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ABSTRACT

In recent years. considerable attention has been given to various data management issues
for statistical databases. However, most of the research in statistical databases has concentrated
on retricval, sampling, and aggregation type statistical queries. Data management issues associ-

ated with the complex and computational statistical queries have been ignored.

This dissertation endorses an integrated approach to statistical databases. In an integrated
system. the database management software supports both data retrieval and computational
queries. As a first step towards an integrated system we identify and analyze the performance of
three important statistical computational methods: X' X, the QR decomposition, and the Singu-

lar Value Factorization.

Our performance evaluation compares two alternative secondary storage organizations: the
transposed and relational organizations. We also propose several implementation strategies for
each computational method. The alternative implementations correspond to vector building
block, vector-matrix, and direct algorithms. We develop buffer management algorithms for
each implementation strategy, and, evaluate corresponding /O and total execution time cost
functions in terms of data and system parameters for a general system architecture. The variable
parameters in our performance curves are the number of active columns, the size of main
storage, and the time per tloating point operation. We also propose special purpose multipro-
cessor architectures for cach computational method. A multistage shutfle/exchange interconnec-
tion network (the ZETA network) is proposed for X' X, A multidisk/multiprocessor organiza-
tion is proposed for the QR decomposition, and a cyclic shift multiprocessor interconnection is

proposed for the Singular Value Factorization.
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Three main conclusions which can be drawn from our extensive performance evaluations
of X'X, the QR decomposition, and the Singular Value Factorization. The first conclusion is
that integrated statistical database management systems which support the computational
methods through vector buiding blocks or vector-matrix operations have sigaificantly inferior
performance compared to direct implementations of the computational methods. The second
conclusion is that for those statistical computational methods whose algorithms involve an itera-
tive decrease in the number of active columns, the preferable underlying storage structure is the
fully transposed secondary storage organization. Finally, our results indicate that developing a

general-purpose statistical database machine appears to be a difficult task.
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CHAPTER 1

INTRODUCTION

1.1. Statistical Databases

Statistical databases are databases constructed for the primary purpose of statistical
analysis. In recent years considerable attention has been given to the characterization of data
management issues for large statistical databases. This is illustrated by the number of papers
(e.g. [TURN79, SHOS82, DENN83, ROWES3] ctc.) and projects (e.g. the ALDS project
[THOMS3], SEEDIS [McCAS82], SAM* [STANS3] etc.) which have attempted to identify some
of the data access, retrieval, and management characteristics of large statistical databases. Some
of these research efforts have proposed and sometimes implemented innovative solutions to
non-conventional database management issues. The bi-annual "International Workshop's on sta-
tistical database management' have provided a means of exchanging research results by the com-

puter scientists and statisticians interested in the area.

The characterization and the proposed solutions for statistical database management sys-

tems can be classified into two interdependent categories:
(1) those pertaining to the statistical data sets themselves

(2) those pertaining to the manipulation of the statistical data sets, or, statistical analysis.

! The first one held in December of 1981 at Menlo Park, California, and the second one in
September of 1983 at Los Altos, California



(5]

For the first category, it has been observed that statistical data sets tend to be large and
complex. Statistical data sets inevitably contain several types of missing observations. Struc-
tured missing data (or sparse data) are also common in large statistical databases. Another
characteristic of statistical data sets is the distinction between category and summary attributes.
Category attributes span a small range of values. Usually a combination of category attributes
serve as a composite key into the numeric, or summary, attributes. Finally, it has been observed
that statistical data sets tend to be more or less static. Observations over large samples do not
tend to change as often as transactions for corporate databases. This is also a characteristic of

statistical analysis.

[t has been observed that the process of statistical analysis passes through two phases. The
exploratory phase and the confirmatory phase [BORAS82, TUKE77]. In the exploratory phase
the analyst attempts to obtain a "feel" for the data set by editing and browsing through the data-
base, extracting samples and subsets and performing some initial hypothesis testing. From a
data management point of view, the problem is the generation and the dynamic maintenance of
these samples and subsets. Another problem is maintaining "dictionary" information, or meta-
data, about the samples and the operations. Later, after this initial exploratory phase, the
analyst tries to "confirm” the hypotheses over larger data sets. [n this contirmatory phase, the
entire data set is manipulated. However, it has been observed that most of the observations and

only a few of the attributes are retrieved in this phase.

There have been several interesting solutions proposed for these types of problems. For
cxample, since statistical operations process most of the observations and few ot the attributes,
transposed files [TURN79] have been proposed as an alternative underlying secondary storage
organization. Different encoding and compression techniques have been proposed for the

category attributes and for repetitive missing obscrvations [EGG81).  Alternative semantic




models have been proposed to capture the distinction of the category and summary attributes
(e.g. SAM* [STANS83], GRASS [RAFAS83], SUBJECT [CHANS1]). It is generally agreed that
metadata should be referenced as ordinary data and should be maintained and updated automat-
ically [McCAS82]. This is a briet summary of the various solutions to the characteristics and

problems of statistical databases.

However, these characteristics problems are primarily based on retrieval, sampling, and
aggregation type of statistical queries. The data management issues of more complex, computa-
tional, or analytical statistical queries (such as multiple linear regression, analysis of varance,
canonical correlation etc.), have not been considered in current research work in statistical data-
bases. The underlying assumption here has been that computational or analytical statistical
queries are handled by statistical packages rather than by the statistical database management
systems. Therefore, for these type of queries the statistical database management system pro-
vides and maintains interfaces to one or more statistical packages. Then the user is able to
interface with the statistical package. A case in point is the the ALDS project [THOMS83]. The
data sets and the meta-data are organized in self describing transposed files and the system pro-

vides an interface to the statistical package Minitab [RYANT76].

There are four main problems with the interface approach to statistical database manage-
ment. First, as pointed out in [BORAS82], the data scts manipulated by a statistical package
cannot exceed the virtual memory size of the machine. Second, the buffer management is that
of the operating system, which often uses a global buffer management strategy and does not take
into consideration the particular data access patterns of the statistical operations. Third, algo-

rithms which implement the operations do not attempt to minimize the secondary storage over-



head.? Finally, the data sets which are manipulated by the statistical package must be copied
into the workspace of the statistical package, processed and, sometimes, the resulting data sets
must be copied back into the database. I[n other words, there will be a substantial amount of

extra overhead with the interface approach.

The alternative, of course, is to have an integrated system and let the statistical database
management system support both the data retrieval and computational queries. This dissertation
endorses the integrated approach and characterizes the data management issues of the statistical
computational operations. The primary tocus of the dissertation is the identification and the
performance evaluation of three important computational operations: X' X, the QR decomposi-
tion and the Singular Value Factorization. The performance evaluation considers two alterna-
tive secondary storage organizations: the transposcd and relational organizations and several
alternative implementation strategies. The alternative implementations correspond to vector
building block, vector-matrix, and direct algorithms for the computational operations. Special

purpose multiprocessor/multidisk architectures for these operations are also proposed.

1.2. Organization of The Dissertation

This dissertation is organized as follows: Chapter 2 presents a motivation and explanation
for the building blocks approach. A justification is given for the choice of the three operations:
X'X, QR and SVF. We have identified scveral alternative implementations for each computa-
tional method. These alternatives can be categorized at three abstraction levels: Vector Building
Block, Vector-Matrix. and Direct. These three alternative implementation strategies will be dis-

cussed in detail in Chapter 2.

? For example, in LINPAK [DONG79|, the algorithm for the QR decomposition utilizes
the dot-product and "axpy’ vector operations, and. as we shall demonstrate, this type of imple-
mentation involves the greatest number of page transfers




Chapter 3 introduces the two alternative secondary storage organizations that we have
evaluated: the relational and transposed. Chapter 4 presents the system and data model for the
performance evaluation. Chapter 3, 6, and 7, are dedicated to the analytical evaluation of the
operations X' X, QR, and SVF. For ecach operation, high level algorithms as well as several
alternative concurrent algorithms are presented. The "concurrency” in this context specities the
parallel execution of the [/O and processing subsystems. Finally in Chapter 8, we present our

conclusions and suggest a number of future research directions.



CHAPTER 2

BUILDING BLOCKS FOR STATISTICAL OPERATIONS

2.1. Introduction

An important issue in the development of special purpose database management systems is
the specification of a set of primitive data structures, data retrieval techniques, and operations to
construct a tunctionally complete! system. A major goal in this specification is to introduce
considerable improvements in the overall system performance. Therefore, at one level, the sys-
tem developers must try to specify a set of primitives which form a functionally complete sys-
tem. At a lower level, decisions must be made in order to select the data structures and the

algorithms to implement and support the complete set of operations.

A case in point is relational algebra. The relational algebra model is defined through the
operations union, set difference, cartesian product, projection and selection [CODD70]. Other
relational algebra operations, such as join, can be expressed in terms of these "building blocks."
However, an implementation of a relational algebra query language will probably implement the
join through more etficient and direct algorithms rather than through the cartesian product,
select and project operations ot which the join consists. Moreover, although supporting the
commonly used join operation dircctly is the correct approach from a performance viewpoint, at
the lower level the designers of the database management system must decide on the

algorithm(s) which implement the join operation (e.g nested loops, merge-sort etc. ).

! By a "functionally complete” system we mean all the queries and and primitives of the
special purpose DMBS are supported.




Unfortunately, as we shall show. for statistical database management systems the notion of
a functionally complete system does not exist. Typically, to support statistical queries either an
existing database management system is augmented with a set of aggregate functions (e.g
[KLUS81})), or a special purpose statistical database management system is constructed (e.g.
SEEDIS [McCA82]). Although some of the proposals attempt to support the envisioned
retrieval, sampling, or aggregation type statistical queries, it is not clear if any system will be
able to support all the possible type of queries. The problem is that, unlike the relational
model, there does not exist a well developed theoretical model of statistical database manage-

ment systems. This problem is turther aggravated if the computational queries arc also sup-

ported by the database management systems. 2

2.2. Integrated Systems

The primary difficulty with the integrated approach is the large (and growing) number of
techniques that a statistician can choose from when analyzing a data matrix X. A statistician’s
set of tools includes a variety of regression techniques (linear, stepwise, robust, ridge, witerative
reweighted, non-linear), analysis of variance and covariance, canonical correlation, principal
component analysis, discriminant analysis, etc. Moreover, better and alternative analytical tech-
niques are continually developing. Therefore it is difficuit to define a "closed” or functionally

complete statistical database management system.

Faced with the formidable problem of the large number of analytical techniques, we took
a simplistic approach. We deccided that the first step towards an integrated system was the

detailed analysis of alternative computational methods for one important analytical technique.

= As indicated in Chapter |, most existing statistical databasc management systems inier-
face with one or more statistical packages



We chose to concentrate on the method of fitting linear statistical models. This is also called
multiple linear regression analysis. While fitting linear models is the mainstay of statistical
analysis, it may seem an oversight to neglect other methods that have been or may vet be
developed. However, most other statistical models utilize linear models as a basic step in itera-
tive fitting procedures. The Generalized Linear Models of Nelder and Wedderburn [McCU83],
logistic regression models, and nonlinear regression models all utilize the linear models calcula-
tions as a basic iterative step. [t should also be noticed that the statistical area called analysis ot
variance (and analysis ot covariance) is also part of linear regression analysis.

There are a number of alternative computational methods for multiple linear regression.
However, one or the other of the following two approaches is generally used: either the sym-
metric matrix X' X is formed [SEBER77, KENNS80| and the analysis proceeds with this matrix,
or the matrix X is decomposed and the analysis proceeds with the factors of X. The most com-
mon decompositions of a data matrix X are the upper triangularization of X (through Givens
rotations or Householder transformations [GOLU73, SEBER77, KENN80, DONG79|) and the
Singular Value Decomposition [STEW73, DONG79, WILL71 , KENN80, CUPPSI,
MANDS2|. Therefore, a list ot matrix operations which covers the evaluation of X' X and the
most common decompositions of X will provide the computational tools of the multiple linear
regression statistical technique. The statistical technique can be viewed as an application pro-

gram.

2.3. Implementations at Three Abstraction Levels

As mentioned in the introduction of this Chapter, we should specity the set of operations
and primitives that must be supported by a special purpose database management system. We

need also to consider the data structures and the algorithms to implement and support the opera-




tions. We gave the example of alternative and direct implementations of the join operation in

relational algebra. The main issue here is performance.

The solutions (e.g. transposed files, compression techniques etc.) proposed for the
retrieval and aggregation type statistical queries have been primarily motivated by performance
issues. Even the graphical logical models (e.g. SUBJECT [CHANS1]) imply substantial savings
in data storage. These logical models are sufficient to store the category attributes only once.
Considering that in many applications summary values for the cross product of the category

attribute values exist, the savings in data access and storage are substantial.

For the computational methods which we have considered (namely, X' X, the QR decom-
position, and the Singular Value Factorization), the data retrieval and update problems arise
because of the data scts’ large volumes. [t could be argued that sampling and subsetting will
reduce the data size and, hence, eliminate the data retrieval and update problems of the complex
computations. Although this could be true for the exploratory phase of the analysis, the purpose
of the confirmatory phase is to apply the hypothesis testing to the cleansed version of the com-
plete database. Moreover, if the samples are large, the same data management problems could

be introduced into the exploratory phase of the analysis.

This is the first time that the secondary storage problems of the computational methods
X' X, the QR decomposition, and the Singular Value Factorization have been considered. How-
ever, other research studies have attempted to identify the data management issues of different
classes of computational operations. We shall briefly describe two examples. The first example
is presented in {BELLS83). This paper characterizes several storage structures that are used in
solving weather torecasting and other ty}f}es of prediction methods. The storage structures are
determined according to the "update dependencies” which occur while solving these prediction

models. It is suggested that the records of the underlying data files be structured according to
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one of the categories identified in the analysis. A second example with a similar approach is
presented in [PERR81]. Here the problem is the solution of triangular or banded systems of
linear equations. The author proposes a number of secondary storage methods and parallel algo-
rithms. He compares his algorithms with the execution of the same operation with a virtual
memory system (with a LRU page replacement strategy). We believe both these studies are in
the right direction and attempt to provide "optimal” solutions tor the secondary storage retrieval

and update problems of a particular type of scientific database application.

In this dissertation we have tried to analyze the performance of three important computa-
tional methods commonly used in multiple linear regression, with respect to three abstraction
levels. Below we identify these three abstraction levels for implementing the computational

methods and brietly describe the relative merits of each.

2.3.1. Vector Building Block

The first level attempts to implement the computational methods through vector opera-
tions only. The idea is that it is possible to express the computational methods as a set of vector
operations. Once these vector operations are identified, efficient implementations of the vector
building blocks will correspondingly vyield efficient implementations of the computational
methods. For example, the computational method X' X can be implemented as a set of inner
products.® Therefore, an efficient implementation of the inner product vector building block will
yield an efficient implementation of X' X. The advantage of this approach is that a relatively
small set of vector operations will enable us to implement all the computational methods. More-
over, alternative and novel computational methods will, most probably, be supportable through

existing vector building blocks. The disadvantage is the performance, since the set of vector

3 the inner products of the columns of X
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operations which implements a computational method is completely unaware of the computa-

tional method’s overall execution.® As we shall see in subsequent chapters, in some cases the

performance degradation will become intolerable.

2.3.2. Vector-Matrix

The approach of the second level is intermediate between the approaches for levels one
and three. With the vector-matrix approach, the computational methods are implemented
through vector-matrix operations. The multiplication of a vector with a matrix and Householder
transformations are two examples of vector-matrix operations. For example, the non-diagonal
elemements of X' X can be evaluated through p - | vector-times-matrix operations, where p is
the number of columns of X. As we shall sce, in most applications a vector-matrix implementa-
tion of a particular matrix operation will involve considerably fewer page transfers than a vector
building block implementation of the same operation. The same objection, however, which was
raised for the vector building block approach still holds.  Although the performance degradation
will be less serious. it is still feasible that a more direct implementation of a computational
method will have better performance than an implementation through vector-matrix building

blocks.

2.3.3. Direct Algorithms

The approach of the third level is to discover the most ctficient direct implementations of
the computational methods considered. With this approach there will be one implementation

per operation. The goal is to develop optimal algorithms: optimal in secondary storage

* for X' X, a vector building block implementation will reference cach column of X for
each inner product. However, a better algorithm will butfer the columns (or blocks of the
columns) which arc needed in subsequent computations.
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reference and also in overall total execution time. The advantage of this approach is clearly in
performance. It is definitely desirable to have direct implementations for large data sets. How-
ever, there must be a direct implementation for each computational method. If a new operation
is introduced, the data base management system software must be extended to include a direct

implementation of the new operation.

2.4. Summary

A principal objective of this dissertation is to comparc and analyze the performance of the
three alternative implementation strategies. Figure 2.1 summarizes this objective. In (a), the
computational methods CM1, CM2, and CM3 are supported through either vector building
blocks or vector-matrix operations. In (b), CMI1, CM2, and CM3 are implemented directly. It
is assumed that any implementation of an algorithm performs its own buffer management, expli-
citly specifying the page replacement policy. Each algorithm is also aware of the underlying
secondary storage organization of the data. The two alternative secondary storage organizations
considered in this dissertation are the transposed and relational secondary storage organizations.

Chapter 3 discusses and contrasts these two storage organizations.
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CHAPTER 3

TRANSPOSED AND RELATIONAL STORAGE ORGANIZATIONS

One of the primary goals ot this dissertation is to compare the performance ot the compu-

tational methods with respect to two secondary storage organizations: the relational and the tran-

sposed. Most statisticians prefer to view their data as "flat files.” Therefore the conventional

relational secondary storage organization where the n-tuples of each relation are stored record-

wise appears to be the natural choice. However, there are at least three reasons why such a

secondary storage organization may not be suitable for storing a large statistical data set.

The first reason deals with data compression. Three properties of statistical data sets tacil-

itate application of data compression techniques:

)

Some of the attributes (such as the category attributes) of statistical databases span rela-
tively small ranges of integer values.

Ditferent types of missing or "zero" values that are very common in statistical databases
are obvious candidates for data encoding.

It is typical in large statistical databases to have “clusters” of similar values. These clusters
are either identical values or values in the same subrange’

Two strategies are commonly used for data compression in statistical databases: encoding

and run length compression techniques [EGGRS81]. The relational secondary storage organiza-

tion is not suitable for data compression for the tollowing reasons:

(O

In many systems consccutive data values must be aligned on byte boundaries. [f a data set
is stored as a relation when only two bits are needed to present the full range of values of
an attribute, 75% of the storage spacc occupied by values of the attribute will be wasted
[TURNT9].

Since missing and zero values occur trequently in statistical databascs, a relational organi-
zation will need to support variable length records ( [GEY83] discusses the implementa-
tion of such a scheme).

[t is not clear how the rclational organization would implement compression techniques
for clustered values.




A second reason why a relational storage organization might not be a suitable organization
for statistical databases, is that statistical operations usually encompass most of the observations
and only a few of the attributes [ KLEN83, SHOS82, TURN79]. For example, if all the rows
and only 10% of the columns are processed, all the relation must still be retrieved. This implies
the unnecessary retrieval of 90% of the relation from mass storage. For large databases this can

have serious performance implications.

Finally, it is not uncommon in statistical databascs to create or delete attributes. An
example where such a dynamic modification occurs frequently is given in [GOLDS3]. Rela-
tional (or corporate) databases on the other hand are tailored to tuple operations (insertion.
deletion, and modification of tuples). Most relational database systems (e.g. INGRES, DB-2,

IDM 500} do not allow dynamic creation and deletion of attributes.

These drawbacks suggest an alternative storage organization, namely the transposed file
organization. Transposed file organizations are commonly used in statistical databases. For
example RAPID [TURN79], the ALDS project [BURNSL], IMPRESS [MEYE69], and
PICKLE [BAKET76] all use the transposed file organization. The two types of transposed file
organizations are: (1) partially transposed and (2) completely transposed, which is a special case
of the partially transposcd organization. In the partially transposed organization the set of attri-
butes is decomposed into a mutually exclusive collection of subsets of attributes. The attributes
in each subset are stored together.! The attributes which are stored together are also, hopefully,
those that are accessed together. The problem of pre-determining a "clustering” scheme for the
attributes is difficult. In fact in [BATO79] it is proven that the problem is NP-complete. If

each attribute subset contains exactly one attribute we get the completely transposed organiza-

! That is. a collection of n-tuples is stored as k collections of n-tuples where

n1+n3+ +nk=n.
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tion.

