CHARLOTTE:
DESIGN AND IMPLEMENTATION OF A DISTRIBUTED KERNEL

by
Yeshayahu Artsy
Hung-Yang Chang
Raphael Finkel

Computer Sciences Technical Report #554

August 1984

Charlotte:
Design and implementation of a distributed kernel

Yeshayahu Artsy
Hung-Yang Chang
Raphael Finkel

1. Introduction
2. Overview of software architecture
2.1. Inter-process communication
2.1.1. Links ...l

CONTENTS

2.1.2. Communication primitivesooiiiiirtiii i e e

2.1.3. Discussion
Simplex and duplex links .
Naming e
Non-blocking and blocking
Buffering

2.2, Utility processes
KernJob e

Starteroveeiiiiii
SwitchBoard
FileServer
Connectorocovevven.

2.3. Exampleooeiinns

3. Kernel designoon

COMMURICATON ot trtinr st ree et can e naa s .

R O A= APPSR

3.2. Task structure

4. Protocol Evolution and Implementation ...

4.1. The Four Basic Machines ...

4.1.1. Send ...

4.1.4. Destroy Link

4.1.2. Receive
4.1.3. Wait

4.1.5. Receive, Send and Buffer Managementocoiiiiiiiiii s
4.2. A Second Level of Complexity «.....oooviioiii

4,2.1. Cancel

4.2, 2. MoOVE LK o e
Prologuecooie O P P

Body «oovviiii

EPHOZUE oottt et e e

4.2.3. Destroy-Move conflicts

4.2.4. Receive / Send FSAs - the Third Dimensionocoeeeeiviiiiiiiniiniiiiaann.
4.3. Augmented Send and RECEIVEooiiiiiiiiiiiii
4.3.1. Receive(ALLINKS) .. i

4.,3.2. Unrestricted buffer size

4.3.3. Other versions of Send/RECEIVEvviiririr et eaeranaanes
Lo O Lol LT3 o)« T I P e

Acknowledgements

O 0 00 &0 ~ ~ & O A0 L W NN e

Appendix A: The four basic FSAS ...

6. References

ii

Charlotte:
Design and implementation of a distributed kernel!

Yeshayahu Artsy
Hung-Yang Chang
Raphael Finkel

1. Introduction

This paper describes the architecture of the Charlotte distributed operating system designed for
the Crystal loosely coupled multicomputer network [1]. Charlotte aims to provide a supporting
environment to solve computationally intensive distributed problems. It includes unique inter-
process communication mechanisms and process-management services. Applications running under
Charlotte may have several closely coupled concurrent computational threads. Charlotte is responsi-
ble for assigning processors to processes and hiding details of inter-processes communication. Char-
lotte therefore fulfills several goals:

] to explore operating system design for multi-process applications.

] to study a new approach to communication paths and primitives.

° to maximize utilization of computational resourses while minimizing overhead. and
° to serve as a testbed for distributed algorithm design.

The network uses a token ring called ProNet [2], which currently connects 13 homogeneous node
computers and several host computers. Each node is a VAX-[1/750 with 1-2 MB main store. The
hosts are VAX-11/750s and 780s running Berkeley Unix 4.2.7 The network can be dynamically par-
titioned to run different operating systems and stand-alone application programs concurrently. Each
node runs a basic software nugget, which provides low-level inter-node communication facilities [3].

The current version of Charlotte has many antecedents. Arachne (orginally called Roscoe)
[4,5] was first designed and built around a network of PDP-11/03 computers and subsequently
rewritten for the network of PDP-11/23 computers connected by a broadband, 1 Mb/sec contention
network. Inter-process communication in Arachne is based on the Demos operating system for
Cray-1 [6]. Experience with Arachne resulted in the design and implementation of Charlotte version
1, which introduced different inter-process communication primitives to remedy perceived defects of
Arachne. Full-duplex links replaced simplex links, synchronized message transfer replaced kernel
buffering, and a more symmetrical send and receive replaced blocking receive and non-blocking
send. This first version was written for the PDP-11/23 network. When Crystal became available in
the summer of 1983. Charlotte underwent another change. Interprocess communication interfaces
were modified, the kernel internal structure was redesigned, and a new inter-kernel protocol was
built. We will present each of these new designs in detail.

This paper describes the general architecture of Charlotte version 2 while looking back to draw
comparisons from previous versions. We will demonstrate how a simple but flexible inter-process
communication design leads to complex kernel-level protocols. However. the complexity is measured
by the number of compound conditions and anomalies that must be considered. not by time or space
inefficiency. Section 2 provides an overview of Charlotte software, Section 3 describes kernel struc-
ture in general, and Section 4 elaborates on the kernel-level protocol design.

2. Overview of software architecture

Charlotte contains three levels of software (Figure 1). The innermost level is the kernel, which
provides interprocess communication and simple process control. An identical copy of the kernel is
running on each node. A process called the KernJob also exists on each node. The KernJob

!This work was supported in part by NSF grant MCS-§105904 and by DARPA contracu N00014-82-C-2087

provides process-control functions to other processes through the message-based inter-process com-
munication interface. Failure of this level is considered nonrecoverable.

The second level consists of utility processes, which are part of Charlotte but need not reside
on each node. For example, a Starter, which is the memory manager as well as the midwife of new
child processes, may have several nodes under its purview. The following utility processes are
currently available:

Memory Manager (Starter)
File Server

Initial-linkup Server (Connector)

Directory Server (SwitchBoard)
® Command Interpreter

A fully functional Charlotte installation needs at least one copy of each utility. Failures at this level
are not considered fatal, so every effort is made to recover after loss of servers. We assume a server
dies only because its node has failed. We can often reconstruct partial resource information
governed by a failed server by querying kernel tables and can subsequently create a new server pro-
cess to resume the service.

The third software level contains client processes enjoying the interprocess communication
mechanism provided by the kernel and utility functions from various utility processes. Processes can
be called into existence interactively through the command interpreter or through other processes.

1 !
l R |
L | |
- UTILITY PROCESSES] t
e R e EEER R |
| Communication kernels: !
| R + e + 1
| | KERNEL | | ------ ---- | KERNEL 2 | --- |
| l | | | 1
1 | KJOB | | KJOB 1 |
[R + e + |
i | | 1
l dommn e + T + |
| | KERNEL.. | =----..... ~--- | KERNEL.. | --- |
| \ | ‘ 1 i
| | KIOB | | KJOB \ |
| e s + R + |
B e R R I +

Figure |: Layers of Charlotte
2.1. Inter-process communication

2.1.1. Links

The central idea of Charlotte inter-process communication is the concept of a link. A linkis a
logical, full-duplex connection between two processes, each of which has a capability to access one
end of the link. To own a link is to own the capability of communicating across the link. to give it
away or to destroy it. A process never refers to other processes directly. Instead. it presents a link

2 Unix is a trademark of Bell Labs.

identifier, which is a small integer local to the process. The kernel uses this identifier to index an
entry in the per-process capability table, which contains an index into an entry in the global link
table. If the request is to send a message to the process at the other end of the link, the kernels of
the two ends of the link will cooperate to pass the message. If both processes are on the same node,
only one kernel is involved. A process may send a message, receive a message, cancel a send or
receive request, destroy a link, or enclose a link in a message. We will examine these operations
shortly.

Each link end is owned by only one process. The kernel stores information about each link in
a link descriptor, which contains:

(a) static information about the link: Type, state. local-end address (Source) and remote-end address
(Destination). An address is a triple of node identifier, process identifier. and system link identif-
ler.

(b) Information concerning a current Send operation: send state (S State). send buffer.
(c) Information concerning a current Receive operation, like (b).

A process is born with one umbilical link to its parent. Other links acquired by a process are
enclosed in messages received by that process. By convention, a process begins its life in a linkup
phase in which its parent grants it a number of links. Links are created by the MakeLink system
call. which constructs a new link with the caller holding both ends. A process can introduce two col-
leagues to each other by forming a new link and giving each colleague one end. For the sake of sim-
plicity. the rest of the paper discusses only normal links; we will ignore special links provided to
allow KernJob processes to talk with each other (half links) and to allow Charlotte processes to com-
municate with entities outside the Charlotte world (primitive links).

The link abstraction is supported by the kernel. which itself depends on lower-level software
and hardware. Figure 2 demonstrates this dependency relationship.

2.1.2. Communication primitives
Process-level communication is

® Non-Blocking: A process can generally continue executing while the kernel is transmitting a
message on its behalf,

UnBuffered: a message is not transmitted until the receiver has provided a place to put it, and

Synchronous: processes are not interrupted by the arrival of messages or the completion of sent
messages.

The unit of communication is a message. A message is a package of information of any length. The
kernel ignores any internal structure in messages. A buffer is an area in the addressing space of a
process that contains or is expected to receive a message.

Send(transmission link, buffer, buffer size. enclosed link)
initiates a transfer of data from the indicated buffer along the indicated link. This operation
remains in progress until its completion is reported by the Wait system call. It is possible to
enclose an end of a link in the message, in which case that end disappears from the sender’s
grasp. If Send should fail, the enclosed link. if any, is restored to the grasp of the sender.

Receive(transmission link, buffer, buffer size)

allows a message to be received on the indicated link and placed in the buffer. The link iden-
tifier A/[Links permits the acceptance of a message on any link held by that process. Receive
on AllLinks may not coexist with Receive on a specific link, because it may cause inconsistency
(from user point of view) in choosing the buffer to place arriving messages. If the buffer is not
large enough to hold the entire message. as much as fits is placed in the buffer. the tail is lost,
and the completion event (discussed shortly) notifies both the sender and receiver about this
lose of transmission.

dem e + e +
| 3 1 |
| User Proc | ---------- LINK---~----=--- | User Proc |
| | a logical connection | |
R R + supported by kernel e +

Foem e + e +
| 1 ! 1
| Kernel | o Reliable---~---~- | Kernel |
| | transmission service | |
R + supported by nugget R +

|| | | procedure

| | | interrupt
dromm oo + dmeme e +
l | | |
| Nugget I datagram--------- | Nugget !
l 1 service of Pronet] !
R + network oo +
|| I
| | | interrupt
| ||
e m e e e +
| E
| Pronet: a token ring network i
| |
N +

Figure 2: Comunication layers

Wait(transmission link, direction, event)

queries the result of a previous communication request: incoming (Receive). outgoing (Send),
or both; on a specific link or any link. An event descriptor is returned by the kernel. It con-
tains the matched link. direction. result code. and number of bytes transmitted. In case of
Receive, it tells whether a new link was acquired, and if so, its user-relative number. When
Wait matches an operation that is still in progress. the user is blocked until that operation com-
pletes.

Cancel(transmission link, direction)

requests cancellation of a Send or a Receive operation on the specified link. Cancel returns
an error indication when the operation does not exist, and a failure indication when the opera-
tion has progressed beyond the point where the kernel can stop it. This call blocks the process
unless the kernel is able to report success or failure immediately.

Destroy(link)

Requests that the given link be closed. Destroy always succeeds unless the link does not exist
or is being transferred. This call will abort all outstanding Send or Receive requests on that
link. It blocks the user until any necessary cooperation by the other kernel has completed.
The process at the remote end will get a failure code *‘link destroyed’’ from any call related to
that link. That end is reclaimed once the remote process invokes Destroy on its end. A link
being transmitted as an enclosure does not belong to the current process. Request to destroy a
link being transferred is an error. since the link no longer belongs to the user.

