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Abstract

A method is presented for describing natural textures using average separations
between extended edge segments of different orientations. Edge separations are found
by a label propagation process similar to the growth of discrete generalized Voronoi di-
agrams. These features were used to classify 384 samples from six texture classes. The
highest classification rate was 65.9% correct using one feature. 82.6% correct using
two features, and 85.9% correct using three features. Edge separation features are
shown generally to perform better than either gray level cooccurrence matrices or
Laws’ texture energy measures. The best features were the average separation between
pairs of antiparallel or parallel edge segments. Extensions to the method to deal with
problems of rotation and scale are discussed.
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1. Introduction

Approaches to texture have been investigated by many authors. In his review article.
Haralick classifies texture methods by i) the type of primitives used to describe the texture. and
ii) the description of the spatial relation between these primitives [HARA79]. For gray level
based methods. the primitive is the gray level of a single pixel or of a fixed neighborhood of pix-
els. The spatial relation between pixels can be expressed by any of several means. such as gray
level cooccurrence matrices [HARAT3], autocorrelation, or by gray level differences. In token
based methods. the primitives are found by examining a region of the image. Typical of such
primitives are edges [NEVAT9][PIET82a], peaks [EHRI78], and regions [TOMI82]. Spatial
relations between these tokens might be expressed by the angles and distances between them. or

by generalized cooccurrence matrices [DAVI79] [DAVIS1].

Texture perception in humans may be similar to a token-based method —Bela Julesz has
found evidence that human texture discrimination is based on simple statistics of image features
that he calls textons [JULES1] [(JULES3]. Similar evidence has been reported by Jacob Beck
[BECK80] [BECK81]. The textons of Julesz are elongated blobs (eg. rectangles, ellipses, or
line segments), ends-of-tines, and crossings of lines. Among the properties of elongated blobs
are color, angular orientation. width. and length. The last two textons, ends-of-lines and cross-
ings of lines are characteristics of the first texton. Typical experiments of Julesz and colleagues
have human subjects discriminate between two synthetic textures. each of which is made of thin
black lines on a white background. The type of texton or the number of textons might differ in
each texture. For example, one texture might be composed of lines arranged into L’s. the other
texture might have exactly the same lines but arranged into +'s (thus introducing the line-
crossing texton). Julesz finds that humans can quickly discriminate between textures if the tex-
tons in them differ or if the densities of textons differ. The simplicity of this explanation suggests

that automated texture discrimination could be based on lines found in textures.




Julesz and Beck are both concerned with rapid (less than 200ms) texture discrimination in
humans. Julesz calls this preattentive texture perception. Both authors find that differences in
first-order statistics of texture tokens are sufficient to explain human performance (see the papers
cited above). For texture classification by computer. better descriptions of spatial distributions
are needed. In the synthetic textures usually used in human perception experiments the texture
primitives can be easily separated from the background. Determining their type and number is
simple. This is a much more difficult problem with full gray scale images of natural textures.
Feature detectors work under uncertainty. The detection of features and their attributes often
depends on arbitrary definitions and thresholds. For example, the exact location of edge termi-
nations usually is not precisely determined by most edge detectors. The output of an edge mask
will gradually taper off near the end of an edge. Determining exactly where an edge ends
becomes a threshold problem. The hehavior of an edge detector near a sharp corner presents
further problems. Near the corner the output becomes confused. Often either one edge mask

will dominate. or the output of all masks will be low.

Spatial descriptions are needed to help deal with these problems. Generalized cooc-
currence matrices have been used for spatial descriptions, but they have not proven very success-
ful (see Section 8 for a longer discussion). What is needed is a description that is matched to the
texture primitives being used. If the texture primitives are features that have clear physical

meanings then the description of their spatial distribution should also have a physical meaning.

The texture method discussed in this report addresses both problems: finding texture prim-
itives, and describing their spatial relations. The texture primitives we use are long single-
orientation edge segments. The spatial description of these long edge segments consists of a
matrix giving the average distance separating edges of each orientation. Features based on this
matrix can, for example, easily discriminate between the L and + textures discussed above.

This method has several advantages over other texture methods: the edges can be used for other



stages of a general vision program, the spatial description has physical meaning (unlike most
cooccurrence matrix features. for example). and the method can easily be adapted to deal with
problems of rotation and scale. Texture classitication experiments show that this method works
well. Results are much better than for gray level cooccurrence matrices, and are somewhat

better than for Laws’ texture energy features.

Other texture methods have used edge-based features. In [HONGS80] and [WANGS81]
simple edges were used for finding regions. These regions were then used to describe textures.
In [PIETS82a] quantities were computed for antiparallel pairs of edge pixels. One computed
quantity was average distance between edge pixel pairs. however no edge orientation information
was used. Distributions of simple edges have been described by cooccurrence matrices
[NEVA79]. Our method differs from these methods by using extended edge segments that have
been formed by grouping many edge pixels. These extended edges are a higher level token than
the edge pixels that comprise them. Extended edges were used in [DAVIT9] and [DAVI81]

where their spatial properties were described by generalized cooccurrence matrices.

Sections 2 and 3 discuss the method in greater detail. Section 4 gives classification results.
Comparison with standard texture methods is made in Section 5. Combining the features of this
method with average edge pixel orientation features results in good classification rates. These
results are given in Seqtion 6. The robustness of the method is demonstrated in Section 7 where
a different type of edge finder is used in the first step of the method and comparable results are
obtained. Finally, Section 8 contains a discussion of the method and directions for further inves-

tigation.




2. Edge Detection

The first stage in the method is to apply an edge finder to the image. The goal of this edge
finder is to produce long, connected edges consisting of edge pixels of only one orientation.
Since each of these edge segments has a single orientation, it is possible to define simple distance
measures betwe:cn edge segments of different orientations. The output of the edge finding stage is
similar to a pen-and-ink sketch where the artist has built up the sketch with a series of thin.

straight lines. The following subsections present the steps used to produce the edges.

2.1. Edge Maps

Edge maps are produced by applying eight three by three edge templates at each pixel in
the image. The greatest response of the eight masks will be the magnitude of an edge pixel and
the orientation of that mask will be the edge pixel orientation. Orientations are from O degrees to
315 degrees in steps of 45 degrees. Two maps are produced: an edge magnitude map and an
edge orientation map. Fig. | shows a straw texture from Brodatz’ album of textures (Plate D92)
[BROD66]. Fig. 2 shows the magnitude portion of the edge pixel map. The edge map is now
separated into eight edge magnitude maps by placing nonzero edge pixels of each orientation in a
separate map. Fig. 3 shows the magnitude map for pixels with orientation 90 degrees for the

straw texture.