In Figure 3.1, the relational, partially transposed, and fully transposed organizations of a
data matrix with 8 attributes and n tuples are shown. For the relational secondary storage
organization, the data file is paginated and each page contains a (fixed) number of tuples of the
data matrix. Each tuple contains corresponding elements of all of the attributes. It is assumed
that the data pages of a data matrix are stored contiguously on the secondary storage medium.
For the partially transposed secondary storage organization, the layout is identical, except that
each page of a partially transposed file contains a fixcd number of subtuples from a partition of
the attributes, For example in Figure 3.1, the first partially transposed file contains subtuples
from attributes [, 3, and 7 only. With the fully transposed secondary storage organization, each
page of the fully transposed file contains elements from one attribute only. Again we shall

assume that the pages of a partially or fully transposed file are stored contiguously on the secon-

dary storage medium.

In Figure 3.2, we have examples of paginated relational, partially transposed, and fully
transposed files. [t is assumed that all the elements are of equal size and each page contains’ 96
clements. Note that if we are interested only in attribute 1, retrieving a page with the relational
secondary storage organization will yvield 12 clements of the attribute.  With the partially tran-
sposed file we will obtain 32 clements of attribute 1 and with the fully transposed secondary

storage organization 96 clements of attributc 1 will be retrieved.

There have been a number of studies analyzing transposed files for relational querics. In
[HOFF76] for example. a non-linear integer programming model is proposed to determine the
partitioning of the attributes for a particular mix of queries. The modcl assumes the availability
of the selectivity factor for cach attribute.  For a particular set of system and data parameters

(and assuming the selectivity factors are given), the problem could be solved through a branch
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and bound algorithm. Another study [BATO79] evaluates closed form cost equations for selec-
tion queries with a completely transposed organization. Batory also proposes a heuristic algo-
rithm for determining the search sequence of the transposed files of the query attributes. Both

studies assume the selectivity factor of each attribute is known.

However, there have been no analytical studies comparing the performance of the rela-
tional and transposed secondary storage organizations for operations on statistical databases. In
this dissertation we have developed cost equations for the total number of page transfers. the
total /O time, and the total execution time for both the relational and fully transposed secon-
dary storage organizations. One of the varying parameters in our study has been the number of
“active" columns. The active columns are the columns considered by the analyst. For example,
although the original data matrix of observations might contain 100 attributes, the analyst might
be interested in a least squares fitting model with five of the attributes. The remaining 95 attri-

butes are ignored and the 5 attributes constitute the active columns.

Some of the computational methods (such as the QR decomposition and the SVF) itera-
tively update the active columns. In these cases the active columns are first copied and the
matrix transtormations are subsequently applied to the copies. The original data matrix X is
kept intact. If this original matrix X is stored as a relation, a partially transposed file of the
active columns is constructed first. The operations are then applied to this file. [f the matrix is
stored fully transposed, the updated columns are also stored tully transposed. In the following

Chapters "transposed” will stand for tully transposed. unless stated otherwise.



CHAPTER 4

SYSTEM AND MODEL PARAMETERS

This Chapter introduces the system and data model parameters used in the cost equations
of the algorithms. Section 4.1 presents the /O and CPU parameters and Section 4.2 lists the
data model parameters. Section 4.3 summarizes the overall scheme of the performance evalua-

tions.

4.1. I/O and Processing Subsystem Parameters

-

Disk \
N
Disk Processing Subsystem

N

I/0 Subsystem

Main Storage Processor

Figure 4.1

Figure 4.1 is a simple diagram of the system model used throughout the dissertation. The

system consists basically of an [/O subsystem and a processing subsystem. The /O subsystem is




composed of one or more magnetic disk drives which have direct access to the main storage of

the processing subsystem. The processing subsystem is composed of a main storage module' and

a processor dedicated to numeric calculations. The key point here is the simplicity of the under-

lying architecture. Our objective is to obtain parametrized cost equations for a general architec-
\

tures. This would enable the designers of the database management system to easily modify the

parameter values for their particular architectures.

4.1.1. Disk Parameters

The basic mass storage device is assumed to be a disk. The parameters for a disk are: (1)
the track size (BSIZE); (2) the number of tracks per cylinder (DCYL); (3) the average time to
read/write a page (Tio); (4) the average random seek time (Tdac); (5) the cylinder-to-cylinder
seek time (Tsk) : and (6) the cylinder-to-cylinder move time after an initial move (Tmv). That
is, the time to traverse K cylinders is Tsk + K-Tmv. The values of the disk parameters are
those of the IBM 3350 disk drive [IBM 77]. All the values are in milliseconds (ms.). A page
(the unit of transfer between the disk and main store) will be the same size as a disk track

throughout.

! which has a bandwidth high enough to support the concurrent access by the processor and
[/O subsystems
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BSIZE  page size 19069 bytes

DCYL  number of pages per cylinder 30 pages
Tio page read/write time 25.0 ms.
Tdac  average access time 25.0 ms.
Tsk time to seek | track 10.0 ms.
Tmv time to move to next track 0.07 ms.

after an initial move

The /O time to read U contiguous pages randomly is approximately:

U

m - Tsk + U Tio

To—io( U) = Tdac + + 0.5

We shall assume that for those operations that only retrieve (or read) data, there exists
exactly one disk drive. On the other hand, for those operations which produce temporary files
we shall assume the existence of two disk drives. One disk drive will be dedicated to the "read"
operations and the other disk drive will be dedicated to the "write" operations.

4.1.2. CPU Parameters

The arithmetical operations of the computational methods either use the basic step of an
"Inner Product” or the basic step of an "AXPY" function in their innermost loops. These basic

steps are given by:

Inner Product:a = a+ y,- x;

The "Inner Product” function accepts as arguments two vectors and yields a real number.

The "AXPY" function accepts as arguments two vectors, X and Y, and a scalar. [t then yields a




transtormed vector Y. As indicated earlier the transtormed Y does not replace the old value of

Y, but is stored elsewhere.

We have taken the unit of execution in the basic step for both of these tunctions equal to a
Tflop, which is the time of a "floating point operation” (a "flop”) [DONG79]. A Tflop involves
the execution time of a double precision floating point multiplication, a double precision tloat-
ing point addition, some indexing operations and memory references. Our own experiments and
the timing indicated in [DONG83], suggest that, 0.5 to 25 u seconds (micro seconds) per flop is
a reasonable range of processing speeds. Theretore, in the cost equations we shall use the func-
tions Taxpy and Tyyn- In this dissertation these functions are assume to be identical. For n

floating point operations we have:

Taxpy{n)= Ty (n)= n-: Tflop

4.2. Data Model Parameters

Since the relational and the transposed organizations are being compared it is imperative
to define the parameters of cach. The data set is assumed to be dense with 100 attributes and
230,000 tuples. All the attributes are eight byte numbers. With the above disk parameter
values, this implies that there are 23 tuples per page. In the transposed organization, each page
will contain 2383 elements. To simplify the subsequent analysis it is assumed 2300 elements are
stored in cach page of a transposed file. Hence each attribute will occupy [00 pages. Thus in
both the relational organization and the transposed organization the data matrix will occupy

10,000 pages. These paramcters are as follows:



R number of pages occupied by the data set X 10,000 pages
N number of pages for a column(transposed) 100 pages
w  number of attributes 100

n  number of tuples/observations 230,000

q  number of elements per page 2,300

p  number of active columns
for the matrix operations the values considered are
4 to 100 active columns

M the size of the main storage
the values considered are 10 to 200 pages

4.3. Summary

In Chapters 5, 6 and 7 we shall propose a number of algorithms for the computational
methods.  An underlying assumption for the system has been the capability of the concurrent

execution of the I/O and processing subsystems.

Figure 4.2 summarizes the main features of our work. First, we have ideatified three
important computational methods: X' X, the QR decomposition. and the Singular Value Factori-
zation. Second, the performance of these computational methods is studied with respect to both
the relational and transposed secondary storage organizations. Third, we have considered and
analyzed vector building block, vector-matrix, and direct implementations for the transposed
sccondary storage organization. For the relational secondary storage organization we have con-
sidered only direct implementations. Fourth, we have proposed alternative algorithms at cach

abstraction level.




Goal Computation Method
(e.g. X*X, BR, SVF)

Trans Rel Secondary Storage
Organization
ves VM DIR DIR Abstraction Level
ALGORITHMS

Figure 4.2
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The algorithms explicitly specify:
(1)  The number of subdivisions of the main storage
(2) The page replacement strategy

(3) The concurrent execution ot the /O and processing subsystems

In the algorithms of the following chapters, the statement lists which are executed con-
currently are preceded by a "$." For example in:
$A:=0
Fork:= ltwoL

1
A=A+ —
k
$ Read( Y, Z)

W=Y+ 2Z

the evaluation of the series executes concurrently with the statement list which reads Y and Z,
and sets W equal to their sum. If two statements in concurrent statement lists reference the
same variable, we assume the variable is in a critical section. For our algorithms, there could be
two or three concurrent statement lists. If there are two concurrent statement lists, one is exe-
cuted by the I/O subsystem and the other by the processing subsystem. If there are three con-
current statement lists, the [/O subsystem consists of an input subsystem and an output subsys-
tem. Therefore. the three concurrent statement lists are executed by the processing subsystem,

and each of the input and output [/O subsystems.




CHAPTER 5

XX

In this Chapter we present several schemes for evaluating X' X, Section 5.1 discusses the
alternative vector building block, vector-matrix. and direct algorithms. Section 5.2 presents the
closed form cost equations and the performance cvaluation of X' X. Section 5.3 summarizes the
basic observations and conclusions of the performance evaluation and Section 5.4 introduces a

special purpose multiprocessor interconnection network for evaluating X' X

5.1. Algorithms

There are three high level algorithms for evaluating X' X, These correspond to the vector
building block, vector-matrix and direct implementations of X' X and will be labeled VBB,

VTIM, and, ST respectively. In the vector building block (VBB) algorithm, X' X is evaluated as

E—'-(-Ej—_:—l)— inner products. This is perhaps the most obvious way of evaluating X' X. How-

4

ever, as we shall see, it is the most [/O intensive of all three approaches. With the vector-matrix
(VTM) algorithm, X' X is evaluated as (p - 1) "vector times matrix" operations. The "vector” of
the k'™ operation is the k™ column, and the matrix is the remaining (p - k) columns. The stripes
(ST) algorithm involves the fewest page transfers. since here the active columns of X are read
once. In this algorithm, after reading a "horizontal stripe” of the active columns, the partial

inner products are accumulated before processing the next stripe.



VBB:
Fori:= ltop-1 /*1.. pare the active columns */
Forj:= (i+ l)top /" nis the number of tuples */
Fork:= l ton
Cyji= Cj+ Xii 'ij
VTM:
Fori:= ltop-1
Fork:= 1ton
Forj:= (i+ l)top
Ciji=cj + Xy ‘ij
ST:
Fork:= lton
Fori:= 1top-1
Forji=(i+ Dtop
Ciji=cCyt Xi 'ij
In the following section we shall present buffer management algorithms for each of these

high level algorithms.

5.1.1. Vector Building Block Algorithms
There are two buffer management strategies for the vector building block algorithm.

[1] -Divide the M pages of primary memory into three logical subdivisions: one of M - 2
pages and two of one page each.




-For each inner product read the next M - 2 pages of one column and then, page by page,
read the corresponding M - 2 pages of the other column. Accumulate the inner product of
a resident page pair while reading the next page.

VBB 1:
Fori:= ltop-1
Forj:= (i+ l)top
Fork:= [ toN/(M-2)
Read ( X M—2k | Xj(,k-l)(Mvz)H )

Forg:= 1toM-2

S Cij:z Cij + Xi(k“‘l)(M“lH'q. Xj(k“[)(M"Z)-Fq

$ if @< M~ 2 then Read ( X (k- D (M=2)tqrl)

[2] -Divide the M pages of primary memory into four logical subdivisions and allocate M / 4
pages to each subdivision.

-For each inner product accumulate the inner product of the resident M / 4 page blocks
and, concurrently, read the next pair of M / 4 pages.

VBB 2:
Fori:= ltop-1
Forj:=(i+ l)top
Read ( X (M/4-1 X M/ .1

Fork:= 1 toN/(M/4)

R M 74k, M7 Hk

$ if k < N/(M/4) then Read ( X M/ 9K+l X (M/dkel
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5.1.2. Vector Times Matrix Algorithms

We shall call that vector which multiplies the matrix consisting of the remaining active

columns, the "operating” column. Here again we have two strategies:

[1] -Divide the M pages of primary memory into three logical subdivisions: a memory unit of
M - 2 pages and two memory units of size one page each.

-For each operating column, read the next M - 2 pages and then, page by page, read the

corresponding M - 2 pages of cach of the remaining columns. Accumulate the inner pro-
duct of a resident page pair while reading the next page.

VIM L:
Fori:= ltop-1
Fork:= 1to N/ (M- 2)
Read ( X ;(M-2hk | x (k=D (M=2+1)
Forj:= i+ ltop
Forq:= L toM -2

$cyi=cy+ Xi(k~l)(M—2)+q, Xj(k-[)(M~2)+q
$ if @ < M—2 then Read ( Xj(k‘l)(M" Dtgrly

else if j < p then Read ( X !¢~ D (M= 2+ 1

[2] -Divide the M pages of primary memory into three logical subdivisions and allocate M / 3
pages to each subdivision.

-For each operating column, read the next M / 3 pages and then read the corresponding M
/'3 page blocks of the remaining columns Accumulate the inner product of the resident M
/' 3 page pairs while reading the corresponding M / 3 pages of the next column.
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VIM 2:
Fori:= L top-12
Read ( X M/31)
Fork:= 1toN/(M/3)
Read ( X . (M7 3k
Forji= i+ ltop
$ciji=cy+ X M7k, Xj(M/B),k
$if j < p then Read ( XjH(M/,%)‘k)
else if k < N/(M/3) then Read ( X ,(M/3)k+1
Read ( Xp_l('M”)vl i XP(M/4)~1 )

Fork:= 1toN/(M/4)

$ + XP_I(M/L‘l).k, Xp(M/4).k

Cp-1p= Cp-1p

$ifk < N/(M/4) then Read ( X ,_(M/9k+L i x (M7)k+1

5.1.3. The Horizontal Stripes Algorithms - Direct Implementations of X' X

If we were to measure the cffectiveness of an algorithm only by the number of page

transters, the horizontal stripes algorithm would obviously be optimal as it requires all the active

columns of the data matrix to be read exactly once. Comparing the horizontal stripes algorithm

with the vector building block and the vector times matrix algorithms, one can make the follow-

ing observations:

(1)

with a compietely transposed secondary storage organization, this algorithm requires at
least p (p being the number of active columns) pages of primary storage

since the algorithm requires corresponding pages of the active columns to be accessed
simultaneously, with a given memory size, the algorithm processes the matrix columns in
smaller blocks than either the vector building block or the vector times matrix algorithms.
This could imply more disk seeks.
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(3) the amount of computation within the overlap region is substantially greater than either
the vector times matrix or the vector building block algorithms.

Here we have three different strategies:

[1] -Divide the memory into p (the number of active columns) logical subdivisions
-For each stripe, after reading the next M / p pages of the first two columns start accumu-

fating the inner products of the columns that are already resident. while concurrently,
reading corresponding M / p page blocks of the columns which have not yet been accessed.

To avoid the indexing and timing details we have introduced a function called "FindPair”,
which accesses a shared linear array A (of size p) and a two dimensional array D (p by p) and
tinds two indexes i and j, such that the current M / p page blocks of X ; and X ; are resident and
the inner product of X ; and X are not accumulated. The function FindPair waits and does not
return until it finds a pair. The ith position of A is set as soon as the current M/p pages of X ;

are read  Since A is referenced by two independent processes, it should be in a critical region,




33

ST 1:
Fork:= 1toN/(M/p)
clear (A) ; clear (D)

DONE = 0

It

$ Fori:=1top
Read ( X (M/phk)
set (A [i])
$ Repeat
(i, ]j):= FindPair (A, D)
ciji=cyj + X, M/ Pk Xj(M/p).k
set ( Di.j])
DONE := DONE + 1

Until DONE = 2222 1)

[2] -Divide the main storage into p + 1 cqual subdivisions

-If there is a free M / (p + 1) page block, read the next block while concurrently accumu-
lating inner products of resident block pairs

-If all the partial inner products for a column are accumulated free the block occupied by
the column.

The main difference between this algorithm and [1], is that in [1] a horizontal stripe is
processed completely before the next horizontal stripe is read. In [2], M / (p + 1) page blocks
of the next horizontal stripe are referenced while processing the current stripe.  In order to allow
more blocks of the next stripe to be accessed, we have introduced the procedure "Free”, which
releases a block (of M / (p + 1) pages) from the current horizontal stripe. For cach active

column, a counter is incremented when an inner product of the active column is accumulated.
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When the counter achieves the value p - 1, the block which holds the M / (p + 1) pages of the
column is released. Since there are p + 1 subdivisions, there could be blocks from at most two
horizontal stripes. Therefore, there are two shared linear arrays (of size p each), which indicate
the resident blocks trom the two stripes. Finally, the boolean function "Find" attempts to find a

free block of M / (p + 1) pages, and does not return until it finds one.




ST 2
$q:=0
Fork:= ltoN/(M/(p+ 1))
Fori:= ltop
If Find (M /(p+ 1)) then Read ( XM/ (Pt D)k
set (A [q,i] )
q:= (g+ 1) mod 2
$ clear (A); q= 0
Fork:= 1toN/(M/(p+ 1))

clear (D)

DONE := 0

Forj:= 1to p[ count{j]:= 0]

Repeat
(i,]):= FindPair ( A{q.].D)
ciyi= oyt X (M/(PHIMKL (MY (pHIK
count [i] := count [i]+ [; count{j] := count [j]+1
If count [i] = (p - 1) then Free ( X, (M/(pr1)k))
if count [j] = (p- 1) then Free ( XM/ (pr 1)k )
set (D[i. j])
DONE := DONE + |

Until DONE = L(%;‘l

clear ( Alq,])

q:= (g+ 1) mod2
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[3] -Divide the butter space into 2p logical subdivisions
-Read the next stripe of M / 2p pages from each active column, while evaluating the inner
products of the current stripe
ST 3
Read ( X M/ 2.l X M/l ... XpM/Zp.l )
Fork:= 2to N/(M/2p)
$Foric=1top-1
Forj:=i+ ltop
cyi=cy+ X, (M/phk=t, Xj(M/p).k—l
$if k < N/AM / 2p) then

Read ( X M/2pk x M/Ipk ... XpM/Zp.k)

5.2. Cost Functions

In the previous sections we presented scveral algorithms for implementing X' X. In this
section we give the cost functions for each algorithm. More specifically, for each algorithm we
evaluate: (1) Total I/O cost (seek + transfer time); (2) Average execution time in overlap

region; (3) Total execution time.

5.2.1. /O Costs

Table 5.1 specifies the total [/O costs for cach algorithm in terms of the function T_,,

We have also indicated the minimum memory size which must be available in order for the

algorithm to be implementable.




Table 5.1
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Algorithm Total [/O Costs Min. Memory Size
N .
VBB 1 pr(p— U 27 Te-1M=2) 3
. N M
VBB 2 prp— 1)y Teiol 30 4
VIM 1 (e D) . K/{—‘\_i;-fr,“io(m— %) 3
- + 1 N M
(E'“(%—“‘)" -3 35 T3
VIM?2 4
N M
+ 8 '1\-,[_ 'Trmio(T)
N M
ST 1 Pz' _M_'Tr-io(i;) p
N M
2 ) LN M
ST 2 p-(p+ 1) v Tr"m(pi—l) p+ 1
. , N M
ST 3 2'P2" M—'Tr—-io('é'{;) 2P

In Figure 5.1 we present the number of page transfers as a tunction of the number of

active columns. The curve of VBB is p- (p— 1) - N. That of VIM is (P__(%i_ll - 1N

and of ST is p- N. Since the number of page transfers of ST is linear in p it appears constant in

the graph. [t is interesting to note that the vector building blocks algorithms will involve fewer

page transfers than the number of pages transterrcd with the relational secondary storage organi-
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zation (that is 10,000 pages), only if p (the number of active columns) is less or equal to 10.
The corresponding critical value for the vector times matrix algorithms is 13. Of course the

Stripes algorithms will always invoive fewer page transfers (unless all the columns are active).

