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Abstract

Most large-scale optimization problems exhibit special structures that offer the
possibility of attack via parallel algorithms. The CRYSTAL multicomputer [DeWitt,
et al, 84] under development in the Computer Sciences Department at the University
of Wisconsin-Madison offers a unique opportunity to explore distributed approaches
to optimization in that it provides a collection of loosely-coupled minicomputers of
substantial computing power (specifically, VAX 11/750’s) that may exchange data in
an efficient manner via messages. In fact, very promising results have already been
obtained through the use of CRYSTAL on nonlinear traffic assignment problems
[Feijoo and Meyer 83|. For example, a twelve-commodity traffic assignment problem
was solved by utilizing twelve processors, one dedicated to each commodity. The
solution time using 12 processors was 4.7 times faster than the solution time on
a single machine, and it is expected that significant further improvements in the
level of parallelism can be achieved in this problem class. The particular piecewise-
linear approximation approach to be described below allows the decomposition of
these problems at each iteration into a set of individual linear single-commodity
network optimization subproblems, which may then be solved in parallel on the
CRYSTAL node machines. This method thus has the high level of granularity that
is appropriate for CRYSTAL, and appears to be one of the first uses of distributed

computing in the solution of constrained optimization problems.

* This research was supported in part by NSF grant MCS8200632 and ARO
contract DAAG29-80-C-0041 .






The CRYSTAL Multicomputer

CRYSTAL is a set of VAX-11/750 computers (currently there are 20) with 2
megabytes of memory each, connected by a 10 megabit,/sec Proteon ProNet token
ring. It can be used simultaneously by multiple research projects through parti-
tioning the available processors according to the requirements of each project. This
partitioning is done via the software, and, once a user has acquired a “partition” or
subset of processors, the user then has exclusive access to the node machines of that
partition. CRYSTAL software is written in a local extension to Modula. Researchers
can employ the CRYSTAL multicomputer in a number of ways. Projects that need
direct control of processor resources can be implemented using a reliable communi-
cation service (the “nugget”) |[Cook, et al, 83] that resides on each node processor.
Projects that prefer a higher-level interface can be implemented using the Char-
lotte distributed operating system. The Charlotte kernel provides multiprocessing,
inter-process communication, and mechanisms for scheduling, store allocation, and
migration. Development, debugging, and execution of projects takes place remotely
through any of several VAX-11/780 hosts running Berkeley Unix 4.2. Acquiring a
partition of node machines, resetting each node of the partition, and then loading an
application onto each node may be performed interactively from any host machine.
CRYSTAL has been used for research in a variety of areas, including distributed
operating systems, programming languages for distributed systems, tools for de-
bugging distributed systems, multiprocessor database machines, protocols for high
performance local network communications, and numerical methods. Future plans
for CRYSTAL include an increase in the number of node machines to approximately
40 and an upgrade of the communications medium to an 80 megabit/sec token ring.
The Crystal project is supported by a National Science Foundation Coordinated
Experimental Research (CER) grant.

Nonlinear Networks

Nonlinear optimization problems involving network constraints arise in a great
variety of applications and are notable for their very large size. Applications ar-
eas include computer network design |Cantor and Gerla 74|, [Gavish and Hantler

82], [Magnanti and Wong 84], urban traffic assignment [Bertsekas and Gafni 82],
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{Dantzig, et al, 79, [Lawphongpanich and Hearn 83|, /Pang and Yu 82, hydro-
electric power systems [Hanscom, et al, 80], Rosenthal 81], telecommunications
networks [McCallum 76, and water supply systems Beck, et al, 83]. These prob-
lems are among the largest nonlinear programming problems that are currently
being studied because large-scale networks of various sorts not only arise naturally
in many different areas and represent a type of model that people in a variety of
disciplines find intuitively easy to develop and maintain, but also exhibit a math-
ematical structure that can be exploited to develop algorithms that in many cases
can solve at affordable cost problems involving tens of thousands of variables (In
the case of linear networks, [Barr and Turner 81] describe the solution of problems
with 50,000 constraints and 65 million variables being run on a “production basis”
for the U. S. Department of the Treasury).

