each PIPE processor to reduce the number of words passed through this
bottleneck [Good83]. Flynn [Flyn66] observed that in the instruction fetch/decode path there is
some bottleneck through which instructions pass at the maximum rate of one per clock period.
Decoupled architectures. with their two parallel instruction streams, reduce the constraint of the

Flynn bottleneck.



PIPE is a Register-to-Register (RR) architecture in which all the operands of arithmetic and
logical instructions come from registers or queues. Similarly. the operation results go to registers or
queues. Load and Store are the onlv instructions that access main memory. Since the resource and
time requirements of register-to-register operations are known in advance, RR architectures are

better suited for pipelining than memorv-oriented architectures.

Some processors have simple instruction sets. The argument for these processors is that they
are easy to design and implement. and can execute structions quickly. For example. the Reduced
Instruction Set Computer. RISC-I [PaSe81]. has a 400ns cycle time and can execute one instruction
per cycle. In the pipelined implementation of a PIPE processor. an instruction may take several
clock periods to finish. but we can issue one instruction per clock period. A PIPE processor has an
elemenial instruction set similar to that of RISC-I. An elemental instruction is one whose resource
requirements can be readily determined before instruction execution. Pipeline conflict detection and
interlocks can be done in a single instruction issue stage that precedes the execution pipeline The
instruction issue stage for an elemental instruction set can be implemented with relatively simple
logic. Using nMOS technology, a PIPE processor is expected to have a basic clock period which is

about an order of magnitude shorter than the RISC-I cycle time.

The main feature of decoupled architectures is a high degree of decoupling between operand
access and execution. This results in an implementation which has two separate instruction streams
and processors that communicate via queues. The MAP-200 array processor [CoSt81] proposed the
first decoupled architecture in the literature. The MAP-200 has an integer addresser separate from
its floating-point arithmetic unit. The two units run independently except that some synchronization
is needed at certain points. such as the end of a loop. Software is called on to do most of the coordi-
nation and synchronization between these two units. Another decoupled architecture based on
CRAY-1 computers [Russ78] was proposed in [Smit82]. It tried to remove the burden of synchroni-
zation from the programmers. This architecture uses queues to pass branch decisions between the

cooperating processors and eliminates some unnecessary waiting periods suffered in the MAP-200



architecture. The Structured Memory Access (SMA) architecture [Ples82. PiDag3] also falls in the
category of decoupled architectures. It uses a computation processor and a decoupled memory access
processor with special hardware for efficient accessing of program and data structures and for effec-

tive branch and loop management.

PIPE is similar to the decoupled architectures described above. but with special considerations
for pipelined VLSI implementation. Although a single PIPE processor can execute a program by
itself, we are more inwerested in the decoupled configuration where two processors execute a single
process divided into two parailel instruction streams. The Access Processor (AP) computes operand
addresses and makes memory references for the Execute Processor (EP) that pertorms the main cal-
culations of a program. Each processor has an on-chip instruction cache that reduces the etfect of
the von Neumann bottleneck. Both the instruction fetch unit and the Arithmetic Logical Unit (ALU)
are pipelined. The Prepare to Branch (PBR) instructions are designed to facilitate smooth transfer of
control. A PBR instruction gives the instruction fetch logic advance notice of a branch and minim-

izes its interruption of the instruction unit pipeline

A memory control unit serves both processors and is responsible for detection and resolution of
memory hazards. All memory transactions in a PIPE system are buffered by hardware queues.
These queues allow memory access time to be overlapped with useful processing. The branch
queues between the two processors provide elastic coupling between the two processors’ execution.
Thus a decoupled architecture automatically performs some code scheduling between the two proces-
sors at run time. The intent of a decoupled architecture is that the access processor should run

ahead of the execute processor and reduce or eliminate observed memory delay.

3. The Simulation Tools

Many software tools have been developed for studying the PIPE architecture. Among them are
a Pascal compiler, a code scheduler. an assembler. a functional interpreter, and a performance simu-

lator. All these tools work for both single-processor and decoupled access/execute modes.



The interpreter takes PIPE object code as input.. interprets it on an instruction-by-instruction
basis and produces both text and binary trace files. The binary trace files contain the following

information for performance simulation:

(1) addresses of data reads,

(2) addresses of data writes.

(3) addresses of instruction reads.
(4) the instructions.

A very versatile cache simulator has been developed that uses this binary trace format and has
been used extensively in studying the cache organizations with PDP-11 and VAX traces [Good83.
SmGo83]. This simulator can be modified slightly to add hiv/miss tags to the PIPE instructions in
the binary trace files. Currently. however. the PIPE simulator only has a simple built-in instruction

cache simulator that simulates a direct-mapped cache.

The PIPE simulator takes binarv trace files as input. simulates the execution of a PIPE pro-
gram on a clock-by-clock basis. and finally prints the statistics gathered during the simulation. The
remainder of this section discusses the simulator in more detail. Detailed knowledge of the simula-
tor. its operation. and its implicit assumptions is necessary for proper interpretation of the results in
Section 5. Section 3.1 introduces the simulation language we used to implement the PIPE perfor-
mance simulator. We use the model illustrated in Figure 3.1 to simulate a PIPE computer system.
The system consists of two cooperating processors and a memory subsystem which services both pro-

cessors. Section 3.2 discusses the simulation model for a PIPE processor. Section 3.3 describes a

simple model for the memory system.

3.1. The Simulation Language Simpas

The PIPE simulator is written in the simulation language Simpas, version 5.0 [Brya83]. Sim-

pas is an event-oriented simulation language embedded in Pascal. It has many attractive features.

First of all. it is extremely portable. It is implemented as a preprocessor that accepts an
extended version of Pascal as input and produces a standard Pascal program as output. The prepro-

cessor itself is written in standard Pascal. and the language has been designed so that it depends only
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on standard Pascal features.

Secondly. the language supports queues and operations on queues. This makes the simulation
of the PIPE architectural queues verv easv. The language also supports some error-detection at

run-time. For example. it detects the error of having an element in two queues at the same time.

Finally, Simpas has automatic mechanisms for statistics collection. In order to gather statistics
about an interested variable, a programmer simply specifies it to be of wartched type. The preproces-
sor will generate appropriate code to collect statistics for watched variables. Since the change from a
regular variable to watched variable. and vice versa, is very easy. we can make such changes during
the development of a simulator depending on the execution efficiency and the amount of statistics

needed.

The simulator used for this study was implemented in about 2.000 lines. excluding comments.
of Simpas code. The simulator executes on a VAX-11/750 at the speed ot about 30 ms user and sys-

tem CPU time per PIPE clock cycle in decouple-mode simulation.

3.2. The PIPE Processors

The processor functions that we simulate are based on the proposed initial implementation of
the PIPE processors [CGKP83]. The access processor and the execute processor can be identical:
they are in fact simulated by the same procedure. However. we do not preclude the possibility of
using two different processors. The simulator maintains two separate sets of simulation parameters

for the processors and allows a user to specify each parameter independent of the others.

3.2.1. The Instruction Unit

A PIPE instruction consists of either one or two 16-bit parcels. The instruction unit is respon-
sible for supplying an instruction stream for the ALU to execute. In order to reduce the number of
accesses it makes to main memory. the instruction unit contains an on-chip instruction cache. Upon
a cache hit, a line of instructions is loaded from the cache into the Cache Register (CR). Upon a

cache miss. the miss address is sent to the memory control unit and the returned instructions are



- assembled into a line in the CR. The instructions are processed through a pipeline consisting of the

CR. the Instruction Queue (IQ). the decoder and the issue logic.

The branch instructions in the PIPE architecture are designed to minimize their interruption of
the instruction unit pipeline. Branch target addresses are loaded into branch registers by separate
instructions. A ‘Prepare to Branch® (PBR) instruction specifies: (1) a condition to test. (2) a branch
register, and (3) a 3-bit branch count. The branch count ranges trom 0 to 7 and specifies the
number of instruction parcels to execute before the branch is taken. Well-writien programs keep the

branch counts large. allowing the processor to gracefully change control flow

In order to supply a smooth instruction stream. the instruction unit prefetches a line of instruc-
tions into the CR if the line will definitelv be used. The decision is based on the early detection and
partial decoding of PBR instructions. When the outcome of a branch condition is not yet known. a

cache miss bevond the branch count will not be processed.

The bus width in VLSI processors is limited by the number of pins available on a package.
The speed of bus communications limits the clock of the on-chip logic. The bus bandwidth also gen-
erates a potential bottleneck in the PIPE system. The PIPE architecture’s prefetching strategy and

small cache line size are designed to avoid unnecessary memory accesses.

3.2.2. The Execution Unit

The simple instruction set [PaSe81] of PIPE allows a well-structured pipelined implementation
of the Arithmetic Logic Unit (ALU). The simulator assumes that the ALU is a two-stage pipeline.
The first stage takes operands from the register file. the Load Data Queue (LDQ), or the instruction
unit (immediate operands). Both stages can send data through the result bus to the register file or

the Output Queue (OUTQ).

The Load Data Queue (LDQ) is the most important architectural queue in the PIPE architec-
ture. It serves as a First-in First-out buffer for the data loaded by the Load instructions. The size of

the LDQ is a simulation parameter. Ideally we like the queue to be infinitely long. So a large



number of Load- instructions can be scheduled ahead of the instructions that use the data. The effect

of the LDQ size on the system performance will be studied in later sections.

3.2.3. The Busses

Each processor communicates with the Memory Control Unit (MCU) through two dedicated
busses, one for input and one for output. Bus communications are buffered by the queues on both
sides of the busses. Tags are associated with all the bus traffic and designate the kind of information

being transferred.
The MCU-to-CPU tags are:

(1) data: A data word loaded by a Load instruction has returned from the MCU. It should go to

the LDQ.

(2) instruction: An instruction requested by a cache miss has returned. It should go to the Cache

Register in the instruction unit.

(3) control: A control message is sent through the bus. One possible control message is that the
bus is idle. Other kinds of control messages are used to coordinate the MCU-CPU communi-

cations and will be discussed shortly.
Each processor conceptually contains the following queues:

LAQ: load address queue,

ALAQ: alternate load address queue.
SAQ: store address queue,

ASAQ: alternate store address queue.
SDQ: store data queue.

Physically all these queues are combined into a single queue called the Output Queue (QUTQ).
Cache-miss instruction addresses can be thought of as going through an Instruction Address Queue

(IAQ). These queues are illustrated in Figure 3.2.