2.1.1. Smoothing the Edge Maps

The preceding step produces thick, ragged edges that have occasional gaps. Smoothing
these edges will enhan/ce the continuity of the thin edges. Each of the eight edge magnitude
maps is smoothed separately. This is done by convolving each map with a long, thin averaging
mask whose long dimension is in the same orientation as the map. Because each map has pixels
of only one orientation, these long masks will smooth edges along their length. but will not blur

edges perpendicular to their orientation. In the experiments done here, the following type of



averaging masks were used:

o o 0 1 2
A S T 0 o 1t 2 1
2 02 2 2 2 o t 2 1 0
[ A U U T r 2 1 0 0

2t 0 0 0
0 deg. 45 deg.

Similar masks were used for the other orientations. Fig. 4 shows the result of this stage on the

straw image.

The exact form of this smoothing step does not appear to be critical: the above masks were
chosen from a small number of trials based on the visual appearance of the final edges  In par-
ticular. 1x5 masks produced nearly the same results as these 3x5 masks. both in the tinal edges.

and in the classification of a small number of texture samples.

2.2. Edge Thinning

The result of smoothing is a set of thick edge maps. To produce the desired thin edges the
thick edges must be thinned to single pixel width. Such thinning is often done by “nonmaximum
suppression”. However. here again the fact that the edge magnitude maps are separated by
orientation can be used to advantage. In a single smoothed edge magnitude map all edges have
the same orientation, and a thick edge is always bordered by zeros. Consider scanning along a
line that is perpendicular to the orientation of an edge. The pixels will start out at zero, will have
nonzero magnitudes for a while, then fall to zero again. The edge can be thinned by retaining
the "central” pixel of each such scan line, setting the rest of the pixels along each scan line to
zero. The problem is to determine the best central pixel in each scan line. Denote position
along a given scan line by D. For example, in the vertical edge map D is a pixel’s column coor-
dinate in the image. By definition, pixels with the same value of D occur on a single vertical

line. The central “spine” of a thick vertical edge should consist of a line of pixels with nearly




the same D value. The values for D of the central spine may vary slightly. however, because the

edge may actually meander somewhat or not be oriented at an exact multiple of 45 degrees.

In summary. to thin a thick edge the following algorithm is used:

foreach scan line perpendicular to the map orientation do
begin
foreach nonzero run of edge pixels do
begin
Sum := 0
MagSum := 0.
D = position along scan line of first pixel of this run;
foreach pixel in this run de
begin
MagSum : = MagSum + PixelMagnitude:
Sum := Sum + D*PixelMagnitude:
D =D+l
end;

AverageD : = round( Sum/MagSum ):

Send to the output image the single central pixel of this
run with position along this scan line of AverageD.

end;
end;

A weighted average is used so that strong edge pixels near the cente

r of the edge will count more

in determining the center than weak edge pixels near the sides of a thick edge. As an example,

consider the following thick edge. in a 90 degree orientation edge m

1252
11252
23241
1131
1211
1526

agnitude map:

Since the edge direction is vertical, scan lines are along rows of the image. Calculation of the

central pixel to retain for each row of this edge consists of calc

column number, as shown in Table 1.

ulating the weighted average



column coordinate distance D weighted weighted
0 1 2 3 4 sum avg round
1 2 5 2 18 1.8 2
1 t 2 5 2 28 2.6 3
2 3 2 4 t 23 1.9 2
1 1 3 1 16 2.6 3
1 2 | 1 12 24 2
1 5 2 6 27 1.9 2
Table 1. Calculation of best central pixel in each horizontal scan line. The starting
column coordinate in this example is arbitrary.

The result is a long, thin. vertical edge:

This thinning algorithm is not confused by plateaus or by several maxima per scan line.
In real images edges are frequently thicker than the example given above and the values are
smoother as a result of the smoothing operation. However, it is still useful to smooth the local
jitter in the resulting thin edge (in the above example the column coordinates of the retained cen-
tral pixels occasionally shift by one ). This can be done by extending the idea of computing the
weighted average distance along a scan line. To do this. rather than computing the average D
value along a single scan line, the average D is computed using the nonzero edge pixels in three
adjacent scan lines. This average value determines the best central pixel in the middle scan line.

In the above example, this revised method results in a straight line of pixels in column two.




A disadvantage of this method is that when thick edges with a diagonal orientation are
thinned. the scan lines should start in every other column (or row) in order to prevent thinned

edges of width two. This effect is shown in the following example:

every every

start scan other

scan

22 22 2

121 2

122 22 2

12 2 2
121 21 2

21 21 2

Unfortunately. skipping every other scan line will occasionally introduce single pixel gaps in the

thinned edges. This will be corrected in the gap filling step described below.

The result of the thinning operation on the 90 degree edges of the straw texture is shown in

Fig. 5.

2.3. Filling Gaps

The next step takes the thinned edge maps and creates new maps for each orientation which
have single pixel gaps filled in and isolated edge pixels removed. First. a pass which labels edge
pixels having less than two edge pixel neighbors is made over each edge map. A second pass
searches for pairs of labeled pixels which have a single pixel gap between them and fills the gaps.
This step is not ailowed to create branches in the edge segments. A final pass removes any

remaining isolated edge pixels. The result of gap filling is shown in Fig. 6.

2.4. Combining the Edge Maps

The final step combines the eight edge maps into a single composite representation. The
first step uniquely labels each connected edge segment in each of the orientation maps. This

labeling is easy since edges don’t branch and all edges in a single map are in the same orienta-



tion. To avoid duplicate labels between different orientation maps, and as a convenience to later
programs. the edge labels also encode orientation. Note that at this step all edge magnitude
information is lost. An edge in the image now refers to a connected chain of pixels with the

same label.

The labeled edges are now combined into a single data structure. Since orientation maps
are processed independently, a single pixel may. in general. have several labels associated with
it Therefore, the final result is an image of labeled edges where several different labels may be
associated with a single pixel where edges meet or cross. Fig. 7 shows the final result for the

straw texture. In this figure any pixel with an edge through itis white. all other pixels are black.