Of particular interest in terms of widespread applicability are problems of traffic
routing, equilibrium, and network design in computer and urban transportation net-
works. These problems are typically multi-commodity problems, i.e., they involve
many different types of “commodities” flowing through the network, where depend-
ing on the application, a “commodity” will be associated with the traffic flowing
out of a “source” node or between a designated origin-destination pair. Enormous
problem sizes result from the fact that the number of variables and constraints is
determined by the number of links and nodes multiplied by the number of com-
modities. These same features, however, also make these problems ideal candidates
for solution via parallel algorithms, about which more will be said below.

The problems we will consider are of the form:

min f(x)
st. Ax=Db (NLP)
I<x<nu

where X is an n-vector of flows, f is convex on the n-dimensional interval [1,u], and
Ax = b represents a system of network constraints.

There are two fundamental types of traffic assignment problems: symmetric
problems in which the congestion on a given link is determined by the total flow
summed over all commodities in that link only, giving rise to a symmetric Jaco-

bian matrix in the corresponding variational problem, and asymmetric problems
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in which the congestion on a link depends on the total flows in several links. It
is well known [Steenbrink 74] that the former problem is equivalent to a convex
optimization problem under relatively weak assumptions, whereas the latter gives
rise to a variational inequality that has a more complex optimization formulation
involving a non-differentiable objective function. In this paper we will concentrate
on the former problem, although some of the decomposition ideas considered apply
equally well to both problem classes. This problem is of the form (NLP), where the
objective function represents total congestion over all of the links of the network,
and the constraints represent the supply, demand, and conservation constraints for
each of the individual commodities flowing through the network. The number of
commodities may be quite large because, depending on the formulation, there can
be a commodity corresponding to each node or to each origin-destination pair. How-
ever, in the urban traffic equilibrium problem 1t is typically the case that the only
coupling between different commodities occurs in the objective function. Because
of this property, the approximation of the objective function by a separable func-
tion leads to a decomposition of the problem into separate optimization problems,
one for each commodity. These single commodity problems may then be optimized
in parallel (many algorithms for the asymmetric problem also contain a phase in
which the objective function is replaced by a linear approximation so that the same
decomposition may be used). Details are given in the following section.

Turning to a slightly different application, traffic assignment problems in com-
puter networks involving non-bifurcation constraints |[Gavish and Hantler 82], as
well as network design problems involving the selection of route capacities from a
set of discrete alternatives [Magnanti and Wong 84| are non-convex optimization
problems requiring the tools of global optimization, and thus are natural candidates
for solution on a distributed system. Issues related to global optimization are also

discussed below.
Parallel Algorithms

While the traffic assignment problem has been the subject of investigation by
numerous researchers in recent years, and many algorithms have been proposed and
tested for its solution, in almost all cases these algorithms lead to a decomposition of

the problem into smaller subproblems, and thus are suitable candidates for research
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on the use of distributed systems. At one end of the spectrum of techniques for this
problem class lies the Frank-Wolfe method. in which the original objective function
1s replaced by a simple linear approximation. The Frank-Wolfe method has the
disadvantage that it converges very slowly, but the advantage that a very large
degree of parallelism may be achieved.

More complex algorithms include those based on iterative piecewise-linear ap-
proximation of the objective function [Feijoo and Meyer 83| and simplicial decompo-
sition ([Lawphongpanich and Hearn 83| and [Pang and Yu 82] in which the feasible
set is replaced by a convex combination of feasible points. Computational results
have been obtained on the CRYSTAL multicomputer with the piecewise-linear ap-
proximation method, so we will consider the details of this approach.

