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ABSTRACT

In an effort to understand certain ideas and concepts associated with
multi-grid iterations we give an in-depth study of a particular simple
problem. We consider a standard finite-difference system associated with

the two-point boundary value problem

-(pu')" + bu' +qu =0, u(0)=u(1)=0.

The operators Iﬁh, Igh are "operator" based interpolation and pro-
jection operators while the smoothers are the damped Jacobi iterations with
parameter a > 0.

We determine the exact rates of convergence for the "two-grid" scheme
and upper bounds (<1 !) for the multi-grid schemes. Experimental results

are discussed.




1. Introduction

The multi-grid approach for the numerical solution of boundary value prob-
lems for elliptic partial differential equation is proving itself as one of
the fastest and most efficient methods - see [1], [3]1, [4], [5], [6], [17].
Moreover, there are a large number of theoretical papers on this subject -
see [2], [3], [61, [71, [8], [9], [10], [11], [13], [16]. Nevertheless, it
seems (at least it seems so to these authors) that we are just beginning to
understand this powerful idea. In particular, there are questions of: how
do we choose the interpolation and projection operators?, how do we choose
the smoothing operators?, what do we mean when we say smoothing? and ...?

This report is a reflection of our efforts to understand and appreciate
the theoretical insights of Frederickson [7], McCormick and Ruge [13],
McCormick [14], [15] and Greenbaum [8] and apply those ideas to extend the
explicit convergence rates given by Hackbusch [12, (2.21)], [11] for the very

simplest problem

Specifically, we consider the two-point boundary-value problem

(1.1) tu: = =(pu')" + b(x)u' + qu="Ff, 0<x<]

=
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(1.2)
where p(x), b(x), q(x) are smooth functions and
(1.3) p(x) > py >0, qlx) >0

In section 2 we describe a basic approach to multi-grid which is based on

the ideas of Frederickson [7], McCormick and Ruge [13] and Greenbaum [8].



In section 3 we describe a discretization (finite-difference) of the
problem (1.1), (1.2) and a specific two-grid iterative procedure for

its solution. In section 4 we describe the class of damped Jacobi
"smoothers" and use our knowledge of these schemes and their eigenvectors

to describe the basic spaces: Range Ih = R and WNullspace Iﬁth =1.

2h
In section 5 we obtain estimates for the norm decay of a single step in a
two grid scheme for two different norms. In addition we obtain a better
estimate for the norm decay for all iterative steps beyond the first in
both these norms. Interestingly enough, this estimate is the same in both
norms. This latter result is an improvement over the estimates of Hackbusch
(1], 2],

It is well-known that the problem (1.1), (1.2) is equivalent to a
self-adjoint problem. Moreover, the discretization (3.4) is also equivalent
to a symmetric problem. In fact, our multi-grid treatment of this problem
is equivalent to the "same" multi-grid treatment of this symmetric problem.
This equivalence is not needed for the discussion in sections 1-5. However,
as we turn to the extension of a two-grid scheme to a true multi-grid scheme,
we require this information. In section 6 we demonstrate this equivalence.

In section 7 we describe the n-grid "saw-tooth" multi-grid schemes and give

a theory (closely related to a theorem of McCormick [14], [15]) which de-

scribes the rates of convergence of this scheme. In addition section 7 con-

tains some experimental results.




2. A Basic Theory

The theory presented in this section is based on the work of
Frederickson [7], McCormick and Ruge [13] and Greenbaum [8]. We consider

a finite-dimensional linear space Sh and a problem

(2.1) LU=+f; u, fes

h h

where

ijs a linear, nonsingular operator.
Multi-grid is an iterative method for the solution of this problem.

The basic idea is to utilize another finite dimensional space SZh with

(2.2) dim S2h < dim Sp ¢

Hence we require operators Iﬁh, Igh which enable us to effect com-

munication between these spaces. In particular, we have

(2.3a) Iﬁh: S +S2h (projection)
(2.3b) Igh: SZh > Sh (Interpolation)

where Iﬁh, Igh are linear operators. We also require a "smoothing"

operator Sh and a "coarse grid" operator L2h' The smoothing operator
S, is an affine operator which has U, the unique solution of (2.1) as

its only fixed point. That is

(2.4a) Sv=06v+Tf



where Gh: Sh +’Sh is a linear operator and if U 1is the solution of

(2.1), then

(2.4b) S uUu=1U.
Finally, the "coarse grid" operator

(2.5) L2h: SZh > SZh

is a linear, nonsingular operator taking S2h onto itself,
0

Let U™ € Sh be a guess for the solution U of (2.1). Set
(2.6a) eo =y - U0 s
(2.6b) U=s00,
(2.6c) g=u-10=g6(u1 - 6 e,
(2.6d) r=fFf- LhU = Lh(U-U) = th .
(2.6e) R = 12
Solve
A ~ -]
(2.7) L2h€ - R ? 1.€., £ = 2hR °
Set
1~ _ha 1 _~ _ha
(2.8) Uu =u+ IZhE , E = E = IZhE
TR

and return to (2.6a).