3. Edge Separation Calculation

In this section we define new features to be used for texture classification based on the
average separation between edge segments of various orientations. Edge separation features will
be calculated by a method similar to growing generalized Voronoi regions [LEES81] [PHILS3].

The following paragraphs will describe this method in detail.

The input to the algorithm is the image of labeled edges described in Section 2.
Remember that this is an image of long. thin edges where each edge consists of connected edge
pixels of a single orientation (i.e. having the same label). A pixel may have more than one label.
The initial image is considered generation 0. In subsequent generations. all edges will be pro-
gressively thickened by expanding their perimeters. That is, at each generation each labeled
pixel that finds a neighbor without that same label, propagates its label to that neighbor. It does
not matter what other labels the neighbor has. The thickening of each edge is independent of all
the others (although sometimes information will be recorded when two different edge labels first
meet). Thus the thickened edges will. in general, overlap. In the results reported in Section 4,

"neighbor” means four-neighbor.

In this study we are interested in computing features relating closest pairs of edges at vari-
ous orientations. Therefore, rather than construct a complete description of all pairs of edges,
we compute for each edge the minimum distance to an edge of each of the eight possible types

(orientations). That is. each label computes a table of the form:

edge orientation
0 1 2 3 4 5 6 17

do |di |d2 {d3 |d4 |d5 [d6 |d7

For example, consider an edge labeled X. Each di specifies half the distance to the nearest edge
of orientation i. This is implemented as follows. Initially all the di’s tor label X are zero.

When label X is propagated to a pixel that has a different label, say label Y with orientation j, the
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value of dj for label X will be inspected. If it is zero. it will be set to the current generation

number: if it is nonzero, it will not be altered. If edge X has orientation k then the value of dk

for label Y is also inspected and set to the current generation number if dk is currently zero.

Since the orientation of a edge is encoded by its label, every edge segment can progressively

expand in parallel.

To summarize, each edge computes eight "distances” to its nearest edges of each orienta-

tion as follows:

Let dir(X) be the orientation of the edge labeled x.

d:= 0
for i:=1 to NumLabels do
for ;=010 7 do

i.tablefj] := O:
while any table entry is O do
begin
d:=d+ [

/* do this in parallel at each pixel */
foreach pixel P do
foreach 4-neighbor N of P do
foreach label X at P which is not at N do
begin
foreach label Y at N deo
if Y.table[ dir(X) ] = O then
Y.table[ dir(X) ] := d:

LabelSet(N) : = LabelSet(N) U {X};
end;

end;

In the following example, edges are labeled with their direction and "*" represents a pixel with

several labels.
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The generation number recorded for each orientation for each edge is roughly half the 4-distance
between the edge and the closest edge to it at the specified orientation. There are some
anomalies with this distance measure. First, the distance between two edges separated by an odd
number of pixels will be the same as if they had been separated by one less pixel. Also, the
closest neighbor relation is not symmetric. See the following example, where edge b is the
closest 90 degree edge to the 45 degree edge c. but ¢ is the closest 45 degree edge to the 90

degree edge a.

foo R R SV S I =
oo

oo T o
(¢

3.1. Edge Separation Features

The growth process stops when all labels have a distance recorded for each orientation.
Next all the edges of orientation 0 are examined and the average separations between these edges
and edges of each of the eight orientations are calculated. This is repeated for edges of each
orientation. As a result. an 8 by 8 matrix of edge average separation distance is generated. The
eight distances for edges of orientation O will be the first row of this matrix, the eight distances
for edges of orientation 1 will be the second row. and so on. Because the closest neighbor rela-

tion is not symmetric, the matrix will not be symmetric.

Table 2 is an example of this matrix with values from the straw texture. Notice that the
values in the table reflect structural features visible in Fig. 1. The blades of straw are mostly
vertical or slanting left. The values along the major diagonal are usually large since these are
the average separations between edges of the same orientation. For 0 degree horizontal edges
(row 0) the closest edges are 90 degrees (column 2) or 315 degrees (column 7). This is reason-
able because with the vertical emphasis of this texture any horizontal edge will soon approach a

vertical or leftward diagonal edge. The greatest separation for horizontal edges is for 0 degrees
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(column 0) and 225 degrees (column 5). This is again reasonable because for vertical or left-
ward vertical straw blades. horizontal edges are few and widely separated. As would be

expected, the separation distances for 90 degree vertical edges (row 2) show almost the opposite

pattern.
average distance to

from 0 ! 2 3 4 5 6 7
0 3.22 (.87 1.09 1.83 2.17 3.09 1.44 1.09
1 1.08 4.92 (.15 1.08 1.85 2.92 1.31 1.31
2 1.78 2.44 317 1.17 1.52 2.13 1.52 1.26
3 2.75 2.47 119 2.55 1.97 2.44 1.44 1.81
4 3.45 2.90 1.45 1.32 2.65 2.58 1.55 1.74
5 3.05 3.33 1.76 1.33 1.52 3.62 1.10 1.24
6 1.96 2.64 1.57 1.68 1.82 1.82 2.29 1.50
7 2.46 2.66 1.54 1.49 2.14 2.26 1.06 2.40
Table 2. Edge separation features for a 64x64 sample of straw texture. Entry at row
column c is the average distance from edges ot orientation r to edges of orientation c.

This average edge separation distance matrix contains a large number of features: the
square of the number of orientations. These features are not all independent of each other. As
will be seen below. many of these features are similar and do not yield improved classification

rates when more than a few are used.

Other features could be calculated from this matrix to reduce the amount of information.
A possibility is to use descriptors that have been successful with cooccurrence matrices. but
ideally descriptors should capture physically meaningful characteristics of the edge separation
distribution. Preliminary experiments with cooccurrence-like descriptors derived from the
matrix of edge separation features resulted in lower classification rates that using the original
features. Another possible set of descriptors would be the higher moments (standard deviation,
skew. and kurtosis) of each of the edge separations. Each higher moment would resuit in

another full matrix of features. No experimentation has been done with these descriptors.
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4. Classification Results

The procedure outlined in Section 2 and Section 3 was performed on six textures from
Brodatz’ album of textures [BRODG66] as seen in Table 3. Each 64 by 64 block of these textures
was histogram flattened to 64 gray levels [ROSE82]. This was done by histograming the center-
weighted sum of each three by three neighborhood. and partitioning this histogram into sixty-
four bins. These textures are similar and in some cases identical (except, perhaps, in scale) to

the ones used in Laws [LAWS79a.b].

texture Brodatz’ inches per
plate number 256 pixels
cork plate D4 3.5
grass plate D9 3.5"
pig plate D92 3.5"
straw plate D15 3.5"
raffia plate D84 3.5"
water plate D38 3.5"
Table 3. Set of Six Textures.