The data or addresses in the QUTQ are sent to the memory control unit in a strict first-in
first-out order. In the event of a cache miss. the instruction address is sent through the same CPU-

to-MCU bus. By default the simulator gives priority to the instruction address. The simulator

. 9.
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provides an -option that deprives the instruction address of its priority and forces it to enter the ouUTQ

and wait for transmission to the MCU.

All the CPU-to-MCU bus traffic is also tagged with a source queue indicator. Another tag on
the bus is for control messages. When the LDQ of a processor is full. the processor has to inform
the MCU so that no more data will be sent to the LDQ. Similarly. a processor has to inform the
MCU when the LDQ is not full and can be refilled. The LDQ-refill and LDQ-full messages can be
considered as the set and reset signals to a flip-flop in the MCU. The MCU sends LDQ data only it
the flip-flop is set. The LDQ-fi// message is the most urgent signal. In order to avoid any loss of
data. it is given the highest priority to use the CPU-to-MCU bus. Usually the LDQ-refill message is
not urgent and can be delayed if necessary. The LDQ-low parameter of the simulator is used to
determine when to send the LDQ-reiill message. If the LDQ length is less than LDQ-low then the
LDQ-refill gets priority. Otherwise the LDQ-refill message is postponed unless the CPU-to-MCU

bus is idle and can be used treely tor this message.

A similar mechanism is used to control the MCU-to-CPU bus transmission. The control mes-

sages sent by the memory control unit are named REQQ-full and REQQ-refill.

3.2.4. The Issue of Instructions

PIPE and the CRAY-1 have similar philosophies about instruction issue: resources needed by
an instruction are reserved at issue time [Cray79]. If an instruction to be issued would conflict with
an already issued instruction in the execution pipeline. the instruction is blocked until the conflict is

removed. In the PIPE architecture, possible reasons for blocking the instruction issue are:

(1) instruction not available,
(2) LDQ empty.

(3) OUTQ full.

(4) result bus contention.
(3) output BRQ full, and
(6) input BRQ empty.

The last two reasons are only for decoupled-mode executions where one processor has to wait for the

other at some synchronization point. The simulator keeps a record of all these blockings. Such
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information - is very useful in identifying possible bottlenecks in a PIPE program or the PIPE

machine.

3.3. The Memory Subsystem

The memory subsystem consists of the Memory Control Unit (MCU) and several memory
modules. Design of a memory subsystem for PIPE and the study of various memory service stra-
tegies are in progress [LiouB4]. A simple one-by-one memory service strategy is implemented as an

integral part of the PIPE performance simulator.

3.3.1. The Memory Modules

PIPE’s memory modules are interleaved for high performance: low order interleaving is used.
If there are m memorv modules then the memory word at address # resides in module n mod m. In
real memory systems the number m is usually a power of two so that the least significant bits of an

address determines which module the memory word resides in.

The simulator allows any number of memory modules in the memory svstem. If the number
of memory modules is specified to be zero then the simulator ignores memory module conflicts and
treats all the memory requests as pure delay of the amount specified by the memory access time
unless the request is blocked by hazards (to be described below). This feature can be used to study

the effect of memory module conflicts.

3.3.2. The One-by-One Service Strategy

Figure 3.1 shows that, in the memory system. all the requests are buffered in the Request
Queues (REQQs) before they are serviced. In fact, the requests cannot be serviced in a strictly
first-in first-out order. For example. an unmatched store address should not block the subsequent
load requests. Figure 3.2 shows one way to avoid such blockings. As illustrated, the incoming bus
wraffic is distributed into various buffer queues according to the associated tags. An alternate
load/store address from one processor is considered as a load/store address for the other processor.

The dashed lines in the figure show the virtual paths between the pairs of queues. All the virtual

S12 -



paths are concentrated into a single physical bus (and therefore necessitating the use of tags).

An address from the Store Address Queue (SAQ) and a data word from the Store Data Queue
(SDQ) are matched by the server and are serviced as a single write operation. In order to detect pos-
sible Read-After-Write (RAW), Write-After-Read (WAR) or Write-After-Write (WAW) hazards.
each request is time-stamped when it enters the memory control unit. The time stamp for a write
operation is that of the SAQ element. In addition to the RAW, WAR and WAW hazards. there are

also MLDQ hazards which will be discussed shortly
Three general rules are observed in the memory system.
(1) Unmatched SAQ or SDQ elements must wait for their mates.
(2) Any request whose intended memory module is busy must wait,
(3)  Any request that can cause hazards must wait.
Two more rules are enforced by the one-by-one memory service strategy.
(4) The requests in each separate queue are serviced in a strict first-in first-out order.

(5) If two or more requests are ready to be serviced then the one with earlier time stamp has prior-

ity

An exception to the last rule is that the simulator gives instruction requests higher priority by
default. The priority can be canceled optionally. The fourth rule insures that the data are returned
to the processors in their original requested order. If some sequencing mechanism can guarantee the
same effect then this rule can be lifted. The return order is important for instructions and the LDQ

elements. The benefit of issuing requests out of order is studied in [Liou84].

The data read from the memory modules are buffered in the Memory Load Data Queue
(MLDQ) or the Memory Instruction Queue (MIQ) and are sent to the processor through the bus.
The simulator gives priority to instructions. Since there is at most one outstanding cache miss. the
length of the MIQ is bounded by the cache line size. The MLDQ is essentially an extension of the

LDQ. Since the MLDQ is of finite size, an MLDQ-overflow hazard will occur if a load request tries

13-



-to send data to a full MLDQ. The third rule-above prevents such a request from being issued.

The simulator keeps track of the number of outstanding memory requests from each processor
A control message is sent to the processor when certain limits are reached. The limits for such

REQQ-full and REQQ-refill control messages are simulation parameters.

4. The Benchmarks

The Lawrence Livermore Laboratories (LLL) loops {McMa72] are often used to measure the
performance of computer systems. They are CPU-limited numerical computations extracted from
scientific application programs and involve floating-point operations on arrays of one or more dimen-
sions. Since the floating-point operations and data format are not tully defined in the PIPE architec-
ture. in this study we treat all variables as integers. Under this restriction the studv of some of the
loops is not practical because they involve conversions between floating-point numbers and integers.
In this study we hand-coded the first twelve loops and use the PIPE simulator to simulate their execu-

tion.

The LLL loops are originally coded in FORTRAN as DO loops. We translated the loops into
Pascal and used the PIPE Pascal compiler and code scheduler to generate PIPE code. The transla-
tion was straightforward but the compiled code was inefficient. The simulation results shown in
Table 4.1 can be used to compare hand-coded and compiled code. The execution times are meas-
ured in terms of the basic clock cycle of a PIPE machine. The last column shows the ratios between
the execution times for the single-processor mode and the decoupled access/execute mode. The com-
piler generates inefficient code for accessing array elements. This is indicated by the results for toop
8, which operates on many three-dimensional arrays. Efforts to write an optimizing PIPE Pascal
compiler are underway [Youn84]. (An improved PIPE Pascal compiler is available at the time of

this writing.)

We feel that a performance study based on inefficient code may not be fruitful and its results
may be misleading. Therefore. we hand-coded the first twelve LLL loops. The following rules

guided our coding work for the single-processor mode of execution.
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Program Speedup

exec AP EP total exec

#inst . " . . .
time #inst #inst #inst time

LLIL1 hand-written code 4009 4069 2406 2005 4411 2859 1.423
LLLI1 compiled code 13609 18125 14409 2804 17213 16138 1.123

LLL2 hand-written code 8005 11053 5604 | 3603 9207 6851 1.613
LLI12 compiled code 14809 | 20422 || 20809 | 2804 | 23613 | 27882 0.732

LLL8 hand-written code 3330 3564 (412 1726 3138 [894 1.882
LLL8 compiled code 14115 16815 19994 1653 21647 32643 0.515

(h

(2)

C))

)

Table 4.1. Comparison of hand-written and compiled code for some LLL loops.

The original loop structure is maintained A Prepare to Branch (PBR) instruction at the end of
the loop tests the termination condition and branches to the head of the loop when appropriate.

We tried t0 maximize the branch count in the PBR instruction.

As long as free registers are available. the loop-invariant quantities are kept in registers. These
registers are loaded before the loop is entered. Similarly the branch target address is loaded

into a branch register only once before the loop is entered.

All Load instructions appear at the beginning of the loop in order to hide the memory access
delay. However, this loading strategy may fill up the queues and cause deadlock in the single-
processor mode. especially if the queues are short. In some loops it is necessary to intersperse

the load instructions in the loop body to avoid deadlock.

Loop indices are kept in registers and are updated at the end of each iteration. We don’t store
the final index value into main memory because usually the loop index is only for controlling

the loop iteration. Variables for storing intermediate results are treated similarly.

The index-addressing mode is used to access array elements efficiently. Loop 8 is an example

where we access multi-dimensional array elements gracefully.
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All these rules are very simple-and can be applied to compiler-generated code. Therefore. our
code also serves as a guideline for compiler writers and provides a means tor comparison. The code
for the single-processor mode of execution can be split naturally into two streams for the decoupled
mode of execution. The access processor is responsible for memory accessing and loop control.
The execute processor performs the arithmetic operations and follows the access processor’s branch

decisions.

Loop 3 is the simplest of all the loops we studied. The Pascal source program. the annotated
single-processor code. and the decouple access/execute code are shown in Figure 4.1. The "L’ and
‘S prefixes in the opcode field designate long and short instructions. respectively.,  Register 7
represents either the head of the Load Data Queue (LDQ) or the tail of the Store Data Queue (SDQ).
The ZBR pseudo opcode marks the location where a branch takes place if the condition tested by the

antecedent Prepare to Branch (PBR) instruction is true. No code is generated for a ZBR.

The simulation results for these loops will be presented in the next section. Special coding

techniques for improving system performance will also be discussed.

5. PIPE Performance for the Lawrence Livermore Loops

Using the PIPE simulator. we simulated the execution of the first twelve Lawrence Livermore
Laboratories (LLL) loops [McMa72] (also see Appendix A) under various execution modes and sys-
tem parameters. Section 5.1 presents the general simulation results. Program characteristics of the
loops and their influence on system performance are discussed in Section 5.2. Dependence of the

performance on hardware configuration and speed is studied in Section 5.3.

5.1. Parameters and Execution Modes

Two basic parameter sets and three execution modes are used in our simulation of the first
twelve Lawrence Livermore loops. The parameter sets are specified in Section 5.1.1. The execution
modes are discussed and compared in Section 5.1.2. Simulation results of the LLL loops in each

mode and using each parameter set are also presented and briefly discussed.
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1 to 1980 do
q := q + z[k] * y[k].