As the secondary storage medium is a disk, another measure of the /O is the number of
random seeks. Figure 5.2 gives the number of random seeks as a function of the number of
active columns. The main storage size is held at [00 pages (tracks). It is clear from Figure 5.2
that the first algorithm of the vector-matrix approach involves the least number of random seeks
for any number of columns. On the other hand, the second algorithm of the vector building
blocks approach has the largest number of random seeks also for any number of active columns.
The curves for random seeks of the other algorithms arc between these two extrema. It is
interesting that the number of random seeks for the stripes approach are comparable to the
number of random seeks for the other approaches. The reason is that although the stripes algo-
rithms reference the data matrix only once, the main storage is divided into O(p) subdivisions.
As we noted earlier, the large number of random sceks is the consequence of accessing the tran-

sposed columns in smaller blocks.

In Figure 5.3 we have the curves for the total /O time (transter plus seek) as a function of
the number of active columns. The curves are for the first four algorithms (that is all the imple-
mentations of VBB and VIM). The time is in seconds and the main storage is again held at
100 pages. This figure clearly shows the effect of fewer page transters for the vector times
matrix algorithms. The first algorithm of the vector building blocks approach outperforms the
second algorithm. This was to be expected, since the second algorithm involves a larger number
of random seeks (see Figure 5.2). Figure 5.4 gives the corresponding curves for the three imple-
mentations of ST. The curves for the tirst two algorithms are almost identical, except that the

first algorithm involves fewer random seeks (since the memory is divided into p logical subdivi-
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sions rather than (p + 1)) and therefore is slightly better. The breaks in the curves correspond
to the same breakpoints as in Figure 5.2. In other words, these breaks are due to a substantial
increase in the number of random seeks. For example, with M = 100, when p= 33 M/ pis

100

3 l = 34, the total number of random seeks is 33*34 = 1122. On the

equal to 3. Since {

other hand when p = 34, then M / p = 2 and the total number of random seeks is 34" 50 =

1700.

The total /O for a direct implementation of X'X using the relational organization is
approximately 253 seconds. The vector building block and vector matrix algorithms exhibit
superior performance only when the number of active columns is less than 10 or 13 respectively.
The direct implementations using the stripes algorithm remain superior to the relational organi-
zation until the number of active columns excecds 50. This shows that seek operations consti-

tute a substantial percentage of the total /O time for the stripes algorithms.

In Figure 5.5 and Figure 5.6 the total /O time (in seconds) is presented as a function of
the main storage size for p (the number of active columns) = 20. Here the general observation

is that if we neglect track-to-track seeks the curves generally look like:

F(M)=C,+ -2

= + ———
(M) Y
where, C and C, are in terms of N, p, and the disk parameters. The oscillations in the curves
of Figure 5.5 are due to the overhead of the track-to-track secks. For example, if M = 40 there
are no track to track seeks for the second algorithm of VBB. On the other hand when M = 45,
there are three track-to-track seeks per column. The sharp edges of the curves in Figure 5.6 are

due to the fact that trunc (M / Pv) remains constant for Pv consecutive values of M. In ST L.

Pv=p;inST2Pv=p+ l;andinST3, Pv= 2" p
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5.2.2. Execution Time in the Regions of CPU-I/O Overlap

This section presents cost functions of the regions of CPU-I/O overlap. Each overlap time
is the maximum of the [/O and computational times in the overlap region of an algorithm.
Since ST 1 and ST 2 require some synchronization between the /O and processing subsystems,

we have not stated the overlap times for these algorithms.

T = MAX ( Tpuw (q) - Tio)

M M
Th? = MAX ( Ty (a (T)) » 2T m(ﬁ*))

Tol(z.l,f) = MAX( T[NN ( q ) » T~io(1) )

T2 = MAX (T (q) - Ty)
| M M
T3P = MAX ( Tyyn (q-(—3—)) » Teio(37))

(p— b . M . M
T = Max (BLB=L o1 (¢ 20 P Teo(5)))

5.2.3. Total Executions Times

The total execution time of an algorithm is the sum of three terms:
Taanr + Q Ty + Tauwshe Taan and Tgyg, correspond to, respectively, the initial /O time to start
the execution and the final arithmetic time after all the data has been read. Q is the number of

times the overlap region is executed.

N (p-1 . .
VBBL: - P (p? ). [Tr“io(M-Z)ﬁ- T (D) + (M=3) Ty + T (q))
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VBB 2: E._..(E?:,_L)_

&

(M7 4)

M N : M
2T io(T) + [ 1 - [] ”Tol(l'?‘) + Tinn (q(T))

VIM L (p= 1) 5 (TeiolM=2) = T o) + Town ()] +

N
M-2

- (p— 1 ‘ - 1)-(p-2
: {P (pz ) (M=-3)- T, 29+ (2 )7(P ) ,Tol(z.l.r)]

M 3N M M
VIM2:(p- 2)- [Tr—i<)(“3’) + S Tl 3+ T (Q"‘g‘)]

N b1 _ p=2r(p- |+ @2
+ [((M/3) 1)( 2 1)+ 7 ]To(

M M N .
+ Z'Tr—io(“[)‘*‘ Tinn (q(T)) + [M/4 - 1]. TOI(I.Z)

To evaluate the total execution times of ST 1 and ST 2, suppose that there exists an
integer k such that:
T (kt1)-U-q) = T o(U) = Tpn (k-U-q)

U= M inST1and U= pl_\:[ 7 in ST 2. Then the total execution time of ST 1 is given by
p

N . M p-(p—1) _m-(m+1)| M
STL(M/m Lm+2)1ﬂJP)+ 5 5 TmNM(p)

where m = min (k, p—~ 2).

For ST 2 we have two cases:
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Case I: k = _(_p__—;_l)_ It is clear that the algorithm will be I/O bound and the execution time

isST2:

)

N M

M/ (p+ 1)) “T‘““’(p+ 2

+ p-
where here m = min (k. p— ).

Case 2: k < LE:?——D- Here the execution is computation bound and the total execution time

is ST 2:

M N p(p=1 k- (k—-1)
e . . + . o T .
(ke+ 1) Tf”“’(p+1) M/(p+ 1) 2 2 i (4 p+l)
Finally, the total execution time of ST 3 is given by:
. My N _ron,p (=D M

In Figures 5.7 and 5.8 the total execution times for cach algorithm as a function of the
number of active columns is presented. In Figure 5.7 the time per floating point operation is
0.5 microscconds and in Figure 5.8 it is 25.! We have considered only the second version of
VBB. VTM, and ST algorithms. We have also included the curve for the total cxecution time

of the relational organization. The main storage size is 100 pages in both figures. [n Figure

L these two values were chosen in order to analyze [/O bound and CPU bound executions
for all the algorithms.



46

5.7, the VBB 2 algorithm performs better than the relational algorithm for p=< 10. VTM 2
outperforms the relational algorithm for p=13 and ST 2 for p=351. In Figure 5.8, which
corresponds to a CPU bound case, VBB 2 and VTM 2 perform better than the relational organi-
zation for p= 9. ST 2 performs better for all p. However, the difference between the algo-
rithms for transposed and relational organizations is significant oaly for p approximately less or
equal to 10. Figure 5.9 and Figure 5.10 are also total execution time curves. But here the
number of active columns is held fixed (p = 20) and the total execution time is plotted against
the main storage size. In Figure 5.9 Tflop is 0.5 microseconds and in Figure 5.10 it is 25
microseconds. As was expected, the curves in Figure 5.9 look similar to the curves in Figure
5.5 (where only [/O was shown). 'The performance of VBB 2 in Figure 5.10 is noteworthy since
it actually possesses a minimum. The shape of the curve can be easily explained by the fact that
as the size of the main storage increases, the "startup” times per inner product also increase. [n
fact, for each inner product the "startup” time is the time to read M / 4 pages from each column.
For a small memory size the time in the overlap region is I/O. However, since the CPU is slow,
for M greater than approximately 25, the overlap region becomes CPU bound. Therefore the
total time for an inner product becomes the startup /O time plus the inner product computation
time. A larger memory size will imply a longer startup time, and, therefore, a greater total exe-
cution time. This observation also holds for VIM 2. Here, however, the degradation is not

serious.

In Figure 5.11 we have the total execution times for all the algorithms in terms of the time
per tloating point operation (which is inversely proportional to the CPU speed). Here the main
storage size is again 100 pages and the number of active columns is 20. The curves clearly pos-
sess an [/O bound region and a CPU bound region. The critical value for the stripes algorithms

is approximately 1.5 microseconds per flop and for the other algorithms about 10 microseconds.
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The curves show that the stripes algorithms become CPU bound much faster than the others.

Finally, to provide an idea about the memory bandwidths required to support high CPU
speeds, Figure 5.12 illustrates the memory bandwidth versus the time per flop. An interesting
point is that the required memory bandwidths of all the algorithms were quite close, especially
for fast CPU’s. Since the curves for the different algorithms looked almost identical, this curve

is that of ST 2 (with p= 20 and M = 100).

In an efficient implementation of X' X all is needed is one pass over the active columns.
Moreover, the operation X' X is achieved by forming all the inner products X; - X;, where X;
and X; are the ith and j™ columns of X. Theretore, assuming it was possible to access the

corresponding pages of the active columns, we considered the problem of interconnecting

E—i%—-——ll processors, so that all possible pairs of the p columns of X are processed. In the

next section we present a multistage shuffle/exchange network which allows an efficient parallel

evaluation of X' X

5.3. A Multiprocessor Interconnection for X' X

5.3.1. Introduction

In this Section we consider a type of interconnection network for an array of processors
constructed so that the processors act on all possible pairs of p distinct input streams,

Xp X . X This type of network, the ZETA network, is a p— 1 stage

p- U
shuffle/exchange [STONT71, CHUAS81] where the pattern of exchanges is identical in each

column. The processors at one stage process g— pairs and "pipe" their data to the processors at

the next stage. Theretore, if there are several consccutive sets of p element input streams to be

processed, the ZETA network acts as a pipeline, with consecutive stages processing pairs of
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consecutive input sets. All the processors will be executing the same operation but on different

pairs of data (that is an SIMD {FLYNG66] configuration).

The ZETA network was motivated by the need to cvaluate the non-diagonal elements of
the matrix X' X where X is an n X p matrix of numerical values from a large statistical database.
The main problem here is to determine the repetitive exchange pattern such that each pair

( X X)) is formed in some switching element at some stage.

Multistage shuffle/exchange networks have been extensively studied and analyzed
[LAW7T5, PARKS80, FREUS1, LENF78, NASS81, LANG76]. However, in these studies the
main emphasis has been the realizable permutations of an input stream {0, 1, 2, ..., p - 1}.
With ZETA networks the problem is not the determiﬁa[ion of particular permutations, but the

possibility of forming all the pairs X;, X; for i# . With p inputs there are exactly
G= E——i%:——l—)— such pairs. If there are G processing elements available, and if the input

pairs are formed in (p - 1) stages (p/2 pairs per stage) the problem is determining an intercon-
nection which will guarantce that each possible pair is formed in some switching element at

some stage.

We first consider the special case where p= 2™ . The nctwork can be pictured as having

p-(p= 1)

5 processors arranged as p — 1 columns with g— processors in each column. Each

processor has two inputs and two outputs and the processors in one column are connected to the
processors in the next column through a perfect shutfle. The exchange part of the
shuffle/exchange comes from each processor being able to switch its inputs or send them straight
through to its outputs. In a ZETA network, whether or not a processor switches its inputs is
determined only by the row in which the processor is. That is, all the processors in a row switch

their inputs, or all the processors in a row send their inputs straight through. This means that



when P—(%———l—)— processors are not available, the network could be emulated by g— PrOCESSOrs

where successive stages are performed at successive times.

In Section 5.3.2 we define and prove some of the important propertics of ZETA net-
works. We show that it is always possible to determine ZETA networks with the property that
each possible pair of a stream of inputs is formed. The formation of the patterns has an clegant
algorithm which is related to error-detection codes and pseudo-random number generation. The
general case of p not necessarily a power of 2 is considered in Section 5.3.3.

"o

For the binary arithmetic operations, "." is binary multiplication (AND) and "+ " is mod 2

addition (exclusive OR).

5.3.2. ZETA Networks

In this section we define ZETA networks and show that for a special class of ZETA net-
works we will be able to generate all the (X, X ;) pairs. As indicated earlier we assume that p

HM . . . .
= 2. The more general case will be discussed in Section 3.

Definition 5.1: A ZETA network is a p - 1 stage shutfle/exchange network where, at each stage,

the pattern of exchanges is the same.

Since the pattern of exchanges is the same at each stage, it is possible to emulate a ZETA

network with just one stage of shuffle/exchange. At each stage of a ZETA network there are g—

switching elements. We label these switching elements 0, 1, ..., g— — 1. Each switching ele-

ment has two outputs. At each stage, we label these outputs 0, 1, ..., p - 1. Switching element

P has outputs labeled 2P and 2P+ 1. An output labeled j issues from a switching element




labeled l%— | Moreover, an output labeled j is some element X; of the set Xy, X, ...,

X We shall call i the index of the output labeled j. At each stage of a ZETA network

p- 1
the outputs from the switching elements will form some permutation of this set or, equivalently,

of0,1,...,2m~ |

Definition 5.2: A ZETA network is O-preserving if the first switching element is not set (that is,
it does not switch its inputs). This results in 0 being the index of the output labeled 0 at each

stage.

Definition 5.3: A ZETA network is i-complete if i (that is X ) is paired with each j (that is

X ;) in some switching element.

Since our goal is to form all the (i, j) pairs, we are interested in ZETA networks which

are i-complete for all i.
Definition 5.4: A ZETA network is complete if it is i-complete for all i=0, 1, ..., p- 1.

Example: In Figure 5.13 we have a 7 stage ZETA network. Switching clements 2 and 3
exchange their inputs. The ZETA network is O-preserving and complete. At each stage we
have labeled the switching elements, the outputs and indicated the binary representation of the
indices. Note that, at each stage, the output indices constitutec a permutation of 0, 1, ..., 7.
For example, at stage 3 the outputs constitute the permutation X5, X5, Xg, X, X3, X,
X5, X0t Xy, Xy, ..., X5 This ZETA network has an interesting property. At the bot-

tom of each column of the switching clements we have given the binary representation of the
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index of of the element which is paired with 0. For example at stage 3, 0 is paired with 7 or
111. Now observe that if we take the exclusive OR of the binary representations of any other
pair of indices at this stage we also get 111. This property is true for any stage of this ZETA
network. In other words, at each stage of this ZETA network the binary representations of the

indices of the outputs from the switching clements differ in the same bit positions.

Definition 5.5: A ZETA network is bit difference preserving if at each stage the binary
representations of the indices of the outputs from the switching elements differ in the same bit

positions.

If a ZETA network is bit difference preserving then tor any pair (i, j) the binary represen-
tations of i and j will differ according to d ij= i+ jandall the d;'s at the same stage will be
identical. But if the network is also 0-complete, any m - bit number will be paired with 0 at
some stage. Hence any (i, j) will be the output of some switching element at some stage. There-

fore:

Theorem 5.1: A bit difference preserving ZETA network is complete iff it is 0-complete.

Again consider the example in Figure 5.13. Note that the switching elements 0, 1, 2, 3
(or 00, 01, 10, 11) interchange their inputs iff 1-Py + 0P, is | (P, P, is the binary representa-
tion of the label). Therefore 10 (in binary) "determines” the exchange pattern. Moreover, in
any row of the network, consider the binary representations of the output indices from the

switching elements. [t can be shown that the least significant two bits of a binary representation



in a stage are obtained from the binary representation of the previous stage through a right shift.
For example, at stage 3, 111 is paired with 0 and at stage 4, 011 is paired with 0. The least sig-
nificant two bits of 011 are obtained from 111 through a right shift. The most significant bit of
011, however, is the complement of the least significant bit of 111. In fact it can be shown that
for this ZETA network, the most significant bit of each output index is the exclusive OR of the
least significant bit of the previous output index with the "inner product” of 10 (in binary) with
the remaining bits of the previous output index. In our example the most significant bit 0 of

Otl isequalto L + 1-1 + 1-0.

Definition 5.6: Let t=tt, - -t _ , beany fixed (m - [) bit number. Then if the switching

m-1

elements 0, ..., 2 - 1 switch their inputs when

where P= Py P; - -- P, _ , is the binary representation of switching element P, the ZETA

network is said to be t-determined.

[n what follows we shall show that for t-determined ZETA networks the binary represen-
tations of the permutation at stage k are determined from the binary representations of the per-
mutation at stage k-1 through a right shift and the complementation of the most significant bit
depending upon t as well as the remaining bits (see (5.2)). We shall also show that t-determined

ZETA networks are bit difference preserving.

Theorem 35.2: Let t=tyt, --- t ., and consider the t-determined ZETA network. If
S(j- k=S, k)pS(j, k) - S(j.k) n- is the binary representation of the index

of the output labeled j at stage k, then:
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S(j.kK);=S(j,k=1), fori=1, - m—1
and (5:2)
S(i>Kog=S(j, k=)o +S(j, k=g ty+ - +S(j, k=2 th-

Proof: We shall prove the theorem by induction. Clearly in the first stage of the shuftle
exchange network we have:

S(j,D;=8(j,0;., fori=1,...m-1 (5.3)
and in fact (5.3) holds for any exchange pattern. We need to show the second equality of (5.2)

holds for k=1. First note that S(j, 0)S(j, 0 - S(j,0) ., is switching element

[%} and, since the network is t-determined, it is switched iff (5.1) holds. But switching

4

corresponds to complementing S ( j, 0) ,, - . Therefore (5.2) holds for k= 1.

Assume (5.2) holds for k= (n— 1). Now there exists an r such that S( j, n) and
S(j,n— 1)areequal to S(r,n— 1) and S( r, n— 1) respectively : r is the index which,
when shuffled and exchanged, gets mapped into . But then, by the induction hypothesis,

S{r, n— 1)isobtained from S( r, n — 2) through (5.2).

Q.E.D.

Theorem 5.3: The t-determined ZETA networks are bit difference preserving,

Proof: Again we shall prove our contention by induction. Now for k=1 (that is at the first
stage), no matter what the exchange pattern is, the binary representations of the output indices
from the switching elements differ only in the most significant bit position. Now assume for
k= n— | the output indices from the switching clements have the bit difference given by

S (k);. That is assume for the two outputs S (j;, k) and S( j,. k) tfrom any switching cle-



ment j

S(j1-ki+S(jy.k);=S8(1,k); fori=0, --- . m=-1 (5.4)
holds for k = 1, ..., n - 1. That (5.4) holds for k=n follows from the fact that S( j,, n),
S(j;,n)and S( 1, n) are obtained from S(j;,n— 1}, S(j5,n— 1)andS(1,n~- 1}

through (5.2).

Q.E.D.

Since t-determined ZETA networks are obviously 0-prescrving and, as shown above, also
bit difference preserving, to show that a t-determined ZETA network is complete we need to
show it is O-complete (Theorem 5.1). [t is easy to see that not all t-determined ZETA networks
are 0-compiete. For example if t=00...0 we get the pertect shutfle (without ény exchanges) at
each stage and 0 will be paired, repeatedly, with 2k fork= (m-1), (m-2),..0 Tofind1-
determined ZETA networks which are O-complete we need to determine the t's which, starting

with 2™ -

. "generate” through (5.2) all the 2™ . | non-zero m - bit numbers. This problem
has been solved algebraically and 2™ corresponds to the maximum period possible for a

linear feedback shift register of m stages [GOLO67]. It has applications in generating m - bit

pseudo random numbers with maximum periodicity [ KNUTS8! |,

In what follows we assume our reader has some familiarity with Galois fields GF( 2m )
and the algebra of polynomials over a field (see [BIRK70, PETE72}|). Below we give some
preliminary definitions and two theorems which will guarantee the existence of 0-complete
ZETA networks for any m. Since these results are well known in algebra and in the literature

of error generating codes we state them without proof.