2.1.3. Discussion

Charlotte takes stands on several controversial issues. We would like to explain these issues
and why we prefer the Charlotte position.

Simplex and duplex links

Arachne, the ancestor of Charlotte. uses simplex links. No information at all is stored in the
kernel serving the owner of the link (the process that can receive along that link). The effect is that
holders (those that can send) cannot be found easily. Because of this asymmetry. a link cannot be
revoked, owner failure cannot always be reported properly to the holder, and if a process is moved to
a new node, it is awkward to inform all potential senders of new address. A server has no control
over the number of clients to which it may be connected. nor does it have easy way to distinguish
them. Demos/MP employs similar simplex links. During process migration. it leaves a forwarding
address at the old location. With duplex links, holders of remote ends will receive address updates.
so message forwarding is not necessary. We believe that this design leads to better efficiency in
migrating processes. Another shortcoming of simplex links is the cost of creating a fresh once-only
reply link to be enclosed in every request to a server. On the other hand. duplex links take extra
time to move, consume more table space in the kernel, and require a more complex inter-kernel pro-
tocol. as we shall see. These costs are outweighed. in our opinion, by the improvements in ease of
use from the point of view of processes.

Naming

The advantages of directing messages to process names is the simplicity of usage, the minimum
kernel support, and the possibility of compile-time consistency checking. The disadvantages are its
difficulty supporting a replicated process. awkwardness in modifying cooperating process without
recompilation. the difficulties of managing process name space, and the lack of protection.

Languages like Ada [8], Distributed Process [9], and Communication Port [10] support sym-
bolic names as message destinations. One difference of a language-based IPC (inter-process com-
munication) mechanism and an operating system based IPC mechanism is the early binding of sym-
bolic names and communication format.

Global names provide a different mechanism. Processes talk to each other through a commonly
known name. For example, a fileserver in V kernel [11] may identify itself by a service call as a
well-known fileserver. A stronger type of global naming is to use a ""post office’’: Processes may
send messages to mailboxes and receive messages from mailboxes. The post office may or may not
require authentication for these transactions. The problem of global naming in general is its poor
protection from unwanted messages. It also requires a centralized message server.

Capability-based names, such as Charlotte links. have the advantage of both protection and flex-
ibility. Since links are bound dynamically to processes, it is easy to change communication patterns
in order to reconfigure the system or to reallocate resources. The disadvantages of using this kind of
naming are the lengthy initial setup episode and the cost of validating and associating the capability
with the destination process in every communication.

Non-blocking and blocking communication

Interaction between a program and any service of I/O operation generally consists of two parts:
initialization and completion notification. These can be combined. blocking the user until comple-
tion. On the other hand, they can be separated, allowing the user to continue execution until the
operation completes. Notification can be asynchronous, by interrupt. or synchronous. by a blocking
call or polling. Charlotte chooses non-blocking initialization and synchronous, blocking notification.
(A synchronous, non-blocking notification has also been implemented. and we are currently consid-
ering asynchronous notification.)

We prefer non-blocking initialization for Send (or Receive) because it can be used to imple-
ment blocking Send (or Receive), but permits a higher degree of concurrency. This increased con-
currency does have a price: It requires the programmer to use a style that may be unfamiliar. It also
might require more kernel calls to achieve communication.

Buffering

Between initialization and completion. messages must be stored somewhere. Kernel buffers
have the advantage of freeing buffers in user space, which can be used immediately for new mes-
sages. There is no need to lock users in main store during transfer, either. A disadvantage of kernel
butfers is the allocation problem when kernel butfers are depleted.

Buffer-allocation policies must limit unrestrained production of messages. One policy is to
limit the number of buffers a single process may use at one time. A per-link limit is also possible.
Arachne preferentially provides buffers for replies over requests. Charlotte version | atlows at most
one message per link to be buffered; subsequent sends block the sender until the previous message
has been received. This policy leads to poor utilization of bufters. Charlotte version 2 avoids the
problem by providing no buffering at all for messages. It is up to each process to allocate enough
space for outstanding Send and Receive requests and to avoid manipulating data that is in transit.

2.2. Utility processes

We present here only a brief discussion of utility processes, their functions and roles in Char-
lotte. A more complete description can be found elsewhere [1].

KernJob

The KernJob is logically part of the kernel. It supplements the process-kernel interface through
calls made by ordinary messages. These messages may come from processes on any node, whereas
kernel calls are directed to the kernel on the same node as the process. For example. the Starter,
which may reside on a different node from the processes it controls, uses the Kernfob as an
intermediary for manipulating those processes. The links over which processes submit requests to
the KernJob are called confrol links. They are the same as ordinary links: their special functions are
only a convention established by the kernjob.

Starter

The Starter squad manages the creation of new child processes. Each Starter is responsible for
a set of nodes. A parent process that wishes to create a child sends a message to a Starter naming a
tile containing the executable code for that child.

SwitchBoard

The SwitchBoard is a name server. Any server process can register itself with a SwitchBoard
with a set of patterns, and any customer process can ask a SwitchBoard to locate a server described
by a pattern. The SwitchBoard responds with a link to that server.

FileServer

The FileServer squad has two implementations. one converting file access requests to calls to a
Unix process residing on the host, and the other converting requests to calls to the WiSS fileserver
computer in the Crystal network [12]. Open files are represented by links connecting the client and
the FileServer. If the file is opened for read, the FileServer immediately starts reading from the file
and sending data across the link. If the file is opened for write, the FileServer starts accepting mes-
sages across the link and transferring them to the physical device. In each case. control information
may flow in the other direction on the link, like logical seek commands.

Connector

The Connector is a tool to establish initial linkage within a group of processes. A parent pro-
cess that wishes to institute such a group sends the file name of a connection description file to a Con-
nector. This file contains the names of the object files to execute and their inter-relationships. The
Connector asks the Starter to load these files. Fach process should start with a call to the library
routine Linkup, which communicates with the Connector to receive the initial link set.

2.3. Example

The following is a scenario of opening a file. We will use it to demonstrate the use of links, as
well as to show the interaction between user process and utilities. Suppose initially client C only has
a link to a SwitchBoard. It asks a SwitchBoard to locate a fileserver link. The SwitchBoard first
searches its own tables. It returns the desired link to C if it can find it. Otherwise. it relays C’s
request to some other SwitchBoard. C accepts the link oblivious to the cooperation between Switch-
Boards. Likewise, C's request to the FileServer to open a file may be relayed to another FileServer.
invisibly to C. The diagram below ignores these intra-squad communications.

e b e T +
| user process C | | SwitchBoard ! | FileServer l
o F e e +
| l i ‘
T link AT “link' BT
“(Cl)----A-->
(S1)
| !
link C

link C
<--A-(S83+link C)--
| |
link C
L (O A I i e C-->
(F1)
| 1
link D
L O P (F2+ tink D)---------
| l
link D

Cl (C to SwitchBoard) Do you have a FileServer?

St (SwitchBoard) Finds a registered FileServer. makes a new link.
S2 (SwitchBoard to FileServer) Take this link to a new client.

S3 (SwitchBoard to C) Take this link to the FileServer.

C2 (C to FileServer) Open file *‘Foo’" for reading.

F1 (FileServer) Creates a link to represent that file.

F2 (FileServer to C) Take this link to your new file.

As this example shows, links play a dynamic role in representing resources. A link to a server
can be viewed as a capability to get a certain service.

3. Kernel design

3.1. Overview

The kernel, which resides on each node. must be efficient, concise, and ease to implemented.
As we have seen, most Charlotte services are provided not by the kernel but by squads of utility
processes that cooperate with each other to fullfill requests. The kernel needs to provide only two
abstractions: [/inks and processes. The process abstraction is kept quite simple; any control over
processes is relegated to the KernJob, not the kernel.

In contrast to version |, Charlotte version 2 tries to be both modular and expandible. The fol-
lowing decisions derive from these goals:

e Most of the kernel is written in Modula. It provides subscript-range checking. walkback upon
failure, modular structure, and inter-module protection. Only about 600 lines of assembler
and C code are needed for device interrupts, trap handling, context switching and other
hardware-dependent activities.

e Modula's concurrency facilities are used for internal tasks. (Modula processes are called rasks
here to avoid confusion with processes running on top of Charlotte.) For example. device
interrupts are handled by waking up an appropriate task. The clarity gained by this decision is
partially offset by the cost of task switching.

e We use finite-state automata to implement the kernel-to-kernel protocol. This approach allows
a structural implementation, logical breakdown of complex situations, and relatively easy
expansion of the protocol.

© Queues and monitors are used to synchronize tasks. Shared data are protected by Modula
interface modules.

3.2. Task structure

The kernel is composed of four categories of tasks: the Envelope, the Finite-State Automaton, n
device handlers. two nugget handlers. and two occasional servers. Small control packets called work
requests (or simply requests) are enqueued to the finite state automaton and the nugget handlers.

Envelope
This task encapsulates all user processes. which appear as subroutines to this task. The
envelope calls a user. which returns when it submits a service call or when interrupted by the
clock. Service calls are either performed directly or translated into work requests and
enqueued for the finite-state automaton. Clock interrupts signal the end of a quantum; round-
robin scheduling selects the next process to run. Long-term scheduling is the province of the
Starter, using the KernJob to suspend and resume processes.

Finite-state automaton
This task accepts work requests from its input queue (implemented using hardware queue
instructions for efficiency). Requests are directed to one of four modules, each handling a dif-
ferent aspect of communication: sending, receiving, moving/destroying links, and communicat-
ing over special links (which we will not discuss further). The use of a queue serializes all
requests and avoids race conditions. The internal structure of the automaton modules will be
discussed in detail in Section 4.

Device handlers
Charlotte aims to convert the raw hardware interface into a convenient uniform interface for
user programs. Qur devices include the nugget (a software communication device provided on
all Crystal nodes), the clock, console. and optionally a disk. Each device is associated with a
task awakened by the associated interrupt. Our current device handlers are rudimentary,

providing only low-level service for the console. The eventual goal is to provide a link-like
interface for all devices accessible to users.

Nugget handlers
Nugget handler tasks invoke the Send and Receive functions of the nugget. There is a
separate send handler for each node and one receive handler. (Revised nugget designs will
allow us to simplify this situation considerably.) The Nugget interrupts upon completion,
awakening the appropriate handler. Send handler accepts work orders from its queue. The
messages are generally not interpreted by the handler; they are a mix of process-generated and
automaton-generated traffic. (A few violations of this principle have been made for the sake of
efficiency.)

Occasional servers

Two tasks awaken periodically to perform housekeeping chores. The HeartBeat task checks
how long this node has not heard from each other node. If the silent interval is long (currently
two seconds), the HeartBeat enqueues a work order to send that node a packet. If the nugget
fails to send this (or any other) packet. we know that node has failed. (The sending nugget
handler reports the failure to the finite-state automaton task. which will destroy all links to that
node.) The Staristics task gathers performance information concerning CPU and network
usage. This information is given to the KernJob. which presents it to the Starter as a guide for
static and dynamic load balancing.