For simplicity we will assume that a feasible solution x* (one satisfying all of
the constraints) is available at the start of the 7th iteration of the problem (NLP).
(At the initial iteration an arbitrary starting point within [1, u] plays the same role.)
To simplify notation below,consider the shifted function fy:(x):= f(x)- f(x*); it is
clear that minimizing fy. is equivalent to minimizing f. A piecewise-linear separable
approximation f “centered” at x' is then constructed as follows:

Consider the function

hR” — R

h(y) = fxi(y +x")

which is a translation of f4: to the origin, and let h, be the restriction of h to the axis
Yy, that is h,(y,) = h(y,e’) where e’ is the jth canonical unit vector. For a given
grid size A’ generate a piecewise-linear approximation il, to h,, with breakpoints at
e —2)\;, -0, )\2, 2X}, ... Defining f,(:cj) = iL](fIJJ - x;), the resulting piecewise-

linear approximation to fy: is:

f(x) = Zf](x])

7=1

Note that the computation of the f)’s may be carried out in parallel. The
original objective function is then replaced by the approximating function, and the

resulting approximating problem is solved. This problem has the form:
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min f(x)
si. Ax=b (PLP(2))

l<x<nu

Note that the function f depends on the base point x* and consequently varies
from iteration to iteration.

The problem (PLP(7)) has two key features: 1) because the objective function
is now separable, the problem may be decomposed into K separate optimization
problems, where K is the number of commodities in the original problem; and
2) because of the convexity of the original objective function, each of these new
problems is equivalent to a linear network optimization problem.

Specifically, assume that x = (xi,...,Xxxk), where x; is the vector of arcs
corresponding to commodity k. Since there is no coupling between commodities in
the constraints, the problem (PLP(7)) may be solved by solving in parallel (via very

fast linear network codes) the set of problems:

where Ay, by, 1, and uy are for commodity k the corresponding components of

A b,1and u.

Given the set of solutions of these problems %,...,%g, if we let X**! =
(X1,...,%x), the next iterate x'™! is obtained by solving the line search problem:

mﬁin Fx 4+ (% - x%))
st 1< x'+ ot — xi) <u
>0
Once the next iterate has been obtained, the procedure is repeated with a
reduced grid size of A7 ™! = o)’ | where @ € (0,1) (o = 0.25 has worked well on our
tests).

It has been shown that this procedure will yield a sequence of iterates whose ob-

Jjective function values converge to the optimal value of the original problem (NLP).
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Computational Results

Our current series of tests have been limited to small problems in which the
number of commodities is not greater than the number of available processors. Pro-
cedures for dealing with larger numbers of commodities will be discussed in the next
section. Thus far, three test problems have been used. All three are of the form of
urban traffic equilibrium problems. The sources of these problems are: Problem 1,

[Pang 83}; Problem 2, |Bertsekas and Gafni 82]; and Problem 3, |Steenbrink 74].

Let us now consider the implementation of the parallel algorithm described
above on CRYSTAL. First a partition of node machines is obtained. The number
of machines corresponds to the number of commodities of the particular problem.
Node machine 1 is used as what we call a master node, machines 2 through K are
called slave nodes. A master program is linked and loaded onto node 1 and a slave
program onto nodes 2 through K. The host program is run in the host machine
(a VAX-11/780), which reads all the data and sends it to the master node. The
master node then distributes the appropriate subproblem data to the slave nodes
and each node (including the master) solves its corresponding subproblem via the
RNET linear network optimization code |Grigoriadis 82]. Once the master node
finishes solving its subproblem, it waits, if necessary, for the slave nodes to end
their computations, then receives the solution data from each of them and finally
performs the line search to produce an improved feasible solution. This process is
repeated for as many iterations as required to satisfy the stopping criteria. Finally

the master node sends back to the host machine the solution and the timing data.

Table 1 shows computing times for the test problems. They were solved also
in a sequential fashion on a VAX-11/750 for purposes of comparison. A description
of the nature of the objective function f is included for each problem, where f;
represents total flow on link ! (i.e. the sum of the flows of commodities that use
that link). For the CPU times in the parallel case, two times appear, the first is
the CPU time for the master node and the second is an average of the times of the
slave nodes. Note that the master node performs the line search routine and thus
has a higher CPU time than the slave nodes. It should be remarked that in these
particular examples the CPU time for each slave node does not differ much from
the average. The difference between clock and CPU time for the master node is due

to waiting and communication times.



Problem 1

56 variables, 40 constraints, 2 commodities

f= Zalfz5 +bufi
!