Two classification programs were used, a K nearest-neighbor classifier and a Fisher linear
classifier. The K nearest-neighbor classifier classifies an unknown point by finding the K points
of known classes that are closest to the unknown point in parameter space. The unknown point
is given the class of the majority of these K points. The classifier in this report uses the
Euclidean metric to determine distance (i.e. the square root of the squares of the differences
between parameters). The Fisher classifier considers two classes at a time. It finds the best
straight line to separate the points in these two classes in parameter space. Here, best means
maximizing the ratio of between class scatter to within class scatter. Every point in the testing set
is then classified into one of the two classes. This procedure is repeated for every combination
of two classes. The final classification of an unknown point is the classification it most often

received in the many two class problems.




4.1. Single Features

Each of the six texture images was divided into 64 windows of size 64 by 64, yielding 384
texture samples. The Fisher classifier was used with single features to classify each sample.
Both the testing set and training set included all 384 samples. Results are given in Table 4. The

same was done for the KNN classifier. Results for K=3 are seen in Table 5.

0 1 2 3 4 5 6 7
0 55.7 43.2 42.4 471 64.1 63.5 38.5 21.6
1 51.8 47.4 31.3 46.1 53.4 44.8 50.5 42.2
2 56.3 55.7 46.1 39.3 50.5 38.0 31.0 43.5
3 58.3 44.0 315 211 51.8 37.8 47.9 35.7
4 57.6 57.0 38.0 38.3 50.0 51.3 35.4 48.7
5 65.9 54.7 51.0 17.4 35.7 49.7 50.0 39.3
6 34.1 41.9 56.3 43.2 54.2 56.8 45.1 40.1
7 54.9 48.7 37.0 44.3 50.5 51.6 25.8 20.6

Table 4. Fisher classification with single features. 384 samples. 6 classes. The entry
in row r column ¢ gives the %correct using the average separation from edges of r*45
degrees to edges of c*45 degrees.

0 1 2 3 4 5 6 7
49.2 44.0 43.2 40.6 59.6 65.6 42.2 36.2
497 46.9 43.2 46.4 51.6 54.9 51.0 40.6
47 4 51.3 45.3 38.5 50.3 50.5 48.2 354
56.5 47.4 41.1 36.5 52.3 50.5 44.0 40.4
60.7 56.0 42.4 34.4 50.0 43.5 43.2 44.0
62.8 53.4 46.9 40.6 48.4 55.7 46.4 44.0
50.3 50.5 51.3 41.1 52.1 50.3 43.0 38.0
52.1 453 41.4 41.9 51.0 59.9 38.8 43.8

Table 5. KNN classification with single features. 384 samples. 6 classes. K=3. The
entry in row r column c gives the percent correct using the average separation from
edges of r*45 degrees to edges of c*45 degrees.

The features almost always result in an accuracy rate that is good for a classifier using only
a single feature (see Section S for a comparison with other texture methods). The range for
KNN classification is 34.4% correct to 65.6% correct. with a median of 46.1%. The range for

Fisher classification is 17.4% correct to 65.9% correct. with a median of 46.9%.
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The confusion matrix for the best KNN feature is given in Table 6. It is typical of the
confusion matrices for the other good features. Since it is especially fine grained and uniform,
the pressed cork texture is easily distinguished from the others. Pigskin and water are hard to
classify since they are not uniform textures. The pigskin image is composed of wavy hair so the
edge orientations are not evenly distributed throughout the plate. The water image is an oblique

view of a lake so there are perspective effects.

classified as

true cork grass pig raffia straw water
cork 63 0 0 1 0 0
grass 0 38 10 9 0 7
pig 0 17 35 1 2 9
raffia 3 18 0 41 0 2
straw 0 0 5 0 57 2
water | 26 13 6 0 18

Table 6. Confusion matrix for KNN classifier using the O degree to 225 degree

edge separation feature. Percent correct:65.625

The performance of the Fisher classifier and the KNN classifier are similar; the ranges are
comparable and the ranking of features is about the same. There are some trends among the
results: (1) Within a row, the best feature usually is at or one away from the column giving the
average separation between antiparallel edges. For example one of the best features is the 0-5
feature (row O col 5) which gives the average separation from edges of orientation O degrees to
edges of orientation 5%45 degrees = 180+45 degrees. In the few rows that do not show this
behavior the best feature is comparable in accuracy to the antiparallel feature. (2) Within a row.
the second best feature is often at or one away from the column giving the average separation
between parallel edges (the major diagonal of the matrix). There are more exceptions to this
trend than to the first. (3) Features involving diagonal edges and/or edges with orientations per-
pendicular to each other are usually not among the best features. (4) The same trends hold for

the columns as well as the rows.
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4.1.1. Discussion

The trends listed above are pleasing to observe: they can be explained in terms of "objects”
or primitives in the texture. Consider the first observation. that antiparallel edge separations are
good features. Say a texture were made up of sparsely distributed discrete objects. If the edge
finder described above worked optimally. each object would be bordered by a sequence ot over-
lapping straight edges of the eight orientations. The average distance between pairs of antiparal-
lel edges would give the length of various cross sections of the object. It would seem that these
cross sections would be good features for measuring the texture. and the experimental data tends
to confirm this (but note that the textures used are not made up of discrete objects). For exam-
ple, consider a black and white checkerboard. The average edge separation from edges of orien-
tation O degrees to edges of 180 degrees would give half the vertical width of the white squares
(remember that in the above procedure each edge grows and meets another edge at about half
their mutual separation). Similarly, the average edge separation from edges of orientation 90
degrees to edges of orientation 270 degrees would give half the horizontal width of the squares.
For many textures. however. the constituent "objects” are not so obvious. For example, in a
wexture of dark bricks with white mortar. the O to 180 degree measurement would give the width
of the mortar on the horizontal surfaces of the bricks. and the 90 degree to 270 degree measure-
ment would give the width of the mortar on the vertical surface of the bricks. These two meas-
urements would likely be the same, even though the length and thickness of the bricks are likely

to be different.