All kernel tasks are created at node initialization time and never terminate. We have found that
the queue architecture leads to no deadlocks between tasks. Debugging has been relatively easy. (A
few programmer-months built most of the function described in this paper.)

4. Protocol Evolution and Implementation

We are now ready for a careful examination of the communication protocol and its implementa-
tion. We shall concentrate on communication primitives and messages. mentioning other requests
only briefly when appropriate. A more elaborate description of those can be found elsewhere [1].

We will focus on the finite-automaton task. It invokes (via procedure calls) specialized
handlers for Receive, Send, Destroy, and Move. It also deals with Wait. Terminate and closing
all connections to another Charlotte node. Cancel is treated by both the receive and send handlers.

In what follows, we shall view these handlers as specialized finite-state machines for Receive,
Send, Destroy, and Move (or the R, S, D, and M machines, respectively). Finite-state machines are
commonly used to formally specify communication protocols. Our method follows other work [13]
in which ‘‘context information’’ is traded off for states, and work [14, 15] in which a state-machine
model is mixed with a programming-language model. by using elaborated actions and a set of vari-
ables. We differ from these models in the complexity of situations we have to cope with and the
interference between the state machines.

Roughly speaking. there are two classes of requests to these machines: user o kernel and kernel
1o kernel. (Users include utility processes as well as standard user processes.) The first class is
invoked by service calls such as Send. The second class is usually the result of a user’s request,
transferred to the kernel at the other end of the link (possibly the same kernel).

We will first describe the four machines (S. R, D, and M) in a simplified fashion, isolated
from each other’s interference. We start with the S and R machines and then show how Wait inter-
feres with them. We then show a simple D machine. Next, we add the complexities introduced by
Cancel and the impact of binding Send and Receive requests across machines, to show complica-
tions that arise in the S and R machines’ logic. Moving a link is discussed next; we present alterna-
tives, show some possible (still simple) scenarios, and describe our simple M machine. The rest of
this section will show more and more complex scenarios of communication and a stepwise evolution
of the protocol to handle such possibilities.