Remark: While one might say that we have merely described a two-grid
scheme, the iterative scheme described above does, in fact, describe
"multi-grid" schemes. The point is that the "coarse grid correction”

operator L may be a complicated procedure involving more grids.

2h
The work of Frederickson [7], McCormick and Ruge [13] and Greenbaum

[8] suggests we study two fundamental subspaces. These are

(2.9a) R

range of Igh s

2h
nullspace of Ih Lh .

(2.9b) n

In addition we consider a special two grid "coarse grid" operator
g

~ _ .2h, -h
(2.10) L2h = Ih LhI2h .

This particular operator is the "Galerkin choice" and is "optimal" in a

certain sense. This fact is emphasized by the following

Llemma 2.1: Consider one iteration as described above by (2.6a)-(2.8) with

(2.11) L2h = L2h .
Suppose & ¢ R. That is, suppose there is a w(2h) Soh and
(2.12) 2= &(h) = 1" w(2h)

° Zh °

Then

(2.13a) € = w(2h)



and

Hence, the problem is solved.

Proof: From (2.6d) and (2.12) we have

_ ~ h
r = LhE = LhIZhW(Zh)'
Thus
_ +2h_ _ 2h h
R=1I"r= (Ih LhIZh)w(Zh).
That is,
(2.14) R = L2hw(2h).

Hence, from (2.7) we have (2.13a). Finally, (2.13b) follows from (2.8)
and (2.12). a

Now suppose we can write Sh as the direct sum (not necessarily orthog-

onal) of Range (Igh) and Nullspace (Iﬁth). That is, every grid function

w(h) € Sh can be uniquely written as

(2.15a) w(h) = Ighw](Zh) + wz(h)
where

(2.15b) 12 wP(h) = 0 .

Let us apply this decomposition to the intermediate error € = g€(h) . Then




(2.16) 2(h) = 1D w'(2n) + n) .
Thus
_ h 1 1
r = LhIZhw (2h) + Lhe (h)
and
_2h _ r:2h, ch 41
R = Ih r = [Ih LhIZh]w (2h) .
Using lemma 2.1 we see that
(2.17) TLEN R LT P
2h
and hence
1 _ T _ ~ h 1
e =U-U =U-U- IZhW (2h) .
That is
E] = e](h)

Thus, the convergence of the process can be tested by
[l /1
where
61(h) € NuZZspace(Iﬁth) = 7

and the norm invelved is any norm. The authors mentioned above all dealt

with self-adjoint Lh and assume that



2h

I

- h \T
- C(IZh) °

In this case it is an easy matter to see that the Range (Igh) and
Nullspace (Iﬁth) are Lh-orthogonal complements of Sh . In the general
case we must assume the decomposition (2.15a). However, it is a simple
counting argument to see that (2.15a) is valid if Loy, is non-singular and
i) rank Igh = dim SZh
ii) dim Nullspace Iﬁth > dim S, - dim Sop

Recall that Lemma 2.1 implies that the zero vector is the only vector common

to both subspaces.




3, The Discrete Problem

Let an integer N > 1 be chosen and set

_ 1 _ 1
T 2(N+1) T (2N+1)+1

(3.1) h

and let the fine "grid points" be given by

x.(h) =

(3.2) ;

jh, 3 =0,1,2,...,2N+2 .

We define a difference operator Lh by

(3.3a) [LpUli = =oyBq * Bl = Vil
where
—bk_L bk
a, = 2+ = ,
P
Y +p
o Pk T Pk
(3.3b) 18, 7 “J :
[
P D
Yk 2 7|
.
Then L, 1is a consistent approximation to the operator

h

L described in (1.1).

We assume h is so small that oy > 0, Yy >0 for all k.

We are concerned with the system of linear equations

(LU = Fio ko= 1a2,00,20

U 0

(3.4)

= U

0~ “2N+2
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We shall solve this system with a particular multi-grid iterative scheme.
Consider a course grid on which we have a mesh spacing of 2h and the
course grid points are given by

Xk(2h) = 2hk, k = 0,1,2,...,N+1 .
We have a space S = of grid functions {Uk(h); k = 0,1,...,2N+2} defined
on the fine grid, and we have a space 52h of grid functions
{Uk(Zh); k = 0,1,...,N+1} defined on the coarse grid. Our first step is
to construct the interpolation operator Igh which maps SZh into Sh,

i.e.