Parallel edge separations give another set of features which are physically meaningful.
Recall that these features were often the second best features in the above classifications. For the
black and white checkerboard example, the O degree to O degree edge separation would give the
vertical thickness of a black square on top of a white square: the 90 degree to 90 degree edge

separation would give the horizontal thickness of a black square beside a white square. In this



example, this gives no more information over the antiparallel separation features. In the brick
example. the 0 degree to 0 degree edge separation would give the thickness of the mortar on the
vertical face of the bricks. This is because the Voronoi-like region grower elongates as well as
thickens edges. The growth of an edge is in all directions. generating an expanding region. So
a horizontal edge in a brick texture is going to grow into a nearby horizontal edge on a horizon-
tally neighboring brick. So again the parallel edge separation adds little new information over
the antiparallel edge separation. It seems physically reasonable that this feature is usually second

best.

It also seems reasonable that the separation of edges in perpendicular orientations is a poor
feature. In the two example textures above, these features would not have any meaning if the
edge finder worked well since such edges would meet at the right angles of the squares. If the
edge finder occasionally missed corners. these features would just reflect the sloppiness of the

edge finder, not anything physically meaningful about the texture.

The textures used in the experiment are not made up of discrete objects on a uniform back-
ground. None could easily be considered a collection of objects whose average cross section was
being measured. For example. consider the pressed cork texture. The individual grains might
be considered objects. But this will not work since the grains are so small, have many different
shapes and sizes. overlap, and cast shadows. Individual grains cannot be found in either the
edge map produced by the 3 by 3 template operator or in the final edge drawing. The edges
found by the edge finder seem to be edges formed by various groupings of highlights and sha-
dows in the image. The "objects” in this texture are the various groupings, not the individual

grains. Similar comments can be made about the other textures.

4.2. Pairs of Features

Pairs of features were used to classify the same 384 texture samples. Again. the training

set and testing set were the same. The antiparallel edge separation feature pairs were the best or
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close to the best. Table 7 shows the accuracy of the Fisher classifier using these pairs of
features. The range is 45.8% correct to 78.6% correct. In Table 8, each feature selected is the
best feature in one of the rows of Table 4. the single feature classification accuracy matrix. The
classification accuracy has improved somewhat by using pairs instead of single features. The
range is 46.4% correct to 82.6% correct. In both of these tables. the best classifications result
when dissimilar features are paired. For example. in Table 8 the best pair is feature 0-5 and

feature 6-2, two roughly antiparallel pairs which are perpendicular to each other.

1-5 2-6 3-7 4-0 5-1 6-2 7-3
0-4 || 66.9 77.1 62.8 65.1 70.8 76.8 69.3
1-5 76.0 58.6 68.8 59.9 77.9 62.5
2-6 61.5 74.2 78.6 56.0 67.4
3-7 59.6 58.8 66.1 45.8
4-0 64.6 75.8 66.1
5-1 77.3 60.2
6-2 67.7

Table 7. Fisher classification with selected pairs of features. 384 samples. 6 classes.
Each feature is an antiparallel edge separation. 1-5 means the average separation from
edges of orientation 1¥45 degrees to edges of orientation 5%45 degrees. The entry at
row r and column ¢ gives the percent correct using that pair of features.

1-5 2-1 3-0 4-0 5-0 6-2 7-0
0-5 1 71.6 66.1 73.2 71.6 72.1 82.6 68.0
1-5 65.1 67.7 68.8 46.4 77.9 64.1
2-1 62.8 65.9 65.6 73.2 60.4
3-0 65.4 67.2 75.8 64.6
4-0 70.8 75.8 59.4
5-0 79.7 66.7
6-2 71.4

Table 8. Fisher classification with selected pairs of features. 384 samples. 6 classes.
The selected features were the best feature in each row of Table 4. The entry at row t

and column c gives the percent correct using that pair of features.

Table 9 gives the classification rates using pairs of antiparallel edge features with the KNN
classifier. The classification rates are about the same. Again. the best rates seem to be obtained

when dissimilar pairs of features are used.



1-5 2-6 3-7 4-0 5-1 6-2 7-3
0-4 | 62.0 76.8 58.6 60.4 68.2 74.5 63.8
1-5 77.9 55.2 64.3 60.9 74.5 56.8
2-6 58.6 77.3 76.0 61.5 64.3
3-7 63.3 54.7 56.0 44.0
4-0 65.9 74.0 64.3
5-1 75.3 54.2
6-2 61.5

Table 9. KNN classification with selected pairs of features. 384 samples. 6 classes.
K =3. Each feature is an average separation between antiparallel edges.

Table 10 gives the classification rate for the KNN classifier using selected triples of

caatures. Each feature in this table is an antiparallel edge separation. The highest classification

rate is 85.9% correct, achieved with a horizontal. a vertical, and a diagonal antiparallel edge

separation feature. The lowest classification rate is 59.1% correct, achieved with 3-7. 5-1. and

7.3 features. Since the first and last of these features are similar, it is not surprising that these

three features do not do well. Combinations using more features, or features other than the

antiparallel edge separations have not been tried (however, see Section 5).




2-6 3-7 4-0 5-1 6-2 7-3
0-4 + 1-5 83.6 64.6 64.6 71.4 78.6 69.5
0-4 + 2-6 78.6 81.8 85.9 81.0 80.7
0-4 + 3-7 65.1 69.5 78.4 65.6
0-4 + 4-0 69.3 80.2 68.5
0-4 + 5-1 §2.3 71.9
0-4 + 6-2 78.4
1-5 + 2-6 78.4 82.0 79. 79.7 77.9
1-5 + 3-7 66.9 61.5 75.0 57.3
1-5 + 4-0 68.8 80.2 67.2
1-5 + 5-1 76.8 61.2
1-5 + 6-2 76.6
2-6 + 3-7 82.6 78.4 62.5 64.1
2-6 + 4-0 82.8 79.7 80.7
2-6 + 5-1 79.4 78.1
2-6 + 6-2 65.9
37 + 40 69.0 72.7 65.9
3-7 + 5-1 75.3 59.1
37 + 6-2 62.5
4-0 + 5-1 84.1 66.1
4-0 + 6-2 74.2
5-1 + 6-2 74.5

Table 10. Classification rate with triples of features.

edge separation. 3-Nearest Neighbor classification. 384 samples.

Each feature is an antiparallel

22
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5. Comparison with Other Texture Features

This section compares the edge separation texture classification method developed above
with Laws’ features and cooccurrence matrix features. These comparison studies will use the

same 384 texture samples used in the above experiments.