10

\ /
~~~~~~~~~~~~~~~~~ \ ENVELOPE e
\ /
Vemmmemm s /
|
) |
| | Wait
Completed transactions [ Send
are recorded in the link | Receive
table. Unblock user if | Cancel
it is waiting for it. | Destroy
1 l
| |
| i
| | B R +
| P X
R >+ | I [----mo-- +
’ | I R I ’
| | v VvV V V l | | | |
| | e + | |
| | |  Fsalnput Queue | | |
Remote | R + | |
site down | ! | | RemoteDestroy
| | \ ACCEPT | RemoteCancel
| | R \ | | NewLink
| R | 1/O FSA @ ------------ >+ i DestroyFail
| \emmmo - / 5
| [ £
| | | | |
| v v l |
| R + | |
| | ToNugget Input Queue | [ |
| L R b + l |
| | I |
| v 1 |
| Jomemm - \ R \
I | ToNugget | | FromNugget |
Voo / Vemmeeen /
P .
v Vo

Figure 4. Internal kernel structure

Our goal in this order of presentation (which differs from the order in which we designed and
tested the protocol) is to see why simple situations become complicated under our flexible communi-
cation rules. We wish to convince the reader that our solution is correct. It is also efficient in the
sense that we perform simple cases in the simplest way and complex (or relatively rare) cases as sim-
ply as we can provided we don’t spend enormous space for FSA tables.

As mentioned earlier, we shall present only the protocol for normal links. We end this chapter
with discussion of alternatives and enhancements to our protocol. Some of these changes are
currently under discussion; others have been rejected.



11

4.1. The Four Basic Machines

4.1.1. Send

As described earlier in Section 2.1, the Send request specifies a specific link and a butfer of
data (unstructured to the kernel). Send is a non-blocking operation.>

A simple Send-FSA table is as follows:

Request
S State
U Send | K Accepted
1 S Idle A:2 X
2 S SendOut B:2 C:3
3 S Done A2 X

Table 4.1: Simple Send-FSA table
Actions:
A Out(cl.K Send).
B KeepRequest(cl.NextSend): BlockUser(cu).
C StoreResult(cl.S,SendOk).
X impossible case (invoke fatal-error handler)

All our FSA tables are arranged in two dimensions. The first is the send, receive or link state;
the second is the request type. Each cell specifies the current action and the next state. Each request
refers to a link, denoted ¢!/ (CurrentLink) above. For now, we assume that the link is not con-
currently being destroyed or moved. Information about the end of a link. such as its 5 State. R State.
and L State, is known to all FSA machines in the kernel of that end of the link. The owner of cl is
denoted cu (CurrentUser).

The send state of a link can be S Idle (nothing has been sent, or the last Send has completed
and reported by Wait), S Done (completed but not yet Waited) or S SendOut (request sent to the
receiver, but not yet acknowledged by its kernel).

This FSA can handle two inputs, U Send (data only. without an enclosed link) and K Accepted
(acknowledges that the receiver has accepted the data). Our first example of interference between
seemingly unrelated machines is that S State will be changed from S Done to S Idle by the Wait
mechanism, which is otherwise outside this FSA. The above protocol assumes that the user’s buffer
size can fit one packet. which is limited to 2KB by the hardware.

Actions taken by the S machine are described through primitive operations such as Out and
StoreResult, which can be considered high-level machine instructions:

Out queues the request on a queue for the ToNugget task or FSA task (if the destina-
tion is the same node).

KeepRequest stores a pointer to a Send or Receive request, to be issued when the current in-
progress request on the same link is completed.

StoreResult stores a completion or error code as an S Result or R Result in the link descrip-
tor. A later Wait will find this result if it matches, return it to the user. clear
the field in the link descriptor, and set S State to S Idle. If the user was already
in a matching Wait, the completion information is passed immediately. If a new
Send has already been submitted, then a new U Send is issued, and the user is

3 We allow a new Send on a link as soon as a previous one completes. When a user requests a Send betore the previ-
ous one completes, we queue the new request and block the user. We rejected considering the new Send an error; we have
deterred a design that allows multiple transactions per link.



12

unblocked. The completion code will indicate if the Receive buffer was too
short.

4.1.2. Receive

Receive is similar to Send; it is non-blocking, synchronous and non-buffered. Messages
arriving from other nodes are temporarily stored in a kernel buffer, which is copied to the receiver’s
buffer, if ready, and freed immediately. We present first the protocol and implementation for a sim-
ple Receive.

Two important decisions were made.

(1) Receive and Send are similar in the sense that a request could be delivered to the other side
when the receiver is ready to receive. It turned out that our active Send with passive Receive
protocol is more efficient.

(2) We decided to send data together with the K Send header, instead of sending the header first
and waiting for permission to send the data when the receiver is ready, because if both ends of
a link are on the same node, a permission message is superfluous. since it is easy to see if a
matching Receive has been submitted. We would like to have same protocol for inter- and
intra-node communication. Furthermore, the time penalty for sending even full-size packets
instead of short handshaking packets is relatively small in our environment.

We will temporarily ignore the problem of losing data if no Receive matches when K Send arrives.

The simple Receive-FSA table is as follows.

Request
R State
U Receive | K Send
1 R Idle Al D:2
2 R Sendln B:4 X
3 R ReceivePend C:3 E:4
4 R Done A3 D:2
Table 4.2: Simple Receive-FSA table
Actions:
A skip.
B AcceptData(cl); StoreResult(cl.R,ReceiveOk); Out(cl,K Accepted).
C KeepRequest(cl. NextReceive): BlockUser(cu).
D for now. same as A.
E for now, same as B.

The Receive-FSA table is quite similar to the Send-FSA table, except that we handle the case
where the K Send message arrives before a Receive request. Currently. it does not matter which
comes first; actions B and E are equivalent. Soon we will show that the order matters.

The operations Out, KeepRequest and StoreResult are as described earlier.

AcceptData copies data from the incoming message (or the sender’s buffer, if on the same
node) into the receiver’s buffer. If the receiver’s buffer is too small. a warning
notification is returned to both the sender and the receiver as the completion
result.

R Idle is the initial state: the Wait call resets R Done to this state. The R SendlIn state follows
either R Idle or R Done when K Send is handled. If a Wait request comes when the link is in
R SendlIn state, Wait needs to know whether this state came after R Idle or R Done. The distinction
is that in the latter case, the R Result stored in the link descriptor is valid.



13

The following two examples will demonstrate the protocol for a simple Send-Receive pair.
Assume users A and B are communicating via link L (which they call La and Lb, respectively).
Their kernels are K(A) and K(B), respectively (possibly identical). Both ends of the link are initially
in states R Idle and S Idle.

Example 4.1

(1) A calls Send(La), which causes a U Send to be enqueued for S machine(La).

(2) S machine(La) outputs K Send and sets S State(La) to S SendQut.

(3) R machine(Lb) gets K Send, stores the pointer to the buffer. and sets R State(Lb) to R SendlIn.
(4) Some time later. B calls Receive, which enqueues a U Receive request on R machine(Lb).

(5) R machine(Lb) takes action B to process this request, calling AcceptData. StoreResult (return-
ing a special indication if the Receive buffer was too short), outputting K Accepted (indicating
how many bytes were accepted), and setting R State(Lb) to R Done.

(6) S machine(La) gets K Accepted, calls StoreResult. and sets S State(La) to S Done.

(7) At any point. A and B may submit Wait requests that match the event that has happened. If
U Wait is handled by the FSA before the result is stored, the caller A or B is blocked. to be
awakened later by StoreResult. Otherwise. the FSA will find the result stored in the La (Lb)
descriptor. and return immediately to the user.

Example 4.2

Assume events happen as in the previous example, but A invokes Send again before B calls Wait.
In this case. K Send is processed by R machine(Lb) before U Wait gets to FSA(Lb). R State(Lb) is
R Done, so action D (for now. the same as A) is performed, and R State(Lb) becomes R SendIn. An
eventual Wait by B will find the R Result valid, report it to B without blocking, invalidate it, and nor
modify R State(Lb).

Other event orders are possible. For example, R machine(Lb) could encounter U Receive
before a K Send arrives. In any case, the memoryless principle is maintained: We record in states
only the current situation for each link and the result of at most the last Receive and/or Send
request.

4.1.3. Wait

We mentioned in Section 2.1 that the Wait call specifies a link (either specifically or A/lLinks)
and the direction of communication (S, R, or All). These two parameters are orthogonal to each
other. A matched Wait is one whose operation has completed or is still in progress.

Three cases occur:
(1) No match can be found. An error (‘nothing to wait for’") is returned to the user.

(2) A match is found, but the operation is in progress. The user is blocked. For Wait(A//Links),
we wait for any action to finish. When the operation completes. the user will be awakened
when StoreResult is called.

(3) A completed operation is matched. The result is returned without blocking the user.

We saw earlier that the S and R states are sufficient to distinguish these cases. In state S Done
(R Done), case (3) holds, and state is set to S Idle (RIdle). In state R SendIn. we have to check
whether a valid R Result exists; we do not modify R State. If the user issues a new Send (Receive)
before using Wait to insure the previous one is finished. the previous completion event is forgotten,
and Wait will block on the new in-progress operation.

Wait is implemented as part of the FSA task. No race conditions can arise between it and the
S or R machines, since these are inactive when the FSA is active. The following algorithms describe
the logic to handle Wait:



Algorithm 4.1: Wait(AllLinks,D) where D = R, S, or All

var
Match : Boolean; (* true in case (3) above *)
PossibleMatch : Boolean; (* true in cases (2) or (3) *)
PossibleMatch L : Boolean;  (* temporary, for each link *)
begin
PossibleMatch : = false:
forall L in user’s links do
(Match, PossibleMatch L) : = FindMatch (L., D)
when Match exit:
PossibleMatch : = PossibleMatch or PossibleMatch L.
end;
if not Match then
if not PossibleMatch then (* case (1) %)
ReturnToUser (NothingToWaitFor)
else (* case (2) *)
BlockUser;
fi:
else (* case (3) *)
skip
fi:
end

FindMatch sets PossibleMatch true only if the given link has an outstanding, in-progress operation in
the specified direction. It sets Match true if the operation has finished. In that case, it also returns
the link number. direction. and result to the user and invalidates the appropriate R Result or S Result

in the link descriptor.

Before Algorithm 4.1 is called. we verify that the user has at least one link, or
ReturnToUser(NoAnyLinks) is called immediately. If the user is blocked. the first operation match-

ing the specified direction that completes will return the result via StoreResult.
Algorithm 4.2 : Wait(L,D).

var
Match, PossibleMatch : Boolean: (* as above *)
begin
(Match, PossibleMatch) : = FindMatch (L. D)
if not Match then
if not PossibleMatch then
ReturnToUser (NothingToWaitFor)
else
BlockUser;
fi;
fi;
end;

Algorithm 4.2 is a special case of algorithm 4.1.

4.1.4. Destroy Link

Destroy is guaranteed to complete successfully, although it may be deferred for some time.
We will clarify this statement later. When user A requests Destroy(La), the D machine will pass
this request to D machine(Lb). which will respond with K DestroyOK. User A is blocked during



15

this time.

When can the destroyed link be freed (operation DisposeLink)? Even though the link cannot
be used again, information might still arrive from the other end of the link until both sides have
agreed that it is destroyed. For example, assume A requests Destroy, which is granted by
D machine(Lb). La can be freed when the K DestroyOK arrives, since A is prectuded from any
further operation on this link. As to Lb, there are few policies the D machine might follow:

(1) Free Lb immediately when destroy is granted.

(2) Free after B is notified that link was destroyed at A’s request.
(3) Free only if there are no valid results stored.

(4) Free only when B explicitly requests Destroy.

Policy (1) doesn’t allow B to examine the results of previous Send or Receive operations. If both a