Following the experience of Dendy [4], [5] we choose the following mapping
(3.5a) [15,U(2n)1,, = U, (2h) (common points)
and

h _ 1 .
(3.5b) [IZhU(Zh)]Zk-l = E;;j? [a2k-1Uk-1(2h) +Y2k-]Uk(2h)] (new points).
This choice of "operator" interpolation may be described in the following way:
If the physical point xj(h) of the fine grid is also a physical point of
the coarse grid, i.e. if j 1is even, say J = 2k, we set Uj(h) = Uk(2h)
to be the same value as the coarse grid function assumed at that point;
that is, (3.5a) holds. If the physical point xj(h) of the fine grid is

not a point of the coarse grid, i.e. j 1is odd, say Jj =2k - 1, we re-

quire that

h ,
(3.5¢c) {L, [15,0(2n) I}y, 4 = 0 .
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We formalize this remark as

Lemma 3.1: Let this interpolation operator Igh

(3.5b). Then a function U(h) ¢ S, is in the range of Igh if and only if

be defined by (3.5a),

[LhU(h)]Zk-1 =0, k=1,2,...,N+1 , B
We now turn to the construction of a projection operator Iﬁh: Sh +452h .
We define
(3.6) [1Z"u(m)], = 1/2|5=%- 2Ky, (h) +U, () ok oy ]
h k 2k—1 2k-1 82k+1 2k+1
Remark: if b{(x) = 0 and the operator L is self-adjoint then
A T VK-
and we see that
2h _ T
As we have said in section 2, the relationship (3.7) between Iﬁh and Igh

is the "variational choice" and is frequently recommended for self-adjoint
problems - see [13], [7], [4].
For the purposes of this exposition we take the optimal choice of

"coarse grid correction", i.e.

.0 _ 2h :h
op T L I

L oh = Th thlon -
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Remark: A direct computation shows that

- (2) (2) (2)

(3.8a) [L,pU(2h) ] = = 7U, 4+ B7 U =77 Uy g
where

(2) _ 1%2k%2k-1
(3.8b) Otk = ? —-—B-E;:T—‘

2) 1 %Yok Yo%k
(3.8¢c) B( = =|B,, - -

koo2zk By Bk

2) _ 1| YokY2k+1

(3.8d) y(2) 1172k 2k+l

k 2| Boka

Hence, L2h is again a diagonally dominant three term operator of the

form (3.3a).

Now we need only describe the smoothing operator which we do in the

-next section.
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4. Jacobi Iterative Schemes

A direct iterative method for the solution of (3.4) is described by

a splitting of the operator Lh . We set

L, =M-N.,

h
Then, given a first guess U0 we define successive iterates by the formula
(4.1) VIRALISI TN
The convergence of this scheme is determined by the eigenvalue problem
(4.2) AMU = NU .
As is well known, the scheme (4.1) is convergent iff

max|A| < 1.
It is easy to verify that: if (A,¢) are an eigenpair of (4.2) then

(4.3) Lo = (1-2)M .

In this section we are concerned with a particularly simple class of

such iterative methods, the Jacobi methods. We set
(4.4a) M=(1+a)B, a>0,
where

(4.4b) B = diag(B,) .
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In this case we may rewrite (4.1) as

AL TN R B S X

U h

When a = 0 we call this scheme the Jacobi method. When a > 0 we call
this scheme a damped Jacobi method. In these cases we are able to give
a relatively complete discussion of the eigenvalue problem (4.2). We have

the following facts.

i) The method is convergent for a > 0 .

ii) Let a =0 . Let {(p,$? be an eigenpair, i.e.
uBg = (B-L )¢ .
Let ¢ be defined by
(4.6) B, = 1) e, .

Then (-u,$> is also an eigenpair. The eigenvalues u are real
and distinct, furthermore: as h > 0 the {nu} fill out the interval
[-1,1]. For completeness we repeat the basic relationship between

¢ and $ . Namely,

(4.7a) if k is odd: ¢k =

!
-
=~

(4.7b) if k is even: ¢ = =0 -

Since dim Sh = 2N+1 there is a single eigenvector $ associated

with the eigenvalue u = 0 . This eigenvector satisfies

(4.8) by = 0 .
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For a > 0 there are corresponding eigenpairs (2,07, (X,$> where

¢ and o are the eigenfunctions described in (2) and

(4.9) y = 42 4 _a-y

the eigenpair (0,6> corresponds to an eigenpair (A,6) with

We now turn to the determination of the three important subspaces

Range Igh, Nullspace Iﬁh, Nullspace Iﬁth .

where the operators Igh’ Iﬁh are given by (3.5a), (3.5b) and (3.6).

Lemma 4.1: Let (u,¢), (-p,$) be the two eigenpairs described in
(ii) above with u # 0. Let

(4.10) 3 = [(1+u)¢ - (1-n)§]

then ¢ eRange Igh . Further, since the vectors & corresponding to
different pairs (u,¢?, (-u,b) are linearly independent this construc-

tion provides N 1linearly independent elements of the Range Igh .

Proof: Using (4.3) we have

Lye = [(1+u) (1-1)B¢ = (1-) (1+1)B9]

(1+u) (1-u)BLo-] .