(a) Pascal source program

1. LENTER 1 -100@+1 /* Rl for loop index k-1000.

2. SXOR 2 0 O /* R2 for q, initialized to 4.

3. LLDBR @ ALOOP /* Load branch register.

4. ALOOP

5. LLDLN 1 2+1086-1 /* LDQ <-- z[k].

6. SIPBRLT 1 O 0@ /* Loop back if Rl < 4.

7. LLDLN 1 Y+1000-1 /* LDQ <-- y[k].

8. LADDIM 1 1 /* Increment loop index by 1.

9. SMULT 3 7 7 /* R3 <-- z[kI*y[k].

19. SADDI 2 2 3 /* R2 <-- R2 + z[k1l*y[k].

11. ZBR /* Branch taken here.

12. LSTLN g Q /* Generate store address for q.

13. SMOVNFF 7 2 @ /* Store the value of q.

(b) PIPE assembly code for single-processor mode

access processor execute processor
1. LENTER 1 -1080+1 1. SXOR 200
2. LLDBR @ ALOOP 2. LLDBR g ELOOP
3. ALOOP 3. ELOOP
4. SPBRLT 1 @0 @ 4. SIPBRQ O 8 O
5. LALDLN 1 Z+10008-1
6. LALDLN 1 Y+19200-1 5. SMULTI 3 7 7
7. LADDIM 1 1 6. SADDI 2 2 3
8. ZBR 7. ZBR
9. LASTIN O Q 8. SMOVNFF 7 2 @

(c) PIPE assembly code for decoupled access/execute mode

Figure 4.1. Pascal and PIPE assembly code for LLL loop 3.

5.1.1. The Parameter Sets

Although the simulator has the capability of specifying distinct parameters for individual pro-
cessors. the access processor and the execute processor in our simulation are assumed to be identical
unless otherwise specified. The instruction cache has a fixed line size, 4 instruction parcels. We

assume that the instruction cache is big enough to accommodate the code tor each loop. In fact. 16
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cache lines are enough for each of the loops except loop 8 in single-processor mode. which needs 32
lines. Two basic parameter sets are used in the simulation and are summarized in Table 5.1. The
first set consists of the default parameters of the simulator. Following are the important parameters

in this default parameter set.

(1) LDQ size = MLDQ size = OUTQ size = REQQ size = BRQ size = 4. Refill points for
LDQ and REQQ are the same as the queue sizes; that is. a refill signal is sent as soon as an

element is removed from a tull queue.

(2) The memory module access time is one clock period. For such a fast memory module. there is
no memory module conflict at all. Therefore, there is no need for interleaving  Including the
overhead incurred in the memory control unit, the minimum effective memory delay seen by a

processor is 3 clock periods.
(3)  Addresses for instruction cache misses have priority in the OUTQ but not in the REQQ.

Since the basic clock period for a pipelined machine is very short. it seems unrealistic t0

assume that the memory module access time is only one clock period. Our second parameter set

default empirical
LDQ, OUTQ, BRQ 4 4
MLDQ, REQQ 4 3
LDQ-low, REQQ-low 4 4
Number of memory modules H 4
Memory access time l 4
Memory turnaround time 3 6
Instruct'ion' f'chh requests ves Jes
have priority in OUTQ - -
Instruct.ion. fe?ch requests o yes
have priority in REQQ

Table 5.1. The default and empirical parameter sets.
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assumes slower memory. more modules. and longer queues. We call it the empirical parameter set.

The important parameters are the following.

(1) LDQ size = OUTQ size = BRQ size = 4. MLDQ size = REQQ size = 8. Refill points for
both the LDQ and the REQQ are 4: that is. the refill signal must be sent when the queue

length changes from 4 to 3. or earlier.

(2) The memory module access time is 4 clock periods. The etfective memory latency seen by a
processor is 6 or more clock cycles. There are four interleaved memory modules. The least

significant two bits of an address determine in which module the memory word resides.
(3) Addresses for instruction cache misses are given priorities in both the QUTQ and the REQQ.

A memory module conflict occurs when a request tries to access a module which is busy ser-
vicing a previous request. We increase the queue sizes to buffer more requests and to allow the issue
of more load requests while the previous ones are still in process. The maximum service rate tor this
memory system is one request per clock period. which is achieved only if the memory modules are

used in a strictly cyclic pattern.

5.1.2. The Execution Modes

Table 5.2 shows PIPE performance for the first twelve LLL loops with default simulation
parameters. The execution times and the numbers of instructions executed are listed for both the
single-processor (SP) and decoupled access/execute (AE) modes. The issue rate is the quotient of
the instruction number to the execution time. For Ak mode. the issue rates listed in the table are for
the processor which executes more instructions. The last column is the ratio of execution times. and
shows the speedup of AE mode over SP mode The last row shows the total number of instructions,
the total execution times. and the averages of the issue rates and speedups. [n calculating the aver-

ages. the issue rates and speedups are weighted by the execution times.

In AE mode of execution. the access processor and the execute processor execute two parallel

instruction streams and are capable of issuing a total of two instructions per clock period. However.
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LLL SP AE

loop st exec issue AP EP total exec issue Speedup
number Fins time rate #inst #inst #inst time rate
* ] 4009 4069 | 98.53% 2406 2005 4411 2859 | 84.2% 1.423
) 8005 11053 | 72.4% 3604 3603 9207 6851 81.8% 1.613
# 3 6006 10039 | 59.8% 4005 3003 7008 5044 | 79.4% 1.990
T4 3610 5697 | 98.5% 4592 1530 6122 5681 80.8% 1.003
T3 7017 7425 | 94 5% 4011 3342 7353 5407 | 742% 1.373
6 7662 8065 | 95.0% 4665 3332 7997 5395 | 86.3% 1.495
w7 3608 3687 | 97.9% 1686 2044 3730 20114 | 96.7% 1 744
8 333 3564 | 93.4% 1412 1726 3138 1894 | 91 1% 1.882
#Q 3909 4043 | 96.7% 1910 1807 3717 2002 | 95.4% 2.019
#10 4103 4220 | 97.2% 2203 2002 4205 2598 | 84.8% 1.624
11 5997 8028 | 74.7% 4998 2000 6998 7031 71.1% 1.142
#12 5997 8028 | 74.7% 4998 2000 6998 6035 | 82.8% 1.330
65253 | 77918 | 83.7% | 42490 | 28394 | 70884 | 52911 81.6% 1.473

#: vectorizable by CRAY FORTRAN Compiler.
+: involves Read-After-Write hazards.
i1 uses many loop-invariant constants.

Table 5.2. PIPE performance for LLL loops.
with default simulation parameters.
this important advantage of the AE mode over the SP mode is often lessened by un-even splitting of
the code between the two processors. Among the twelve loops we studied. loop 4 sutfers the most
from unbalanced code: the access processor executes about three times the instructions that the exe-
cute processor does. Incidentally. this loop has the smallest speedup, 1.003. Loop 9 has the best

balanced code between the processors. and the largest speedup, 2.019. among all the loops.

PIPE instructions use 3-bit fields to designate the queue head/tail or one of the seven fore-
ground registers. Loops 8 and 9 use more loop-invariant constants than a register set can accommo-
date. Therefore. in the SP mode of execution. some constants must be read from main memory into

the LDQ every time they are used. In AE mode of execution. we have one register set in each
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~processor and can-keep more constants handy in registers. This is the reason why the total numbers

of instructions for AE mode are less than those tor SP mode in these two loops.

Loop 3 executing in SP mode has the lowest issue rate in the table. The main reason is that
some instructions have to wait for operands. A decoupled architecture performs some code schedul-
ing dynamically at run time and allows both processors to run smoothly. Loop 3 executes much fas-

ter in AE mode and shows a speedup of 1.99,

The loops involving Read-After-Write (RAW) hazards are marked with **7’" in the table. The
loops marked with ~**'" are classified as vectorizable by the CRAY FORTRAN Compiler. Notice
that the loops involving RAW hazards are all non-vectorizable. However. the RAW hazards are not
inherent in these tasks. and can easily be avoided. The detrimental effect of RAW hazards and how

to avoid these hazards will be discussed later.

In order to see how memory speed influences svstem performance. we used the empirical
parameter set and repeated the simulation in both SP and AE modes. The results are shown in Table
5.3. The table also shows the simulation results with the default parameter set for comparison. For
the present. ignore the ""MP exec time ™ lines. These will be discussed below. Generally speaking,
a slower memory system degrades the performance. Loop 7 is an exception which executes quickly
in either mode using either parameter set. The amount of degradation varies over a wide range.
depending on the execution mode and the program characteristics. We can divide the loops into

three categories: (1) hazard-bound. (2) scheduling-bound, and (3) memory-bound.

(1) Hazard-bound loops. Loops 4. 5. 6 and 11 involve RAW hazards and fall into this category.
A slow memory system degrades the performance significantly for both SP and AE mode of

execution. Details of the degradation mechanism will be discussed in a later section.

(2) Scheduling-bound loops. This category includes loops 1. 2. 3 and 12. Because of its
dynamic-scheduling capability. the AE mode of execution suffers very little from the slow
memory. On the other hand. the execution time of the SP mode increases significantly when

the memory slows down. Therefore. using the empirical parameter set. loops in this category
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loop
parameter mode
! 2 3 T4 5 6
default SP exec time 4069 11053 10039 5697 7425 8065
MP exec time 4083 11061 10045 7229 7445 8415
parameter AE exec time 2859 6851 5044 5681 5407 5395
set AE-over-SP speedup 1.423 1.613 1.990 1.003 1.373 1.495
AE-over-MP speedup || 1.428 1.615 1.991 1.272 1.377 1.560
empirical SP exec time 6483 17065 15047 8007 10453 11415
MP exec time 8086 17091 15067 | *13577 10804 | 11764
parameter AE exec time 2879 6872 5066 6828 3424 8406
set AE-over-SP speedup 2.252 2.483 2.970 1173 {241 1.358
AE-over-MP speedup || 2.809 2.487 2.974 1.988 1.283 1.399
loop
parameter mode
7 3 9 10 1l 12

default SP exec time 3687 3564 4043 4220 8028 8028
MP exec time 3708 3734 4069 4247 9033 9032
parameter AE exec time 2114 1894 2002 2598 7031 6035
set AE-over-SP speedup 1.744 1.882 2.019 1.624 1142 1.330
AFE-over-MP speedup || 1.754 1.971 2.032 1.635 1.285 1.497
empirical SP exec time 3722 5057 6339 6462 13030 12032
MP exec time 4103 6798 8513 6960 | *17026 | 12039
parameter AE exec time 2137 3009 4212 4839 13029 6049
set AE-over-SP speedup 1.742 1.681 1.505 1.335 1.000 1.989
AE-over-MP speedup 1.920 2.259 2.021 1.438 1.307 1.990

+: involves Read-After-Write hazards.
*: shows interference between processors.