Send and a Receive have completed. then policy (2) will discard the results of one of them. The
first three policies share another defect: The error that B gets for trying to Send or Receive again on
Lb depends on whether or not the link has been destroyed, which should therefore be under B’s con-
trol. We have therefore chosen policy (4) to be consistent with our {iming principle: Errors should
depend on the user’s behavior, not on circumstances beyond the user’s control. Between its destruc-
tion by D machine and B's Destroy request, Lb will be in a L Dead state, which allows operation
Wait, but not Send, Receive. or Move.

When a user terminates. all its links are destroyed as if individual U Destroy requests were
made on each.

The Destroy-FSA table is:

Request
Link state
U Destroy | K Destroy | K DestroyOK
I LOK A2 C:3 X
2 L LocalDestroyed X D:4 D4
3 L Dead B:4 X X
4 L Free X X X

Table 4.3: Simple Destroy-FSA table
Actions:
A BlockUser(cu): Qut(cl.K Destroy)
B DisposeLink(ch
C  Out(cl K DestroyOK): ClearDeadLink(ch)
D ClearDeadLink(cl); DisposeLink(cl); UnblockUser(cu)

We have incorporated our decision to use method (4) above in the L Dead state, in which the link
has not yet been destroyed. Two optimizations were also incorporated:

(1) If both sides simultaneously send each other a K Destroy request, neither needs to respond
with K DestroyOK. Instead. receiving a K Destroy is equivalent to receiving K DestroyOK;

the link is closed and freed.*

(2) The user is not blocked unnecessarily, for example, when the link is already in state L. Dead.

4 A difference exists only when the ends of the link reside in different node machines: receiving K DestroyOK implies
that the D machine of the other end has seen our K Destroy request; however, receiving K _Destroy doesn’t; our request may
be still in the queue of outgoing messages. Link disposal is therefore deferred until every message with respect to it is
delivered.



16

The new operations introduced here:

DisposeLink clears link pointers and returns resources, such as buffers or descriptors for
requests in progress.

ClearDeadLink  terminates any in-progress Send or Receive. Since the K Destroy message must
be the last one in each direction on this link, Send or Receive will never com-
plete.  ClearDeadLink therefore sets the S State and/or R State to
S Done/R Done and calls StoreResult to report S Broken/R Broken. Any pend-
ing NextSend or NextReceive is also removed.

These operations are examples of interference between FSA machines. We implement such
interference by letting operations called by one machine produce side-effects in the states of other
machines. Instead, we could let one machine enqueue internal messages to the other. In our exam-
ple, the D Machine could send a message to the S Machine to announce that the link is broken
Although this solution is clearer, it is very inefficient. It can also lead to unreasonable growth of the
FSA tables, since there are many more cases to consider.

There is an asymmetry between the Local-end and Remote-end request to destroy a link, since
the former changes the link state until the other end approves the destruction. while the latter is
accomplished immediately. and the link becomes L Dead. For now, this solution is adequate. How-
ever, with Move algorithms. we will see cases when a K Destroy request from the other end must be
deferred.

Example 4.3
(1)  User A calls LinkDestroy(La), and a U Destroy request is enqueued.
(2) D machine(La) blocks A and sends K Destroy.

(3) D machine(Lb) gets the K Destroy. Assume Lb’s state is L OK. hence action C is taken:
Opelanon LlealDeadLlnk(Lb) is performed, breaking each outstandmg Send or/and Receive.
Lb’s state becomes L Dead, and K.DestroyOK is sent,

(4) D machine(La) receives K DestroyOK. frees La and unblocks A.

(5) Further attempts by A to use La will be considered errors. B may request Wait on Lb (assum-
ing some activity had not yet been Waited for). Wait will report “*broken’" and set R State and
S State to R Idle / S Idle.

(6) If B attempts further actions (Send. Receive. Wait. or Cancel) on Lb. they will fail immedi-
ately and return ‘‘Link is dead’’

(7)  When B calls Destroy(Lb), D machine gets U Destroy request and will call DisposeLink by
action B.

It is an easy exercise to check that the protocol works when both users call Destroy at the same
time and when a single process holds both ends of a link.

4.1.5. Receive, Send and Buffer Management

Before introducing the Cancel mechanism, let us correct the Send/Receive FSAs by removing
any assumptions concerning buffers. This correction will clarify the description of Cancel in the
next section. We will continue to assume that messages are of a limited length and are transfered in
one packet.

Intra-node communication employs only user buffers. The following discussion therefore
deals only with inter-machine communication.

We allocate a small number of kernel buffers to incoming messages. When a data message
arrives, it is handled by the R machine, which subsequently releases the buffer. If the R machine
finds a matching Receive call pending, action E (Table 4.2) is taken, and the buffer is freed and
placed at the head of the free list. Otherwise. action D is taken. As we mentioned earlier. we don’t
necessarily keep buffers until the matching Receive. Instead, we mark the buffer as free but still



17

containing useful information, and place it at the tail of the free list. When new buffers are needed,
they are taken from the head of the free list. There is a great chance that a full buffer placed at the
end of the free list will survive intact to the time that its matching Receive occurs, in which case we
copy its contents and complete the transaction. If the buffer does not survive that long, the R
machine requests the sender to send the data again (K SendAgain). The S machine is modified to
handle this request.

Once the receiver has told the sender to repeat the data, we don’t need a final K Accepted mes-
sage. (However, we will see that Cancel interferes with this optimization.) The modified
Send/Receive FSAs are:

Request
R State
U Receive | K Send
1 R Idle Azl D:2
2 R SendIn B:4(5) X
3 R ReceivePend C:3 E:4
4 R Done A3 D:2
5 R ReceiveAgain C:5 F:4

Table 4.4: Receive-FSA table with buffer management

Actions:
A skip.
B if BufferIsAvail(cl) then (* as previously *)

AcceptData(cl):
StoreResult(cl,R,ReceiveQk);
Out(cl, K Accepted)

else
Out(cl, K SendAgain);
R State : = R ReceiveAgain
fi.
C KeepRequest(cl, NextReceive): BlockUser(cu).
D FreeBuffer(full).
E Like then-part of B.
F AcceptData(cl); StoreResult(cl.R.ReceiveQk): (* with no K Accepted *)
Request
S State
U Send | K Accepted | K SendAgain
I Slidle A2 X X
2 S SendQut B:2 C:3 D:3
3 S Done A2 X X
Table 4.5: Send-FSA table with buffer management
Actions:
A-C Asin Table 4.1.
D A; C.

The Send FSA is only slightly changed. In the Receive FSA, a new action F differs slightly
from E; D and E are no longer equivalent to A and B respectively. K Send is used to send the initial



18

message as well as to respond to the K SendAgain request; it is clear from context which case
applies.

The Receive FSA is no longer “‘pure’’, since action B can select a different next state. This
sort of side effect was both useful and clear > in other cases too.

Some new buffer operations have been added:

BufferIsAvail returns true if the sender is local or the desired buffer is still intact on the free
list.
FreeBuffer is ignored if the sender is local. Otherwise. it places the butfer either at the

head or tail of the free list, depending on whether its data have been read.

AcceptData As previously, but it also frees the empty buffer (if the sender is remote).

4.2. A Second Level of Complexity

We will now introduce Cancel and Move and revisit Destroy. These calls are tightly coupled
with each other. with mutual dependencies and interferences.

4.2.1. Cancel

Cancel is needed to let the user avoid deadlocks and to break Sends with no matching
Receive. To make Send and Receive symmetric, each may be canceled. The Cancel call takes two
arguments: a specific link number and a direction. which is limited to R (Receive) or S (Send).
Blocking the user when Cancel cannot complete immediately prevents the user from requesting con-
flicting operations (like moving or destroying the link) while cancellation is in progress. We guaran-
tee that Cancel will not delay the user longer than the time needed to pass a few messages between
kernels.

Cancel(S) may be rejected immediately if there is no outstanding Send on the link (with error
result ““nothing to cancel’” or ‘‘too late to cancel’’). Otherwise cancellation is requested of the ker-
nel at the other end of the link. This request is handled by the R machine, which approves cancella-
tion (K CancelOK) as long as the Send has not yet been matched by a Receive. If it is too late, the
R machine denies cancellation (K CancelFail).

We can improve this protocol by noticing that K CancelFail means that a previous K Accepted.
sent earlier by the R machine, was not received by the sender’s S machine by the time the Cancel

was forwarded.® We therefore eliminate K CancelFail: instead of sending it, the R machine ignores
the Cancel request; the S machine will interpret K Accepted to imply K CancelFail. Another oppor-
tunity for improvement occurs in the case that the R machine requests K SendAgain before it gets a
K Cancel request. We can let the R machine approve cancellation without sending K CancelOK,
since the S machine can interpret K SendAgain to imply K CancelOK.

Cancel(R) is easier to implement. since it requires only local actions. If there is no outstand-
ing Receive on the link, cancellation is rejected immediately, as it was for Cancel(S); otherwise. the
link can be in R ReceivePend state. in which Cancel completes successfully. or in R ReceiveAgain
state, in which the user is blocked until the response from the Sender arrives. The response may be
the requested data (in which case Cancel(R) fails). or a K Cancel (Send) request (both Cancels
succeed).

We chose to incorporate Cancel in the Send/Receive FSAs, not as a separate FSA, because it
interacts so heavily with these two.

5 To avoid letting an action determine the next state, we could introduce a state like R BufferAvail, which would be
checked and modified from other modules whenever a buffer is used for inter-machine communication. This solution intro-
duces even more complicated side effects and inter-module messages.

® Otherwise, S State would have been S Done and the Cancel would have been rejected immediately.



19

The augmented Receive FSA and Send FSA are:

User Request Kernel to Kernel
R State
U Receive | U Cancel R | K Send | K Cancel Send

1.R Idle Al x1:1 D:2 N:1
2.R SendIn B:4(5) G:2 X 14
3.R ReceivePend C3 H:l E:4 N:3
4.R Done Al I:4 D:2 N:4
5.R ReceiveAgain C:5 L:6 F:4 N:3
6.R Cancel Recv X X K:4 M:1

Table 4.6: Receive-FSA table with Cancel

Actions:

A-F

G if R Result is valid then I else x1 fi.
H ReturnToUser(CancelOK).
I ReturnToUser(Tool.ateToCancel).
J Out(cl, K CancelOK).
if R Result is valid then R Siate := R Done fi.
K F: I:\¥ UnblockUser(cu).
L BlockUser(cu).
M H: UnblockUser(cu).
N skip.
x1 ReturnToUser(NothingTOCancel).8
User Request Kernel to Kernel
S State
USend | UCancel S | K Accepted | K SendAgain | K CancelOK

1.S Idle A2 x1:1 X X

2.5 SendOut B:2 E:4 C:3 D:3

3.5 Done A2 F:3 X X

4.S Cancel Send X X G:3 H:1

Table 4.7: Send-FSA table with Cancel

Actions:

As previously in Table 4.4.

A-D As previously in Table 4.5.

E

F
G
H

Out(cl, K Cancel Send); BlockUser(cu).
ReturnToUser(Tool.ateToCancel).

C: F. UnblockUser(cu).
ReturnToUser(Cancel OK); UnblockUser(cu).

7 This state covers both R ReceiveAgain and a pending U Cancel R.

8 a non-fatal user error




20

xl  ReturnToUser(NothingToCancel).

At first glance, The Destroy FSA needs no modification to incorporate Cancel, since Cancel
and Destroy are mutually exclusive user requests (both are blocking). However, the kernel may
issue one or both on behalf of the user. For instance, when a user terminates, its open links are
closed by a simulated Destroy request on all links. We shall say more on this interaction after the
Move machine is introduced.

4.2.2. Move link

A user is allowed to move its end of a link to any other user (including itself) to which it has a
link. Link motion is performed by the Send call, whose last optional argument is the gnclosed (mov-
ing) link. The link along which the transfer takes place will be called the transferring link. For the
sake of example, we will call the active user A, with a link m (moving) to B and link t (transferring)
to C. Atthe end of the transfer, A will only have link t to C. and B and C will be connected.

| ) m' | i | i | | | | |
| User A |<---~~-- >| User B | | User A | | User B |
| | m | I Lo § L |
/\ I\ I\
t Vot m’
\ \ /
\ \ /
\ \ /
t’ t7 o\ n
N YA \
| I | I
| User C | | User C |