]

Thus, the lemma follows from Lemma 3.1 which characterizes Range (Igh)

and from (4.7a), (4.7b). |
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Lemma 4.2:

i) For all choices of a > 0, the vector B$ (associated with p=0)

js an element of Nullspace Iﬁh and hence (4.3) implies that ¢

is an element of Nullspace Iﬁth.

ii) Let {u,¢), {(-u,¢)> with u # 0 be the two eigenpairs described

above. Let
(4.11a) y = B[(1-w)¢ + (1+0)4] .
Then ¥ is an element of Nullspace of Io' and (4.3) implies that
N 2h
(4.11b) (¢p+9) € Nullspace of Ih Lh .

Further, since the vectors V¥ associated with different pairs
(u,0?, <-u,$) are linearly independent, we have N linearly
independent elements of this nullspace and N Tlinearly independent
vectors of Nullspace Iﬁth. The vectors 85, 5 provide one more
independent vector of each of these subspaces.

Proof: The result follows from a direct computation using (3.6) and the

defining eigenvalue problem. B

Corollary: There is a unique decomposition of Sh into Range Igh and
2h

Nullspace (Ih Lh.)
Proof: Since Lh is non-singular we have shown that

dim Range Ih > N

A
. 2h g 2h
dim Nullspace (Ih Lh) = dim Nullspace (Ih ) >N+ 1,
dim Sh =2N+1 .,

Thus the corollary follows from the observation that Lemma 3.1 implies

that these two subspaces have only the zero vector in common, ]
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5, Some Estimates

Let a > 0. We take as our smoother m applications of the corres-
ponding Jacobi iteration. That is, given W0 = v%h) we obtain U

(as in 2.6b) from the formula
(5.1a) mdtt oI+ F, 5= 0,0, w1,
(5.1b) i=u".

First let us consider the special vector $ with its associated eigenvalue

= a_
A 1+a
Suppose
Q- =y
then
T ="
L€ = CA"B
and, using Lemma 4.2 we see that
2h, ~ _
IthE-Oo

Hence, in this case, for any norm
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1
(5.2) | JJ—UhL - (2" .

l

We now consider two norms defined on Sh . Let w, v e Sh be of the

form
< D ag +He [AG
5.3a) W= A.d. + A + A.0.
j=1 JJ j=1 JJ
N " N .
5.3b = C.op. + C¢p + C.9.
(5.3b) v _Z] 05 * Co jg] 3%
Define
TIREISE
(W,v), = A.C. + AC + A.C.
0 j=1 93 jep 473
N .
= - C
(w,v ) . .Z AJCJ(] uJ) + AC + _Z AJCJ(]+“J)
j=1 j=1
2
lwllg = <wwg
N N
2 _ 2 2 ~2
[l wll oy o= LAS(-ug) + AT+ ] AS(+ug)
j=1 j=1
Lemma 5.1: Suppose
0 0

(5.4) d=U-uU"=co+dp
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and let e] be defined by the two-grid iteration scheme. Then

1,2
el 2m 2 _y.2m 2
(5.50)  mar —p—2 = 172/ (2 (1-w)" + G ()

Bk
(5.5b)  ma Telly 1/2[(-1“—}%)2'"(1-11) + (%‘-}E)Zm(w)} .

Proof: From (5.4) we see that

€ = C)\md) + dﬁm$ .

Following the theory of section 2, we write (see 2.16)

(5.6) T - Ighvﬂ(zh) + e (h),
where

2h, 1,y _

Ih Lhe (h) =0 .

We claim that

m ,om
ch -d\
il

(5.7a) w(2h) = 141)¢-(1-1)3]

h
Lon

m .MM
(5.7b) L (1-u);dx (40 4487

To verify this we need merely verify that the sum of the right-hand-sides

of (5.7a) and (5.7b) is €, and use (4.10) and (4.11b).



Having verified (5.6), (5.7a), (5.7b) we proceed as follows

(5.82) L 18 = 1720 (1) +dim(1 4027
(5.8b) 1eolG = c? + df

(5.92) Ie'l12 = 12t +df" (a1
(5.9b) 1<O2 = 2(1-n) + d®(1em)

Thus, a simple argument shows that

1,2
[ e |l R
(5.10a) sup ——8 = 17208 (1) % #3100 8T
K
0
1,2
(5.10b) sup W = 1/72[2M(1-p) +27(1+u)] .
€
1

Using the basic formulae (4.9) we obtain

[ -
p——s—3 = 172 ()2 (12 4 @) 214y )]
” € ”0 L
| ')} 2
p————-——” 0”]2 = 1/2 (”+a)2m( -u) + ( “)2"'(1+u)}
€1l N

Thus, the lemma is proven, |

20
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Theorem 5.1: In the general case we have

2
el
(5.]]&) -ﬁ—-o—”% _<_ sup ]/2[('1}%)2"‘(]-11)2 +(%)2m(]+u)2]

-1<u<ld

I A

2
e
(5.11b) ]T—Tyﬁl sup 1/2[E¥$§)2m(1-u) +(%i§)2m(1+u{}
e I

-1<u<l

Proof: The Theorem follows immediately from the previous lemma. [ ]

We observe that (5.11a) is precisely the formula obtained by Hackbusch
[12, (2.21)] in the special case p(x) =1, b(x) =q(x) =0 anda =1.