5.1. Laws’ Features

Laws found that the output of a set of very simple masks can be used as an effective texture
measure [LAWS79a] [LAWS79b] [PIETS2b]. The version of his method used in the com-
parison study here convolves the image with nine three by three masks. The average, standard
deviation. skew. and kurtosis of the output of each mask is computed for each texture sample.
giving a total of 36 features. Table Il shows the percent correct classification using single
features with the 384 texture samples and using the Fisher classifier. As before. ail 384 samples
were in the training as well as the testing set. Table 12 shows the same for the KNN classifier.
The classification accuracy using the mean of the output of one of the masks is usually poor
(often 16.7%, the pure chance rate for 6 classes). This is expected since all but one of the Laws
operators are zero sum masks. Skew and kurtosis. the normalized third and fourth moments,
are usually not very useful either. The best features are the standard deviations of the mask
responses. This agrees with what Laws himself found. The standard deviation of these masks
he calls "texture energy”. Laws’ features used one at a time do not perform as well as our edge
separation features. The range for single Laws features using the Fisher classifier is 16.7%
correct to 57.8% correct, with a median of 20.1% correct. For edge separation features, the
corresponding range using the Fisher classifier is 17.4% correct to 65.9% correct with a median
of 46.9% correct. The range for single Laws features using the KNN classifier is 16.7%
correct to 52.9% correct with a median of 33.3% correct. For edge separation features, the
corresponding range using the KNN classifier is 34.4% correct to 65.6% correct with a median

of 46.1% correct.




mean sd skew kurt
1313 19.0 31.0 25.8 32.6
13e3 39.6 48.7 39.3 471
1353 20.3 56.0 20.1 20.8
e313 45.8 44 .0 33.1 41.1
e3e3 16.7 36.5 16.7 16.7
e3s3 16.7 20.1 16.7 16.7
s313 26.3 578 20.1 30.2
s3el 16.7 18.5 16.7 16.7
s3s3 16.7 16.7 16.7 16.7

Table 11. Fisher classification with single Laws features. 384 texture sam-
ples. 6 classes.

mean sd skew kurt
1313 18.0 247 20.1 24.5
13e3 37.2 49.0 42.2 39.6
1353 22.7 52.6 36.2 43.0
e3l3 39.1 43.8 33.3 37.5
eldel 18.5 34.9 29.9 41.9
els3 16.0 40.1 22.9 28.4
s313 31.0 52.9 35.7 339
s3e3 16.7 49.5 29.2 27.1
s3s3 19.3 40.6 25.5 32.0

Table 12. KNN classification with single Laws features. K=3. 384 texture sam-
ples. 6 classes.

Table 13 shows the classification rate of the Fisher classifier using pairs of texture energy
features. The range of accuracy is 18.8% correct to 81.3% correct. The range of accuracy for
selected pairs of the best edge separation features is 46.4% correct to 82.6% correct. Again. the
edge separation features appear to do better. This comparison may not be fair. since the eight
edge separation features that were selected were the best out of 64 features, while the nine Laws
features were the nine texture energy features. not necessarily the best out of the 36 Laws

features.
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13e3 1353 e3l3 e3e3 e3s3 s313 s3e3 s3s3
1313 53.6 67.4 47 .4 56.8 28.1 60.2 28.1 30.5
13e3 63.3 72.7 62.2 54.7 71.4 50.5 51.8
13s3 78.4 65.4 58.6 81.3 55.2 56.3
e313 54 .4 45.6 65.9 43.8 43.2
e3el 38.0 63.8 27.6 28.9
e3s3 58.3 22.4 21.1
s313 58.1 57.8
s3e3 18.8

Table 13. Fisher classifier with pairs of Laws features. 384 samples. 6 classes. Each
feature is a standard deviation of one of the 3x3 Laws operators.

5.2. Cooccurrence Matrix Features

Cooccurrence matrices are commonly used for texture discrimination and are often used in
comparison studies [WESZ76] [LAWS79a]. A single matrix is built for a particular angle and
displacement. Typically. the angles are horizontal. vertical. and the two diagonals and the dis-
placements are a few pixels. To cut down the size of the matrices. the gray levels of the image
are often grouped into a small number of ranges. A particular matrix records the frequency that
pixels of each range of gray level can be found at the given angle and displacement to each other.
Matrices may be symmetric or asymmetric depending on whether the orientation between two
pixels is regarded as undirected or directed (180 degrees difference depending on which pixel is
chosen). For the matrices used here. gray levels were put into sixteen ranges and the matrices
were symmetric. There are very many cooccurrence matrix features. The four chosen here are

commonly used, and were used in [WESZ76].

As before, 384 texture samples were used. The training set was the same as the testing
set. Table 14 gives the result when single cooccurrence features were used to classify the tex-
tures using the Fisher classifier. The range was 20.1% correct to 48.7% correct with a median
of 40.6% correct. The distance one features are the best. a result also found in [WESZ76].

Overall, the edge separation features appear to perform better than the cooccurrence features.
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distance = |
dir CON ASM ENT COR
0 48.4 47.7 46.4 48.7
1 38.5 36.2 34.7 38.0
2 45.1 41.1 39.8 44.5
3 40.1 41.9 38.5 40.4

distance = 2
dir CON ASM ENT COR
0 46.9 45.3 41.7 47.9
1 40.4 393 40.4 40.6
2 36.8 40.4 38.3 39.6
3 40.6 43.0 44.8 41.4

distance = 4
dir CON ASM ENT COR
0 44.0 41.1 41.4 44.3
1 44.0 30.2 29.2 44.0
2 41.1 34.6 38.0 40.9
3 37.5 20.1 26.6 37.8
Table 14. Fisher classification using single cooccurrence matrix features. ©
classes. 384 samples. Matrices were built using four displacements in four
directions.