L | . |
(a) (b)

Figure 5: Link Moving - Before and After

As with previous calls, the Envelope verifies that both links are owned by A. Two more
requirements must be verified:

(1) The moving link should be acceptable (L State = L OK).
(2) The moving link should have no outstanding Send or Receive.
If one of the above fails, an appropriate error message is returned.

If an incoming Send (from B) is pending on the moving link (R State = R SendlIn), it should
be returned to K(B) (by kernel message K SendLater). When the new destination (C) is introduced
to B, K(B) can resend that message to C. However, this resend policy assumes that Move always
completes successfully, which is incorrect.” If Move does not succeed, the moving link is re-
installed, and the previous incoming Send (from B) should be re-activated by a K NoUpdate message
sent to K(B). A similar situation occurs when an incoming Send (from C) arrives on a moving link.

We will ignore for the moment complicated scenarios like B or/and C moving m’ (or ') con-
currently, or trying to Destroy m’ or t'.

We divide the Move protocol into three stages:

9 For example, the transferring link from A to C may be destroyed before the moving link was really accepted by B.



21

prologue: A introduces link m’ to C.
body: K(C) and K(B) install the link n-m’ between C and B.
epilogue:  K(A) is notified that the Move succeeded and deletes m.

In what follows, we elaborate on these stages.

Prologue We considered three alternatives for the protocol:

(1) K(A) asks K(B) permission to move m’, then encloses m in a message to K(C).
(2) K(A) notifies K(B) to freeze m’. then encloses m in a message to K(C).

(3) K(A) encloses m (and the identity of m’) to K(C).

Alternatives (1) and (2) would simplify conflicts such as an incoming Send on either link or a con-
current Move of both ends of a link. However, simplification is not always possible (for example.
when both sides request permission or freeze concurrently). More messages might be required. We
therefore chose alternative (3). This choice affects the body and epilogue as well. Hence the prolo-
gue is:

K(A) sends K Enclose request to K(C) across t, which like K Send contains data. and addi-
tionally a description of both ends of the moving link (m and m").

Body This part is performed by K(C) on receiving K Enclose from K(A). assuming Receive is
already pending on link t'; otherwise, it is delayed until C calls Receive(t’ ....).'% Hence the body is:

K(C) creates a new (tentative) link n, whose destination is m’. and sends K Update to K(B)
(including a description of n).

Epilogue K(B) grants the K Update request (usually) by updating the new destination of m’ to n
and sending K Update OK to K(C). (These are transparent to B). In rare situations. complicating
events may occur, such as when m’ is being destroyed by B. In that case, K(B) replies K UpdateFail
to K(C).

We considered two alternatives for the protocol of the epilogue:

(1)  K(B)'s response is routed back to K(C), which accordingly installs n as a regular link, and
responds K Accepted to K(A), or removes n and responds K Rejected to K(a).!!

(2) K(B) responds directly to K(A).

In both alternatives, K(A) finalizes by removing m, if the Move is accepted, or reinstalling m or
retrying the Move, if it was rejected (provided t is not destroyed already).

Alternative (2) seems more attractive, since in a normal case only three messages are required for the
entire (successful) Move protocol. Failure. such as when t or t' is destroyed, allows rejection to be
deduced from context, with no need for K Rejected message. However, this alternative complicates
concurrent moving and destroying the transferring/moving link(s), and it requires additional message
types (such as forwarded-update for changed destination). Alternative (1) was selected. since it is
simpler and had been studied and verified before we examined all implications of the second. Since
the Move operation is relatively rare, and the complex situations much more rare, the slight ineffi-
ciency of alternative (1) is less important than simplicity. We may eventually switch to the other
alternative. Hence the epilogue is:

10 Links are accepted by users through ordinary Receive calls. It seemed less appropriate to have a special Receivel-~
ink call.

U1 A Send with enclosed link is atomic: Either both the data and the enclosed link are successtully transferred or nei-
ther is.



22

(i) K(B) sends K Update OK or K UpdateFail to K(C), and accordingly un/updates link m’s
destination; (ii) K(C) accordingly installs/deletes link n and replies K Accepted or
K Rejected to K(A); (iii) the latter accordingly deletes link m, or retries the Move from
start, or returns a failure indication to A.

We introduce a new Move FSA to handle the update negotiations. The Send FSA and Receive
FSA are augmented to handle the new messages described above, as well to recognize the fact that a
link can be destroyed or moving. These FSAs are shown in Appendix A. Other modifications are
discussed in the next sub-sections.

Example 4.4
(1) A calls Send(t,...... m): t and m are owned by it.
(2) K(A) verifies that m is L. OK with no outstanding Receive or Send.

(3) S machine(A) sends K Enclose across t, including a description of m and m’; S State of t
becomes S EnclOut. L State(m) becomes L Moving.

(4) R machine(C) gets K Enclose. Assume that R State(t’) is R ReceivePend. R machine(C)
copies the data, creates a new link n. sets its destination to m’, and sends K Update to K(B)
including a description of n. R State(t') becomes R WaitUpdate. The linking situation at this
stage is depicted in Figure 6 (a).

(5) Assuming that m’ is OK. M machine(B) changes the destination of m" to n and replies
K Update OK to K(C).

(6) M machine(C) marks n as a regular link, adds it to links owned by C, and responds
K Accepted to K(A). The situation at this stage is depicted in Figure 6 (b). When C calls
Wait that matches this Receive, a new link number (user-relative, corresponding to n) is
returned.

(7)  On getting K Accepted. S machine(A) sets S Result and S Done of t appropriately, and frees

link m.
i ] mo ] T
| User A |<---------- >| User B | [ User A |<--o [ User B |
o | m o | o | m o |
/N (L Moving) I\ (L Moving) A
\ \ /
\ t (S EncloseQut) \ (S EnclQut) fm’
\ \
\ L] \ /
\ \ /
(RWait t' 1 /" n (L Fetus) (R Done) t’ [ n (L OK)
Update)  \/ A/ v )
| 1 . |
| User C | | User C |
| | I |
(a) (b)

Figure 6: Move - Intermediate Stages

4.2.3. Destroy-Move conflicts

Many interactions between the Destroy and Move mechanisms shape both protocols. We
examine four cases in which the moving or transferring link are requested to be destroyed by each
owner. We will refer back to Figure 6, which defines the processes and links involved.



23

Case I. A calls Destroy(m). This request is an error, since m is no longer owned by A
(though in rare cases Move may fail and m be reinstalled).

Case II: B calls Destroy(m’). Assume the Destroy request happens before K(B) has gotten
K Update from K(C), as in Figure 6 (a). (Otherwise, it is a normal case and K Destroy is sent to
K(C).) D machine(A) can act in one of the following ways:

(1)  Refuse the K Destroy request from K(B), so K(B) will send it instead to K(C) once it gets the
K Update request.

(2) Delay the K Destroy request from K(B) until the Move fails, which it will, since K(B) will
respond K UpdateFail to K(C). Then grant the destroy.

(3) Delay the request and try to Cancel the Send. When K(C) responds K CancelOK or
K Rejected, grant the destroy.

(4) Grant the destroy with no delay.

Alternative (4) is least preferable. since K(B) may free link m’ before K Update is received, at which
time this latter message may confuse it. Alternatives (2) and (3) are preferable, since Destroy is
guaranteed to be granted eventually. Both alternatives (1) and (2) delay until C’s Receive. which
may not happen for a very long time. Hence. alternative (3) was chosen: D machine(A) tries to
abort the Send on behalf of A (and interferes with S State). This abort is implemented as regular

Cancel(S), except that on its completion. the user is not notified and unblocked 2 K Destroy OK
for m’ is sent to K(B). Finally, Send(t...) fails with result ‘*Send failed, moving link destroyed™".

Case III: A calls Destroy(t). We considered four alternatives for D machine(A):

(1) Consider it an error. We rejected this action. since Destroy should always succeed. even
when outstanding Send exists.

(2) Delay it until Move completes. We rejected this action, since it must wait for C's Receive.

(3) Cancel the Send as in the previous problem. Although this alternative is sufficient. the next is
better.

(4) Transmit K Destroy to K(C), and let it decide whether to grant the request immediately or
delay it. If C’s Receive hasn’t occurred yet, or if the Update process has completed,
K Destroy OK may be sent back to K(A). Otherwise. K(C) will delay its response until
K Update OK or K UpdateFail is accepted from K(B). Then K(C) grants the destroy request.
This delay introduces a new link state in K(C). L RemoteDestroy. Link t' remains in this state
until the destroy can be granted.

Case IV: C calls Destroy(t'). As shown above. there are several alternatives. We show here
only the solution adopted: At C's end the Update protocol may be (i) completed. (ii} not yet started.
or (iii) in progress. In the first two cases. there is no delay; they are handled as usual destroy cases.
(In the second case. link m is reinstalled as A’s regular link.) In the third case, D machine(C)
should postpone the K destroy request for t' until the Update process (though involving different
links) is completed. issuing that request together with the K Accepted or K Rejected response. A
new link state arises, which we mark with an exception flag: LocalDestroyPend.

In rare situations both ends of a link might be moving. The protocol must be designed to cope
with such situations. Up to four different kernels might be involved. Moreover, the situation at one
end could change (for instance, a send may be cancelled), and we want the situation at the other end
to adjust in minimum delay and minimum messages.

A solution based on voring protocols is unacceptable, since it might require too many messages
(since not all kernels know what situation they and their peers are in.) A solution based on exponen-
tial backoff algorithms is unacceptable, since it complicates the protocol with timeouts, may incur too
many messages and may lead to ‘‘livelock’ situations. Our protocol (see Table A.4) breaks the tie

12 nMore complex situations may arise, if A tries 10 Cancel the enclosure, or Destroy link t.



24

by letting one end to complete successfully while failing (temporarily) at the other end. When failure
is reported (a K Rejected message is received by the S machine. See Table A.2), the failed send is
retried with the new destination for the moving link. The situation is thus reduced to one end mov-
ing, and will succeed (unless the new owner of the other end moves or destroys its end meanwhile.)
Retry is not immediate when K Rejected is processed, since the K Update (from the link end that
should succeed) might not yet been received. Both Move and Send FSAs need to be augmented to
retry the Send when both K Rejected and K Update are heard. A deadlock may arise if K Update is
never heard. which can happen if the transferring link is destroyed. Our protocol prevents this
hazard by reporting K NoUpdate to tell the failing end to retry the enclosure. Of course, the users at
all ends are oblivious to this negotiation between kernels.

These unfortunate situations may arise concurrently. It is an interesting exercise to verify that
our protocol can cope with such extreme cases, with, what we believe, minimum or no penalty for a
“‘normal’” Move or Destroy mechanisms.

4.2.4. Receive / Send FSAs - the Third Dimension

The correct action for an FSA to take when a request arrives depends on three dimensions: the
type of request (like U Receive), the state of the link (like R Idle). and the situation of the link (like
UpdatePend). Usually. this third dimension is unnecessary; our tables have only shown the first two
dimensions. In order to capture the third dimension, we could expand the table by placing entries
for each possible link situation. This expansion is not usually needed. since most situations are
either illegal or can be handled by the general case. Instead, we maintain a set of flags representing
the situation for each link. The table entry describes what to do in the usual situation, that is, when
no flags are set. If any flags are set (in particular, if the flag NorOK is set), then an alternative action
may be taken. This alternative might require a careful investigation of the exact flags. so it might be
inefficient. This use of alternatives is represented graphically in Appendix A (Tables A.1. A.2) by