To make a complete identification we merely set

-1 = 1t
(5.12) o=, (1-0) = 5=

However, while (5.11a), (5.11b) describe the worst case decay in one multi-
grid iteration in a 2-grid scheme, it does not give the estimate of real
interest. From the discussion in the proof of Lemma 5.1 - and (5.7) in
particular - we realize that, even though the constants ¢ and d of (5.4)
may be arbitrary for eo, that is not true for ek, k >1. MWe have

(from (5.7b))

(5.13a) el = o[¢+d]
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with

eA™M(1-p) + dA™(14)

g = ;

Therefore, following the argument of Lemma 5.1,

() = S0 (1) #8710 1[0+

Hence

M5 = net s - 20f

@2 = ey 2

2
; SIM(1-w) +A" (1417

and for j = 0,1 we have

je@yz I
(5.14) W = IV (1-0) +X (1+)1° .
j

Thus we have proven

Theorem 5.2: In the general case, for j = 0,1 and all k > 1 we have

et g
<

: e e m. am 2
(5.15) Ig K ”2 < _]Sg;f-)i]{q[)\ (1-p) +X (1+u)] } .

Remark: The distinction between Hackbusch's result (5.11a) and (5.15) is

non-trivial for large m. We have, as m =+

1
le'lly  (wa) 1

(5.16a) 5 (5.11a)
le'll, "2 °"




while

(k+1)
(5.16b) e : 5 1+ 1

eIl e en

J

Thus for k > 1 we have

k+1

(IFe™ "1/ ekyp )

(5.17) /”e | ~‘/§_= .7071

(el 0y,

23

(5.14)
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6. Symmetrization

Consider the difference equation (3.4) described by (3.3a), (3.3b).
Let
(6.1) Uy = d.Vy

where the coefficients dk are computed recursively by

(6.2a) d, = 1

(6.2b) d

then (3.4) becomes

= dy Ve B Ve - Vi < T

or
d d
k=1 K+ 1
(6.3) T e YBY c ka Vk T T Ti
K k K
that is
(6.3a) LV = =0y Vi BV = MV = Fy o

where
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(6 4 ) a = 0 ik_-.l = I‘_(_-.l = o,
-Ha k- % d k7 o Yk-1 »
d (1

A k+1 _ k+1 _ .
(6.4b) YT MeTa Tk Ty T ke
Hence
(6.5) a = Yy
and f is given by a symmetric operator.

h
We now turn our attention to the Jacobi iterative schemes of section 4.

We have

(6.6) TR AL NPT R B'](f-LhUj) )

The change of variables (6.1) is conveniently described by

(6.7a) U =DV
where
(6.7b) D = diag(d],...,d2N+1) .

With this change of variables the iteration (6.6) becomes

- yd 1 -1,5-1 J
=V + mD B (f—LhDV ) o

AL

But, since D and B are both diagonal matrices, we have

v Jd 1 p=l, =1, 2 ]
(6.8a) ) = V- + T B (D f-LhV )
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where

"

(6.8b) D7 f = (F,,f

127200 Tonn)

Since B is also the diagonal of Eh’ (6.8) is precisely the same
Jacobi iterative scheme for modified symmetric equations.
Now let us study the effect of this transformation on the two-grid

iterative scheme. We compute
~1-.h
D, [IopUy -
Imagine U(Zh)k = deV(Zh)k is given in S2h . Then, from (3.5a)
(6.9) a2 rh ueem)1,, = v(2h)
* 2k-"2h 2k k *
(6.9b) a2l P ueemy1,, . = v(zh)
' 2k-2"2h 2k-2 k-1 °

Thus (3.5b) yields

i 41 (2h) -1 (2h)
2k 1[12h (2h) 1o 4 62k ][a2k 1991192k 2Vkc1 *Y2ka192k-192K Y

i B e VRGO PRI PHRVICO M

2k=-1
Thus, with this change of variables the mapping Igh of our original
unsymmetric problem becomes fgh’ the appropriate mapping associated

with the new symmetric problem.
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Fina]]y, let us consider

-1,.2h
dop LTy V(]

A straight forward calculation verifies that

lr2hyy =] %2n Y2h
[1 u] Sl V (h) +v ]
doy T 2By 2k 2k(h) 32k+1 2k+1

Thus, following the remarks of section 3 [see (3.7)] we see that

1127 ~
(45T},

the appropriate projection operator.