Definition 5.7: The order of a nonzero element o of a multiplicative group G is the smallest
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positive integer r such that a” = a. Note that a ¥ F = o ¥ for all k and the sequence { a ¥ } 2,

is periodic of period r, with the first r elements all distinct.

Definition 5.8: An element o of GF( 2™ ) is called primitive if its order is 2™-1. Every non-
zero element of GF( 2™ ) can be expressed as a power ot a and the multiplicative group of the

non-zero element of GF( 2™ ) is cyclic.

Definition 5.9: An irreducible polynomial of degree m over GF(2) is called a primitive polyno-

mial if it has a primitive element of GF( 2™ ) as a root.

m __
Theorem 5.4 [KNUT81, BIRK70): Over GF(2) there are 92"~ 1) primitive polynomials
m

of degree m, where ¢ is Euler's ¢ function.

Theorem 5.5 [BIRK70, PETE72]: Let

T(X)=1+ty- X+t - X2+ -+t _ - X" (2.5)
be a primitive polynomial of degree m over GF(2) (note that t . | = 1). Then starting with
any initial non-zero m’-"bit number S (0)= S (0) ;S (0), - - - S(0) - ; the sequence { S (i) }

= generated by

S(k)izs(k—l)i—l fOI‘i'—:l, ,m—l

and (2.6)
m- 2 )
=0

is periodic of period 2™ - 1.

Theorem 5.6: For any m we can always find a ZETA network of 2™ - | stages which is com-

plete.
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Proof: For any m we can always find a primitive polynomial of degree m over GF(2) (Theorem
5.4). Let T(x) given by (2.5) be such a primitive polynomial. Consider the t-determined
ZETA network, where t = tgty ... t,_ 4 By Theorem 5.3, any t-determined ZETA net-
work is bit difference preserving. Moreover, Theorem 5.5 implies this t-determined ZETA net-

work is also 0-complete. We are done by Theorem 5.1.

Q.E.D.

5.3.3. The General Case

In the previous section we showed that we can ailways find a ZETA network which will

generate all the pairs (X, Xj Jof Xg, X¢, .., X where p = 2™ There are two basic

p-L»
problems in constructing a ZETA petwork for an arbitrary p: (1) it is not realistic to assume

that the number of inputs will always be a power of two; (2) for large p it might be unreason-

able to construct a ZETA network of p - 1 stages (which requires E—i%—:—l—l processors). In

this section we propose a number of solutions for these two problems.

(a) Introducing null elements: perhaps the easiest way to handle the first case is through the
introduction of null elements to the original input. That is find the smallest m such that p < 2™

and append 2™ — p null elements to the original input. Note that with this scheme there are

2m- 2= p(p= 1
P 2

null operations. If p is 25 + s for a relatively small s (for exam-
ple s= 1) this could degrade the throughput considecrably.
(b) Emulation (for large p): if p is slightly less than a power of 2 but still large, it might be

unreasonable to construct the ZETA network. We mentioned earlier that the repetition of the

exchange patterns allows us to ecmulate the ZETA network through just one stage of




shutfle/exchange (by piping the data back to the switching elements a total of p - 2 times).

If ~Zp— is still large, it is possible to use quotient networks [FISH82] and emulate a

shuffle/exchange of 2 ™+ 4~ switching elements with a shuftle/exchange of 2™~ | switching ele-
ments. Each switching clement will have 2 9% ! inputs/outputs and must process 29 pairs at

cach stage (for a total of 2 ™9~ | stages).

(c) Partitioning: another way to handle the general case is by partitioning,. Suppose p= q- 2k

There are two methods for partitioning:

(1) We can partition the p inputs into q subsets of 2 elements cach. Then a 2¥ — | stage
ZETA network can be used to process the input pairs within cach subset. The pairs
across the subsets might be processed serially, through broadcasting etc.. The latter gives
maximum efficiency if the ZETA network is emulated through a one stage
shuffle/exchange. In this case if the switching elements contain blocks from one subset,
the corresponding blocks from another subset can be broadcast to all the switching ele-
ments, one by one. Each switching element will process two pairs across subsets and all

the switching clements will be operating in parallel.

(2) We can partition the p inputs into 2 ¥ subsets of q elements cach. With this scheme, the
ZETA network is used to process the pairs across the subsets and cach switching element
will process q” pairs at each stage. As with the previous scheme, there are several choices
for processing the pairs within each subset. Unlike (1). however, the ZETA network is
accessing all the input. Therefore, it is conceivable to uniformly distribute the amount of

-1

computation within each subset (that is processing EL_%L_L pairs), across the 24— 1

stages of the network.
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5.3.4. Summary

In summary, we have shown that we can determine a pattern of exchanges for a ZETA
network, such that all the (X, X ;) pairs of a given set of inputs X, Xy, ..., X,_ are
processed. We defined ZETA networks with this property "complete”. We saw that primitive

(27— 1)

m

polynomials can determine complete ZETA networks, and since there are primi-
tive polynomials (over GF(2)) for any m, it is always possible to construct a complete ZETA

network for any m.

ZETA networks can be used efficiently to evaluate the nondiagonal elements of X'X. In
the types of applications we are currently investigating, X is large. In particular, X is much
larger than the primary memory of the underlying system. Therefore, with a p — 1 stage ZETA
network, it is possible to process the matrix X in horizontal stripes. As we mentioned in Section
5.3.1, the ZETA network acts as a pipeline, with consecutive stages processing consecutive
stripes of X. Therefore, if X is divided into N horizontal stripes and the time to access a hor-
izontal stripe from secondary store is synchronized with the processing time needed at a stage of

the ZETA network, X' X can be evaluated in p + N time steps. >
Finally, the repetitive exchange pattern allows the ZETA network to be emulated through

just one stage of shutfle/exchange. This requires only g— processors.  This emulation is one way

to handle a large p. Emulation through quotient networks, introduction of null values and parti-
tioning are some of the other methods that can be used to ctficiently handle an arbitrary p

(either very large or not equal to a power of two).

? where a "time step” is the processor time needed at a stage of the network.
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3.4. Conclusions

This Chapter presented three types of algorithms for the evaluation of X' X. These were
labeled VBB, VTM, and ST. For each we have given a number of buffer management and
page replacement algorithms in a high level concurrent programming language, wherein we have

explicitly stated the page reference strings and the overlap regions.

We have shown that the number of page transfers grows quadratically in p (the number of
active columns) for the VBB and VTM algorithms, and linearly in p for the ST algorithms.
Theretfore, in terms of the number of page transters the ST algorithms are always optimal. On
the other hand, the number of random seeks for the ST algorithms is signiticant.® The effect of
the seek times is clearly demonstrated in the curves of the total I/O times as functions of p. The
curves of the total I/O times for the VBB and VTM algorithms are quadratic in p, but the sub-
stantial percentage of seeks for the ST algorithms show as jumps in the linear curves,

The total I/O times as functions of the main storage size are asymptotic. After a certain
threshold, the size of the main storage does not effect the total [/O time to any significant
degree. More specifically, if the main storage is divided into k equal subdivisions* then to be

within f percent of the asymptote the memory size needs to be:

_ (-B- k- Tdac
f- Tio

M

In comparing the total execution times,” we observed that with a fast CPU VBB 2 and
VTM 2 perform better than the relational organization for p less or equal to 10 and 13 respec-

tively. The ST 2 algorithm with the transposed organization performs better than the relational

3 The VTM 1 strategy involves the least number of random seeks, although the number of
page transfers is greater than the ST algorithms.

4 where k is taken to be 1 for VBB 1 and VIM 1

3 for the [/O bound case (i.e. Tflop = 0.5 microseconds)
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organization, provided the number of active columns is less than or equal to 51. Although the

stripes algorithm always involves fewer page transfers,® the performance degradation for the

larger values of p is again due to the cost of seek operations.

Considering the total execution times as functions of Ttlop, we observed that the stripes
algorithms become CPU bound for smaller values of Tflop. The VBB and VIM become CPU
bound for Tflop = 10 microseconds. On the other hand the ST algorithms become CPU bound
for Tflop = 1.2 microseconds. This provides another illustration of the extra [/O overhead of

the VBB and VTM algorithms.

The good performance of the ST algorithms and a close investigation of the X’ X operation
suggested that in an optimal implementation only one pass over the active columns is needed.
Therefore we proposed a multistage shuffle/exchange network (ZETA networks), with the pro-
perty that in one pass through the network all the inner products of X (i.e. X' X) are accumu-
lated. ZETA networks provide an efficient, pipelined evaluation of X' X, as well as an example

of a specialized multiprocessor architecture for a particular computational operation.

® the number of page transters for ST algorithms is pr N which is always less than R
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CHAPTER 6

The QR Decomposition

6.1. Introduction

For the QR decomposition of X, we apply p Householder transtormations on X to reduce
it to upper triangular torm. Each Houscholder transformation is defined through a vector "u"
and a scalar "¢". In fact if H is a Houscholder transtormation then

'

u-u
C

H=1-
where [ is the n x n identity matrix, u is an n dimensional vector and c is a constant; ¢ is
chosen such that H' = H and H' - H= H- H' = L. The k™ Houscholder transtormation
zeroes the subdiagonal elements of the k™ column. The u of the k™ Houscholder transforma-
tion is:

Xk

st | Ixy] |

where, ¢ is the k™ n-dimensional unit vector, Xy is the k™ column of the transformed X and s

u= ek+

is the sign of X (k,k). The c of the k™ Houscholder transformation is:

X (k.k)

c= 1+
st [ 1Xl]

After this transformation is applied, X (k.k) = —s- ||x, || and X (j,k) = 0 for j = (k+1),
(k+2), ..., n. The other columns are transformed according to:

(a) t= B,—i(—i and
u(l)
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Let Hi, H2, ..., Hp be the p Houscholder transformations applied (on the lett) to X

Then

Hp --- H2-Hl- X=R
where R is an n x p upper triangular matrix. Let Q= H1- H2 --- Hp Note that
Q- Q= Q- Q = I(that is Qis an orthogonal matrix). Therefore:

@ -X=Ror X=Q R
Since n >> p, the last (n - p) rows of R are zeros. So for R, the storage requirement is of order
O (p?). Q( or Q) can be recovered through the u's and ¢'s of the Householder transforma-
tions. Therefore, rather than storing Q (which is of order O (n? ) ) explicitly, we can store the
u's in the zeroed lower triangular part of X. That is after the transformations are applied , the
upper triangular part of X will contain the upper triangular part of R and the lower triangular
part of X will contain the u’s. The upper triangular part of R can also be kept in main store.
Whenever () is needed. the Houscholder transtormations can be applied to the nxn identity
matrix. In most applications only the first p columns of (Q are needed. If that is the case the
Houscholder transformations are applicd to the first p columns of the nxn identity matrix. This
is one scheme for accumulating Q or a submatrix of Q. In Chapter 7 we shall introduce a
more efficient way for accumulating the transtormations and constructing Q (or the first p
columns of Q). As we shall see, our method will imply a substantial reduction in the I/O over-

head.

Throughout, the column which determines the transtormation is called the "pivot,” and the
remaining active columns are the non-pivotal columns. Our performance cvlaution assumes a
simple "pivoting scheme.,” where the pivot at the it iteration is the i column. A stabler pivot-

ing scheme is to choose the pivot as the column with the largest norm, among the currently




active columns.

Note that we need the 2-norm of the pivot in order to define the transformation. A sub-
stantial savings in /O and computation will occur if the 2-norms of the non-pivotal columns are

updated (vs. recalculated). The formula for the update is:

C 2 1 U
= [1GE 17 = Trgl? (6.1)

h

where | |X ;% || is the 2-norm of the i™™ column before the ki iteration, [1X 5 U] s the 2-

norm of the same column after the j™ transformation. and T is the clement in the k™ row and
jth column of R. However, as pointed in LINPACK [DONG79], if we are not caretul, round-

ing errors and over (or under) flows can occur with this updating expression. LINPACK allows

for recomputation whenever:

MK = elIX;t] (6.2)
or
o112
Kk ‘ -
HXJIH [ ]rk.k;i —o 2 (6.3)
X X%

where A is a small constant, € is the the rounding unit for the underlying processing subsystem.,
[1X jl |1 is the initial 2_norm of the M column of X, and T j is the element in the k™ row i
column of X. updated in the k™ iteration. It is given by:

rka ij_ U'k‘ X} ) (64)
Therefore if the inner products of the Kth pivot with the remaining columns and the kK row of

the current X arc available, by (6.4) and (6.1), it is possible to determine the 2-norms before

actually applying the transtormation.
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[n some cases the user will want to specity initial, tinal. and free columns. He will then
force the initial and final columns to be “frozen” and the free columns to be permuted according
to their largest norms during the execution of the decomposition. Since the choice of the
columns is completely user dependent, we shall not consider this general case. Instead we shall
study the performance of the simpler situation where in the i iteration, the i column is the
pivot. We shall assume that the 2-norms are always updated. The decision for recomputing the
2-norms {according to (6.3)) is also data dependent. It is relatively easy to incorporate the tixed
overhead of the worst case, where at cach iteration all the 2-norms are recomputed. This will
provide an upper bound for the actual overhead of recomputing some of the 2-norms when (6.3)
is satisfied.

The decision to pivot on the i column in the it iteration, could easily be relaxed to the
more general and more stable algorithm of pivoting on the column with the largest norm. This
simply entails the permutation of some of the columns of X. The performance evaluation is

essentially the same.

To minimize the I/O overhead, we have introduced a look-ahead scheme which eliminates
the [/O references tor accumulating the inner products. Our technique is simply this: retain in
primary storage corresponding pages of the current pivot and the next pivot, then accumulate
the dot products for the next transformation while applying the current transtormation. In the
usual implementation of the QR decomposition (with columns stored in a transposed organiza-
tion), the current pivot is accessed in blocks and corresponding blocks of the remaining columns
are read, processed, and written back. For the following iteration, a pass is made on the next
pivot and the remaining columns to accumulate the inner products. Once the inner products are
evaluated, the application of the transformation proceeds as before. With our scheme, we retain

not only the current block of the pivot, but also the current block of the next pivot. Then pro-
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cessing the corresponding blocks of the remaining columns involves two steps. First apply the
current transformation and, second. accumulate the inner product of the transformed block with
the transtormed block of the next pivot. To make this scheme work. we need to know the index
of the next pivot before applying the current transtormation. If the the i pivot is the i
column, this is trivial. However. if the algorithm is designed to pick the next pivot as the
column with the largest norm. we must first determine the column which will have the largest
norm after the current transformation is applied. This must be accomplished before actually
applying the transformation. Thereforc our scheme will not work if (6.3) is satistied for any

column.

6.2. Algorithms

Next we present three high level algorithms for the QR decomposition. These high level
algorithms are used primarily to determine butfer management strategics. They are representa-

tive of the different orderings of the indices and operations.

The first algorithm, VBB, uses two vector building blocks. The second algorithm, VM,
improves the first by using a vector-matrix approach ftor the inner product and AXPY opera-
tions. Finally, in LA (which is a direct implementation), the inner products of the next
transtormation are accumulated while applying the current transformation. Although in the per-
formance evaluation we will always assume the 2-norms are updated, the algorithms given below

test for recomputation (through the boolcan function "Recompute”).
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VBB:

Fori:= |l top-1 /* evajuate the "s” and the "¢" of the next transformation */

s, = sign (X, )

_ Xii
c.i= | + ——-
‘ s [ 1XG
fp= s 11X

Forj:= i+1ltop
Fork:= iton /* accumulate the inner products */

[J: tj+ quju Xk"l

(= o

] c

Xl} = Xi‘.jn [] Xll
Lij——= Xi.j

For k:= iton /* apply the transformation */
Xgj= X=Xy
If Recompute (j) /* recompute the 2-norm */
X1 =0
Fork:= i+1ton
HXGH = HXG T+ X Xy
XG0 = X012

clse /* update the 2-norm */

5
9 172

TR A LT
;1= 11 =)




VM:

Forii= 1top-1

;= sign( X )

‘ Xii
c. =+ ————
! s X 1]
Ty =8 [1X]]
Forj:= i+ ltop
check (= false

/* accumulate the inner products of pivot i with the
remaining columns */

Fork:= iton
Forj:= i+ ltop
t)= tj+ Xk.j Xkl

Forj:=1i+ ltop

[f Recompute (j)

check = true

X1

i
=
fom

HXS

il
ey
|
——————
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Fork:= iton / apply the current transformation */
Forj:= i+ lton
K= Xj =ty Xy
It chcckj

HX = X+ X Xy

70
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LA:

X1

C 1 + :
s 11X
t= s [ IX

/* accumulate the inner products of the first column
with the remaining columns */

Fork:= 1ton
Foj:= 2top

If(k=1) [rl_j:= Xyl

TSI
Forj:= 2top
FLj= r— b
t.
= 1
t}— .
If Recompute (j)
check ;= true
X5 1]:=0
else
2 12
111 = 11 (1= [
j

/* apply the current transtormation and accumulate the inner
products of the next pivot with the remaining columns */

Fori:= ltop-1

Forj:= i+ ltop[tjq:= 0]



For k ;= iton /* apply the transtormation */
Xt = X1 = Lo Xy

It check

X = X+ X X

If(k=i+l)
$2:= sign (X sy
e 4 Xirlirt

2 Xy 1]
Forj:= i+ 2top
Xgj= Xj— - Xy
If check ;
X = X+ X X
[f(k=i+1)
/* accumulate the inner products for the next transformation */

Xj.i+l

tipi=ti+ Xy S 7
i2 IPARAL s2- [ Xy [

If (k= i+1)

Uir = Xy

For j:= i+ 2 to p[check ;:= false]
Forj:=i+2top

[f Recompute (j)

72
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checkj = true
/* recompute the two norms of the columns for which check; is set */

HXS =0

172

I R
X=X I [HX,'HJ

In the next sections, buffer management algorithms for cach of the VBB, VM, and LA
are presented. These algorithms are for the transposed sccondary storage organization. We
shall also brietly describe a direct algorithm (labeled REL) for the relational secondary storage
organization. To simplify the analysis, the algorithms and the cost functions are evaluated only
tor the main body of each algorithm. That is,, we have not incorporated the fixed overheads for
cvaluating the constants of a Householder transformation (that is "c¢" and "s"), the conditional

branches ctc. These overheads are insignificant and constant across all algorithms.

6.2.1. Vector Building Block

As mentioned earlier, two vector building blocks are used for the QR decomposition: (1)
inner product and (2) AXPY. For the inner product any ot the VBB algorithms for X’ X can

be used.

6.2.1.1. AXPY

For the AXPY operation, we divide the memory into five equal subdivisions: two subdivi-

sions for reading the next two corresponding blocks of X ; and X j (that is the i and j* columns
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of the matrix X); two subdivisions for operating on the current two corresponding blocks and:

one subdivision which holds the updated block of X ; from the previous iteration.

AXPY:
Read ( X M/%1, x M 51
Fork:= 1toN/(M/53)
$Ifk< N/(M/5)

Read( XiM/S.k+1 . XjM/S.k+l )

M/Sk._ s M/5k_ o .y M/3k
$X, = X t X,

$Ifk>1
Write( XjM/S.k—l )

Writc( XjM/S.N/(M/S))

6.2.2. Vector-Matrix Algorithm

There are two main steps in this algorithm: (1) form he inner products of the pivot with
the remaining columns; (2) apply the Houscholder transtormation. For (1) we can use any of

the strategies of the "vector-times-matrix” scheme of X'X. For (2):

-Divide the M pages of primary memory into tour equal subdivisions.
-Read the next M / 4 pages of the pivot

-[teratively read the corresponding M / 4 pages of each of the remaining columns and, con-
currently, write the updated M / 4 pages ot the column from the previous iteration. Also con-
currently transtorm the M / 4 pages of the resident active column. [f there are only two active
columns use the algorithm of AXPY given above.