separating each box into two layers.

4.3. Augmented Send and Receive

We discuss here two features we implemented beyond the regular Send and Receive discussed
so far: A Receive(A/lLinks) and unrestricted buffer size. We will also touch on other features that
were delayed for future consideration.

4.3.1. Receive(AllLinks)

The Receive call allows the link argument to be A//Links. Such a call embraces all user’s
links and remains pending until it can be bound to one specific link. We disallow coexistence of
Receive(AllLinks) with any other Receive, since otherwise semantic confusion may arise. For
example, when data arrives on link L. and both Receive(A//Links) and Receive(L) are in progress.
we must decide which Receive to bind the incoming data to. Arbitrary semantics are unacceptable.
Deciding in favor of the more restrictive Receive (that is. the latter one in this case) can be expen-
sive. If the more general one is Waited for first. the data must be copied from the specific buffer
back into the general one. Until that point, the sender cannot be informed of completion. because
the eventual buffer may be too small, even though the preferred buffer is not. Similarly, a more res-
trictive Receive may be requested after the general one has accepted a message, which then has to be
copied into the new buffer.

Therefore, Receive(A//Links) first verifies that there are no other Receive calls in progress.
(They are in progress until Wait succeeds.) If there is a choice, Receive(A//Links) is preferentially
bound to the link least recently bound. Otherwise, it may be bound to any link that shows any
incoming activity (including notice of remote destruction). Once it is bound, Receive(A//Links) is
handled by the R machine as a regular Receive.



25

4.3.2. Unrestricted buffer size

Programs sometimes want to transfer large chunks of data. This situation is particularly com-
mon in loading new programs. Even though our hardware limits packets to 2KB, Charlotte does not
restrict buffer size. Instead, it breaks long messages into packets that are transferred one at a time.

No change is needed to the previously described protocol when both ends of the link reside in
the same node. Qtherwise, a two-phase protocol (three-phase in case of enclosure) is used: The first
packet is as before, except that the only as many bytes as fit in a packet are sent. If the receiver’s
buffer can hold more data, the receiver’s R machine sends a K SendMore response (instead of

K Accepted, the normal response). L3 Both sides move to state R /S PartialDone.

The second phase is accomplished by the ToNugget task, delivering packet after packet as fast
as it can. The receiving end replies K Accepted only when the last packet is accepted correctly.

Destruction of the link may be requested by either side while the packet delivery is under way.
In this case, the D machine (of the sender) first tells ToNugget to abort the transfer and then carries
on with link destruction.

Send with enclosure may also use large buffers, even though our experience shows that mes-
sages with enclosures are often quite short. If there is an enclosure, the update procedure starts after
data are accepted. At the end of the second phase. the R machine doesn’t respond K Accepted to the
sender, but requests K Update from the new link’s destination, as described in Section 4.2.2. Alter-
natively, we could start the update procedure while data are being transferred. However, should the
transferring link be destroyed before transmission completes, but after the moved link is instatled
successfully, we might need to undo the link movement (following the principle that the entire tran-
saction should succeed or fail). At the end of this phase, K Accepted or K Rejected is delivered to
the sender. as previously.

4.3.3. Other versions of Send/Receive

Asynchronous notification of Receive or (Send) interrupts the user upon completion. As long
as the user is handling this interrupt, new interrupts are queued in FCFS order. Kernel calls may be
disallowed while the user is in interrupt mode. For example, it may be blocked on Wait. Cancel or
Destroy when interrupted. If we allow the handler to call these or Send or Receive, contradictions
arise. Disallowing some calls introduces extra checking for every regular call. A compromise is to
implement efficiently non-restrictive interrupt-handler calls on top of the existing FSAs. We have
deferred this service for further re-evaluation.

Remote procedure call is not directly supported by Charlotte. which has no send-receive-reply
paradigm. Instead, two pairs of Send and Receive are needed. Charlotte therefore incurs two extra
acknowledgements (at the completion of each Receive). However. our Send-Receive paradigm is
more general and serves better when no replies are needed or the replies should come in a different
order from the requests. Implementing both paradigms is possible by adding new states and message
types to the existing FSAs. but the added overhead may outweigh the gains. Since we cannot predict
the frequency of usage of either paradigm. we defer this issue for further evaluation.

5. Conclusions
Charlotte is important for several reasons.
It demonstrates the utility of the Crystal design.

It addresses resource-allocation and inter-process communication issues that are central to dis-
tributed operating systems.

If the matching Receive is requested after the first packet has already been discarded, the receiver’s R machine sends
K SendAgain, as always. No additional K SendMore is needed



26

] It allows distributed, computationally-intensive applications to be designed and tested.
° It packages a complex inter-machine protocol in a modular and elegant form.

We have learned several lessons from building Charlotte version 2. We were surprised at the subtle
manner in which seemingly unrelated and simple communication facilities interact to produce com-
plexity. Modularity, particularly the finite-state automaton design, allowed us to tackle that complex-
ity, although at a significant performance cost. Modifications to improve performance were imple-
mented after the finite-state automata were designed. Following and extending methods like [14. 16],
we use states and simple actions for the normal (most frequent) cases, and a small number of flags
for special cases. We are considering faster synchronization mechanisms than queues for common
cases. Again, this change will improve performance at the expense of elegance.

In this paper, we have shown the development from a simple and restrictive protocol to one that
covers all our inter-process communication semantics, including complex and timing-dependent
scenarios. Building the kernel modularly aided in adding new features and services. For example,
destroying the links of a terminating process or links to a failed node was a simple addition to normal
link destruction.

The hardest part of Charlotte development was protocol definition. We defined and tested the
protocol manually by drawing next-to-impossible timing diagrams and using both well behaved and
crazy programs. Better (automated) verification techniques and an exhaustive simulation (or event
genrator) are needed. We have started a project to examine automatic generation of finite state auto-
mata from protocol descriptions [17].

Charlotte is currently functioning as reported in this paper. Current research revolves around
programming languages that make use of links., dynamic migration for load balancing, and distri-
buted debugging [18, 19].

Acknowledgements

The Charlotte project owes its success to a great number of designers. implementers, and
creative critics. Phil Krueger and Al Michael implemented Charlotte version 1. Bryan Rosenburg
and Bill Kalsow were instrumental in designing the finite-state automata. Bryan also built the first
versions of most of the utility processes. They have been modified and improved by Prasun Dewan,
Vinod Kumar, and Cui-Qing Yang. Tom Virgilio implemented the Crystal nugget. Keith Thomp-
son and Nancy Hall implemented the Modula compiler. Many helpful ideas and comments were
provided by Aaron Gordon and Michael Scott. The idea of the connector is due to Tony Bolmarcich.
Marvin Solomon is a principal designer of the entire Charlotte operating system and the Crystal pro-
ject.



27

Appendix A: The four basic FSAs

The following is a complete version of the FSAs, including the Cancel and Move operations
and Buffer Management, but without Receive(A//Links) and multi-packet transfers. These latter are
discussed in 4.3. For completeness, the reader is referred to the Wait algorithms described in 4.1.
New operations, and some which are functionally extended from what was described earlier. are ela-
borated following the four FSAs.

User Request Kernel to Kernel
R State U Receive | U Cancel | K Send | K Enclose K Cancel*
Recv Send
1.R Idle Al x1:1 D:2 D:2a N:1
Ax:1(3.4) x1:1 dx: 1 dx:1 Nx:l
2.R Sendln B:4(5) G:2 X X T 1)
X X X X Jx:1
2a.R Encloseln P:7(5) G:2a X X 14
X X X X Jx:1
3.R ReceivePend C:3 H:1 E:4 R:7 N:3
Cx:3 Hx: | Dx:4 Dx:4 IJx:3
4.R Done Al I.4 D:2 D:2a N:4
ax:4(3) Ix:4 Dx:4 Dx:4 Jx:4
5.R ReceiveAgain C:5 L:6 F:4 R:7 N:3
Cx:5 Lx:6 Fx:4 Dx:4 nx.3
6.R Cancel Recv X X K:4 S:7 M:1
X X Kx:4 X X
7.R WaitUpdate C:7 I:7 X X N:7
cx:7 ix:7 X X Tx:7

Table A.1: Receive FSA with Cancel, Move and buffer management

In each entry, the lower (Action, NewState) pair is selected on exceptional cases:

LinkState < > L OK (¥ L Dead, L. Moving, L Fetus, L. Remote/Local Destroyed *)
or
LinkFlags <> 0 (* UpdatePend. UpdateCompleted, UpdateRefused, LocalDestroyPend, ReturnedToSender *)

Actions:
A skip.
Ax  if LinkIsMoving(cl) then x2

elsif LinkIsDead(cl) then

StoreResult(cl,R,ReceiveFail LinkDestroyed):

R State : = R Done
elsif LinkUpdatePends(cl) then A; R State .= R ReceivePend
else FatalError; fi.

ax  As Ax, starting from elsif...
B if BufferIsAvail (cl) then
AcceptData (cl);

14 This request might be obsolete, and hence is handled as a hinr. It is considered obsolete when Link’s current desti-
nation doesn’t agree with requestor’s address (because link has been moved meanwhile, for example), in which case it is ig-
nored; otherwise, it is handled by the appropriate action.



28

StoreResult (cl.R,ReceiveOk);
Out (cl, K Accepted)
else
Out (cl, K SendAgain);
R State : = R ReceiveAgain
fi.
C KeepRequest (cl, NextReceive): BlockUser (cu).
Cx if LinkUpdatePends(cl) then C else FatalError; fi.
cx if LinkIsRemoteDestroyed(cl) then C (*though it will fail*) else FatalError; fi.
D FreeBuffer (full).
Dx D; if not LinkIsLocalDestroyed(cl) then FatalError: fi.
dx D
if LinkIsMoving(cl) then
Out(ct,K SendLater);
Set L Flag(ReturnedToSender)
elsif not LinkIsLocalDestroyed(cl) then FatalError: fi.
E Like then-part of B.
F AcceptData (cl): StoreResult (c¢f,R.ReceiveOk);
Fx if LinkUpdatePends15 then F: PossibleUpdateOK{(cl); else Dx; fi.
G if R Result is valid then I else x1 fi.
H ReturnToUser(CancelOK),
Hx if LinkUpdatePends then H; else FatalError; fi.
I ReturnToUser(TooLateToCancel).
Ix  if LinkIsDead(cl) or LinkUpdatePends(cl) then I else FatalError; fi.
ix  if LinkIsRemoteDestroyed(cl) then I else FatalError; fi.
J Out(cl, K CancelOK); if R Result is valid then R State := R Done fi.
Jx  if not LinkIsLocalDestroyed(cl) then FatalError; fi.
K F; I: UnblockUser(cu).
Kx if LinkUpdatePends{cl) then K; PossibleUpdateOK(cl); else FatalError; fi.
L BlockUser(cu).
Lx if LinkUpdatePends(cl) then L:!'6 else FatalError: fi.
M H: UnblockUser(cu).
N  skip.
Nx if LinkIsMoving(cl) then
if ReturnToSender € L Flags then Reset L Flag(ReturnToSender); fi.

else Jx; fi.

nx if LinkUpdatePends(cl) then N; PossibleUpdateOK(cl); else Jx; fi.

15 This case may theoretically happen if this sequence of events occurs: (i) The local side requires K SendAgain, (ii)
which is responded with K Send. (iii) The remote side encloses the link to a third party (iv) whose K Update request we re-
ceived before the above K Send.

16 Like the case in Fx. but the remote side could respond with K Cancel.



Tx
x1
x2

if BufferIsAvail (cl) then

AcceptData (cl);
StartNewLink(nl); (* nl = New Link *)
Out (nl, K Update)
else
Out (cl, K SendAgain);
R State : = R ReceiveAgain
fi.
Like the then-part of P.
R; I; UnblockUser(cu).
if not LocalDestroyPends(cl) then FatalError: fi.
ReturnToUser(NothingToCancel).

ReturnToUser(LinkIsMoving).



30

User Request
S State
U Send U Enclose | U Cancel Send
1.5 Idle A:2 I:2a(l) xl:1
Ax:3(1,2) | Ix:3(1,2a) xl:1
2.5 SendOut B:2 B:2 E:4
Bx:2 Bx:2 Ex:1(4)
2a.S EncloseOut B:2a B:2a E:4a
Bx:2a Bx:2a ex:1(4a)
3.5 Done A2 I:2a(l) F:3
ax:3(2a) ix:3 Fx:3
4.5 Cancel_ X X X
Send X X X
4a.S Cancel_ X X X
Enclose Sx:4a Sx:4a Tx:4a
Kernel to Kernel
S State K Accepted | K Rejected | K Send | K Cancel | K Send
Again OK Later
1.S Idle X X X X X
X X X X X
2.5 SendOut C:3 X D:3 X J:2
Cx: 3 X Dx:3 X Ix:2
2a.S Enclose M:3 N:2a L:2a X I:2a