Table 5.3. PIPE performance for LLL loops
with various parameters and modes.

have higher speedups than other loops

(3) Memory-bound loops. Loops 8 through 10 are in this category. The slow memory becomes

the bottleneck in the system. The PIPE performance is degraded significantly for both SP and



AE mode of execution. ‘Since the AE mode has higher memory request rate. it suffers from the
slow memory more than the SP mode does: the AE-over-SP speedup decreases when the

memory gets slower.

Table 5.4 shows the numbers of memory requests and the memory service rates for AE mode
of simulation. The service rate is identical to the request rate. and is the quotient of the total number
of requests to the execution time. The last column of the table lists the ratio of the execution times
and shows the performance degradation caused by slow memory. The slowdown is negligible for the
scheduling-bound loops. Using the default parameter set, the memory-bound loops have high
memory request rates. However. the slow memory in the empirical parameter set can only sustain a
much lower service rate. This explains the significant slowdown of the memory-bound loops. For

example, the execution time of loop 9 is more than doubled with the slow memory.

In the SP mode of execution. we assumed that the memory system serviced only one processor.
Another possible execution mode of a PIPE system is the Multi-Processor (MP) mode where two
processors execute two independent programs and are serviced by a single memory system. The two
processors then contend for memory service. Table 5.3 also shows the results of the MP mode of
simulation. For each loop. we ran the same program on both processors. The two processors refer
to the identical memory space. but should be considered as running two unrelated programs. Since
the two processors are forced out of synchronization by the instruction cache misses. artificially
introduced conflicts between them are very unlikely. However, RAW hazards may cause certain
interference between the two processors’ memorv requests. We found two such cases. and marked
them with asterisks in Table 5.3. Due to the memory contention. the execution time of MP mode is
longer than that of SP mode. For the memory-bound loops. the degradation caused by slow memory
is comparable for the AE and MP modes. A PIPE system can run either one program in AE mode
or two programs simultaneously in MP mode. In some sense. the AE mode of execution is profit-
able only if the AE-over-MP speedup is 2 or more. In many applications. however, it is often pre-

ferred to be able to run one job quickly rather than to run two jobs slowly.
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memory parameter set

LLL requests default empirical

loop . exec service exec service slow
read write total . ‘

number time rate time rate down
1 1242 401 1643 2859 57.5% 2879 57 1% 1.007
2 2036 200 2236 6851 32.6% 6872 325% 1.003
3 2028 ! 2029 5044 40.2% 5066 40.1% 1.004
4 1577 510 2087 5681 36.7% 6828 30.6% 1.202
S 2382 1002 3384 5407 62.6% 8424 40.2% 1.558
6 2379 999 3378 5395 62.6% 3406 40.2% 1.558
7 1138 120 1258 2114 59.5% 2137 58.9% 1011
1058 240 1298 1894 68.5% 3009 43.1% 1.589
9 1377 100 1477 2002 73.8% 4212 35.1% 2.104
0o 1072 1000 2072 2598 79.8% 4839 42.8% 1.863
I 2022 999 3021 7031 43.0% 13029 23.2% 1.853
12 2022 999 3021 6035 50.1% 6049 49.99% 1.002

Table 5.4. Memory service rates tor LLL loops.
AE mode of execution.

5.2. Program Characteristics

Program characteristics strongly affect performance. Load distance and branch count are dis-
cussed in Sections 5.2.1 and 5.2.2. respectively. They are the most important factors to consider in
a PIPE program. Their relationship to loop size is discussed in Section 5.2.3.
some optimizing techniques for small loops. In Section 5.2.4 we study the mechanism how read-
after-write hazards degrade performance. Long instructions and short instructions are compared in

Section 5.2.5 with respect to their implication in performance. Section 5.2.6 discuss how to access

~

We also consider

array elements effectively. Code balancing between the processors is discussed in Section 5.2.7.




5.2.1. The Load Distance

All the operands for PIPE instructions are either registers or the head of the Load Data Queue
(LDQ). The LDQ serves as a first-in-first-out buffer for data which are produced by Load instruc-
tions and consumed as operands by other instructions. [n order to allow the consumer to proceed
without waiting, we have to schedule the corresponding producer ahead of the consumer. To show
the importance of proper scheduling in the SP mode of execution. we recoded loop 7 so that all the
operands are loaded on demand (that is. just betore they are need). With the default parameter set.
the execution time increases from 3687 to 9049 clock cycles. This corresponds to a decrease in the

issue rate from 97.9% to 38.9%.

Figures 5.1 shows the timing diagrams for producing and consuming LDQ data. Assume that

a Load instruction is issued at time r,, the returned data enters the LDQ at ¢,. and the data is needed

by an instruction at ;. The interval 1,-1, is the turnaround time for this load instruction. The inter-

Load Data Data
issped available neelded
! I I R
t A 12 13 time

(a) Long load distance. The consumer need not wait.

Load Data Data
'lSS‘lCd neelded availlable
i { i
4 f f time
(b) Short load distance. The consumer needs to wait.
Data Load Data
neelded issPed avail|able
| 1 T
h 4 t time

(c) Negative load distance. (AE mode only)

Figure 5.1. Timing diagrams for producing and consuming LDQ data.



val Iy-1, is the time allowance-for the producer o complete the-load operation without slowing down

the consumer. Figure 5.1(a) shows the case where the operand is available when it is needed. Fig-

ures 5.1(b) and (c) show the cases where the consumer has to wait for data.

For each load instruction in single-processor code. we try to increase the number of instruc-
tions between it and the instruction that consumes the data. This number is called the load disiance
for the load instruction. Long load distances tend to increase f-/, and reduce the probability or
period for the consumer to wait. However. it is not always possible to have long load distances.
Branch instructions may break the code into small segments so that very few instructions can be
counted in the load distance. An example is the single-processor code tor LLL loop 3 shown in Fig-

ure 4. 1(b), where line 9 uses the data loaded by line 7.

Code scheduling in SP mode is complicated by its dependency on the hardware configuration

and the memory service discipline. Following are the important factors to consider.

(1) A sequence of load instructions with very long load distances may fill up the queues and cause
deadlock. A safe instruction stream may become unsafe when the hardware configuration or

characteristics change.

(2) The turnaround time for a load operation depends on the speed and utilization of the memory
system. Also it may increase significantly when there are bank contlicts or instruction cache

misses.

(3) The memory service discipline of the memory system also adds uncertainty to the turnaround

times.

It is difficult to determine an optimal load distance for the SP mode of execution. However. if
the hardware configuration is fixed. then we can schedule load instructions ahead as far as the queue
sizes allow. By doing this, we have achieved very high issue rates in SP mode for many of the LLL

loops.

- 26 -



- In decoupled access/execute mode-of execution. the code scheduling is between the instruction
streams for two processors instead of within a single instruction stream. Scheduling takes place
automatically at run time and suffers very little from the three problems mentioned above. When the
producer (that is. the access processor) of data runs too far ahead of the consumer (that is. the exe-
cute processor), it is perfectly legal to block the access processor and allow the execute processor to
proceed. Since the bottleneck is at the execute processor under this condition. blocking the access
processor does not degrade system performance. The intent of a decoupled architecture is that the
access processor should run ahead of the execute processor and reduce or eliminate observed
memory delay. Any temporary variation in the memory turnaround time should be smoothed away

in the queues.

In fact, in most of the loops we studied. the access-processor code has more instructions than
the execute-processor code: therefore. the access processor does not run ahead of the execute proces-
sor. The timing diagram for the load instructions in these loops looks like the one in Figure 5.1(c).
The figure. which is unique to the AE mode of execution. depicts the situation where the data are
needed by the execute processor while the corresponding load instruction in the access processor has
not vet issued. Therefore. the LDQ is empty most of the time; a data word is consumed by the exe-
cute processor as soon as it enters the LDQ. Our simulation results show that the average LDQ
length is very small for the execute processor. The system throughput for these loops is limited by
the access processor. We believe that the work load for the execute processor will increase when we

add more stages to the ALU pipeline and add floating-point operation to the PIPE instruction set.

5.2.2. The Branch Count

The Prepare to Branch (PBR) instructions in the PIPE architecture are designed to allow
smooth control flow in program execution. It is important for a PBR instruction to have a large
branch count so that enough instructions following it can proceed without knowing the branch deci-
sion. A simple technique is used in coding the LLL loops. We update the loop index at the end of

the loop (that is, after the PBR instruction) to increase the branch count. Care is taken in
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formulating the termination condition and in using the loop index as an index register. An example
is the access-processor code for loop 3 shown in Figure 4.1(c). where line 4 is the PBR instruction
and line 7 updates the loop index. The branch count would be 4 parcels instead of 6 if the loop

index is updated at the head of the loop.

In order to fully utilize the processor. we should try to maintain a continuous flow of instruc-
tions through the pipeline stages. Holes in the instruction tlow reduce the system throughput.
Referring to the structure of the processor shown in Figure 3.1. we can count the number of instruc-
tions a branch count should cover in order to avoid holes in the instruction tflow Suppose that the
first stage of the ALU executes a PBR instruction and determines that the branch condition is true.

To avoid holes. there should be one instruction at

(1) the Instruction Queue (IQ),
(2) the decoder,

(3) the issue logic, and

(4) the first stage of the ALU.

while the instructions at the branch target are being fetched into the Cache Register (CR). There-
fore. if a branch is taken. the branch count should cover four or more instructions in order to avoid
holes in the instruction pipeline and the ALU pipeline. If the branch is not taken then the branch

count should cover three or more instructions.

Some PBR instructions in the programs are not able to have a large branch count unless spe-
cial coding techniques are used. The access-processor code in Figure 4.1(c) shows an example of a
very small loop body that contains only three instructions (excluding the PBR instruction). The
branch is taken in all iterations except the last one. The small branch count accounts for the low

issue rate of loop 3 in the AE mode of execution.