VM:

Read ( X M7+ x,

M4l
i+ | ! )

Fork:= ltoN/(M/¥)
Forj:= i+l top
$If j < p Read ( }(J.Hz‘vlu,k)
clse If k < N/ (M /4) Read ( XiM”-kH)
§ X, Midk.o x Midk_ ¢ . x M/4k
’ ' ! ] i
§ I j > i+ 1 Write (X _ M/ *K)
[fk< N/(M/4)
$ Read ( Xi+1M"“)

$ Write (X M/ Hk)

6.2.3. Look-ahead Algorithm

Only one iteration of the LA algorithm is presented.  We have not included the details of
the complete LA algorithm. More specifically. the algorithm below primarily describes the
order of the referenced pages in applying a transformation and accumulating the inner products
for the next pivot. For this algorithm main storage is divided into five subdivisions: (a) M / 5
pages of the current pivot; (b) the corresponding M / 5 pages of the next pivot. (c) the
corresponding M / 5 pages of the current column being transformed; (d) the corresponding M / 5
pages of the previous column being written back to secondary storage: (¢) the corresponding M /

5 pages of the previous column being rcad.
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LA:
Rcad(XiM/S'l,Xi+[M/5'l)
Fork:= 1toN/(M/5)
Forj:= i+1ltop

$1fj< pRead ( X M/3K)
else If k < N/(M/5) Read ( X M/ 3kt
$ X, M/5 k. Xer’i,k__ - X M3k
Ifj> i+l

= b+ me/ik‘ XjM/S,k
$If j> i+ 1 Write ( X M/3k)
k< N/(M/S)
$ Read ( X ..M

$ Write ( X M/

6.2.4. A Direct Implementation For the Relational Organization

For the relational secondary storage organization we used a "look-ahead” scheme identical
to the LA algorithm. We have labeled this algorithm REL. Since the QR decomposition pro-
duces temporary files, a partially transposed file of the active columns is first constructed  This
is identified as the projection step. Subsequently, the QR decomposition of X is evaluated
through p passes. The first pass evaluates the inner products for the first pivot. During the
remaining p - I passes the transtormations are applied. However, while the current transtorma-
tion is applied, the inner products for the next transformation are accumulated. With the rela-

tional secondary storage organization, the data pages contain corresponding clements ot all the
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active columns. Therefore, besides determining the next pivot prior to the application of the
current transformation, no special butfering scheme is needed.! Hence, the main storage is
divided into three subdivisions: M / 3 pages for inputing the next block of the file. M / 3 pages
for applying the current transtormation and accumulating the inner products for the next
transformation, and M / 3 pages to hold the previously transformed block while it is written

back to disk.

6.3. Cost Functions

In this section we shall give the cost functions for the QR algorithms. We shall present
the expressions for the [/O costs and the total exccution times. In the QR decomposition, some
of the 2-norms might be recomputed. Since this is completely data dependent, we have con-

sidered cost functions only for the case where the 2-norms are updated.

6.3.1. [/O Costs

Below we list the expressions for the number of random seeks, the number of page
transters and the total /O costs for VBB, VM. and LA. Throughout this discussion we have
assumed the existence of two [/O subsystems. One /O subsystem is dedicated to the "read”

operations and the other to the "write" operations.

For VBB, the total number of random sceks is:

9-N “(p— 1
Trs-veg=p (P~ ) ==+ P (?, )

the total number of page transters is:

U with the LA algorithm for the transposed sccondary storage organization we retained in
primary store the current pages of the next pivot



p-(p— 1)
3

Tpr-veg= 5" N-

and the total [/O is:

M

L

. N .
Tio—veg=4 p-(p— 1) M T ol

< : N M {p~-1
>op o (p— ) V Tr—io(”g—)*‘ E_'(J%—'l‘_rr—k)(N)

For VM the total number of random sceks is:

N

Tes v = 1 3-(9'—(.;&‘—)--3).» 4op+ 2o (BRZD gy e 041

-1
2

the total number of page transfers is:

QM(E;.(}ZLD&_ 1) + p(pt+ 1)
2 e

Tpr-vm = N-

and the total [/O is:

3N + 1 ay . - M 10- N . M
Tio-vm= = (B (% L-3). Teio( 3+ 3 Te-iol 50
4-N (p—1 M
s A e 2By T (Mo

The total number of random secks for LA is:

N = {p+ | (p— | . 2
TRS_LA:I_VI_, 3.(P (2* )_,_P(E?) )—7)+21+3“P

the total number of page transfers is:
Tpr-ta= N-(p"+p— 1)

and the total /O time is:

78
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S' N |p(p+tD  pp= 4| ¢
2 2

r— io(

20 N 3-p N
T (M) + -~5{———~T

(M/3) + T o (N)

=0

In order to compare the pertormance of the relational and completely transposed storage
organizations, we have also computed the expression for the /O times of the relational organiza-
tion. The QR decomposition modifies the matrix X. Therefore, for the relational organization,
a partially transposed ftile of the active columns is first constructed and the QR decomposition is
subsequently applied to the partially transposed file. The u's of the Householder transtorma-
tions are stored in the subdiagonal part of the partially transposed file. The total /O cost, there-

fore, is the sum of two terms:
(1) the cost of constructing the partially transposed file of the active columns
(2) the cost of applying the transformations to the partially transposed file.

For (2) there are p passes. During the first pass the inner products for the first pivot arc
computed. During the remaining p - | passes the transtormations are applied.  The total
number of random seeks is 2-p + 1. With two [/O subsystems. the number of random secks for
the relational organization is independent of the primary memory size. The total number of
page transters is R + 2+ p2- N. The total I/O cost for the relational organization is:

Tor-10-REL *= Tpoj + Tor

where,

Tpmj = T o(R)+ T o(p- N)
and,

Tor = (Zp= DTiolp- N
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In Figures 6.1, 6.2, and 6.3, we have plotted the number of page transters, the number of
random seeks, and the total [/O cost as a tunction of the number of active columns. The main
storage size is held at 100 pages. The functions of the number of page transters for VBB, VM,
LA and REL are, approximately. N times 2.5+ p?, 1.5+ p~ p?and 2p’ In the algorithms
for the transposed organization, the number of currently active columns reduces by one at the
end of cach iteration. On the other hand, with the relational organization, each itcration
involves 2-p- N page transters. Therefore, in page transters, the VM and LA algorithms
remain superior to the algorithm for the rclational organization. However, with the vector
building block (VBB) algorithm the pivot is referenced for each inner product and each AXPY
operation. This extra overhcad makes the VBB algorithm more I/O intensive than the algorithm

for the relational organization when the number of active columns exceeds 16.

With the number of active columns held at 20, Figures 6.4 and 6.5 illustrate, respectively,
the total number of random secks and the total I/O time as a function of the size of the available

buffer space. These curves are asymptotic of the general form

C,
M C
The values of these asymptotes are, approximately, the total times for the page transfers (that is

the number of page transters times Tio).

6.3.2. Total Execution Times

Next we present total execution times for the VBB, VM, and LA algorithms. The total

execution time of the VBB algorithm is:

p p— |
Tor-ves = Tx'x-vBB2 * 3 " Tor- axpy

where Ty x_ yppy is the total execution time of the sccond algorithm with the vector building
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block scheme of X'X, and T axpy is the total execution time ot an AXPY operation given

ot

by:

. . M. 5N .
Tor-axey = 27 Teoio 57+ v 1) Max ( Taxpy (q-

u.‘g

)2 T, io(i‘si»

M
5

u.lz

Mo
b]

+ Max ( T.’-\XPY (q- ). ’ Ti()) + io

The total execution time of VM is:
g P -
Tum = Texvimz * To-axey + = Tur (K)
k=3
where Ty y_ vy is the total exccution time of the second algorithm with the vector times

matrix scheme of X’X. Ty (k) is the total time to apply a Householder transtormation, with k

currently active columns (the pivot and k-1 remaining columns). This function is given by

M 4 N

. M M M
|1 Max (Taey (40 ) Teiol )+ Temio(5)
The total execution time of LA is:

P A
Tea= Ty (P + I Toalke 5) + Tea(3 4) + To axpy
k=4

where, Ty (p) is the time to form the inner product of the first pivot with the remaining
columns, using the second algorithm of the vector times matrix scheme of X X, and Ty 5 (k, b)

is the time of a fook-ahead pass with k currently active columns. This function is given by:

- b+ N . M - M M
T alk, b) = ™ (k= 2)- Max ( Taxpy (q- 5 F Tinn(aq - 5 T iof ‘b—))
M b- N . M M . M
+ 2 Tr~ iol }-b—) + M - [Max( TAXPY (q ’ —b‘)’T\w i()('B“) )+ Tr~ i()(LB“)J
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For the relational organization, tirst the partially transposed file of the active columns is
constructed and then p passes are made to apply the transtormation, as well as accumulate the

inner products for the next transformation. The total execution time is therefore:

Tor-Tor- REL = Tproj + Tpr-vim *

p- | M 3-p- N o M
2 b e B g T
k=1 - ' )

where Tpp_ vy is the time to accumulate the inner products of the first pivot with the remain-

ing columns. and T, (k) is the time of the arithmetic operations at the k™ iteration. This func-

tion is given by:

. M
Topr (k) = TA,"(PY (T

: % (p— k) + TINN(%“ %"(P" k=1))

Figures 6.6 and 6.8 contain plots of the total execution times as a function of the number
of active columns. In Figure 6.6 the time per flop is 0.5 microseconds and in Figure 6.8 the
time per flop is 25 microseconds. In both cases the size of the primary memory is held at 100
pages. The LA algorithm is always a lower bound to all the other algorithms. The VBB algo-
rithm outperforms the algorithm for the relational organization, when p = 10 in Figure 6.6 and

when p= 17 in Figure 6.8. The VM algorithm outperforms the algorithm for the relational

organization for p =41 in Figure 6.6 and for all p in Figurc 6.8.

Figures 6.7 and 6.9 present the total execution time for each algorithm as a function of
main storage size. The time per flop is 0.5 microseconds in Figure 6.7 and 25 microseconds in
Figure 6.9. The number of active columns is 20. Figure 6.7 is very similar to Figure 6.5. since
with a fast CPU the operation is [/O bound. The curves for VBB, VM, and LA possess
minimums in Figure 6.9. [t is possible to obtain approximate parametric equations of M as a

function of the system parameters, by solving minimization problems for each of VBB, VM and
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LA. The minimization problem will determine the minimum value of the utilized main storage
size M. To illustrate how this can be done. we shall solve the minimization problem for VBB.
Throughout we shall ignore the cost of track-to-track seek operations and shall consider M and

all the expressions continuous.

First note that the expression for the total execution time of VBB is not a differentiable
function ot M. The reason is the existence of the "Max" function, which evaluates to the max-
imum of two (approximately) linear functions in M. However, it is possible to express the
optimization problem? as a lincarly constrained non-linear problem.’ For example sincc the
coefficient of the term:

ﬂ))

5

is positive, this term can be replaced by the variable z by introducing the constraints

. M
z= Max( Taxpy(q" l—s“% 20 Teoiol

M
z= Taxev (@ 3)

and

M
z= 2 Tr— io( —5—‘)
Although this procedure will yicld a precise solution, it will make the minimization problem
much morc complicated. We suggest an alternative method which, for a particular set of values

of the system parameters, will give us an approximate value of M which minimizes the objective

function.

Minimizing the objective function for VBB is cquivalent to minimizing

= minimizing the total exccution time as a function of M

5
Al

with a non-linear objective function
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fiM)y=C- M+ 4N _ ] Max ( q- VI - Tflop. 2 - (Tdac + —;— Tio))

M

-?";MI—\I--IJ'MHX((}

\—;I- Tflop, 2 - (Tdac + i— Tio))

where

C= LL-Tio + @ Tfl()p + Max(q - Tsﬂop, Tio)

We shall ignore the existence of an upper bound on M and note that 5 is a lower bound on M.

In other words. the minimization problem is constrained with M = 5. The linear terms of:

Max ( q - Tflop- %/I— 2 - (Tdac + -I\—f— - Tio))

and

Max ( q - Tflop - %4- 2 (Tdac + %4— Tio))
are equal for:
8 - Tdac
V[ =
MUT Y Thop— 2- Tio
and
Moo 10 - Tdac

= q Tflop— 2- Tio
respectively. Note that M ; > M |, when q - Tflop > 2+ Tio.

For the minimization of f(M), we nced to consider two cases:
Case 1: q- Tflop = 2:Tio. This corresponds to an /O bound case and minimizing (M) is

cquivalent to minimizing:
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18- N Tdac M. L Ttlop Max ( (q - Tflop, Tio ) + Tio

£, (M) = v . Z

The minimum ot the function (convex over M > 0) is obtained at:

M. = Sqrt( 360 - N - Tdac )
ol s q- Tflop + 4 ( Max ( q- Tflop, Tio) + Tio) °

It M, =35 then the optimum is achieved at M|, otherwise the optimum is achieved at

M = 3.

Case 2: g Ttlop > 2-Tio. Here we distinguish three subcases:

Case [ corresponds to the CPU bound case and minimizing the objective function is equivalent
to minimizing

(M) = L - Tio - M

- 10
over M = 3 and, therefore, the minimum is achieved at M = 5.

For II, we minimize the function f(M) over the sets (5. M ;), (M5, =), {5}, and {M ,}.
Over (3. M ;), minimizing f(M) is equivalent 1o minimizing

. 1 . - TF . . <

7-Tio+ 2-¢q- Tflop M + 10 - N - Tdac

10 M
This function is convex over (0, =) and achicves its minimum at:

(M) =
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N - Tdac
7-Tio+ 2- q- Tflop
If M ;< 35wetake M3 = 5 if M3 > M, we take M ; = M,. Over (M,, »), minimizing

M3 = 10 Sqrt(

f(M) is equivalent to minimizing {,(M). Therefore. for case II, the minimum is achicved at the

value of M which minimizes:

min(f(3), (M ;). (M _3))
For [I we need to consider the sets (5, M), (M, M,), (M), %), {5}, {M(}. and
M}
Over (5. M), the objective function is f|. [f M, < 5wetakce M, = 5. It M, > M, we
take M, = M. Over (M|, M,) the objective tunction is 5. If M ;< M; we take
My = Mp;iEM 3> M,, wetake M ;3 = M,.
Finally, over (M ,, »), minimizing f(M) is equivalent to minimizing t». Therefore. for case III,

the minimum is achieved at the value of M which minimizes:

min(£(5). (M ), (M ), t(M g3). (M )
The following example will illustrate how an approximation to the optimum M can be
obtained through this type of analysis. Let Tflop= 25 microseconds. Then M| = 27,
M,= 33, M

ol =38 and M ;3 = 29 Theretore we arc in case [II and the optimum is

achicved at M .

The total execution time as a function of the time per flop for cach algorithm is plotted in
Figure 6.10. The critical points in these curves are points where "Max" terms in the expressions
for the total exccution times become CPU bound. For VBB, the inner product term consumes
about 50% of the total exccution time. The expression for the inner product term includes the

term
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P_“_(%;D_u ’T[NN(q. %)
The contribution of this term to the total execution time is substantial. That is why the curve
for VBB increases sharply for the smaller values of Ttlop. The two critical points in the curve
for VBB, are the points where the terms

Max ( q - Tflop, Tio)
and

M
b

become CPU bound. For the sccond max-function b = 4 for the inner products and b = 5 for

Max ( Ttlop- q - ~2'Tr-io(%)
the AXPY. For the first max-function the value of Ttlop is approximately 11 microseconds and

for the second 22.

The critical point of VM corresponds to the value of Tflop which makes the term

M M
Max ( Taxpy (@ 1—4‘ Tl )

- i()( o

CPU bound, namely Tflop = 11 microseconds. The critical point of LA corresponds to the

value of Tflop which makes the term

M M M
Max ( Taxpy (@ 5) + Tinwla 57), T io(—ig—‘))

CPU bound, that is Tflop = 6 microsecconds.

6.4. Multidisk Algorithms for QR

The performance evaluation of the statistical building blocks assumed one /O subsystem
for operations involving only reads, and two [/G subsystems for operations which produce tem-
porary files. With the current trends in computer technology it is reasonable to assume that in
the foreseeable future, very tast CPU's will be available at atfordable costs. Moreover, the rate

of increase in CPU specds is much greater than the rate of increase for secondary storage
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modules. [t is to be expected that in the near future even computationally intensive operations,
such as X’X and the QR decomposition, will become /O bound if the underlying data sets are
large. Therefore, proposing algorithms and access schemes which only try to render an opera-
tion CPU bound is not sutticient. With [/O bound operations it is reasonable to consider mul-

tidisks or parallel-readout disks.

It is argucd in [BORAS3| that although there exists some processor-per-head parallel-
readout disks, the improvements in disk technology have been primarily due to increases in track
capacity. With the increasc in track capacity, the hardware problems of aligning the disk heads
for parallel [/O become formidable. The same report also shows that processor per-hcad disks
are not presently cost effective. Boral and DeWitt conclude that "although parailel-readout disk
drives could form the basis of high performance, ..., changes in disk technology have rendered
this approach questionable and other approaches must be developed to provide high bandwidth
mass storage devices” [BORA83]. Theretore, we found it more reasonable to consider secon-

dary storage layouts and paralilel algorithms for multidisk configurations.

We shall compare two secondary storage layouts and parallel algorithms for the QR
decomposition. As mentioned carlicr. the optimal algorithm for the QR decomposition involves
O(p) passes over the active columns. At each pass the current Houscholder transtormation is
applied while the inner products for the next transformation are accumulated. It is necessary to
dedicate some of the disk drives to "read” operations and some to "write” operations. With 2-k
parallel disk drives. we shall dedicate k disk drives to read and write operations respectively.
The multidisk configuration will, therefore, be logically subdivided into two subsystems.  During
a pass all the input is going to be accessed from the same subsystem and all the processed pages
written to the other. After the current transtormation is applied, the two subdivisions will inter-

change their roles. Figure 6.11 shows such an architecture.
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The multiprocessor architecture has two processing subsystems. During a run, one pro-
cessing subsystem will be dedicated to the application ot the transtormation and the other pro-
cessors will be dedicated to the accumulation of the inner products for the next transtormation.
Furthermore, we shall assume 3-k "blocks” of main storage for each processing subsystem. We
leave the size of a "block” unspecified, but assume it spans several pages (or tracks). The reason
we have chosen blocks rather than pages as units of transter will be apparent in a moment, Let

B be the block size.

The first strategy we have considered is very similar to the two [/O subsystem case. Here
the transposed files are assumed to be stored across k of the disk drives. In other words, block i
of a column is stored on disk drive (i—1) mod k + 1 of an /O subsystem. The 3-k blocks of
the main storage for each processing subsystem are divided into three units. The first unit is for
holding pages of either the pivot or the next pivot. The second is for holding corresponding
pages of a column on which cither the transformation is applied or the inner product is accumu-
lated. Finally. the third is for inputing or outputting the next column. The transposed files are

processed in k block units in parallel. [n a steady state, the system concurrently.

- Reads k blocks of column i

- Applics the transtormation to column (i-1) and, when done, transfers it o the
second set of processors for accumulating the inner products,

- Accumulates the inner product of column (i-2) with the next pivot

- Writes column (i-3) to secondary store.

[t can easily be shown that this algorithm involves approximately, ﬁ [/O operations.

in which k blocks are read/written in parallel during each [/O operation. The primary storage
size must be at least 6 - k blocks, for this algorithm to work. However. an advantage of this

scheme is the simplicity of the interconnection between the /O and processing subsystems. The
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main storage subsystem could be subdivided into 2 - k units, allocating three blocks to each disk
drive. Each memory unit will then be interconnected to one and only one disk drive throughout
the execution of the program. Another advantage is that we do not need to worry about the
relative position of the columns with respect to one another.  We shall see below why this is an

important consideration.