Out Mx:3 Nx:2a Hx:2a X jx:2a
3.S Done X X X X X
X X X X X
4.5 Cancel_ G:3 X H:1 H:1i H:1
Send Gx:3 X Hx:1 Hx:1 Hx:1
4a.S Cancel R:3 P:1 P:1 P:1 P:1
Enclose Rx:3 px:1(3) Px:1(3) px:1(3) px: 1(3)

Table A.2: Send FSA with Cancel, Move and buffer management
In each entry, the lower (Action, NewState) pair is selected on exceptional cases:
LinkState <> L OK (* L Dead, L. Moving. L Fetus, L Remote/Local Destroyed *)

or

LinkFlags <> 0 (* UpdatePend, UpdateRefused, UpdateCompleted, LocalDestroyPend, ReturnedToSender *)
or

SendFlags < > 0 (* SendLater. AbortEnclose, EncloseRejected *)

Actions:
A Out (cl, K Send).
Ax if LinkIsMoving(cl) then x2; S State .= S Idle;

elsif LinkIsDead(cl) or LinkIsRemoteDestroyed(cl) then
StoreResult(cl, S, SendFail LinkDestroyed);



31

ax

Bx

€xX

Fx

elsif LinkUpdatePends(cl) then
S State := S SendOut;
Set S Flag(SendLater)
else FatalError; fi.

Like Ax, starting from elsif...
KeepRequest (cl,NextSend); BlockUser (cu).
if LinkIsRemoteDestroyed(cl) then (*Discard this request*)

elsif LinkUpdatePends(cl) or ToBeSentLater(cl) then B
else FatalError; fi.

StoreResult (¢cl,S.SendQk).
if LinkIsLocalDestroyed(cl) or LocalDestroyPends(cl) then skip

elsif LinkUpdatePends(cl) then C: PossibleUpdateOK(cl);
else FatalError; fi.

A: C.

if not (LinkIsLocalDestroyed(cl) or LocaiDestroyPends(cl)) then FatalError: fi
Out(cl. K Cancel Send): BlockUser(cu).

if LinkIsRemoteDestroyed(cl) then ReturnToUser(CancelOK)

elsif ToBeSentLater(cl) then
ReturnToUser(CancelOK);
Reset S Flag(SendLater):

elsif LinkUpdatePends(cl) then
S State : = S CancelSend;
BlockUser(cu);

else FatalError; fi.

if LinkIsRemoteDestroyed(cl) then

ReturnToUser(CancelOK);
RelnstallLink(ml);

elsif ToBeSentLater(cl) then
ReturnToUser(CancelOK);
Reset S Flag(SendLater);
RelnstaliLink(ml);

elsif EncloseRejected(cl) then
ReturnToUser(CancelOK);
Reset S Flag(EncloseRejected):
RelnstallLink(ml);

orif LinkUpdatePends(cl) then (* last 2 situations may coexist ¥)
S State := S CancelSend:
BlockUser(cu);

else FatalError; fi.

ReturnToUser(TooLateToCancel).
if LinkIsDead(cl) or LinkUpdatePends(cl) or LinkIsRemoteDestroyed(cl) then F

else FatalError; fi.

C; F; UnblockUser(cu).



Ix

Jx

JX

-

if LinkUpdatePends(cl) then G: PossibleUpdateOK(cl); else FatalError; fi.

ReturnToUser(CancelOK); UnblockUser(cu).

if LinkUpdatePends(cl) then H: PossibleUpdateOK(cl); else FatalError; fi.

if OkToMove(ml) then

ReturnToSender(ml);
ml".L State := L Moving:
Out(cl, K Enclose);

else
x3; S State := S Idle:

fi.

if LinkIsMoving(cl) then x2: S State : = § Idle:

elsif LinkIsDead(cl) or LinkIsRemoteDestroyed(cl) then
StoreResult(cl, S, SendFail-LinkDestroyed);
elsif LinkUpdatePends(cl) then
if OkToMove(m!) then
S State := S EncloseOut:
Set S Flag(SendLater);
ReturnToSender(ml);
mi".L State : = L Moving:
else
x3; S State : = S Idle;
fi.
else FatalError
fi.
Like Ix, starting from the first elsif.
Set S Flag(SendLater);
L
if LinkUpdatePends(cl) then

PossibleUpdateOQK(cl);
if it succeeds then Out(cl, K Send): fi.
else Dx; fi

Like Jx, but Out(cl. K Enclose).

Out(cl, K Enclose):

StoreResult(cl,S,SendOK):

if LinkUpdatePends(ml) then Out(ml, K UpdateFail); fi.
DeleteLink(ml).

M;

if LinkUpdatePends(cl) then PossibleUpdateOK(cl) else Dx; fi.

if LinkUpdateCompleted(ml) then RetryMove(cl); else Set S Flag(cl, EncloseRejected); fi.

if LinkUpdatePends(cl) then

PossibleUpdateOK(cl); if it succeeds then Q; fi.
if LinkUpdateCompleted(ml) then RetryMove(cl);
else Set S Flag(cl, EncloseRejected); fi.

else Dx; fi

RelnstallLink(ml); H.

32



33

Px

pPx

=

Sx
Tx

x1
X2
x3

if LinkIsRemoteDestroyed(ml!) then
StoreResult(cl, S, SendFail-EnclosedLinkDestroyed);
S State := S Done;
GrantDestroy(ml);
else RelnstallLink(ml);
fi.
if not AbortEnclose € S Flags then H else Dx; fi.
if LinkUpdatePends(cl) then PossibleUpdateOK(cl); else Px; fi.
M:; F; UnblockUser(cu).
M; Dx. (* ml cannot be RemoteDestroyed *)
if AbortEnclose € S Flags then B else FatalError; fi.
if AbortEnclose € S Flags then
Reset S Flag(AbortEnclose); BlockUser(cu);
else FatalError; fi.
ReturnToUser(NothingToCancel).
ReturnToUser(LinkIsMoving).
ReturnToUser(LinkNotEnclosable).



ys|

x1

Link State Request
U Destroy | K Destroy | K Destroy OK
I.LOK A2(1) C:3(4) X
2.L LocalDestroyed X D:6 D:6
3.L Dead B:6 X X
4.L RemoteDestroyed E:4 X X
5.L Moving x1:5 F:4 X
6.L Free X X X

Actions:
BlockUser(cu);

if R State = R WaitUpdate then (* Delay request *)

Table A.3: Destroy FSA.

L State := L OK;

Set L Flag(LécalDestroyPend);

else Out(cl,K:Destroy); fi.
if LinkUpdatePends then
Reset L Flag(UpdatePend);

Out(to-updating-destination. K UpdateFail):

fi.

DisposeLink(cl)

if R State = R WaitUpdate then L State . = L RemoteDestroyed;

fi.

ClearDeadLink(cly; DisposeLink(cl): UnblockUser(cu)

else GrantDestroy(cl):

Set L Flag(LocalDestroyPend);

if tI".S State =

(* no cancellation needed *)
elsif ToBeSentLater(tl) or EncloseRejected(tl) then
t1".S State : = S Done;
StoreResult(tl, S, SendFail-EnclosedLinkDestroyed);
GrantDestroy(cl);

else

tI".S State : = S CancelEnclose;

S CancelEnclose then (* tl = Transferring Link *)

if not LinkIsLocalDestroyed(tl) then Out(tl.K Cancel Send): fi.
Set tI".S Flag(AbortEnclose);

fi.

ReturnToUser(LinkIsMoving).

34



35

Request
Link State
K Update | K UpdateOK | K UpdateFail | K NoUpdate
1.L OK A:l X X F:1
2.L LocalDestroyed B:2 X X N:2
3.L Dead X X X N:3
4.L RemoteDestroyed X X X N:4
5.L Moving C:5 X X H:5
6.L Free X X X N:6
7.L Fetus G:.7 D:1 E:6 N:.7

Table A.4: Move FSA,
A if R State = R ReceiveAgain then

Set L Flag(UpdatePend):

elsif S State € {S Idle,S Done} then
Set new destination of link cl.
Out(cl, K UpdateOK);

else PossibleUpdateOK{cl);

fi.

B Out(updateing-destination, K UpdateFail):
if MyPriority()!’ then

Set L Flag(UpdateRefused):
Out(cl, K UpdateFail):

else

Set new destination of link cl;

Set L Flag(UpdateCompleted);

Out(cl, K UpdateOK);

if EncloseRejected(tl) then RetryMove(tl); fi. (* tl = Transferring Link *)
fi.

D InstaliNewLink(cl);
Find the receiving link (rl);
Out(rl, K Accepted):
rI".R State : = R Done:
StoreResult(rl, R, ReceiveOK): (* with indication of the new accepted link *)
Perform d.

d if LinkIsRemoteDestroyed(rl) then

Out(ri, K DestroyOK);

ClearDeadLink(rl);

if LocalDestroyPends(rl) then
DisposeLink(rl):;
UnblockUser(rl);

else rl".L State : = L Dead:; fi.

elsif LocalDestroyPends(rl) then

rI”.L. State : = L LocalDestroyed;

Reset rl".I. Flag(LocalDestroyPend);

Out(rl, K Destroy);

17 This is a simple function which should rewrn T for one end of the link, and F for the other (eg: comparing the pair
(Machineld, Link[d) of both ends.)



fi.

E DisposeNewLink(cl);
Find the receiving link (rl):
Out(rl, K Rejected);
rI".R State : = R ReceivePend:
Perform d.

F if (Request is not obsolete)18 then

if S State = S SendOut then Out(cl, K Send)
elsif S State = S EncloseOut then Out(cl, K Enclose)
else skip;
fi.
Reset S Flag(SendLater);

else skip

fi.

G Set L Flag(UpdatePend).
H if (Request is not obsolete) then

if EncloseRejected(t]) then RetryMove(tl); else Set L Flag(UpdateCompleted); fi.
N  skip.

We have introduced some new operations:

LinkIsMoving(link) return(link”. L State
LinkIsDead(link) return(link”. L State

L Moving).
L Dead).

LinkIsLocal/RemoteDestroyed(link)
return(link” L State

il

L Local/RemoteDestroyed).

LocalDestroyPends(link)
return(LocalDestroyPend € link".L Flags).

LinkUpdatePends(link) return(UpdatePend € link™.L Flags).

LinkUpdateCompleted(link)
return(UpdateCompleted € link™.L Flags).

LinkUpdateRefused(link)
return(UpdateRefused € link™.L Flags).

ToBeSentLater(link)  return(SendLater € link".S Flags).
EncloseRejected(link) return(EncloseRejected € link™.S Flags).

StartNewLink(nl) opens a new entry (nl) in link table, sets its destination end appropriately,
keeps mutual pointers w/ the receiving link (current link).
nl".L State : = L Fetus.

PossibleUpdateOK(link)
check whether all conditions to postpone an K Update request are resolved,
namely (R State < > R ReceiveAgain) and (S State = {S Idle or S Done}
or SendLater € S Flags)

OkToMove(link) return(L State = L OK and S State = S Idle

and R State € {R Idle,R SendIn,R Encloseln}

18 This request reflects failure to move the link by the other side, but theoretically it may come after the link has been
consecutively moved (or been failed to move) even more than once. Therefore, it is handled as a Aint, rather than as an abso-
fute. This request is ngt obsolete when: (1) Link’s Destination agrees with the address of this request sender, and (2)



37

and R Result is not valid.

RetryMove(link) Reset link™.S Flag(EncloseRejected);

Reset ml“.L_I—? lag(UpdateCompleted); (* moving link *)
Out (link, K Enclose); (* with new destination address of ml *)

ReturnToSender(link) if R State € {R_SendIn, R Encloseln} then

Out(link. K SendLater);
Set L Flag(ReturnedToSender);
R State : = R Idle:

fi.

InstallNewLink(link)  add the link to user’s set of links.

if LinkUpdatePends(link) then Qut(to-new-destination, K UpdateOK): fi.

RelnstallLink(link) if LinkIsMoving(link) then

if LinkUpdateCompleted(link) then Reset L. Flag(UpdateCompleted): fi.

if LinkUpdateRefused(link) then
Reset L. Flag(UpdateRefused):
Qut(link, K NoUpdate);
elsif ReturnedToSender € L Flags then
Reset L Flag(ReturnedToSender);
Out(link, K NoUpdate);
fi.
L State := L OK:
elsif LinkIsRemoteDestroyed(link) then
GrantDestroy(link):
fi.

GrantDestroy(link) Qut(link, K DestroyOK); L State D= L. Dead:

ClearDeadLink(link);

ClearDeadLink(link)  In addition to breaking any outstanding Send or Receive (see Section

6.

4.1.4). break outstanding Cancel. If that Cancel was user-initiated, un-
block the user with CancelQK. If enclosure is broken,
RelnstallLink(moving link).

References

R. Finkel, M. Solomon, D. DeWitt, and L. Landweber, **The Charlotte Distributed Operating
System: Part IV of the first report on the crystal project,”” Technical Report 502, University of
Wisconsin--Madison Computer Sciences (July 1983).

Proteon Associates, ‘‘Operation and Maintenance Manual for the ProNet Model pl000
Unibus,”" Waltham, Mass, (1982).

R. Cook, R. Finkel, D. DeWitt, L. Landweber, and T. Virgilio, **The crystal nugget: Part I of
the first report on the crystal project,”” Technical Report 499, Computer Sciences Department,
University of Wisconsin (April 1983).

R. A. Finkel, M. H. Solomon. and R. Tischler. ‘*Arachne User Guide, Version 1.2."” Techn-
ical Summary Report 2066, University of Wisconsin Mathematics Research Center (April
1980).

M. H. Solomon and R. A. Finkel, *>The Roscoe distributed operating system,”” Proc. 7th Sym-
posium on Operating Systems Principles, pp. 108-114 (December 1979).

SendLater € SendFlags (Hence S State € {S SendOut, S EncloseOut}).



38

F. Baskett, J. H. Howard. and J. T. Montague, ‘‘Task communication in Demos,’’ Proc. 6th
Symposium on Operating Systems Principles, pp. 23-31 (November 1977).

M. L. Powell and B. P. Miiler, '*Process migration in DEMOS/MP,”’ Proc. 9th Symposium
on Operating Systems Principles. pp. 110-119 (December 1983).

J. D. Ichbiah et al., **Preliminary Ada reference manual,”” Sigplan Notices 14(6)(June 1979).

P. Brinch-Hansen, ‘‘Distributed processes: A concurrent programming concept,”” CACM
21(11) pp. 934-941 (November 1978).

T. W. Mao and R. T. Yeh, **Communication port: A language concept for concurrent pro-
gramming,”” /EEE Trancactions on Softiware Engineering SE-6(2) pp. 194-204 (March 1980).
D. R. Cheriton and W. Zwaenepoel, ‘‘The distributed V kernel and its performance for disk-
less workstations,”” Proc. 9th Symposium on Operating Systems Principles, pp. 110-119 (De-
cember 1983).

H-T Chou, D. J. DeWitt, R. Katz, and T. Klug. ~"Design and Implementation of the Wiscon-

sin Storage System (WiSS),”” Technical Report #524. Computer Sciences Department.
University of Wisconsin (November 1983).

A. Danthine and J. Bremer, ‘"An Axiomatic Description of the Transport Protocol of Cy-
clades,”” Professional Conference on Computer Neiworks and Teleprocessing, (March, 1976).

G. V. Bochmann and J. Gescei. “"A Unified Method for the Specification and Verification of
Protocols,”” Information Processing. IFIP. North-Holland, (1977),

G. V. Bochmann, “‘Finite State Description of Communication Protocol,”” Computer Networks
2 pp. 361-372 (1978).

A. Danthine and J. Bremer. ~*Modelling and Veritication of End-to-End Transport Protocols,”’
Computer Networks 2 pp. 381-395 (1978).

B. Rosenburg, ‘‘Automatic generation of communication protocols,”” Thesis proposal,
University of Wisconsin--Madison Computer Sciences (March 1984).

A. J. Gordon and R. A. Finkel, “*The use of timing graphs for distributed program debug-
ging,”’ Distributed processing technical newsletter, (Fall 1984).

M. L. Scott and R. A. Finkel, **LYNX: A Dynamic Distributed Programming Language,”” To
appear in the /984 International Conference on Parallel Processing, (August 21-24. 1984).