The branch count is specified by a 3-bit field in a PBR instruction. A problem with this format
is that the maximum branch count. 7. cannot cover 4 instructions if they are all two-parcel instruc-
tions. In our experience. most of the access-processor instructions are long /oad instructions. The

branch count is 6 and covers three long instructions in the example above. If we add a long instruc-



tion to-the loop. it must be placed before the PBR instruction: if placed after. the branch count would
be 8.-greater -than the maximum. In order to improve the issue rate. it is desirable to be able to
specify a branch count of 8. One easy way to do this is to interpret the 3-bit branch count 0 as 8. If
there is nothing to go after the PBR instruction then we pad a no-op instruction after the PBR and
make the branch count 1. The no-op instruction only increases the code size by one byte and is exe-
cuted free because the ALU is idle otherwise. Of course. for a different implementation some other

maximum branch count may be desirable

5.2.3. The Loop Sizes

The hit ratio of the instruction cache is very high in all of our simulation because the instruc-
tion cache is big enough to hold all instructions of the loop body. For a direct-mapped instruction
cache. the hit ratio begins to decrease linearly when the size of the inner-most loop exceeds the cache
size. It vanishes when the loop size is twice the cache size. However. large inner loops are very

rare in real applications.

On the other hand, small loops are used very often and can degrade the performance signifi-

cantly if not properly coded. Small loops have the following disadvantages:

(1) The branch count of the PBR instruction is small.
(2) The load distances are short.
(3) The overhead for flow control is high.

The first two disadvantages are unique to the PIPE architecture and have been discussed earlier. The
overhead for flow control includes updating the loop index and executing the PBR instruction. In the
single-processor code for loop 3 shown in Figure 4.1(b). the loop body contains only six instructions
(lines 5 through 10). The overhead (lines 6 and 8) is one third of the total instructions executed in

each iteration.
Loops 3, 11 and 12 are very small. Following are some other typical uses of small loops:

(1) initializing an array.
(2) constructing a free list.
(3) computing the sum of array elements,
- (4) searching for a specific value in an array.
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Since small loops are used very frequently. it is important to execute them effectively. Here we con-
sider two coding techniques for improving the itssue rate of small loops: (1) software pipelining. and

(2) code doubling.
The execution of loop 3 in the single-processor mode can be represented as

(["HLIZWUIIU\ZO)(L‘ZILZZWUZIUZZO) o (["nanlWUnlUnl())

where L;; is the j-th load instruction in the /-th iteration. U;; uses the data loaded by L;;. W and O

i
stand for *Waiting™ and "Overhead’. respectively. The waiting states are necessary because the load

distances are very short. The parentheses delineate the loop structure. The loop is iterated n times.

The software pipelining technique [CoSt81. BrWe83] ravels the loop. re-arranges and regroups
the instruction stream into
Ly Lyp(Ly Ly Uy U O Ly Ly UnyUnaO) - Ly Ly Uy oy Uy oy 2OV U
The loop body remains the same size. However, including the prologue and the epilogue. the static
code size is about doubled. The new loop body loads data for the next iteration and uses the data
loaded by the previous iteration. This new structure effectively increases the load distances and.
hopefully, eliminates the waiting states. The attainable branch count and the overhead for flow con-

trol remain about the same.

Another technique for improving the issue rate of small loops is to aggregate £ consecutive
iterations into a larger loop body. For k=2, this “‘code doubling”™ technique yields the following
structure:

prologue (L Li3Ly1Lan U Uy UsyUs20) - (00 ).
The prologue is used to handle special cases where the number of iterations is zero or odd. If n is
odd then the first iteration of the original loop is executed in the prologue. The static code size is
more than doubled. If the number of iterations is known to be even then the prologue can be omit-
ted. The runtime overhead of the prologue is negligible when 1 is big. The new structure improves
the issue rate by overcoming all the disadvantages listed above: it reduces the flow control overhead

and increases the branch count and the load distances. We applied this technique to loop 3 and
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simulated the SP. mode of execution-with the default parameter set. A-comparison with the original
results shows great improvements. The total number of executed instructions decreased from 6006
10 5016 the execution time decreased trom 10039 o 5563: and the issue rate increased from 59.8%

0 90.2%.

When splitting the single-processor code into two cooperating streams. we end up with two
smaller loops. The overhead for flow control becomes more significant in the access processor. The
execute processor has the overhead of executing the “‘Prepare to Branch from Queue™ (PBRQ)
instructions. The branch count for either the PBR or the PBRQ instructions is smaller than that in
the SP mode. For loops 2. 3 and 12. the low issue rates in AE mode are caused by small branch
counts in access-processor code. The code doubling technique can be applied to the decoupled mode

as well.

5.2.4. The Read-After-Write Hazards

Many of the loops involve Read-After-Write (RAW) hazards and are marked with ="+ in
Tables 5.2 and 5.3. Generally. PIPE’s performance of these loops are degraded by the hazards.
Loops 11 and 12 are syntactically identical (see Appendix A) and provide us a good opportunity to see
the effect of RAW hazards on performance. We now use loop 11 as an example and study the bad

effect of RAW hazards in detail. The Pascal source code looks like

for k ;= 2 to 1000 do
x{k] := x[k-17 + v[k].

Figure 5.2 illustrates part of the activities during AE mode of execution of loop 11. The arcs
in the figure denote the precedence relations among activities. For example, node 2 can execute only
if both nodes 1 and 1’ have finished. Nodes on a directed path must be executed in order. A critical
paih between two nodes is a directed path that has the longest execution time. For loop 11, the fol-

lowing nodes are on a critical path.

(1) At the end of an iteration, the execute processor sends the new value of x[{k-1] to the memory

control unit.
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Figure 5.2. Precedence relations among activities in LLL loop 11.

(2) This value is written to a memory location.

(3) Due to the RAW hazards. the read operation can proceed only if the write operation has fin-
ished. Upon completion of the read operation. the value of x[k-1] is sent to the execute proces-

SOr.

(4) Once the operands enter the LDQ. the execute processor can issue the ADD instruction that

computes x[k-1]+y[k].
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‘Nodes 2 and 3 access the same memory word and must be executed in the read-after-write
order. For loop 12, nodes 2 and 3 can proceed in any order because the read address is different

from the write address. This is the essential ditference between loops 11 and 12.

With the default parameter set. this critical path takes 7 clock periods to execute. Loop [1
traverses 999 similar paths and has an execution time close to 7000 clock periods (see Table 5.3).
The execution times of both nodes 2 and 3 include the access time of the memory modules. When
we change from the default parameter set to the empirical parameter set. the execution time of each
node increases bv 3 clock periods. Therefore. the execution time of the critical path increases torm
7 to 13 clock periods: the total execution time is about {3000 clock periods. Incidentally. the SP
mode of execution with the empirical parameter set has the same critical path and the same execution

time (see Table 5.3).

One way to reduce the total execution time of loop 11 is to break the critical path. At the end
of an iteration, the execute processor can save the newly calculated value of x[k] in a register as well
as send it to the memory control unit. The register then can supply an operand for the ADD instruc-
tion in the next iteration. Therefore, node 3 is eliminated and the critical path is broken. Row 3 of
Table 5.5 shows the simulation result when this technique is applied. This loop can be further

optimized by other techniques. Row 4 shows the effect of doubling the loop size. as was discussed in

parameter RAW code short .AP I.EP ,t(.)tal exec issue speedup
set avoided | doubled | ADD || #inst | #inst | #inst time rate
| || empirical 4998 | 2000 | 6998 | 13029 | 38.4% 1.00
2 default 4998 | 2000 | 6998 7031 | 71.1% 1.85
3 || empirical X 4000 | 3000 | 7000 6057 | 57.1% 2.15
4 || empirical X X 3000 | 2499 | 5499 3571 | 84.0% 3.65
5 || empirical X X X 3001 | 2499 | 5500 3092 | 97.1% 4.21

Table 5.5. PIPE performance for LLL loop 11 in AE mode of execution,
with various optimizing techniques applied.
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--Section 5.2.3. Row-5:shows the effect of using short ADD instruction to update the loop index. It
will be discussed in Section 5.2.5. The last column of Table 5.5 lists the speedup in execution time
with respect to the first row. Row 2 shows a speedup of 1.85 when a fast memory system as speci-
fied by the default parameter set is used. In the last row, we applied three optimizing techniques and

achieved a speedup of 4.21.

Sometimes it is not easy to break the critical path. For example. consider the Pascal code of
loop 4 (see Appendix A). In line 6. the x[lw] on the right hand side might be the same as the left
hand side that got updated in the previous iteration. This alias problem also forces us to actually
store the value of x[L-1] into main memory in each iteration unless some special analysis is done.
Another way to reduce the effect of RAW hazards is to reduce the execution time of the critical path
by short-circuiting the read-after-write operation. A sophisticated memory control unit can recognize
the read-after-write operation. Upon receiving a value from node 1 (see Figure 5.2). the memory
control unit can send the value to node 4 without first waiting for the write operation to finish and

then actually carrying out the read operation. This capability is not implemented in our simulator.

5.2.5. Long Instructions versus Short Instructions

The PIPE architecture has two instruction formats: long 32-bit instructions and short 16-bit
instructions [SPKG83]. In a short instruction. there are three 3-bit operand fields. The three
operands are typically two sources and one destination. In a long instruction. there is a single 3-bit
operand field. and a 22-bit signed displacemeat field to hold immediate data or address offset.
Unlike the CRAY-1 [Cray79] computers. a PIPE processor can issue an instruction. short or long,
in one clock period. Although many operations on data can be accomplished in either format. the

choice of long or short instructions can affect system performance.

Use of long instructions tends to increase program size. Program size is of least importance
when a program is stored in the secondary storage. It becomes a concern when the program is
loaded into main memory for execution. The instruction cache makes the program size a very

important factor- to consider.. Compact code is preferred since it takes less cache misses to get loaded
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~into the-instruction cache. Also a smallerloop-has a better chance to completely fit in an instruction

cache and enjoy a high hit ratio.

The smallest instruction size in the PIPE architecture is a 16-bit parcel. Since a long instruc-
tion is not required to begin at an even-parcel address. it can straddle two cache lines. Fetching such
a line-crosser needs two reads from the instruction cache. In Section 5.2 2 we pointed out that if a
branch is taken then the branch count of the PBR instruction has to cover at least tour instructions to
avoid holes in the instruction and ALU pipelines. If the branch target is a line-crosser. then the
branch count has to cover at least five instructions. The maximum branch count of 7 parcels can at

most cover 3 long instructions. This is another reason short instructions are preferred.