Pairs of features from the displacement one matrices were also tested using the Fisher clas-
sifier. The range was 34.6% correct to 72.9% correct. with a median of 46.4. With pairs of
features from the displacement two matrices the range was 46 .9% correct to 72.7% correct. with
a median of 70.3. With pairs of features from the displacement four matrices the range was
44.0% correct to 70.6% correct. with a median of 65.4. Again. the edge separation features

give better results.
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6. Average Edge Orientation Features

The three by three template operator discussed in Section 2 produces an edge map for each
texture. The edge pixels in these edge maps have attributes of magnitude and orientation. The
average edge pixel orientation could also be used as a texture feature. Recall that orientation is
one of the properties of the “elongated blob” texton of Julesz. However, for each collection of
edge pixels of a particular orientation there will be another collection of edge pixels of the
antiparallel orientation. Since these corresponding collections will have approximately the same
numbers of pixels in them, the average orientation will be meaningless for most textures. To
avoid this problem, parallel and antiparallel edge pixels are given the same orientation in the
range 0 to 135 degrees (in 45 degree increments) by taking the orientation modulo 180 degrees.
The average and higher moments are now calculated Classification results using these features

and the Fisher classifier are shown in Table 15

avg orientation 70.6%
standard deviation 52.6%
skew 68.2%
kurtosis 52.9%

Table 15. Edge orientation features. Fisher classifier. 384 sam-
ples.

These classification rates are very good. The accuracy rate for average edge orientation is
the best found for these textures for any single features in our study. No spatial distribution
information is contained in these features. This suggests that combining them with some of the
average edge separation features should yield good results. Table 16 shows the classification
accuracy for pairs of average edge orientation and edge separation features using the Fisher clas-

sifier.
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0 1 2 3 4 5 6 7

68.0 71.9 77.1 79.7 79.2 84.4 74.2 70.1
73.4 70.3 74.0 77.3 74.0 77.6 75.8 71.1
71.2 73.2 71.4 72.9 72.9 74.7 78.1 73.2
73.4 74.2 71.9 72.7 70.3 76.3 75.0 73.7
76.8 76.8 74.0 70.1 66.9 72.1 76.0 74.2
81.5 77.6 75.8 76.3 71.6 70.6 74.5 76.6
69.0 74.0 76.8 72.9 76.8 77.1 75.3 74.7
71.4 76.6 71.9 76.6 74.7 79.2 72.7 71.9

~N OV D W — O

Table 16. Fisher classification with pairs of features. One feature is always average
edge orientation. the other is the separation between extended edges of orientation indi-
cated by the row and column numbers. 385 samples. 6 classes.

Pairing edge orientation with edge separation features gives consistently good results. but
the improvement over single feature classification rates is often small. For example. edge
separation feature 0-5 gave an accuracy of 65.6% when used alone. Average edge orientation
gave an accuracy of 70.6% when used alone. When both were used in the classifier. these two
features gave an accuracy of 84.4%. This seems like a small improvement for teatures that per-

form so well alone.



7. An Alternate Method for Computing Line Separation Features

This section discuses an alternative method for generating edge separation features. This

method retains the main ideas of the method described in Sections 2 and 3. but the approach is

different in several aspects. It is discussed here to demonstrate that the edge separation features

can withstand wide variation in the method by which they are generated. The principle differ-

ences between the previous method and this alternate method are:

(O

2

3)

C)

&)

©)

Only four orientations are used. in 90 degree steps.

An edge magnitude map for each orientation is produced directly from the original gray
level image by convolution with a long. thin edge template of size five by two. Because of

this, a pixel can have a nonzero magnitude in several edge maps.
No smoothing is done except for that implicit in the convolution masks.

Thinning the edges is done as before except now edges are bordered by negative magni-

tudes as well as by zeros.

Growth of edges is done by propagating labels to 8-neighbors rather than 4-neighbors (for

a discussion of the effect of various metrics on discrete Voronoi diagrams, see [PHILS83]).
Since there are only four orientations, the feature matrix is four by four.

Table 17 shows the classification accuracy when these single features were used in the

Fisher classifier with the same 384 samples that have been used before. The range of accuracy

is 24.5% correct to 50.5% correct, with a median of 33.3% correct. Recall that with features

generated by the previous method the range was 17.4% correct to 65.9% correct, with a median

of 46.9% correct. It appears that features generated by the alternate method are not as good as

those generated by the first method.
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0 ! 2 3
0 30.7 40.9 36.7 39.1
1 28.9 341 33.3 50.5
2 41.7 33.3 245 44.5
3 27.9 50.5 28.6 31.5

Table 17. Fisher classification with single line separation features (alternate
method). The entry in row r column c gives the % correct for separation from
lines of r*90 to lines of c*90.

Table 18 shows the percent classification accuracy when selected pairs of features are
used. Each feature in this table is either a separation between edges of antiparallel orientation,
or a separation between edges of parallel orientation. The range is 36.7% correct to 74.2%
correct, with a median of 52.1% correct. Again, this is somewhat worse than the rates using
pairs of features generated by the first method. given in Table 8. However. classification accu-
racy using pairs of alternate features is closer to that using pairs of the previous method than the
single features were. Note that the best pairs combine one of the two separations for horizontal
antiparallel edges with one of the two separations for antiparallel vertical edges (eg. the 1-3, 2-0

pair is the best). This trend was also observed with features generated by the previous method.

These features also combined well with the edge orientation features. When the (1-3. 2-0)
pair was used with average edge pixel angle in a 3NN classifier, the accuracy was 94 2%
correct. Oddly. no two of the features generated by the previous method when combined with

any average edge orientation feature give such a high classification rate.
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0-2 1-1 1-3 2-0 2-2 3-1 3-3
0-0 38.0 45.3 59.4 41.7 36.7 52.1 44.5
0-2 54.9 69.5 44.0 43.8 63.0 51.0
1-1 57.6 58.9 40.4 53.1 42.7
1-3 74.2 53.6 58.3 55.7
2-0 46.1 66.4 56.5
2-2 47.1 37.0
3-1 54.4
Table 18. Fisher classification with pairs of features. 384 samples. 6 classes. x-y
means the separation between edges of x*90 degrees to edges of y*90 degrees.

Although not as good as the previous features. the features calculated by this alternate
method are still good features when compared to cooccurrence features. This suggests that the
general idea of using edge separation features is a good one. since it works reasonably well with
edges generated by two different methods. The poorer performance of the alternate version may
have been due to the fact that it used edges in only four orientations. where the first method used

edges in eight orientations.
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8. Concluding Remarks

The previous sections have shown that features of edge segments found in a texture are
good for texture discrimination. This section discusses how this technique is related to general-

ized cooccurrence matrix features and ways in which our method could be extended.