With the second strategy each transposed file is stored in its entirety on one disk unit. In
particular, column i is stored on disk unit (i - 1) mod k + | (the current pivot being stored on
unit ). The main storage module for each of the processing subsystems is divided into two
subdivisions. One subdivision is dedicated to the computation and the other to [/O. Unlike the
previous scheme, the main storage must be shared among the processors of the same processing
subsystem. In order not to be a bottlencck, the bandwidth ot the shared memory modules must

be approximately k times higher than the previous scheme. The transposed files are processed in

3-k

= T sl block units. For the first main processing subsystem, U blocks of the pivot

reside in main storage. For the second, U blocks of the next pivot reside in main storage. At
each iteration, the transformation is applied to the U blocks of the k columns currently residing

in main storage. To see how the algorithm proceeds, we next present the tlow of control which

specifies the page replaccment policy and the concurrent exccution. Let B2 = ceil( fo )s

q= ceil( E ), and X ; be the i'h U-block of column Xj-
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Fori:= 1 to B2
Forj:= ltoq

$ Read X ;- 1yt 7 Xig-1ykek
$ Apply the transtormation to
Case j > L Xiaet  Xi2kek
Case j= L
Casci> 1t Xy q-yket "~ Xic (g Dkek

Case i = l: no-op

$ Accumulate Inner Products of

Case j > 20 Xi(imapket ° Xi(j=3)k+k

Case j= 2:
Case i > 1t X q=nykrt KXo Lg-Dk+k
Case i = l: no-op

Case j= L
Case i> L X g2kt " Xiciq-2k+k
Case i = 1: no-op

$ Write

CHSCJ> 3 Xi.(j"-” kel Xi.(j‘-‘) K+ k

Case j= X
Case i > I X q-npket 7 XimLig- Dk k
Casci = [: No-op

Case j= 2
Casci> I Xioy (q=nk+t ~° Xiol(g-Dk+k
Case i = 1: no-op

Casej= 1
Case i > 1 Ximy (g=3yke1 ° Xicl(g=3)k+k

Case i = 1: no-op

2. N-
This algorithm involves approximately —:—Ej—g— [/O operations. During each /O operation,
3k

k-U blocks are read or written in parallel.  Therefore, from the standpoint of the number of /O
operations, it performs better than the previous scheme.  Morcover, the minimum size of the
main storage is 4-k + 2 blocks (vs. 6-k blocks for the first scheme). However, there are a
number of serious drawbacks to this algorithm. The first is the relative positioning of the
columns. In the worst casc. columns | through p for the first pass arc all stored on the same

disk unit. Even if a more complex algorithm is introduced and the columns are recarranged for
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the next pass, the scheme could still involve extra I/O if a stable version of the QR algorithm is
chosen (for example pivoting on the columns with the largest norm).  As mentioned earlier, the
second drawback is the high memory bandwidth. Finally, a third disadvantage is that. unlike
the first scheme, the interconnection between the memory modules and the /O subsystems is not
static.  More specifically, the transtormed columns are written back shifted one disk unit with
respect to their previous position. When the same blocks are read for the next pass. the inter-

connection is straight.

[n summary, laying out the transposed files across the disk units provides a simpler, more
coherent and less restrictive strategy tor the QR decomposition. Moreover, if an operation
involves only very few of the columns (for example AXPY), the first strategy substantially

reduces the access time.,

6.5. Conclusions

We have presented vector building block, vector-matrix, and direct algorithms for the QR
decomposition. For the transposed organization these were labeled VBB, VM, and LA, respec-
tively. The direct algorithm for the relational organization was labeled REL. One basic obser-
vation is that with the QR decomposition there is an iterative decrease in the number of active
columns. Therefore, in general, the algorithms with the transposed secondary storage organiza-
tion performed better than the direct algorithm with relational secondary storage organization.
In fact the LA algorithm with transposed secondary organization performed better than the
direct implementation with the relational secondary storage organization, for all values of the
number of active columns, the main storage size. and the time per flop.

For the number of page transters, the coefficients of p? for VBB, VM. LA, and REL

were, respectively, 2.5, 1.5, 1. and 2. This shows the optimality of LA and also the fact that
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the VM algorithm involves tewer page transters than REL. Theretore, for all values of p, the
total /O time of VM is less than the total I/O time of REL. However, with respect to the total
execution times, and with an [/O bound case’ VM per forms better only for p < 41. The rea-
son is that the VM implementation uses only one [/Q subsystem in the "vcctor times matrix”
steps. On the other hand. with the look-ahead scheme for the relational secondary storage
organization both /O subsystems are utilized during cach pass.

With the CPU bound case both VBB and VM perform relatively better than the relational
organization. This occurs as computation cost dominates the total exccution time, and the ini-
tial projection step is a substantial portion of the /O startup time for the the direct algorithm

REL.

For the total exccution time as a tunction of main storage size, we introduced a methodol-
ogy for predetermining the main storage size which minimizes the cost function. As indicated
carlier, the curves for VBB, VM, and LA possess minima and our method enables preallocation
of the optimum (or ncar optimum) number of pages. We should also obscrve that, unlike X'X,
only a constant number of main storage subdivisions (and hence pages) are needed for the

optimal LA algorithm with the transposed secondary storage organization.

Finally, as in the case of X' X, the LA algorithm becomes CPU bound with smaller values
of Tflop. Rendering the execution of an operation on a large data set CPU bound is one way of

solving the [/O problem.
The discovery and optimality of the LA algorithm suggested a multiprocessor/multidisk
architecture with two [/O subsystems and two processing subsystems.  In this special purpose

architecture, the /O subsystemns are dedicated to the input and output of the data pages of the

* that is time per flop = 0.5 microscconds

3 except the first (for the inner products of the first pivot)



98

currently active columns during a pass. The processing subsystems are dedicated respectively to
the application of the current transtormation and the accumufation of the inner products for the
next transformation. We compared two alternative secondary storage strategies for storing the
transposed files across the parallel disk drives. With the first strategy, the data pages of the
transposed files are stored across the parallel disk drives. With the second strategy cach column
is stored in its entircty on one disk drive. The columns are then distributed across the disk
drives. We came to the conclusion that although the second strategy involves, on the average,
fewer I/O operations and requires a smaller main storage, the first strategy might be preferable
because of the simplicity of the interconnections and the layout. Furthermore. in some cases the

second strategy results in a considerable degradation of performance.
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CHAPTER 7

The Singular Value Factorization

7.1. Introduction

The Singular Value Factorization attempts to compute an n by p matrix W, a p x p

orthogonal matrix V. and a p x p diagonal matrix D such that
X=W-D V

The p columns of W are the eigenvectors associated with the p largest eigenvalues of XX'. The
columns of V are the orthonormalized eigenvectors of X' X The non-ascending
(sy=sy;=s3= -+ =s,)diagonal elements of D are the non-negative square roots of the
eigenvalues of X' X (also called the "singular values” of X). Both D and V are of order O ( p?
), and therefore are stored in primary memory. W, however, is of order O( o p ), and should
be stored on disk. With the Golub-Reinsch algorithm [ WILK71], the decomposition precedes

in two main steps:

Step 1 - Reduction to Bidiagonal Form: This is accomplished by premultiplying X with p
Householder transformations and postmultiplying it with p - 2 Householder transformations.
The left transformations zero subdiagonal column elements. The right transformations zero
superdiagonal row elements. The left and right transformations are applied consecutively. Each

of the first p - 2 left transformations are followed by a right transformation. The k™ left

th th

transtormation zeroes elements k+1 to n of the k' column. The k

right transformation
zeroes clements k+ 2 to p of the k™ row. The last two left transtormations zero the subdiagonal

elements of the last two columns. When these transtormations are applied X will be reduced to
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upper bidiagonal form.

Step 2 - Decomposition of the Bidiagonal Matrix: This is done through the implicitly
shifted QR algorithm [WILL71, STEW73]. The details of this algorithm will not be discussed
here. It is an infinitely iterative algorithm which tries to render the superdiagonal elements of
the bidiagonal matrix negligible. Each iteration consists of the pre and post multiplication of
the bidiagonal matrix with Givens rotations. At the end of each itcration the resulting matrix
remains bidiagonal. If B is the bidiagonal p x p matrix, this algorithm results in orthogonal

matrices J and T (both p x p) such that

J'B-TT=D (or B=J-D-T)

Let the n by p matrix S be given by:

Je

where O is the (n-p)xp zero matrix. Then W is:

where the L's are the left Householder transformations. V' is:

Vi=T-R,_., - Ry
where the R ;s are the right transformations.

Next. we will describe two approaches which introduce modifications to the Golub-

Reinsch algorithm for large matrices.
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The first is due to Cuppen [CUPP81]. Cuppen suggests that W and V not be updated and
stored explicitly while appllying the transtormations and the rotations. He proposes storing the
transformations which torm these matrices and then, after the matrix is accepted as diagonal,
the transformations can be applied in the correct order to, say, an identity matrix. yielding W
and V. For the Householder transformations this approach is not new. It is suggested, for
example, in [STEW73] and we used it in the QR decomposition. However, Cuppen also sug-
gests storing the rotations.! Each rotation is characterized by three numbers: the angle and the
two row (column) indices of the rotation vectors. The implicitly shifted QR algorithm which is
used in the bidiagonalization phase of the conventional GR algorithm is an infinitely iterative
algorithm. In the worst case this could involve a large number of rotations. However, experi-
ence has shown that the average number of sweeps to reduce a superdiagonal element to zero (or
acceptably near zero) is approximately two. Therefore, in most cases an O (p) storage will be
sufficient for the rotations. But Cuppen points out that if the "ultimate shift" strategy is used
instead of the implicit shift, the actual number of sweeps per eigenvalue is reduced to one. The
ultimate shift involves two passes. In the first pass the eigenvalues of the bidiagonal matrix are
evaluated using the implicit shift, but without storing the rotations. Of course this pass will
involve several sweeps. In the second pass, the eigenvalues are used to determine the shifts and
in this case the rotations are stored {or accumulated). It can be shown mathematically
[PARLSO0] that each eigenvalue will involve exactly one sweep. Therefore, theoretically, we can
guarantee that the amount of storage for the rotations will be O (p). However, due to roundoff

errors, the actual number of sweeps per cigenvalue could be more (in most cases two).

! In the conventional GR algorithm, each rotation is immediately applied to the current W
and V.



102

The second approach which also attempts to achieve substantial savings in computation
and secondary storage reterences was proposed by Chan [CHANS82|. His approach is to first tri-
angularize the matrix X using Householder transtormations and then apply the Golub-Reinsch

algorithm to the n by n upper triangular matrix. 2 Therefore if:

o x= |8
and

R=L-D V
then

W=0- {(Ii

Although Chan’s motivation is primarily optimizing the computation, this approach also results

in minimizing the [/O overhead.> W can be obtained through either: (1) applying the left
transtormations* to the first p columns of the identity n by n matrix and then performing a
matrix multiplication with L, or (2) applying the transtormations to L (augmented by an (n - p)
by p zero matrix) in the correct order.

Both of these approaches suggest that for n >> p, it is better to postpone the construction

of W until all the transformations and rotations have been determined. To determine the left

2 To take advantage of the special form of the triangular matrix in the bidiagonalization
step, Chan proposes using Givens rotations instead of Householder transtormation. However,
this method will be computationally more intensive.

3 since the rotations are not applied to the current n by p matrix W.

* whose s are stored in the lower triangular part of the transformed X
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Householder transformations, the u’s of the transformations are stored in the zeroed subdiagonal
part of X. The rotations are either stored explicitly (where three numbers determine a rotation)

or accumulated in a p by p matrix. Both require at most O (p ?) storage.

An interesting point is that the QR decomposition could itsclf be used as a building block
to the SVF. Moreover. to determine the first p columns of the product of the lett transforma-
tions, it can be shown that through one sweep we can obtain this product, provided the first p
elements of each u and the inner product of the u’'s are available. With some implementation
strategies, the inner product of the u's can be accumulated while applying the transtormations.”
On the other hand. we saw in the previous chapter that the most efficient algorithm of the QR
decomposition is the look-ahead (LA) scheme. However, with this algorithm it is not possible
to accumulate all the inner products of the u's. The reason is that only the corresponding pages
of the pivot, the next pivot, and one of the active columns are resident in primary store. There-

fore, there needs to be another pass over the transposed columns which store the u’s to accumu-

late the inner products. This means that X' X can also be used as a building block to SVF.

Next, let us illustrate how it is possible to accumulate the left Householder transformations
and W, if the inner product of the u’s and the first p elements of each u are available. Suppose

we want to evaluate:

Q=(I-prup-u/)(I=pyuy uy) - (I=pyuy-uy)

It can easily be shown that:

3 for example, if the matrix is stored partially transposed, or if a horizontal-stripes scheme
is used with the completely transposed organization.
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P P ,
Q=1+ ST iUy
i= 1 j=1
where the ¢ | js are in terms of the p;’s and the inner products of the u’s. The first p clements of

the k™ row of u; - u { is given by.

where the first (j-1) elements of u; are zero. Let U be the matrix of the u’s and Q  the first p

columns of Q. Let T be given by:

-
|
i —
(e}
=

Then the rows k through m of Q , can be obtained by accessing the rows k through m of U, and
performing a matrix multiplication of the (m-k)+ | by p submatrix of U with the upper triangu-
lar matrix T. If k= p we need to add 1 to the diagonal elements to this matrix product.

Therefore,

W=Q, L=(,+U-T)-L=1, L+ U-(T-L)

and W could be obtained basically through the product of the n by p matrix U with the p by p

matrix T - L.

For the pertormance evaluation we shall not specify any particular scheme tor the diago-
nalization step. However we shall use Chan's approach in first performing a QR decomposi.tion
of X, and then applying the GR algorithm (or a modification) to the upper triangular matrix
For the transposed organization the total execution time is:

Tsve= Tor + Tuu+ Tmer
where, Ty is the total time for the QR decomposition step, Ty is the time for the Uy
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operation to evaluate the inner product of the u’s. Ty py is the time to perform the matrix mul-
tiplication of an n by p matrix with a p by p matrix. 'We shall consider vector building blocks,
vector-matrix, and direct implementations for the three main steps of forming the QR decompo-

sition, the UU operation, and the matrix product step.

If X is processed stripe-wise, accumulating the inner products of the u’s will save a
sweep.® Theretore, another strategy is to process the transposed tiles in horizontal stripes. In
other words, it is feasible to divide the primary memory into O (p) logical subdivisions. and
always rcference a horizontal stripe of the active columns. This horizontal access is performed
for every left transtormation. That is for the k'™ transtormation, if the current stripe consists of
rows i through j, the elements i through j of u; through u,_, will be accessed. [n addition, rows
i through j of columns k through p of the transformed X will also be accessed. The u’s are
accessed to accumulate their inner products with u,. Besides requiring a substantial number of
random seeks, this strategy will also rcquire more page transters. In fact the number of page
transfers for the look-ahead scheme, including the extra pass to accumulate the inner products

is:
N-(2-p+ B_".LE;L_U__ | + E_J_E;:wll)
For a stripe-wise algorithm the number of page transfers is:

N-(p+p (p~ )+ E._L%:_l)_)
Therefore, ignoring the linear terms, the look-ahead strategy involves N- O ( p?) page

: . . o 3 .
transfers whereas the stripe-wise strategy will involve N - O ( 5P 2} page transfers.

6 by performing the "UU" operation while applying the transformations
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For the relational secondary storage organization, we must first construct a partially tran-
sposed file of the active columns. Since the u's of the Householder transformations are accessed
during the QR decomposition step, it is possible to accumulate the inner products of the «'s
while applying the transtormations. The total execution time for the relational organization is:

Trer = Tor-To-ReL T Tvp-REL
ToRr- Tor- REL 18 the total execution time for the QR decomposition step (sce Chapter 6). This
term includes the execution time to construct the partially transposed file of the active columns,
as well as the computation time for accumulating the inner products of the u’s. Typ_ pgr 1S the
time to perform the matrix product of the partially transposed file (n by p) with a p by p

matrix.

7.2. Algorithms

The implementation ot the SVF consists of the following steps:
(1) The QR decomposition
(2) The inner products of the u’s

(3) Forming W: After the left rotations are accumulated in a p by p matrix and the matrix

product T - L is evaluated, the final phase is to form W.

We have already analyzed in Chapters 5 and 6 the QR decomposition and the U'U step
(for accumulating the inner products of the u's). In the following discussion we shall primarily
concentrate on the matrix product step. Let us emphasize however, that an implementation of
SVF at an abstraction level implies all the three steps are implemented at that level. For exam-
ple, a vector buiding block implementation of SVF implies that the QR step, the X' X, and the

matrix product step are all implemented through vector operations (i.e. inner products, AXPY




107

operations etc. ).

There are six alternative algorithms for the matrix product step.

[ Fork:= lton
Fori:= ltop
Forj:= ltop
Wy

it j

II. Fori:= ltop
Fork:= [ ton
Forj:= ltop

[II: Fori:= ltop
Forj:=ltop
Fork:= 1l ton
ij:= ij+ [Jki. (TL)U

[V: Fork:= L ton
Forj:= ltop
Fori:= ltop

W=

i Wk'+ [Jkl(TL)Ij

J

ViForj:= ltop
Fork:= lton
Fori:= ltop

ijl—“—‘ ij+ [Jki‘ (TL)U

VL Forj:= 1l top
Fori:= ltop
Fork:= l ton

Algorithms III and VI can be characterized as vector building block (VBB) implementa-

tions of the matrix product. There are two types of vector operations used in the VBB
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implementation: (1) scaling a vector - invoked p times; (2) AXPY - invoked p2 — p times.

Algorithms II and V can be characterized as vector-matrix (VM) implementations. In
algorithm V a pass is made over U to produce a column of W. Therefore U is accessed p times
and W is accessed once. In algorithm II a pass is made over each of the columns of U to pro-

duce the partial sums of W. Therefore W is accessed p times and U is accessed once.

Algorithms [ and IV process the matrices in horizontal stripes and characterize more effi-
cient and direct implementations (DIR) of the matrix product. Here both U and W are accessed
only once. This is the obvious strategy for the relational secondary storage organization. Let us

note that [V is perhaps the most natural way of implementing this matrix product.

We also propose another direct and dynamic algorithm for the matrix product. This algo-
rithm is based on algorithm II. Let the main storage be divided into 2 - (p + 1) equally sized

M

buffers. Furthermore, assume the transposed columns of U are accessed in B = m

page blocks. The algorithm IIn is:

[In: Forb:= 1 to N/B
Fori:= ltop
Fork:= 1

-

0q-
1

In this algorithm U and W are both accessed once. The strategy here is to process the
blocks of each column, adding the "contributions” of the column blocks to every element of W
in which they appear as a term. Du'ﬁng a tun p- B pages are allocated to the current stripe of
W. At any given instant the processing subsystem is accumulating the partial contribution for B
pages of a column to the current stripe of W. When all the p columns are processed, the current

stripe of W is written to the /O subsystem dedicated to the write operation. This algorithm is
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similar in approach to the ST 1 and ST 2 algorithms of X' X.

In the next sections. buffer management algorithms for each of the VBB, VM, and direct

implementations are presented.

7.2.1. Vector Building Block

As indicate carlier, there are two vector operations which are used in the vector building
block approach. We have already presented the algorithm for the AXPY operation in Chapter
6. For scaling a vector, the main storage is divided into three subdivisions. The first subdivi-
sion is allocated to reading the next block of U, The second subdivision is allocated to the scal-

ing of the current block, and the third subdivision is for writing the previously scaled block.

SCALE:

Read (U Bl

Fork:= 1 to N/B
$ If k < N/B then Read (U B+ 1)
§YBk:= g U Bk

$ If k > | then Write ( Y Bk-1)

7.2.2. Vector Matrix

For the vector-matrix strategy we specify an algorithm based on V. The main storage is
divided into 2 - (p + 1) subdivisions. p subdivisions arc allocated to cach of the next stripe of
U which is being read and the current stripe of U which is being processed. One block subdivi-

sions are allocated to the current block of the column of W being processed and to the block of
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the column of W which is being currently written to disk.

VM:
M
B= —
2-(p+ 1)
Read (U BL - UPB“)

For k:= | to N/B
$If k < N/Bthen Read (U (Bl -y Bl
$WjB'k3=[UiB-k UpB~kj~ (TL)j

$ If k > | then Write ( WJ.B-k“l )

7.2.3. Direct Implementations

The first strategy corresponds to [V. Here we divide the M pages of primary store into
three units, and each unit into p subdivisions (for the p u's). The first unit is for reading the
next M/ ( 3- p) pages of the u's. The second unit is for accumulating the current stripe of W.
The third unit is for holding the previously processed stripe of W which is being transterred to
secondary store. With this scheme, the main storage is divided into 3 - p subdivisions. There-
fore, there should be at least 3 - p pages of primary store and the overhead for the random
seeks will be substantial. However, since the third primary storage unit contains corresponding

elements of all the columns of W, W could be stored in a relational organization.
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DIR 1:
M
B= —-
3P
Read (U B! U B

Fork:= 1 to N/B
$ If k < N/B then Read (U BEF1 ..y Bkrly
§ whBk.— [ Uquk C e UPB,kJ. (TL)

$ If k > 1 then Write ( W Bk-1)

With the second strategy (which corresponds to [In) the main storage subsystem is divided

M
2-(p+ 1)’

cated to the first stripe of W. There are three concurrent processes.

into 2- (p+ 1) equal subdivisions. Let B = [nitially p B - page blocks are allo-

(1) The "Read™ process finds a free block (of size B pages) and reads the next B pages of the
next column of U, The function "Find" does not return until it finds B free pages. Once
the B pages of a column are read, the process scts the corresponding entry in the two
dimensional boolean array A. Therefore A [i.k] is set if and only if the k™ B - page block

of column U is read.