Parallel Sequential

CPU time 13.0s./3.6s. 16.8 s.

Clock time 15.2s. 17.2 s.
Problem 2

60 variables, 60 constraints, 5 commodities

f=> I,
—l—‘ 3 2
Parallel Sequential
CPU time 48s./1.0s. 8.5 s.
Clock time 7.0 s. 8.9 s.
Problem 3

432 variables, 108 constraints, 12 commodities

=Y aft+bfi
l

Parallel Sequential
CPU time 13.7./8.5s. 111.0s.
Clock time 23.5 s. 111.8 s.

TABLE 1: Computing times
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Further Research

For large-scale traffic assignment problems an important area of research in
parallel computation will be the distribution of the subproblems among the available
processors. In the case of CRYSTAL, in which the number of processors will be
approximately 40, there will be a shortage of processors since such problems may
contain hundreds or thousands of commodities, each of which could be optimized at
a particular iteration on a single processor. 1t will thus be appropriate to investigate
the relative efficiencies of solving all of the single commodity problems at a given
iteration by distributing them in fixed groups among the available processors versus
having a dynamic allocation mechanism that assigns single commodity problems to
newly idle processors versus solving only a proper subset of the single commodity
problems and then doing the line search restricted to the corresponding subset of
variables while the processors are working on another subset of the single commodity
subproblems. The latter procedure has the advantage of increasing parallelism , but
leads to interesting mathematical questions in that it may be necessary to change the
objective function of the optimization problems during or after the solution process
as a result of the line search. In a sense, traffic assignment problems are ideal for
experiments in parallel computing since they involve large-scale problems and allow
the testing of a wide variety of strategies for mapping processes to processors.

Problems of global optimization also lend themselves readily to the develop-
ment of parallel algorithms, since the fundamental difficulty associated with global
optimization is the necessity of ensuring that the behavior of the objective function
in all subregions of the feasible set is accounted for, and to accomplish this it is usu-
ally necessary to deal separately with a number of subregions. Two recent methods
of global optimization that are promising and particularly well suited for research
on a distributed system are those of [Rosen 83] and [Kan and Timmer 84] (see also
[Schnabel 84] for a recent survey of parallel computing in optimization). In Rosen’s
method, which is deterministic, there is an initial stage in which a multiple-cost-row
linear program with 2n cost vectors is solved, followed by an LP solution, and then
a final branch-and-bound stage. It would be of interest to investigate strategies for
solving in parallel the multiple-cost-row row LP, trying to distinguish between those

objective functions that are sufficiently different so as to merit separate optimiza-
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tions from those most efficiently dealt with by means of post-optimal analysis of a
“related” objective function. In the branch-and-bound phase there are interesting
issues of how to decompose problems so as to make maximum use of the available
processors. A traditional binary branching will result in an initial delay before all
processors are being utilized, particularly in the case of large subproblems. On the
other hand, a finer decomposition may result in the consideration of uninteresting
subproblems. A study of mechanisms to identify potentially interesting subprob-
lems, through the use of estimation procedures for optimal objective values over
subregions, is clearly in order. These observations also apply to branch-and-bound
procedures arising from other problem contexts.

Kan has proposed a stochastic method for unconstrained global optimization
that initially involves the computation of function values at a number of trial points
generated via a uniform distribution over an n-dimensional box known to contain a
global optimum in its interior, followed by a clustering operation whose goal is to
identify regions of attraction of local minima, followed by local searches from starting
points identified by the clustering. This technique has nice statistical properties
and has performed well on test problems with small numbers of variables. All of
its procedures are suited to parallel computation, and the clustering and starting
point selection phases are areas in which much research remains to be done. It
will also be worthwhile to investigate the simultaneous use of different local search
algorithms from selected starting points,and to consider methods of parallelizable

random search, such as those proposed by [Aluffi-Pentini, et al 83].
Conclusions

Recent developments in distributed computing systems have made possible re-
alistic experiments with parallel algorithms in optimization. The CRYSTAL mul-
ticomputer in particular has proved to be an effective tool for research in parallel
methods for multicommodity traffic assignment problems, and is also promising for

studies in global optimization.
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