In our original hand coding ot the loops. long instructions with immediate operands are use to
update the loop index. Alternativelv. we can keep the increment in a register and use a short instruc-
tion to accomplish the same work. Rows 4 and 5 of Table 5.5 show an example in which the PIPE
performance is improved by replacing a long ADD instruction with a short one. For row 4. there
are four long instructions. including the long ADD instruction that updates the loop index. at the end
of the loop. The branch count covers only three of them. The low issue rate is caused by the insuf-
ficient coverage of the branch count. For row 5. the long ADD instruction is replaced by a short

one. The branch count. 7, covers this short instruction and three other long instructions.

Since registers are a scarce resource. it may not be practical to dedicate a register to a special
purpose such as holding the index increment. It has been shown in many studies [AIWo075. Tane78]
that most of the constant operands used in programs are very small. This is indeed the case for our
index increments. Therefore. it is desirable to have a short instruction format which allows us to
specify a small immediate operand. A plausible format is to combine two of the 3-bit fields into a

small immediate operand field.

The CRAY-l computers use another method to specify some frequently used constants
[Cray79]. When some registers are referenced in certain fields of certain instructions. the contents

of the respective register are not used; instead. a special operand is generated. Both this and the



above methods complicate the-decoder-logic-and-we may-need two stages of the instruction pipeline to
completely decode an instruction. A side effect of a longer pipeline is that the branch count has to
cover more instructions. Further study is necessary in order to determine which method is better

and whether it can noticeably improve PIPE performance.

5.2.6. Accessing Array Elements

Long instructions with immediate offsets are otten used to load or store array elements. The
code in Figure 4.1 conrins many such instructions. In order to keep the code compact. however.
short load or store instructions are preferred. Both the short and long load/store instructions have
the auto-incrementing capability which is useful in accessing array elements at a fixed stride. The «
array in loop 7 and the pr array in loops 9 and 10 (see Appendix A) can be accessed effectively by

short load/store instructions with auto-incrementing.

Accessing the elements of a mubli-dimensional array is more complicated and often requires
some arithmetic operations to calculate the offsets. However. we can often recognize common sub-
expressions and use them without recalculation. Loop 8 operates on three 3-dimensional arrays of
same structure. In each iteration, we compute the offset only once for the subscripts [kx. ky. 1].
The offset for all other subscript combinations differ from this value by constant amounts which are
independent of the input data. Therefore, all operands can be loaded with very little overhead. How-
ever. it takes an extremely good compiler to recognize this common sub-expression and generate

compact code comparable to our hand-written code.

5.2.7. Code Balancing

Table 5.2 shows that, in the AE mode of execution. the work loads for the two processors are
different. The access processor generally executes more instructions than the execute processor.
Loop 4 has the most un-even split of work load; the ratio is about 3 to I. Since the types of the work
done by the two processors are mutually exclusive. there is no easy way to redistribute the work load

between the processors.
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-Table 5.5 shows some dimited amount of redistribution .of work load as side effects of the appli-
cation of some optimizing-techniques. The instruction ratio in the second row is about 5 to 2. By
moving one instruction from the access-processor code to the execute-processor code. we obtained a
better ratio of 4 to 3 in the third row. The code-doubling technique reduced the overhead of loop
control. The savings was more significant in the access processor. This led to a better instruction

ratio. 6 to 5. in the last two rows.

Depending on the task at hand. we can also make special arrangements to reduce the work load
of the access processor. For example. the following statement is commonly used to construct a ftree
list

fori:= 1 to n do next[i]:=i+1.

This is a typical loop where the loop index is also used as an operand for the execute processor.
Conventionally the access processor has to load the operand / for the execute processor. This
implies possible Read-After-Write hazards because. in each iteration. the access processor has to
write the loop index [ into main memory and then read it back for the execute processor. We can let
the processors cooperate in a looser manner and get the job done much more easily. The goal is to
supply n store addresses trom the access processor and i1 data from the execute processor to the
memory control unit. Each processor can keep its own value of i in a register and execute its loop
independently of the other processor. We believe that this technique can be incorporated in a com-

piler.

5.3. Hardware Characteristics

We are interested in finding a cost-effective configuration of a PIPE system. Various architec-
tural queues are discussed in Sections 5.3.1 through 5.3.4. The effect of the queue sizes on PIPE’s
performance is studied. Section 5.3.5 shows how to avoid result bus conflicts by dynamic schedul-
ing. The utilization and configuration of the busses between the processors and the memory system
are studied in Section 5.3.6. Section 5.3.7 shows how memory access time affects PIPE perfor-

marnce in both execution modes.
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5.3.1. The Output Queue

The operation results and memory requests from a processor are transmitted to the memory

control unit through the output bus. The transmission may be delayed due to the following reasons.

(1) The LDQO-fiill message is urgent for flow control and is given higher priority to use the bus.
The LDQ-refill message also gets priority when the LDQ is drained down to a prespecified

length.

(2) If many previous requests are stll waiting in the request queue. then the memory control unit
may not have space for new requests. The REQQ-full message prevents the processor from

sending more requests.

The Qutput Queue (QUTQ) serves as a buffer between the ALU and the output bus. A short
OUTQ is enough to buffer the requests delaved by the first reason above. The second case above
usually implies that the system bottleneck is either in the memory system or in the other processor.
The OUTQ will eventually get filled up no matter how long the hardware queue is. The solution to

this problem is to locate and break the bottleneck instead of increasing the QUTQ size.

Both the default and the empirical parameter sets have a short QUTQ of size 4. The simula-
tion results of the LLL loops show that, for both the SP and the AE mode of execution. the QUTQs
are usually very short unless there are bottlenecks in the memory system caused by Read-After-Write
(RAW) hazards or bank conflicts. In the AE mode of execution, the access processor usually has a
longer average queue length because it does many alternate loads for the execute processor. For
loops 7 and §, the access processor executes less instructions than the execute processor does. These
are the only loops where the access processor races ahead of the execute processor and fills up its

own OUTQ and the execute processor’'s LDQ.

The architectural queues play a very important role in the PIPE architecture. To work prop-
erly, each queue must meet some special requirements. For the OUTQ there are two important

requirements.
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(1)-+=It should-be-able to supply-output.and receive input simultaneously.

(2) If the queue is initially empty. it should be able to pass the input to the output within the same

clock cycle.

The first requirement is obvious. The second one becomes important, especially in the SP
mode of execution. when the load distances (see Section 5.2.2) are not long. An option of the simu-
lator disables the pass-through capability of the OUTQ and requires each element to stay in the
queue for at least one clock cvele. Since the OQUTQ is empty most of the time. this option etfectively
increases the turnaround time of each load operation by one clock cvcle. In loop |. the load dis-
tances are long enough for the default parameter set so that setting this option does not atfect the exe-
cution time. The load distances become too short when the empirical parameter set is used. Simula-
tion results show that setting this option increases the execution time of loop | by 405 clock cvcles.

which amounts to about one extra clock cycle per iteration of the loop.

In conclusion. we tind that a short OUTQ of size 4. as was specified in both parameter sets,
suffices for efficient execution of the loops we studied. Very little improvement can be achieved by
using a longer OUTQ. On the other hand. system performance may be degraded significantly. espe-

cially in the SP mode of execution, if the OUTQ fails to meet the hardware specification.

5.3.2. The Request Queue

The memory control unit buffers all the memory requests in queues. Figure 3.2 proposed a
symmetrical configuration of the buffering stages in the memory control unit. The data/instructions
read by the left IAQ/LAQ are returned to the access processor. Those from the right ones go to the
execute processor. Although two inputs to each of the LAQs and the SAQs are shown in the figure.
only one input to each queue is active in any of the three execution modes. Therefore, a conven-
tional single-input single-output queue suffices; no special design of the queue is needed. For the
AE mode of execution, the left six queues receive requests from the access processor. Requests from
the execute processor only go to the SDQ and the IAQ on the right. When executing in either the

SP or the MP mode. a processor only uses its own four queues and does not load or store on behalf
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of:the other processor.

To avoid system deadlock. the memorv control unit needs to be able to block one processor
while letting the other one proceed. For simplicity. the simulator sends REQQ-fir/l or REQQ-refill
message to a processor depending on the processor’s total outstanding memory requests. Other flow
control mechanisms are also possible. Using the buffer queues shown in Figure 3.2. the memory
control unit can accept requests from a processor until any of its receiving queues is tull: the REQQ-
Jull message then has to be sent. This implies that any full queue will block the CPU-to-MCU
transmission even if the next intended receiving queue is not full. To better utilize the buffer queues.
the memory control unit can send the status of these queues instead of the simple boolean REQQ-fil!
and REQQ-refill flags. The processor uses the status to determine whether the next OUTQ element

can be sent.

5.3.3. The Load Data Queue

The Load Data Queue (LDQ) in a processor and the Memory Load Data Queue (MLDQ) in
the memory control unit together serve as a buffer for the operands loaded by the Load instructions.
Both the default and the empirical parameter sets have an LDQ of size 4. which seems to work fine.
Instructions for cache misses and the messages for flow control both share the MCU-to-CPU bus
with the LDQ data. The simulator counts the numbers of each kind of transmission. but does not

measure the contention among them.

There are two different interpretations of an instruction which uses the LDQ for both of its
operands. One interpretation is to take one element from the LDQ and use that value as both
operands. The current PIPE interpreter has another interpretation which takes two elements from
the LDQ as operands. In accordance with the interpreter. the PIPE simulator assumes the capability
of taking two elements from the LDQ in one clock period. To meet this requirement. special etforts
in the circuit design of the queue are necessary. If the design is too difficult then we may have to
restrict ourselves to the first interpretation. Another plausible solution is to extend the PIPE archi-

- tecture and build two LDQs in each processor.
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= Some of the-hand coded loops contain-instructions that use the LDQ for both operands. Each
of these instructions can be replaced by two instructions so that each instruction only uses one ele-
ment from the LDQ. In most of the loops. this change will not degrade system performance because

the execute processor originally has a lighter work load.