(2) The "Accumulate” process tirst checks it A [i,k] is set. If so, it accumulates the contribu-
tions of the corresponding pages of U ; to the current stripe of W. If k = 1 and U Blig
processed, the B pages of U, are allocated to the accumulation of the next stripe of W
through the function "Alloc." Otherwisc (that is k = 1), the B pages of U; are freed.
When stripe k of W is constructed, the corresponding entry in the boolcan area "Avail” is

set.
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(3) The "Write" process tirst allocates the pages of stripe k of W to the accumulation of stripe
k+1 of W. Next it checks it the current (or k™) block of W is available to be written,

and, if so, writes it to secondary storage.
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DIR 2

- M
2-(p+ 1)

/* allocate p - B pages of main store to the first stripe of W */
Alloc (MPB wpr B 1y
Fork:= | to N/B
$ Fori:= 1 top /* the Read process */
If Find (B) then Read ( U Bk
set (A [ik])
$ Fork:= 1 to N/B /* the Accumulate Process */
Fori:= [ top
Check ( A [i.k])
Forj:=ltp
WjB.k = WjB.k + UiB"k . (TL)Lj
It (k = 1) then Alloc ( U Bk, wp B 2)
else Free ( U, BK)
Set ( Avail [k] )
$ Fork:= 1 to N/B /* Write process */
If k< (N/B~ 1) then
Alloc (WP Bk wp Bk+ 1y
Check ( Avail {k] )

Write (WP B k)
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7.3. Cost Functions

For the pertormance evaluation we shall not consider the overhead of the diagonalization
step or the formation of TL. All the processed matrices for these steps are of order O ( p?).
This overhead s the same for the transposed and the relational organizations, and it is depen-
dent on the particular schemes that arc used (for example, the diagonalization could be per-
formed using Givens rotations or Houscholder transtormations, the diagonalization step could

use the conventional "implicit shift” or the "ultimate shift” etc.).

7.3.1. /O Costs

As indicated carlier, the SVF consists of three main steps: (1) the QR decomposition, (2)
the evaluation of U’U, and (3) the accumulation of W. We identificd the third step as a matrix
product step (the product of an n by p matrix with a p by p matrix). With the transposed secon-
dary storage organization, we shall incorporate corresponding cost functions from the QR, U'U,
and matrix product operations for the vector building block, vector-matrix, and. the direct
implementations. In other words, the cost function of, for example, the vector building block
implementation is the sum of the cost functions of the vector building block implementations for
the QR decomposition step, the U'U step and the matrix product step. Here we shall indicate
only the cost functions of the matrix product step, since the cost functions of the U'U and QR
decomposition steps are available in Chapters 5 and 6.

For the vector building block implementation, the the SCALE building block is invoked p
times and the AXPY building block p? — p times. The AXPY operation for the matrix pro-
duct step, unlike the AXPY for the QR decomposition, reads the columns X and Y from two
[/O subsystems. [t writes the updated Y to the subsystem it was read from. The cost functions

below take this into consideration. The number of random sceks for the matrix product step is:
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2 p+ (p’-p)- {1 + 10
the number of page transfersis: 2- p- N+ 3 (pZ— p)- N
and the 1/O cost is:

.2 N
2 p- Tr—io(N) + (p=p) Tr-io(N) + 10~ l_— T

M
M T .’)

A
-io( 3

For the vector-matrix algorithm. a pass is made over U per column of W. The number of

random seeks is: p2- (2- (p+ 1)~ % +p

the number of page transfersiss N- p- (p + 1)

the /O cost is:

M

T io(m) + T jo(N)

N
pp- 2 (p+ -
For the direct algorithms we have described two schemes. The first is based on algorithm

IV and the second on algorithm [In. Since with either scheme just one pass is made over U and

W, the number of page transters is 2- p- N. For the first direct implementation (based on

algorithm [V), the number of random secks is: 2 - QWEH

1.,
and the /O cost is; 2 - 3 p N T I-\—/I—«)

M r— io( 75" p

For the second direct implementation (based on algorithm [In), the number of random

. N
seeksis: 2- p- (2~ D) —
seeks is p-(2-(p+ 1)) v

and the /O costiss 2-p- (2 - (p+ 1)) *1\'} T o(B)
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With the relational secondary storage organization, the partially transposed file of the
active columns is first constructed prior to the QR decomposition step. The only difference
trom the algorithm for the QR decomposition of Chapter 6 is that the inner products of the u's
should also be accumulated while applying the transtormations. Note that this does not effect
the [/O. For the matrix product step the scheme is based on algorithm IV. Theretore, the total

-

number of random seeks is 2 - p+ 3. The total number of page transters is:

R+p N+ 2 -p— 1) p- N+ 2-p-N
and the total 1/O is:

Tor-10-rer * 27 Tmio(p- N)

Figures 7.1, 7.2, and 7.3 illustrate, respectively, the number of page transfers, random
seeks, and total /O as functions of the number of active columns. Here the main storage size is
held at 200 pages. The vector building block algorithm involves fewer page transfers than the
algorithm with the relational organization, only it the number of active columns is less or equal
to 5. The vector-matrix algorithm, on the other, involves fewer page transfers for p < 10. The
curves of the total I/O in Figure 7.3 follow very closely the page transfer curves. Note that in
Figure 7.2 the VM algorithm generally involves the largest number of random sccks. The rea-
son is that for this algorithm the main storage is divided into O(p) subdivisions. Although this
is also the case with the direct algorithms, the number of columns referenced with the direct
algorithms is much smaller than the number of columns referenced by VM. The two strategies
for the direct implementations performed very similarly, although the strategy based on IIn

always performed better.

Figure 7.4 illustrates the total I/O times as a function of the main storage size. Here the

number of active columns is held at 10. Note that although the VM strategy involves fewer
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page transters than REL,’ the REL curve is a lower bound to the VM curve. This demonstrates

the etfect of the large number of seeks on the performance of the VM algorithm.

7.3.2. Total Execution Times
For the total execution times we will only present the cost tunctions tor the matrix product

step.

The total execution time of the matrix product step with the vector building block imple-

mentation is;

pr Tsc+ (p2 = ) Tor- axpy
where Tge is the total execution time of the "SCALE" building block given by:

M -~ N . M
T3+ 3 o Tveg-on = Tio- 5=

where

M
Tygg-on = Max( Taxpy (- 3~

). Tio - —%44)

Ty~ axpy is the total execution time for the AXPY building block, with the scheme of rcading

ot~

Xand Y from two different /O subsystems. It is given by:

M 5-N
Tr‘— io( "g—

. M
)+ 2 Tygg-oz + ( Y 2) - Tygp-op + Tio- 5

where

M. M
Tygg-oiz = Max( Taxpy ( —5“), Tio - -5:—)

and

" For p= 10, VM involves 31700 page transters and REL 32000 page transters
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M M
Tygs-o3 = Max ( Taxpy ( l5—), 2 Teio( )

For the vector-matrix algorithm, the execution time for the matrix product step is p times:

M N- (2 (p+l
p'Tr—-io((z‘(p_*_ l))+ ( M( lwl 'TVM~0H
M
+ Tym-o2 * To @+ 1)

where

M M

T = M: (), T SR S—
VM~ oll ! dX( p Tr—l()( (2 (P+ l)) [NN(p q (2 (p+ 1)

)

and

. M
Tupeop = M M g
vM-ol2 = Max ( Tio G+ 1) (P q )

@2-(pt 1)
For the first direct algorithm (based on algorithm IV), the total execution time for the

matrix product step is:

where

M M
Tpir-ol = Max ( Tpen(a" 5 P P T 3. !;))

D

For the performance evaluation of the sccond direct algorithm (based on algorithm IIn),

M

we need to distinguish between the [/O and CPU bound cases. Let B = ;—(+—l) CIf
2 (p+

Taxpy (B q- p) > T y(B)
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then the algorithm will be CPU bound, otherwise it will be /O bound. The total execution time

for the [/O bound case is:

p-(2-(p+ 1) I\_I\/I( Tr~i0(B)+ p- T—io(B)+ TAXPY( B-q-p)

and for the CPU bound case is:

(p+ 1) T (o(B) + Taxpy (N-p* Q)

The total exccution time for the direct algorithm for with the relational organization is:

A 3

- p). Tio- L\,i) + Tio- —I\,ﬂ—
> 2

) . M
Tor-Tor- reL * Te—io( 37 +

where TQR- Tot— REL 18 the total execution time for the QR decomposition step.  However, as
indicated earlier, this term also incorporates the CPU times for accumulating the inner products
of the us.

Figures 7.5 and 7.6 present the curves of the total execution times as functions of the
number of active columns. The main storage size is held at 200 pages. In Figure 7.5, the time
per flop is 0.5 microscconds and in Figure 7.6 it is 25 microseconds. As was expected, the
shape and behavior of the curves in Figure 7.5 are quite similar to that of Figure 7.3. VBB and
VM outperform the direct algorithm for the relational organization for p < 5 and 7 respectively.
However, in Figure 7.6, VBB and VM perform better than the relational organization if the
number of active columns are less than 6 and 15 respectively. The reason is that with slower
CPU’s (hence computation bound execution), the fixed “start-up” /O overhead for the rela-
tional organization8 offsets the relative gains in [/O access times.  In other words, for the CPU
bound case, the total execution time consists of two main terms: (1) an overhead term - due to

[/O start up, and (2) the dominanting computation time. Thercfore, for smaller values of p, the

% in other words the step forming the partially transposed file
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projection step is a significant percentage of the overhead term for the relational organization.

In Figure 7.7 the total execution time as a function of main storage size is presented. The
number of active columns is {0 and the time per flop is 25 microseconds (CPU bound case).
Similar to the VBB curve for the QR decomposition (Figure 6.9), the VBB curve for SVF
possesses a sharp minimum. For the other curves we observe that the main storage size does not

etfect the performance significantly.

In Figure 7.8 we have the curves of the total execution times as functions of the time per
floating point operation. The direct implementations and the algorithm for the relational organ-
ization become CPU bound when the time per floating point operation exceeds, approximately,
1.2 and 1.1 microseconds per flop. respectively. The corresponding values for the matrix pro-
duct step of VBB and VM are 11 and 12 microseconds per tlop. Therefore, the direct imple-
mentation will become CPU bound for much smaller values of the time per floating point opera-

tion.

In Chapters 5 and 6 we proposed a parallel interconnection network for X' X (ZETA net-
works) and a multiprocessor/multidisk organization for the QR decomposition. Here we shall
propose a cyclic shift interconnection network for the matrix product step of SVF. This wiil

complete the set of special purpose muitiprocessor architectures for the three main steps of SVF.

7.4. An Interconnection Network for Matrix Products

The interconnection we propose for the matrix product step is based on algorithm VL
The approach here is to let each column of U apply its contribution in producing a column of
W. In other words, if columns one through p of U accumulate their contributions to the con-
struction of column j of W (in any order), then when the last column accumulates its contribu-

tion, the j column of W is obtained. Therefore it is clear that we need p stages. However, at
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each stage it is possible to process all the columns of W in parallel. That is, if there are p pro-
cessors at each stage. then it is possible to let the p processors at each stage apply the contribu-
tions of the p columns of U to a column permutation of W in parallel. The problem here is how
to interconnect the p processors of one stage with the p processors ot the next stage so that all
the columns of U pair up with all the columns of W. This should sound familiar since we solved
a similar problem with ZETA networks. However there are some important differences.  First,
we are not interested in forming all the possible set of pairs for a string of p inputs. We are
only interested in interconnections which will pair every clement in a set of p inputs (the
columns of U) with every element of another set of p inputs (the columns of W). Second, and
as a result of the first observation, the shutfling is required for only one set of columns (the
columns of U or the columns of p). Therefore, as we shall show, all that is needed is a multis-
tage cyclic shift network, similar to the 3 networks characterized by Lenfant [LENF78]. We
should also note that the multistage network we propose for the matrix product step, works for

any even p and not just for values of p that are powers of two.

An example of the multistage cyclic shift network for p = 4 is shown in Figure 7.9. The
main property of this network is that U, is paired with W, _ 3 moap+  at stage |
Clearly, if this property holds for cvery k, all the columns of W will be constructed in p stages.

For the cyclic shift nctwork, the intermediate processors each have two inputs and two
outputs. One output-input connection is for transferring pages of the same column of U, and
hence each column operates in a row ot the interconnection.  Thercfore, one of the interconnec-
tions between two adjacent processors of the same row is straight. In other words the first out-
put of processor k at stage j is connected to the first input of processor k at stage j + 1, and the
interconnection is used to transter the pages of column U . [n order to satisfy the criteria of the

cyclic order of operations, the second output of processor k is interconnected to the second input
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of processor ((k - 2 + p) mod p) + | at stage j+ 1.

In an ideal situation, if there are 2 p disk drives so that p disk drives contain the p
columns of U, the interconnection network will act as a pipeline. Thus when a "stripe” of W
passes through the pipeline the output can be written in parallel to the other p disk drives.
Although it is not reasonable to assume the availability of p drives, if p* processors are avail-
able and interconnected in p stages as specitied above, the scheme could easily be used with the
relational organization. With two /O subsystems, the pages of U are accessed from one subsys-
tem, transposed in a pre-processing step, and processed in the pipeline. After p stages the pipe-
line will start vielding the (transposed) pages of W. In a post-processing step the transposed
pages of W could be combined in order to store W relational. As in the case with ZETA net-
works, p processors would suffice to emulate the p - stage network, since the interconnections

are identical at each stage.

7.5. Conclusions

We have presented a new method for evaluating the SVF of a data matrix X, which con-
sists of three main steps: (1) the QR decomposition of X, (2) the evaluation of U'U , and (3)
the matrix product step tor forming W An important observation here is that with direct
implementations the construction of W requires only O ( | ) passes over an n by p matrix This
constitutes a substantial savings in data accesses compared to the more conventional method of
constructing W. The usual approach is to apply the Houscholder transtormations to the first p
columns of the n by n identity matrix (forming Q ;) and then apply the lett rotations to Q
This would require at least O ( p ) passes over an n by p matrix. With the relational secondary
storage organization, the accumulation of the inner products of the u’s (the U'U step), was

incorporated in the QR decomposition step. Consequently, the construction of W required just




one pass over the n by p matrix U.

With the transposed secondary storage organization. it is important to analyze the contri-
bution of the QR decomposition and U’ U steps to the cost functions. For the percentage of the
total /O as a function of the number of active columns, the QR dccomposition step involved
about 38% percent of the total [/O and the U'U step about 15%, with the VBB strategy. The
corresponding percentages for the VM strategy were, respectively, 45% and 15%. However, for
the direct implementations, the percentage of the QR decomposition step went up from about
65% to 93% when the number of active columns was varied from 3 to about 70. The percen-
tage of the U’ U step went down from about 11% to 2%. Table 7.1 summarizes these percen-

tages.

Strategy QR Uy
VBB 38% 15%
VM 45% 15%

DIR 65% 10 94%  11% to 2%

Table 7.1

Therefore. the QR step constitutes a substantial percentage of the total I/O for the algo-
rithms with the transposed organization. For the direct implementations it is at least 65% of the
total [/O. This means a muitiprocessor/multidisk architecture which enhances the performance

of the QR decompuosition step will also substantially enhance the performance of SVF.

For the percentages of the total execution times, Table 7.1 is more or less representative of
the /O bound cases. However, for the CPU bound cases all three strategies showed similar
behavior, with the QR step constituting approximately 40% of the total execution time and the

U'U approximately 20%. This was to be expected since the total number of tloating point
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operations for U’ U is approximately 0.5 - p?- N- q. On the other hand, the number of float-

ing point operations for the QR and matrix product steps are, approximately, p 2.N-gq

For the number of page transfers the coefficients of p? for VBB, VM, DIR, and REL
were, respectively, 6.5+ N, 3- N, Nand 2 - N. Therefore, unlike the case with the QR decom-
position. the VM algorithm involves more page transfers than REL. In the I/O bound case. the
vector-matrix scheme outperformed the direct algorithm with relational organization, only for
" the number of active columns less or equal to 7. For the CPU bound case, the initial projection
start-up cost tor the relational organization had a significant impact on the difference between
the cost tunctions. This resulted in relatively better performance of the vector building block

and vector matrix schemes and. in fact. VM performed better for p = 13.

Another important observation is that with the Singular Value Factorization we observed
the cumulative effect of the implementations at the three abstraction levels. This was due to the
implementation of the QR decomposition step, the U’ U step, and the matrix product step all at
the same abstraction level. Table 7.2 summarizes the threshold values of p tor X'X, QR and

SVFE.

Algorithm XX QR SVF

Vector Building Block 10 10 5
Vector-Matrix 13 41 7

Direct Implementation 31 allp allp

Table 7.2

The threshold values are the maximum number of active columns for which the algorithms with
the transposed organization outpertorm the direct implementations with the relational organiza-

tion. These values are for the /O bound total execution times. Notice the optimality of the




direct implementations with the transposed organization, especially for the Singular Value Fac-
torization and the QR decomposition. The cumulative etfect of implementations at levels one
(VBB) and two (VM) is significant. One reason for the poor performance is the large number
of page transters in the matrix product steps of these algorithms, For VBB, the matrix product
step involved approximately 3 - p®- N page transters. VM the matrix product step involved
approximately p 2 N page transters. The direct implementations, on the other hand, involved
only 2 - p- N page transters. Another reason for the poor performance of VBB and VM is that
with the relational secondary storage organization we were able to suggest an efficient algorithm

which eliminated the /O overhead for the construction of U' U.

Finally, we proposed a multiprocessor architecture for the matrix product step. In
Chapters 5 and 6 we had proposed parallel architectures for X’X and the QR decomposition,
respectively. These two operations constitute the first two main steps of the direct algorithms
with the transposed secondary storage organization. The multiprocessor architecture for the
matrix product step was proposed to have a complete set of architectures for all the major com-
putational steps of the Singular Value Factorization. The multiprocessor architecture for the
matrix product step is a pipeline of p stages, with p processors at each stage. The processors at

one stage are interconnected to the processors at the next stage through a cyclic shift.
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CHAPTER 8

CONCLUSIONS

The data management issues of statistical databases have received considerable attention in
recent years. Although several interesting solutions to the characteristic problems of large statist-
ical databases have emerged, the data management issues of the computational methods have
been generally ignored. This dissertation endorsed an integrated approach to statistical data-
bases. With an integrated system. the database management supports both the data intensive
and computational queries. Since issues regarding data retrieval, sampling, and aggregation type
queries have already been carefully examined, we chose to concentrate on the data management

issues of the computational queries. .

The main emphasis in this dissertation has been the comparative performance evaluation
of three important computational methods: X' X, the QR decomposition, and the Singular Value
Factorization. The alternative algorithms were with respect to two basic types of secondary
storage organizations (relational and transposed) as well as three abstraction levels corresponding
to vector building block, vector-matrix, and direct implementations. The basic contributions of

our research can be summarized as follows:

(1) we developed closed form equations, for the /O costs and the total execution times in
terms of the system and data parameters. The variable parameters were the number of
active columns, main storage size. and time per tloating point operation.

(2) we analyzed the effects of the transposed and relational secondary storage organizations on
the total I/O and the total cxecution time.

(3) we performed a comparative cvaluation of alternative algorithms for vector building block,
vector-matrix and direct implementations. The algorithms explicitly specify the buffer
management strategy that provides optimal performance.

(4) we proposed special purpose multiprocessor architectures for each of X' X, OR and SVF.,
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The performance evaluation assumed a simple and general system architecture. The gen-
erality of the system architecture enables the designers of the database management system to
modify the parameter values to suit their particular architectures. This, in turn, would facilitate
choosing between the transposed and relational secondary storage organizations and also the

abstraction level of the algorithms to be supported.