For our purposes, the major significance of these calculations is that
the "1" norm introduced in section 5 is the "operator norm" for the
symmetric problem. Hence, we have a norm which is well-defined on all

spaces Sh. .
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7. Multi-Grid and Experimental Results

The results of the previous sections, and Theorem 5.1 in particular,
provide exact estimates of the decay of the error (in two norms) in one
iteration of a 2-grid scheme - in the worst case.

Since L2h is again a three term (diagonally dominant) operator of
the form (3.3a) - and given specifically by (3.8) - we may apply our
multi-grid approach inductively as follows: Assume that the n-grid multi-
grid scheme based on "smoothing" with m applications of the damped Jacobi
jteration with parameter a 1is defined. Suppose
(7.1a) h=-, n>2,

2" -

where H 1is of the form

(7.1b) H=oms P21

We wish to solve (3.4) on the h-grid. The iterative scheme is given by the
following inductive description.
(1.) On the h-grid (h =2""H):

(a) Let’ UO be chosen.

(b) Apply the damped Jacobi (with parameter a) iteration

m times to obtain ﬁ.

U

(c) Form r(h) = f - Lh .

(2.) Transfer Information:

(a) Set r(2h) = Iihr(h)
(3.) On the 2h grid:

(a) Consider the problem

EZhﬁ(Zh) = r(2h).
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(b) if 2h =H, solve exactly.

(c) if 2h<H, set U0(2h) = 0 and apply the

n-grid iterative scheme (based on smoothing
with m applications of the damped Jacobi
jteration with parameter a). Let U](Zh)
be the result of this step.

(4.) Transfer Information:

1 _~  .h
(a) U =1U+ I2h

) u -l

ul(2n) .

Return to 1(b).
In the multi-grid jargon this is the so-called slash or sawtooth cycle

which we indicate schematically as:

" 2:\\\\0 m “smoothings"- O///’:h "
4h\\\\o m "smoothings" o’///4h
\\\\o\ ;3’///

Note: There are no smoothing steps during the transfers from coarse to fine
grids,
McCormick [14], [15], calls such a multigrid cycle a M\h cycle. When
the smoothing occurs only on the way "up" the cycle and the errors are

merely restricted on the fine to coarse transfers, he calls the cycle a M/h
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cycle. For the symmetric case, using Richardson's iteration, see [14],

he shows that

(7.2) “M/h“] = “M\h“]

In discussing the symmetric Mﬂw cycle he obtains the following estimate.

Let

0o_ .0 h O
(7.33) e =n + IZhw .
Suppose o, 0 < o <1 satisfies

0,2 0,2 h 0,2 0
(7.3b) “GE “] < 0‘”” ”] +”12hw ”] s Ye o,
then
(7.4a) I, 1l < 0%,
that is:
1 1 5 0

(7.4b) e lly = Nu-ully <o lle”lly -

Since our Jacobi iteration is not all that different than Richardson's
jteration it is not surprising that a similar result holds in our case.
Indeed, if one applies his argument to our multigrid cycle, i.e. the M\h

cycle, one gets the following result.

Lemma 7.1: Consider the symmetric case and suppose

(7.5) lelly <1.
Let
(7.6a) Gso =g=n1+ Ih w .
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Suppose &, 0 <a <1 satisfies

2 N h 2 ~
(7.6b) Inli2 + allthwll} < &l e,
Then
AL
(7.7) Il <a”

1

Proof: The proof proceeds by induction. Since we use an exact solver

on the coarsest grid,

~d
(7.8a) IIM\h[|] =0<o0-°
Assume that
AL
(7.8b) Moplly =0
that is:
~k

(7.8¢) | My ppe(2h)-w(2h) [} < a*{lw(2zh) ||, .
Then

w2 _ 2 h 2
(7.9) ”8 ”] = ”n”] + ”IZh(M\Zhw'th .

Because this is a symmetric problem we know that
2 _
(7.10a) HvH1 = (v,Lv) ,

and that
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h 2 _ 44h h N 2h, :h
(7.10b) 1, vl|7 = (o vs LIov) = Cvy yILTL T

o 2
yiv, L2hv) = Y|lV“] .
Therefore,
1,2 2 2
Iig tl] = IIUII] + YIIM\Zhw'w“] .

By the inductive hypotheses (7.8b) we have
142 2 ~ 2 2 ~n 4 h 2
(7.11) e iZ < il + valol? = Inl? + &t w2

Note: In (7.10b) and in this calculation the symbols IIwII] and |[Ih H]

refer to the designated norms on the spaces SZh and Sh.
By the basic inequality (7.6b) we have
12 2 , aynqh 2 Ay 02
T2 < Inll? +alrf oll? <&l e}

which proves the Lemma.
Since the proof of this lemma is immediate once one understands the

proof of McCormick's lemma 2.2 of [15] one would expect that
(7.12) o =0 .