8.1. Relationship to Generalized Cooccurrence Matrices

Davis and colleagues have proposed generalized cooccurrence matrices. GCM’s. to
describe structural feature distribution in a texture [DAVI79][DAVI81]. Although their method
may be used with any image feature that can be assigned locations and properties. in the follow-
ing it will be explained as it applies to extended edges (in their experimental studies. the only
image features used were gray level. edge pixels. and extended edges). Suppose that a texture
has been convolved with a set of edge operators and similar edge pixels have been linked together
so that the resulting image is a distribution of extended edges of several different orientations.

The different orientations mav be used to label the rows and columns of a matrix, as seen below:

0 45 90 135

0
45
90
135

A cell of this matrix is incremented whenever a pair of extended edges is found that have the
orientations given by the row and column of the cell. and also satisfy a particular spatial predi-
cate. One of the spatial predicates used by Davis is Ak(f1,£2). where Ak(f1.f2) is true if either
end of the extended-edge fl lies in either of the k by k square neighborhoods centered about
cither end of extended edge f2. After a GCM has been computed, various descriptors can be
computed from it to describe the texture by means similar to those used for gray level cooc-

currence matrices.
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The reported classification results using GCM'’s with extended edges were worse than for
gray level cooccurrence matrices [DAVI8I]. This is surprising, in light of the success with the
edge features reported here. Classification results when GCM’s were used with edge pixels were

only slightly better than those for gray level cooccurrence matrices.

Although appealing. GCM’s have several problems describing texture. Each feature is
expected to have a set of coordinates that describe its location in the image. It is difficult to
choose such a set for many types of image features. For example. the spatial predicate Ak(f1.£2)
described above depends on knowing the exact endings of extended edges. This is difficult, for
reasons discussed in Section |. Another spatial predicate used by Davis involved knowing the
center of an extended edge. Again. this is difficult to determine precisely. To overcome this
problem, single pixel image features might be used so that their locations are easily determined.
An example of this is the edge pixels that performed better than the extended edges [DAVISL].
Unfortunately. now the method is no longer describing higher level features. In contrast. the
edge separation features described in this report do not depend critically on describing an edge

by a few location coordinates and do not assume that the edge data are noise-free.

The meaning of a GCM is not very clear when a nonintuitive spatial predicate is used. To
make matters worse, the features used with the classifiers are composite descriptors calculated
from the GCM (e.g. contrast. entropy. and correlation). These descriptors are even harder to
understand physically. With edge separation features. the individual cell values were used for
classification with good results. Although they suggest using them. Davis and colleagues do not
report any results using individual cell values of GCM’s as features for a classifier. It might be
that some cells would have been better features than the descriptors calculated from the matrix as

a whole.

The edge separation method developed in this report also suffers from generating too many

features. Preliminary experiments were performed to try to find composite descriptors of our
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edge separation matrix similar to those used for GCM’s. However, none of the standard cooc-

currence descriptors performed nearly as well as the single edge separation features.

8.2. Possible Extensions

There are two main ways in which the edge separation method presented here could be
extended. The first way is to consider alternative spatial properties for describing inter-edge
relations (or other non-local features). For example. in Section 3 an edge grew when each pixel
along the perimeter passed its labels on to any 4-neighbor that did not already have them. By
restricting which neighbors can receive new labels from a pixel. edges can be forced to grow in
only selected directions. For example. growth could be restricted to the horizontal direction
only. The edge separation features would then be a measure of the horizontal distances between
edges of all orientations. The same could be done for vertical and diagonal growth. The result-
ing set of features would then describe the average distance and direction between edges of all the
orientations. Other changes in the way a region grows would yield other features. The direction
in which an edge grows could be a function of its orientation (s0 that horizontal edges would

only grow vertically and vertical edges grow only horizontally).

Alternative growth patterns also could be used to calculate GCM-like features. Consider
growing edges in the horizontal direction only. Allow the process to continue for a fixed number
of generations. When the growth is stopped, a GCM could be calculated by scanning through
the image, noticing which labels occur at the same pixel. The attributes of the edges which co-
occur in this manner could be used to determine the row and column of the GCM. This method
would not have to be restricted to edges. As long as an image feature can be described as a con-
nected region a growth process can be used to define a spatial predicate. This has the advantage
that distinguished points (such as endpoints and midpoints) do not have to be detected for the
method to work. Clearly, these GCM features and the edge separation features could be calcu-

lated simultaneously. The full set of resulting features might be very effective for texture
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discrimination.

A second way to extend our method is to define new spatial statistics of edge representa-
tions. For example, in add;tion to calculating the average edge separation between edges at two
particular orientations. higher moments could be calculated. These higher moments are not very
appealing. however. because their relation to the original image is not very clear. To deal with
the large number of features generated by these methods. other composite descriptors of the edge

separation matrix are needed. As discussed above. cooccurrence matrix descriptors perform

poorly. But there might be more meaningful spatial statistics that could be calculated.

Another motivation for calculating descriptors of the matrix is to allow texture analysis to
be insensitive to rotations of the texture. Rotating the texture by 45 degrees has the effect of
rotating the row and column numbers of the matrix of edge separation distances. So. €.g.. the
distance at row r column ¢ is now at row (r+1 mod N) column {c+1 mod N), where N is the
number of directions. Rotation insensitive matrix descriptors that utilize this characteristic are

described in [DAVIS81].

Features which are insensitive to texture scale (probably within a limited range) are also
important. Line separation features are geometric distances and change linearly with changes of
scale. The ratio of the distances describing a feature will remain constant as the scale changes,
50 the ratio of edge separation features should also remain constant. A possible limitation is that
the edge finder might not produce scaled versions of the edges at widely different scales.
Another limitation is that non-Euclidean metrics are not orientation insensitive when computing
inter-edge distances [PHIL83]. Neither the 4-neighbor metric used in Section 3 nor the 8-
neighbor metric used in Section 7 yield even growth in all directions. It is possible that the
Euclidean metric will have to be used to obtain rotation insensitive features. In spite of these dif-
ficulties. edge separation features depend on scale in a way that is clearer than for any other tex-

ture measure.
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Fig. 1. Histogram flattened straw texture, 512 x 512 pixels.



Fig. 2. Magnitude portion of edge pixel map of straw texture.




..-" \: A \ ‘:\\.\|
\ X\ : ": \ \\‘\ é
S ,}.g ol

Fig. 3. Magnitude map of 90 degree edge pixels.



Fig. 4. Smoothed magnitude map.







after gap filling, 512 x 512 pixels.
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Fig. 7. Final edge segments of straw texture.