In the simulation of the loops. the Memory Load Data Queue (MLDQ) in the memory control
unit has a very small average length, unless the access processor races ahead of the execute proces-
sor. We specitied the size of the MLDQ to be 8§ in the empirical parameter set to allow a smooth
flow of the loaded data. The required length is a function of the memorv access time based on a
worst case consideration. The memory control unit reserves a space in the MLDQ before issuing a
load request. The space is released when the MLDQ element is transmitted to a processor. In the
empirical parameter set. we need an MLDQ size of at least four to allow the consecutive issue of four
load requests. In general. if the access time of the memory modules is n clock cycles, then the

MLDQ should be a little longer than

5.3.4. The Branch Queue

In the hand coding of the first twelve LLL loops. we use only the AP-to-EP Branch Queue
(AEBRQ). The average length of the branch queue is very short for everv loop. This is obvious in
the loops where the access processor does not race ahead of the execute processor. In the other
loops. the access processor is blocked by full OUTQ instead of by full BRQ since many operands are

loaded in each iteration. Therefore, a short BRQ is adequate for all applications.

When a very short OUTQ and REQQ are used in the AE mode of simulation. we find that the
PIPE system enters a deadlock state in loop 10. The AP code has many alternate store instructions
in front of a Prepare to Branch (PBR) instruction while the EP code has a Prepare to Branch from
Queue (PBRQ) instruction whose branch count covers many instructions which generate store data.
Since many store addresses are still waiting for the matching SDQ elements, the memory control unit
cannot accept more requests from the access processor. In the access processor. the PBR instruction

is blocked by the preceding alternate store instructions which in turn are blocked by the full QUTQ.
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The-execute processor cannot generate SDQ-elements because the preceding PBRQ instruction is
blocked by the empty EABRQ. This deadlock is caused bv am error in the issue logic of the simula-
tor. The PBRQ instruction should not be blocked by an empty input BRQ. Instead. the instruction
beyond its branch count should wait for the branch decision from the BRQ. With this change. the

execute processor can generate the awaited SDQ elements and break the deadlock situation.

5.3.5. Result Bus Scheduling

A PIPE processor has a two-stage pipelined Arithmetic Logic Unit (ALU). Both stages of the
ALU can send data through the result bus to the register file or the OUTQ. A reservation table for
the result bus is required to avoid conflicts between the two ALU stages. Figure 5.3(a) shows the
reservation table for a segment of the execute-processor code for loop 10. The integer subtract
(SUBI) instruction uses the result bus to store the result from the second stage of the ALU. The
move (MOV) instruction uses the result bus at the first stage of the ALU  The first MOV instruction
cannot be issued at clock cycle 2 due to bus contlict. However. if the MOV instruction postpones its

use of the result bus to the second stage of ALU then it can be issued without any conflict. Figure

12 3 4 5 6 7

SUBI { X

MOV X
SUBI X

MOV X

(a) without dynamic bus scheduling.

I 2 3 4 5
suBl | | X

MOV X
SUBI X
MOV X

(b) with dynamic bus scheduling.

Figure 5.3. Reservation tables for the result bus.
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5.3(b) shows-the reservation-table for the same instruction' sequence after scheduling the uses of the
result bus. The result bus scheduling saves one clock cycle for every two instructions in this exam-
ple. Figure 5.3 shows that all the bus contlicts are resolved by scheduling. However this is not

always true. The post-incrementing load/store instructions use the result bus in both ALU stages

and cannot be scheduled.

A methodology for resolving collisions in pipelined architecture can be found in [PaDa76].
Since the ALU has only two stages. the scheduling algorithm is very simple and can be implemented
in hardware. Both parameter sets assume the capability of dynamic bus scheduling. When this
capability is turned off. the execution time of loop 10 changes from 2598 t© 2995 clock cveles. a
[5% increase. in AE mode of execution. Similar. but smaller. increases are observed in the simula-

tion of other loops. We feel that the hardware implementation of this capability can pay oft well.

5.3.6. The Bus Utilizations

Figure 3.1 shows that there are four unidirectional busses between the Memory Control Unit
(MCU) and the processors: AP-to-MCU. MCU-to-AP, EP-to-MCU, and MCU-to-EP. Table 5.6
shows the utilizations of these busses in both the SP and AE mode of simulation of the LLL loops
with the default parameter set. The words transferred through a bus can be data. addresses. instruc-
tions, or control messages. The utilization of a bus is the quotient of the number of total transferred

words to the total execution cycles.

For each store operation. one address and one data word are transmitted to the memory control
unit. but nothing is returned. This is the reason the CPU-to-MCU bus has a higher utilization than
the MCU-to-CPU bus in the SP mode of simulation. Loop 3 computes the inner product of two vec-
tors and stores the value only once after all iterations of the loop. For this loop. the MCU-to-CPU

bus has a higher utilization because a cache-miss request returns a whole line of instructions.

In the AE mode of simulation. the access processor executes many alternate load and alternate
store instructions. An address is transmitted to the memory control unit for each of such instruction.

This explains the high utilization of the AP-to-memory control unit bus. Each alternate load
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LLL SP AE
loop to from to MCU from MCU
number MCU MCU AP EP total AP EP total
1 49 4% 30.3% 56.3% 14.2% 70.4% 0.8% 42.6% 43.4%
2 21.8% 18.3% 32.2% 3.0% 352% 0.4% 29 4% 20 7%
3 20.0% 201% 39.8% 0.1% 39.8% 0.3% 39.9% 40.2%
4 44 9% 27 5% 36 0% 9 0% 45 0% 0.7% 27.1% 27 8%
5 58.7% 32.1% 61.9% 18.6% 80.5% 12.8% 43.5% 56.3%
6 33.8% 29 4% 61 9% 18.6% 30.5% 12.8% 43.3% 56.3%
7 49 3% 30.6% 57.2% 28 4% 85.6% 12.5% 52.3% 64 8%
8 57.3% 37.5% 62.5% 33.7% 96.2% 8 6% 51.4% 60.0%
9 57.5% 39.1% 70.7% 25.1% 95 9% 2 3% 66.6% 68.9%
10 90.5% 25.3% 77.4% 46.3% 123 8% 17.2% 39.6% 36.8%
[ 49 8% 25.1% 42.7% 14.2% 56.9% 28.4% 28.3% 56.9%
12 49 8% 23.1% 49 7% 16.6% 66.3% 0 3% 33.2% 33.5%

Table 5.6. Bus utilizations for LLL loops,
with default simulation parameters.
instruction sends an operand to the execute processor and accounts for most of the MCU-t0-EP bus
utilization. Each store address is matched with a data word from the execute processor. These data
words account for most of the EP-to-MCU transmissions. In the simulation of loops | through 6.
11, and 12 with default parameter set. we observe that the utilizations of the AP-to-MCU bus is
approximately the sum of those of the EP-to-MCU and MCU-to-EP busses. This relation is
obscured by control messages in the other loops. The MCU-to-AP transmissions mostly consist of

instructions and control messages.

In the VLSI implementation of the PIPE processors and the memory control unit. a limit is
posed on the number of pins available on an integrated circuit package. A PIPE processor uses dedi-
cated input and output pins to avoid the time penalty of multiplexing the pins. The memory control

unit serves two processors and the limit on the number of pins becomes more stringent. One way to
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reduce-the number-of-pins is to combine some of the busses. Table 5.6 shows the total utilizations of
the-CPU-10-MCU busses and the MCU-t0-CPU busses to help evaluating whether such combinations
are feasible

The toal utilizations of the CPU-t0-MCU busses are very high for most loops. The combined
utilization for loop 10 is 123.8%. which means that such a combination will definitely degrade the
pertormance. Since the bus is driven by both processors. some kind of arbitration between the pro-
cessors is required. The arbitration mechanism may reduce the effective capacity of the bus by
assigning the bus to an idle processor while the other processor is waiting for transmission. Also

there may be some time penalty associated with switching the drivers of the bus.

Combining the MCU-to-CPU busses seems to be more plausible. No arbitration between the
processors Is necessary because they are receivers instead of drivers. Based on its queueing discip-
line. the memory control unit selects an element from a non-empty MIQ or MLDQ (see Figure 3.1)
to ransmit. The miended receiver of a transmission is designated by the tag associated with cach
transmission. The last column of the table shows that the total utilizations of the combined bus are
not very high. Temporary bus contentions are buffered in the MIQ and the MLDQ. However.
congestion of the combined bus is still possible if the processors transmit in bursts and if the bursts
collide. Further investigation is necessary to determine whether such collisions have nontrivial pro-

bability.

5.3.7. The Memory Modules

In Table 5.4 we saw that slow memories degraded the PIPE performance of many loops. We
have also seen that. with the default parameter set. the memory request rate can be as high as §0%.
If an m-way interleaved memory system consists of memory modules whose access time is n clock
cycles, then the system has a maximum service rate of m/n requests per clock cycle. The service rate
decreases if there are memory module conflicts among the requests. As a rule of thumb, we need
the number m to be equal to or greater than 1 in order to cope with the high request rate in the PIPE

system,
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- .The memory. access:time is an important-parameter of a computer system. Slow memories sig-
nificantly degrade the performance of conventional computers which execute instructions one after
another in a strict order of instruction fetching. operands fetching and result storing. The architec-
tural queues in a PIPE system are designed to hide the memory access delays and to allow the
smooth execution of the instruction streams. Tables 5.7 and 5.8 list the execution times of the first
Lawrence Livermore loop in the SP and AE mode of simulation. respectively. The execution times
are plotted in Figures 5 4 and 5.5. Unless otherwise specified. the default parameters are used. The
access time of the memorv modules is varied over a wide range from | to 16 clock cycles. Various
combinations of the LDQ and MLDQ lengths are used. We assume that there are infinitely many

modules so that no memory module contlicts occur.

Queue sizes Memory Access Time
LDQ MLDQ I 2 4 8 16
2 2 4070 4875 6483 9699 16139
3 3 4070 4476 5288 6912 10160
=4 =4 4069 4475 5287 6911 10159

Table 5.7 Single-processor execution times for LLL loop 1.
varying memory access time and queue sizes.

Queue sizes Memory Access Time
LDQ MLDQ 1 2 4 8 16
2 2 2859 2865 3677 6097 10937
3 3 2859 2864 2878 4100 7340
4 4 2859 2864 2878 3206 5555
4 6 2859 2864 2878 2906 3758
=4 =8 2859 2864 2878 2906 2963

Table 5.8. Decoupled mode execution times for LLL loop 1.
varying memory access time and queue sizes.
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Figure 5.4. Loop 1 SP mode execution time vs. memory access time,

varying queue sizes.

o L
Execution 1200¢ G e 1DQ: 2, MLDQ: 2
: . o LDW: 3, MLDQ: 3
Time +- - ~+ LDQ: 4, MLDQ: 4 a
w-———x LDG: 4, MLDQ: 8 ;
10000 -
BOOO -+
<
6000 -L- ,5
. N
4000 - ) 4
-
. e
G e g T T 3 o s e X
2000
o - | ; | | I Memory
0 1 2 4 8

16 Access time

Figure 5.5. Loop 1 AE mode execution time vs. memory access time,
varying queue sizes.