Indeed, this is the case. Direct but messy calculations based on the results
of section 5 yield

2m 2m 2m 2m
) |

H-a louta T u-a
E2) ) + 50 (- - G D)

N} =

=g = sup
(7.13) a=qa 1<

2m
(1-n) - 5(22) " (1)
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Moreover, for all choices of a and m, the supremum is attained at u =1.

L
The corresponding values of o are displayed in the following table:

Bounds on the Convergence Rate

m\a .333 .5 .667 .75 1 1.333
1 .633 .577 .561 .561 .577 .614
2 .435 .408 .417 424 .447 .475
3 .336 .335 .349 .357 .378 .403
4 .283 .293 .307 .314 .333 .357

In view of the results of section 6 which demonstrate the complete equiva-
lence of our problem to a related symmetric problem, these upper bounds apply

in our case.

¥ _ ok

However the estimate o = o is only an upper bound for the rate of
convergence of the multigrid iterative scheme. In order to complete our in-
vestigation we have undertaken an experimental project.

A computer program was written with the following capabilities: The user

supplies
p(X), b(X), q(X), f(X), m, a, N, and
M= (%) - 1 = (number of points on the finest grid),

where p(x), b(x), q(x), f(x) are the coefficients of the problems (1.1),

(1.2) and
m = number of applications of the damped Jacobi iteration,
a = parameter of the damped Jacobi iteration
n = # of grid levels.

The user also supplies an initial guess U0 and a tolerance E.
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The program then executes multi-grid iterations until the k] norm
[see (7.14a)] of the residual is below the indicated tolerance E. The
program is run in an interactive fashion which allows the user to change
the parameters M, m, a and n.

The experiments reported here were run on the VAX 780 in both single
and double precision arithmetic (approximately sixteen decimal digits of
accuracy). The single precision results were qualitatively similar to the
double precision results, however, for increased accuracy, the double pre-

cision results are reported here.

For our present purposes the basic program was modified to enable us
to estimate the "rates of convergence" of the multi-grid iteration. For
each test problem we used a known solution u(x) of the boundary value
problem (1.1), (1.2). Then we computed the exact solution u(x,h) of

the algebraic system (2.4). Then using two norms

(7.142) lully = b1 1y

(7.14b) lull; = ¢uLu )2

we computed the norms of the error (u-ui) at each iteration. The rate of
convergence was measured by computing
(7.15) el .
e
at each iteration i = 1,2,3....
To check that the program was working correctly a number of measures
were taken. The most simplistic was to carry out some of the iterations

by hand and to compare the hand computed calculations to the iterates
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generated by the machine. In addition, since the discretization error
is O(hz), jt is not unreasonable to expect that halving the step size

should reduce the final error in u by a factor of four. This property
2+1

was checked and found to be true. One of the requirements for 122 h
2”h
is that
L
2”h _
(7.16) [;22h12£+]h€l =0
- 2k-1

(by lTemma 2.1).
After each coarse to fine grid transfer, formula (7.16) was computed and
checked. Finally, from (5.7b) one sees that the error, €2k(h), on the
even points of the coarsest grid should be zero. This requirement was
also verified after each iteration.

The test problems are best described by giving the choices of p(x),
b(x), q{x) and u(x), the true solution of the differential equation
(1.1), (1.2) (which determines f(x)).

As a basic case we took
(7.17a) p(x) =1, q(x) =b(x) =0 and u(x) =0.

This test was merely to be sure the program worked on this simple case.
In addition there were six other problems based on two additional sets
of coefficients p(x), b(x), g(x) and three "solutions" wu(x). These

are

1+ lsin 4mx, b(x) =1+ x, q(x) = (sin 57rx)2

(7.170)  p(x) =1+ 3

X 2

e”, b{x) =1+ x5 q(x)-= (l—x)ex/z.

(7.17¢) p(x)



36

The "solutions" were

(7.18a) u](X) = x(e-e”) ,
(7.18b) uz(X) = x5/2(1-x) s
(7.18¢) u3(x) = sin(14mx) .

For each problem, test runs were made with a variety of initial guesses.

After all, the point was to obtain the worst rate of convergence. Each

initial guess consisted of a smooth component

ui = 20 sin ﬁ%% where M is the number of points on
the finest grid
and a rough component. The rough component was chosen in various ways
in order to have different compositions on the coarser grids. The rough
components of the initial guesses are best described schematically, by

setting

_ s
uk = uk + 406k

where Iék[ =1, and the sign of &  follows the following patterns:

Initial Guess Pattern for Gk
A I S T R I
B B T T T N S A U
(7.19) C Fd ot omom e ke
D + ++F -ttt .-
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Runs were made with a, the damped Jacobi parameter, equal to
.333, .5, .667, .75, 1.0, 1.333, while m, the number of smoothing
iterations, ran from one to four and the number of grid layers varied from
two to five. For each test problem, the program stopped when the discrete
z] norm of the residual vector was less than .00005. The most recently

computed rate of convergence.

llefina1”z]

llefina]—]”Z]

was computed and recorded in Tables III-VI.
The theoretical rate for a two grid iteration scheme was computed from