Below we present three main conclusions which we deduced from our extensive perfor-

mance evaluation of X' X, the QR decomposition, and the Singular Value Factorization.

8.1. Building Blocks For An Integrated System

An important performance issue in the development of a special purpose database
management system, is the specification of the basic data structures and algorithms which imple-
ment the set of supported operations. For the computational methods, we investigated alterna-
tive implementations at three abstraction levels: vector building blocks, vector-matrix, and direct
implementations. The vector building blocks and vector-matrix implementation strategies per-
mit the implementation of all the computational mcthods through a small, well-detined set of
vector and vector-matrix operations. Morcover, alternative and novel computational methods
will, most probably, be supportable through existing vector or vector-matrix building blocks.
Unfortunately, however, the vector building-block and vector-matrix implementations of the
computational methods performed considerably poorer than the direct implementations. For
example, with X' X and the matrix product step of SVF, vector building block and vector matrix
strategies involved O ( p~ - N ) page transters. However, with the dircct implementations, only
p- N page transfers arc needed for these operations.  Therefore. an integrated system supporting
the computational methods through vector buiding blocks and vector-matrix operations will per-

form considerably poorer than an integrated system which supports the computational methods
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through direct implementations.

Theretore, the options to building blocks integrated statistical database systems, are either
integrated systems where the computational methods are supported through direct implementa-

tions, or interface systems. :

The former option implies an implementation per computational method. As we dis-
cussed in Chapter 2, the problem with this approach is that the set of statistical computational
methods is continually expanding. Whenever, a new computational method is introduced, the
database management system software must be extended to include a direct implementation of

the new computational method

Unfortunately the interface system approach is not likely to yield a satisfactory solution as

most statistical and linear algebra packages implement the computational methods through vec-

tor building blocks.! Furthermore. these packages utilize the global buffer management strdtegy
of the underlying operating system. An interesting research project would be to compare the
performance of the buffer management algorithms for the three computational methods with

implementations which usc a global buffer management stratcgy.

8.2. Transposed and Relational Organizations

The second conclusion concerns the relative performance of the transposed and relational
storage organizations. The direct implementations of each algorithm using the transposcd secon-
dary storage organization outperform the direct implementations using the relational organiza-
tion, when the number of active columns is less than or equal to 50 in the case of X' X, and for

all ranges of active columns in the case of the QR decomposition and the Singular Value

U for example LINPACK [DONG79Y]| implements most of the matrix operations through
the [nner Product, AXPY, and 2-Norm vector building blocks.
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Factorization. In fact, in the case of the QR decomposition and the Singular Value Factoriza-

tion, increasing the number of active columns also increased the difference between the cost

functions? of the transposed and relational direct algorithms, in favor of the transposed organiza-
tion. Therefore, our results suggest that for those statistical computational methods whose algo-
rithms involve an iterative decrease in the number of currently active columns, the underlying

storage structure must be the fully transposed sccondary storage organization.

Although the transposed and the relational organizations are the main secondary storage
layouts commonly utilized in most existing statistical database management systerms,? it might be
worthwhile to investigate other alternative storage structures. As a simple example, assume that
the users of the system (i.e. the analysts) are capable of predetermining the attribute subscts
which they will analyze. If it is feasible to convey this suggestive information to the database
management system, then it becomes possible to construct a clustering of the attribute sets and
store the data sets as partially transposed files. This will reduce the total [/O time for X' X type
operations, as well as the overhgad of the initial projecction step for those operations that pro-

duce temporary files (e.g. the QR decomposition).

There are more challenging research endevours which could be pursued in order to effi-
ciently structure and access the statistical databases. The first step here is to characterize the
data structures and the access patterns utilized by a given set ot operations. The second step is
to incorporate identified structures into the database management system. The third step is to

implement efficient and direct algorithms for cach of the operations.

2 both [/O and total exccution times

3 for example SEEDIS [McCA83] uses variable length records, whereas RAPID
[TURNT9| uses tully transposed files
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An interesting research effort along these lines is currently underway at LBL, University
of California [SHOS84|. By interviewing various scientists, the database research group was
able to categorize the access patterns and the topology of scientific databases. Both experimen-
tal (raw) and associated data (derived or meta-data) were categorized. Although this research
investigated scicntific databases, the approach of determining partition structures could also be

applied to statistical operations.

8.3. Statistical Database Machine Architectures

The dissertation proposed a multiprocessor architecture for X' X (the ZETA networks), a
multiprocessor/multidisk architecture for the look-ahead scheme of the QR decomposition, and
a multiprocessor architecture for the matrix product step of the Singular Value Factorization.
Each architecture was designed with respect to a direct algorithm for the corresponding compu-
tational method. For these pipelined architectures, during the execution of an operation, and at

a given instant, there are three basic types of data-blocks:
(1) input blocks from the input [/O subsystem

(2) blocks being processed by the multiprocessor

(3) updated pages written to the output /O subsystem

The system continuously accesses the input blocks from the input /O subsystem, and pipes
the blocks through the multiprocessor. The multiprocessor updates the blocks, and pipes the
updated pages to the output I/O subsystem. It is our contention that such pipelined architectures
are ideal for the concurrent execution of the computational methods. Unfortunately. since the
access pattern of cach operations is distinct, the multiprocessor connection topology was dif-

ferent in each architecture.
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An extension of our research is the development of a general purpose statistical database
machine architecture which supports both data intensive and computational statistical opera-
tions.* Tt would be interesting to compare the performance of a general purpose architecture
with the performance of our special purpose multiprocessor architectures which were designed

for optimal algorithms ot the computational methods.

Finally, two other avenues of future research appear fruitful. The first, is the development

ot a comprehensive list of computational methods.

The computational methods analyzed in this dissertation were those of multiple linear
regression.  Although the QR decomposition and the Singular Value Factorization are used in
other important statistical techniques (e.g canonical correlation and principal component
analysis), therc are a number of other statistical methods, with corresponding computational
methods, whose data management problems neced to be explored and analyzed. The goal here is
to provide the analyst with a comprehensive list of alternative statistical techniques, which have
high performance and which also have the capability of manipulating large data sets. To this
end we need to pursue the development of a list of the most frequently used statistical tools and,

correspondingly, the most usctul computational methods.

To date, research has mostly been "algorithm" directed. The underlying system architec-
ture for each of the performance evaluations was simple and the emphasis was on alternative
algorithms for this general type of architecture. On the other hand. the proposed multiprocessor
architecturcs were determined by the dircct algorithms of the computational methods. There-

fore, another avenue of research would be to propose secondary storage organizations and paral-

* The statistical database machine architectures which have been proposed thus far (e.g.
[FARS83, HAWTS82]) consider only data intcasive statistical operations.
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lel algorithms for existing loosely coupled multiprocessor architectures.> In other words, it could
be worthwhile to investigate the performance issues of distributed statistical databases. A novel
area here is the analysis of distributed algorithms for a number of computational operations

(e.g. X'X, QR, SVF etc.), over large and distributed data sets.

3 An cxample of such a multiprocessor is the CRYSTAL muiticomputer {COOKS3]
developed at the Computer Science Department of the University of Wisconsin - Madison.




137

APPENDIX

[n Chapters 5, 6, and 7 we presented several buffer management algorithms for vector
building block, vector-matrix. and direct implementations of X' X, the QR decomposition and
the Singular Value Factorization. Below we briefly describe the syntax of the language as well

as the set of functions which were utilized in the algorithms.

(1) Block Reference: X ;P-X stands for the k™ B - page block of columns X ;. [f B is missing the

block size is 1.

(2) Concurrent Execution: the statement lists which are preceded by a "$", execute concurrently.
The general form is:

$ <statement list>
$ <statement list>

There could be two or three concurrent statement lists in an algorithm. With two concurrent
statement lists one statement list is executed by the [/O subsystem and the other by the process-
ing subsystem. With three concurrent statement lists the [/O subsystems consists of an input and
an output subsystem, and. thercfore, the thrce concurrent statement lists are exccuted by the

processing subsystem and each of the input as well as output subsystems.

(3) Read ( Xilm"k1 o X : Biki ). means the indicated blocks are read from the same /O

subsystem.

(4) Write ( X Btkl ... Xij Biki ): means the indicated blocks are written to the same [/O
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subsystem.

(5) For Loops: For a := b to ¢ <statement list>: b is the initial valuc of the loop index a, ci is

the final value, and the increment is 1.
(6) If Statements: [f <condition> <statement list> [else <staterment list> .

(7) Computational Statements: there are two basic types of computational statements- Inner Pro-
ducts or AXPY. For Inner Products, the statement:
indicates the current value of the scalar a is the old value of a plus the inner product of the vec-

tors which are the k™ B - page blocks of columns X ; and X

For AXPY, the statement:

Y:=Y+a X

th

indicates the i"' element of the transtormed Y is equal to the it element of Y plus a (scalar)

times the it element of X.

There were two other computational steps which were utilized in the Singular Value Fac-

torization.

(a) Matrix Times Vector:

Vi= [V, - V|- Y

ol
vector V is the product of the matrix whose k' columns is V, and the vector Y. This step is
p k p

used in the VM implementation of the SVF.

(b) Matrix Product:
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WB.k:= [URB’k . UpB'kJ' M

the k™ B - block of matrix W is equal to the product of the matrix whose ™ column is U jB~k

and the matrix M. This step is used in the DIR 2 implementation of the SVF.

Next we brietly explain the functions and the procedures which were used in the algo-

rithms.

(8) Free ( X ;X ): when this procedure is invoked, the B pages of primary store currently occu-

pied by X ;B-X become available.

(9) Find ( B ): this boolean function does not return until B pages of primary store are allocated

to the calling process.

(10) Set ( b ): sets the boolean varable b to TRUE.

(11) Alloc ( XB, Y ): allocates the B pages of XB to Y.

(12) Check ( b ): this procedure checks for the value of b and it returns when b is et to TRUE.

(13) (i, j) := FindPair ( A, D) : this function accesscs the one dimensional boolean array A,
and the two dimensional boolean array D and does not return until it finds a pair (i, j) such that
A [i] is TRUE and D [i, j] is FALSE. It returns the pair (i, j). This function was invoked in

ST 1 and ST 2 algorithms of X' X.

(14) clear( A):with A a boolean array this procedure resets all the entries in A to FALSE.



140

BIBLIOGRAPHY

[BAKE76] Baker, M., "Users's Guide to the Berkley Transposed File Statistical System:
PICKLE," Technical Report No. 1, 2nd ed., University of California, Berkleym
Survey Reserach Center, 1976.

[BATO79| Batory, D. S.. "On Searching Transposed Files," ACM Transactions on Database
Systems, Vol. 4, No. 4. December, 1979.

[BELL83] Bell, J., "Data Structures For Scientific Simulation Programs™ Proceedings of the
Second LBL Workshop on Statistical Database Managment, September, 1983.

[BIRK70] Birkhotf. G.. and Thomas, B. C., Modern Applied Algebra, McGraw-Hill. Inc.,
1970.

[BORAS2| Boral, H.. DeWitt, D. J., and Bates. D. M., "Framework for Research in Database
Management for Statistical Analysis,” University of Wisconsin-Madison, Computer
Sciences Tech. Report #4635, February, 1982,

[BORAS83| Boral, H., and Dewitt, D. J.. "Database Machines: An Idead Whose time Has
Passed? A Critique of The Future of Databasc machines,” University of Wisconsin-
Madison, Computer Sciences Technical Report #3504, July, 1983,

[BURNSI| Burnett, R., and Thomas, J., "Data Management Support for Statistical Data Edit-
ing,” Proceedings of the First LBL Workshop on Statistical Database Managment,
December, 1981.

[CHANSI| Chan. P., and Shoshani. A., "SUBJECT: A Directory Driven System for Large Sta-
tistical Databases,” Proccedings of the First LBL Workshop on Statistical Database
Managment, December, 1981.

[CHANS2| Chan, T. F., "An Improved Algorithm for Computing the Singular Value Decompo-
sition.” ACM Transactions on Mathemetical Software 8, 1. 1982.

[CHUASL| Chuan, W., and Tse-Yun, F., “The Universality ot the Shuftle-Exchange Network"
IEEE Transactions on Computers, vo. ¢-30, No. 5, pp.324-331.

[CODD70] Codd, E. F., "A Relational Model of Data for Large Sharcd Data Banks.” Com-
munications of the ACM, Vol. 13, No. 6, June, 1970.

[COOKS3] Cook, R., Finkel, R.. Gerber, B., DeWitt, D. J., and Landweber, L., "The Crystal
Nuggestmaster,” University of Wisconsin-Madison, Computer Sciences Dept. Tech.
report #500, April, 1983.

[CUPP81] Cuppen, J. J. M., "The Singular Value Decomposition in Product Form." Mathema-
tisch Institut, Amesterdam. pp. 81-106, April, 1931.




141

[DENNS83] Denning, D., Nicholson, W.. Sande, G., and Shoshani, A., "Research Topics in
Statistical Database Management.” Proccedings of the Second International
Workshop on Statistical Database Management., Scptember, 1983

[DONG79] Dongarra, J., Moler, C., Bunch, J., and Stewart. G., Linpack Users’ Guide, SIAM,
1979.

[DONGS83] Dongerra, J., "Redesigning Linear Algenra Algorithms,” Bulletin De La Direction
Des Etudes Et Des Rescherches, Serie C, No 1, 1983.

[EGGES1]| Eggers, S. J., Olken. F., and Shoshani, A., "A Compression Technique for Large
Statistical Databases.” Proceedings of the 7th International Conference on Very
Large Data Bases, France. 1981,

[FISH82| Fishburn, J. P., and Finkel, R. A., "Quotient Networks," IEEE Transactions on
Computers, Vol. c-31, No. 4, April 1982.

[FARSB2] Farsi, H., and Tartar, J., "A Relational Database Machinc for Efficient Processing
of Statistical Queries,” Proceedings of the Second LBL Workshop on Statistical
Database Managment, September, 1983,

[FLYN66] Flynn, J., "Very High-Speed Computing Systems,” Proccedings of [EEE, 1966.
[GEY 83] Gey, F., McCarthy, L. J., Merill, D., and Holmes, H., “Computer-Independent
Data Compression for Large Statistical Databascs,” Proceedings of the Second LBL

Workshop on Statistical Databasec Managment. September, 1983,

[GOLD83| Goldman, I A.. "Model For a Clinical Research Database,” Proceedings of the
Second LBL Workshop on Statistical Database Managment, September, 1983.

[GOLO67| Golomb, S. W., Shift-Register Sequences, Holden-Day, Inc., San Fransisco, 1967.

[GOLU73] Golub, G., and Styan, G., "Numerical Computations for Univariate Lincar
Models,” Journal Statistical Computing, Vol. 2, 1973

[(HAWTS82] Hawthorn, P., "Microprocessor Assisted Tuple Access, Decomposition and
Assembvly for Statistical Database systems,” Proceedingd ot the 8th International
Conference on VLDB, September, 1982.

[HEXTS82] Hext. G. R., "A Comparison of Types of Databasc System Used in Statistical
Work.” COMPSTAT 82, 1982

[HOFF76] Hoffer, A. J., "An Integer Programming Formulation of Computer Data Basc
Design Problems,"” Information Scicnces 11, pp. 29-48, 1976.

[IBM 77] IBM, "Reference Manual for IBM 3350 Direct Access Storage,” GA26-1638-2, File
No. §370-07, IBM General Products Division, San Jose, California, April, 1977.



[KENNS0] Kennedy, W., and Gentle, J., Statistical Computing, Marcel Dekker, Inc., 1980.

[KLUGS1] Klug, A., "Abe: A Qery Language by cxample,” Proceedings of the First LBL
Workshop on Statistical Database Managment, December, 1981.

[KNUTS1| Kauth, D. E., The Art of Computer Programming, Volume 2, Seminumerical Algo-
rithms Addison-Wesley, 1981.

[LANG76] Lang, T., "Interconnections Between Processors and Memory Modules Using the
Shutfle-Exchange Network," [EE Transactions ot Computers, vol. ¢-25, No.5, May,
1976.

[LAWRTS] Lawrie. D. H., "Access and Alignment of Data in an Array Processor,” [EEE
Transactions on Computers, vol. ¢-24, No. 12, December, 1975.

[LENF78] Lenfant, J., "Parallel Permutations of Data: A Benes Network Control Algorithm for
Frequently Used Permutations,” IEEE Transactions on Computers, vol. ¢-27, No.7,
July, 1978.

[LEV 81] Lev. G. L., Pippenger, N.. and Valiant, L. G., "A Fast Parallel Algorithm for Rout-
ing in Permutation Networks,” [EEE Transactions on Computers, vol. ¢-30, No. 2.,
February, 1981.

[MANDS2| Mandel, J., “Use of Singular Value Decomposition In Regression Analysis,” The
American Statistician, Vol. 36, No. 1, February, 1982.

[McCAS82| McCarthy, J. L., "The SEEDIS Project: A summary Overview,” Lawrence Berkley
Lab., LBL-14083, 1982.

[McCUS83] McCullagh, P.. Nelder, J. A., Generalized Lincar Models, New York, Chapman
and Hall, 1983.

[MEYE69] Meyers, E. D. Jr., "Project IMPRESS: Time Sharing in the Social Sciences.” AFIPS
Conterence Proceedings of the Spring Joint Computer Conference, 1969.

[NASS81| Nassimi, D.. and Sahni, S., "A Seclf-Routing Benes Network and Parallel Permutation
Algorithms,” [EEE Transactions on Computers, vol. ¢-30, No. 5, May, 1981.

[PARLSO] Parlett, B. N., The Symmetric Eigenvalue Problem, Prentice Hall. 1980.

[PARKS0] Parker, S. D., “Notes on Shuffic/Exchange-Type Switching Networks,” [EEE Tran-
sactions on Computers, vol. ¢-29, No. 3, March 1980.

[PERRS1] Perry, J. R., “Secondary Storage Methods for Solving Symmetric, Positive Definite,
Banded Lincar Systems,” Yale University Computer Science Research Report #201,
1981.

[PETE72] Peterson, W. W., and Weldon. E. J. Jr.. Error-Correcting Codes, The MIT Press,




143

1972,

[RAFAS83] Rafanelli, M., and Ricci, F. L.. "Proposal of a Logical Model For Statistical Data-
base," Procecdings of the Second LBL Workshop on Statistical Database Manag-
ment, September, 1983.

[ROWES3] Rowe, N. C.. "Top-Down Statistical Estimation on a Database,” Proceedings of
SIGMOD 83, 1983.

[RYANT76] Ryan. T. A., Joiner, B. L., and Ryan, B. F., MINITAB Student Handbook, Dux-
bury press, Massachusetts, 1976.

[SEBER77] Seber, G.. Linear Regression Analysis, John Wiley & Sons. 1977.

[SHOSS82| Shoshani, A., "Statistical Database: Characteristics, Problems, and Some Solutions.”
Proceeding of the Eight International Conference on VLDB. 1982.

[SHOS84] Shoshani, A., Otken, F., and Wong, H. K. T., "Characteristics of Scientific Data-
bases.” LBL-17582

[STANS83] Stanley, S. Y. W., Navathe, S. B.. and Batory, D. S., "Logical and Physical Model-
ing of Statistical/Scientific Databases,” Proceedings of the Second International
Workshop on Statistical Database Management, 1983.

[STEW73] Stewart, 5., Introduction to Matrix Computations, Academic Press, 1973.

[STONT71] Stone, H. S., "Parallel processing with the perfect shuffle,” IEEE Trans. Comput.,
C-20. Feb 1971.

[THOMS83] Thomas. J. J., and David, H. L., "ALDS Projec: Motivation, Statistical Databse
Management Issues, Perspectives, and Directions,” Proceedings of the Second Inter-
national Workshop on Statistical Database Management, 1983. pp. 82-88.

[TUKE77] Tukey, J. W., Exploratory Data Analysis, Addison-Wesley, Massachusetts, 1977.

[TURN79| Turner. M. I, Hammond, R., and Cotton, P., "A DMBS for LArge Statistical
Databases,” Proceedings of the Sth International Conference on VLDB, pp. 319-
327. 1979

[WILL71] Wilkinson. J. H., and Reinsch, C., Linear Algebra, Springer-Verlag, 1971.