For the SP.mode of.execution.=Figure-3.4 shows that. as.expected. the execution time increases
when the memory gets slower In Figure 5.5 the AE mode of execution with short queues also
shows the same trend. By increasing the sizes of the LDQ and the MLDQ. the execution times in
both execution modes can be improved to a certain lower bound. The main difference between the
two figures lies in the shape of the lower bound. In the SP mode of simulation, the lower bound
increases with the memory access time. This means that the degradation in the performance cannot
be avoided by using longer queues. In the AE mode of simulation. however. the lower bound is
essentially flat. This means that the long memory delay can be hidden by using longer LDQ and
MLDQ. The advantage of the AE mode over the SP mode becomes more significant when the
memory gets slower. The ratio of the lower bounds is 3 43 when the memory access time is 16

clock periods,

For the SP mode of execution. the timing diagram in Figure 5.1(b) applies when the memory
access time is long. The time interval /~—1, is the turnaround time of a Loud instruction. For small
loops. the load distance 13—/, is shorter then the memory turnaround time. An arithmetic operation
has to wait for the operands for a period r,—13. The execution time of each iteration includes this
waiting period. One way to reduce the execution time is to increase the load distances with the tech-

niques described in Section 5.2.3.

In the AE mode of execution, the long memory delay only increases the “slippage™ between the
two processors’ instruction streams. The long queues allows the access processor to run smoothly
and load the operands for the execute processor. The differences among the execution times in the
last row of Table 5.8 are mainly due to the instruction fetches which are delayed by the long memory
access time. We believe that. for the AE mode of execution. most other loops would behave simi-
larly. One obvious exception is the loops that involve read-after-write (RAW) hazards. As discussed
in Section 5.2.4, the execution time of each iteration includes at least twice the memory access time.

That section also shows two methods to avoid the degradation in performance caused by the hazards.

- 48 -



Remember- that-we-assumed a conflict-free memory system in the above discussion. Table 5.4
shows that the memorv module contlicts can degrade the PIPE performance in AE mode of execu-
tion. For example. the memorv service rates-of loops 8. 9 and 10 decreases drastically when we
switch from the default parameter set to the empirical parameter set. We can improve the memory
service rate at the cost of more circuit in the memory system. One method is to reduce the probabil-
ity of memory module conflicts by organizing the memory into more modules. Another method is to
service the memory requests out of order if necessary. Some sequencing mechanism is needed to
insure that the requests are returned to the processors in their original requested order. The second
method is currently being studied bv Liou [Liou84]. Using the hand code of the LLL loops as
benchmark, Liou observed that the second method can improve the PIPE performance by 40% to

50% when the memory is slow and the request rate is high

6. Conclusion

We have described the PIPE architecture and its implementation. Special features of PIPE
include an instruction cache. architectural queues. a pipelined implementation. and decoupled execu-
tion. To evaluate the impact of these teatures. we have implemented a PIPE performance simulator.
hand-coded a set of benchmarks, and simulated the execution of the benchmarks with various param-

eter sets and execution modes. The simulator proved very useful in our simulation work.

We have presented and analyzed simulation results based on the Lawrence Livermore Labora-
tories loops. Dependence of PIPE’s performance on program characteristics were studied and optim-
izing techniques suitable for the PIPE architecture were discussed. In some loops. the small load
distances and branch counts blocked instruction issue and limited PIPE performance. These prob-
lems were solved by code doubling or software pipelining. Read-after-write hazards were avoided by
storing the responsible variables in registers. Balancing the work load in the two processors also
contributed to the performance of decoupled execution. Table 5.5 showed an example in which the

application of these simple optimizing techniques more than quadrupled PIPE performance.
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Dependence of PIPE's performance on hardware speed and configuration was also investigated.
The LDQ. OUTQ and BRQ were of size < in our parameter sets. [t was observed that short queues
sufficed for efficient execution of the benchmark programs we studied. When the memory was slow
(longer memory access time) a longer REQQ and MLDQ were needed to buffer more memory tran-
sactions. These queues were of size 8 in our empirical parameter set. Figure 5.5 demonstrates the
usefulness of architectural queues. It shows that, with enough queue sizes in the decoupled niode of
execution. slower memory did not increase execution time. Our simulation results also demonstrated
the advantages ot decoupled architectures. Although the average speedup of AE mode over SP mode
was only 1.473 for a tast memory. the value increased when the memory was slow. with a maximum
speedup of 2.97 (Table 5 3). Further simulation indicated that the speedup could be as high as 3 43
when the memory access time was 16 clock periods (Tables 5.7 and 5.8). Simulation results also

showed that the decoupled PIPE architecture performed very well on the benchmark programs.

Some interesting aspects of the PIPE architecture have not vet been studied. These include the
instruction cache hit ratio. the queueing disciplines of the architectural queues, and the flow control
mechanism of the busses. We need other. larger programs to study these aspects. Many program
structures other than simple loops are used frequently in many applications and deserve careful
study. Searching and sorting algorithms are two examples in which the branch conditions depend on
the data being processed and may require synchronization between the access processor and the exe-
cute processor. Efficient implementation of procedure calls is also very important and worthy of

study.
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Appendix A. Pascal source programs for the first 12 Lawrence Livermore loops

LLL1:
1
2
3
4

LLL2:

ONOUh WN

LLL3:

W N =

vy
-
L
B

WONOUTD W N

HYDRO EXCERPT

q = 0;
for kX := 1 to 4068 do
x [k] := g+ y [k] *

(r * z [k+18] + t * z [k+11]);

MLR, INNER PRODUCT

k :=1;
while k <= 996 do
begin
tplk] := z[k] * x[kx] + z[k+1] * x[k+1] +

z[k+2] * x[k+2] + z[k+3] * x[k+3] +
zlk+4] * x[k+47;
k := k + 5;
end:

INNER PRODUCT
q = 9;
for k:= 1 to 1808 do
qg =g + z[kx] * y[x];

BANDED LINEAR EQUATIONS
L :=17;
while (L <= 187) do
begin lw := L;
j := 30;
while (j <= 870) do
begin x[L-1] := x[L-1] - xCiwl*y[5];
lw := 1w + 1;
J =3+ 5;

nd
[L

Cxo

Hop o~

1] := y[5] * x[L-1];
L + 5@;
end:

TRI-DIAGONAL ELIMINATION, BELOW DIAGONAL

i = 2;

while (i <= 1808) do

begin x[i] := z[i] * (y[i] - x[i-11);
xLi+l] == 2[i+1] * (y[i+1] - x[i]);
x[i+2] == z[i+2] * (y[i+2] - x[i+1]);
1 :=1i + 3;

end:;
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Appendix A. Lawrence Livermore loops (continued)

t
e
2
(o)}

CONOUTE W -

LLL7:

B W N

y
=
[

WOV W

.

LLL9:

oUW

TRI~-DIAGONAL ELIMINATION, ABOVE DIAGONAL

j o= 33

while j<=999 do

begin
i := 1000 - j + 3;
x[i J :=x[1i J - =z[i 1 * x[i+1]
x[i-1] := x[i-1] - =z[i-1] * x[i ]
x[i-2] := x[i-2] - 2z[i-2] * x[i-1]
j o= 3+ 3;

end;

*

~y we ~p

4 e »

EQUATION OF STATE EXCERPT
for m := 1 to 120 do
x[ml:=ulm J + r*( zlm ] + r*y[m ]
+ t*( u[m+3] + r*( u[mtr2] + r*ulm+l]
+ t*( u[m+e] + r*{ uflmt5] + r*ulm+4]

P.D.E. INTEGRATION
nll := 1; nl2 := 2;

for kx := 2 to 3 do
for ky := 2 to 21 do
begin
dullky] := ullkx,ky+l,nll] - ullkx,ky-1,nll];
du2lkyl] := u2lkx,ky+l,nll] - u2lkx,ky-1,nll];
du3l[ky] := u3lkx,ky+l,n1ll] - u3[kx,ky-1,nll];

ullkx,ky,nl2] := ullkx,ky,nll]+all*dullkyl+

al2*du2[kyl+al3*du3d[kyl+sig*(ul[kx+1,ky,nll]-

2*ull[kx,ky,nll]+ullkx-1,ky,nll]);
u2[kx,ky,nl2] := u2lkx,ky,nll]+a21*dullkyl+

a22*du2(kyl+a23*dudl[kyl+ sig*(u2[kx+1,ky,nll]-

2*u2[kx,ky,nll J+u2[kx-1,ky,nll]);
u3lkx,ky,nl2] := u3[kx,ky,nll]+a31*dullky]+

a32*du2[kyl+a33*du3lkyl+ sig*(u3[kx+1,ky,nll]-

2*u3[kx,ky,nll J+u3[kx-1,ky,nll]);
end;

INTEGRATE PREDICTORS
for i := 1 to 100 do

px[1,i] := bm28*px[13,i] + bm27*px[12,i] +

bm26*px[11,i] + bm25*px[16,i] +
bm24*px[9,i] + bm23*px[8,i] +

bm22*px[7,1i] + cB*(px[5,il+px[6,i]) +

px[3'i]7
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Appendix A. Lawrence Livermore loops (continued)

LLL10@:

WONO VTS WN

10
11
12
13
14
15
16
17
18
19
20
21
22

LLL11:
1
2

LLL12:
1
2

DIFFERENCE PREDICTORS
for i :=1 to 199

do

cx[5,1]
px[5,i]

px[6,i]
px[7,i]
px[8,i]
px[9,i]
px[10,i]

e N N NG ag N0 Ny T ng e e ™9 wg

pxcllli]7
px[]-zli]l'
px[13,i];

-~

:= x[k-1] + y[x];

begin
ar o=
br := ar
px[5,i] := ar
cr := br
px[6li] := br
ar := cr
px[7,i] := cr
br := ar
px[8,i] := ar
cr := br
px[9,i] := br
ar := Cr
px[18,i]:= cr
br := ar
px[11,i]:= ar
cr := br
px[12,i]:= br
px[14,i]:= cor
px[13,i]:= cr

end;

FIRST SUM

for k := 2 to 1009 do

x[ k]
FIRST DIFF

for k := 1 to 999 do
:= y[k+1] - y[x];

x[ k]
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