Theorem 5.1 and Theorem 5.2 by solving for the maximum of

2m 2m
F(u) = —;—H‘f—:g—) (T-u) + [—?—3;—] (Mi)] s =1 <<

and
1| (uta)" a-u)" 2
F_I (11) = 7 [TIEJ “"11) + {-T_;_E’] (]ﬂl) s =1 fu= 1

1
using Newton's method. Table I exhibits (max F(u))? (a predicted rate of
convergence) as a function of m and a. The value of p at which the

maximum of F(u) occurred can be found in Table I'



Table I
Predicted Rate Based on F(u)
m\a .333 .500 .667 .750 1.000 1.333
1 .500 .333 .400 .429 .500 571
2 .260 .248 .261 .268 .289 .331
3 .200 .206 .217 .223 .238 .258
4 71 .180 .190 .195 .208 .225
Table I'
Damped Jacobi Parameter-p
m\a .333 .500 .667 .750 1.000 1.333
1 1 0 0 0 0 0
2 .883 .707 .666 .650 577 .370
3 .833 .786 .762 .750 714 .661
4 .857 .833 .814 .811 777 .741
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3
Table 1I exhibits (max F](u))2 (a better rate of convergence) as a function
of m and a. The value of p at which the maximum of F](u) occurred

can be found in Table II'.

Table II
Predicted Rate Based on F1(u)
m\a .333 .500 .667 .750 1.000 1.333
1 .500 .333 400 429 .500 572
2 .250 11 .160 .184 .250 .326
3 .125 .078 .088 .093 125 .187
4 .068 .062 .068 .072 .083 .109
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Table II'
Damped Jacobi Parameter-u
m\a .333 .500 .667 .750 1.000 1.333
1 1 0 0 0 0 0
2 1 0 0 0 0 0
3 1 612 577 .530 0 0
4 .883 .707 .667 .650 577 .370

Tables III through VI contain the worst rate of convergence found

experimentally as measured in the 2] norm.
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Table III
Worst case, 2-grids
ma .333 5 667 .75 1.0 1.333
1 a99(@)  333(b) _500(P) .429(P) .500(P) 571(b)
2 s50l€)  n(b) 160(P) .184(P) .250(P) .327(b)
3 12ale) g75(D) .0g7(d) .093(e) 125(P) 187(P)
4 .063(2) 062t .068'9) 71t .og2'e) 107(1)
Table IV
Worst case, 3-grids
ma 1333 5 667 .75 1.0 1.333
{
1 a99€) 333(b) .400(P) .429{P) .500(P) .571(P)
2 a50€)  1g5(9) 192(9) .210(9) .267(9) .337(9)
3 azaf) LaegtK) glk) gtk gl 0l0)
4 g7l o7eld) _0g7(9) .092(3) .130(K) am(9)
Table V
Worst case, 4-grids
m\a .333 5 667 .75 1.0 1.333
1 .a99(¢) 333(P) 400(P)  429(b) .500(b) 571(b)
2 .250(¢) 190(m 2018 212(3) .267(9) .337(0)
3 200 gz g5 4asl3) 470(0) 2140
4 _095{1) 095 (1) qoa) (D) .130(1) 157¢3)




a1

Table VI
Worst case, 5-grids
m\a 333 5 667 .75 1.0 1.333
1 .499(¢) .333(b) .200(P) .429(P) _500(P) 571(b)
2 .250(¢) .2090) 221(0) .222(%) .268(K) .337(9)
3 124(¢) 134(0) 1agt0) 148(9) 175(K) 219(K)
4 .09g(M) .09g{P 104(K) a1 tk) 131(K) 160(K)

The letters in the above tables correspond to the choices of coefficients,
nsolutions", and patterns for rough components in the initial guess [see

(7.17), (7.18), (7.19)] displayed in Table VII.

Concluding Remarks

As can be seen from the computational results, no particular choice of
problem or initial guess always resulted in giving the worst case. Moreover,
it appears that ali: &;5 is an upper bound on the rate of convergence of the
multigrid scheme but does not yield the exact rate of convergence. Notice
that there seems to be no degradation for m = 1. However, as m increases
we find some degradation in the rate of convergence. But, it appears to be

quite less than ocgi: &;5 .



Table VII

Problem

Coefficients

7.
7.

17b
17¢

.17b
¢
.17b
17c
.17a
17c
Jd7c
.17a
.17b
d7c
17a
17c
.17b
17c
.17b

Worst Case Problems

“Solution"

x(e-e’)
sin(14mx)
x>/2(1-x)
sin(14mx)
x(e-e%)
x(e-eX)

0
x(e-ex)
sin(14mx)

0
x(e-e*)
x5/2(1-x)

0
x5/2(1—x)
x(e-eX)
x(e-eX)

sin(14mx)

%
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Pattern for
in initial guess

B
B

> >
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