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Abstract

A model-based approach is developed for recovering three-dimensional surface orientation from
a single two-dimensional polygonal contour or point pattern. Two planar object models are analyzed
-- rectangles and arbitrary point patterns. We define an iterative procedure which efficiently
computes both the correspondence between model and image features (line segments) and the correct
surface orientation.




i. Introduction

The recovery of three-dimensional shape and orientation from a single two-dimensional contour
is a fundamental process in the human visual system. Recently a number of methods have been
proposed for computing this same interpretation of surface orientation. For the most part these
techniques have concentrated on identifying general constraints and assumptions about the nature of
objects and the imaging geometry in order to recover a single "best" interpretation from among the
many possible for a given image. For example, Kanade [1] defines shape constraints in terms of
image space regularities such as parallel lines and skew symmetries. Witkin [2] looks for the most
uniform distribution of tangents to a contour over a set of possible inverse projections in object space.
Similarly, Brady and Yuille [3] search for the most compact shape (using the measure of area over
perimeter squared) in the object space of inverse projected planar contours.

Rather than attempting to maximize some general shape-based evaluation function over the
space of possible inverse projective transforms of a given image contour, we propose to more directly
match a given model contour with the set of inverse projections. This model-based approach is
important for three reasons. First, in many practical applications such as the robotics bin-picking
problem and low-level aerial image understanding for navigation, there exist known models of the
objects being viewed (c.g. an industrial part or an airport runway). Second, as Gregory has pointed
out [4], human familiarity with many simple shapes such as circles and squares may be the basis for
interpreting three-dimensional surface orientation.  Finally, there exist many real world
counterexamples to the non-purposive evaluation functions which have been developed to date. For
example, Kanade’s and Witkin's measures incorrectly estimate surface orientation for regular shapes
such as ellipses (which are often interpreted as slanted circles). Brady's compactness measure does
not correctly interpret non-compact figures such as rectangles since he will compute it to be a rotated
square (e.g. if we view a rectangular table top we do not see it as a rotated square surface, but as a
rotated rectangle).

Our general goal can be stated as follows. Given a model of an object contour and an image of
that same contour from an unknown viewpoint, find the orientation of the contour with respect to the
image plane which matches the given image. In this paper we will assume object models can be
specified as either planar polygonal contours (defined as a list of line segments) or planar point sets.
The imaging geometry assumes orthographic projection. While initially we will also assume that we
know a priori the correspondence between the model line segments defining a contour and the
observed image lines, we will drop this assumption later. Thus our solution incorporates finding both
the correct correspondence between model and image features (line segments and points) and the
correct surface orientation for each planar contour or point pattern.



2. The Geometric Model

We assume orthographic projection and use the geometric model used by Witkin [2]. Following
his notation we assume an object plane S in space with an orthogonal coordinate system (¥, V)
There is also an image plane I with coordinate system (x, y). The orientation of S with respect to 1
can be denoted by two angles o and 7; the slant o is the angle between [ and S (which we will always
take to be acute, i.e. o € [0,7/2] ) and the tilt 7 is the angle between the projection of the normal of
S onto I and the x-axis in [ ( 7 € (—7/2,7/2]).

Suppose there are two intersecting straight lines in the object plane S. Let their angles with the
' -axis be B, and B,. We want to find the angles of their orthographic projections onto [ with the x-
axis. First let 7=0. Then the projection of S's normal is parallel to the x-axis, the y and ¥ -axes are
both parallel to the line of intersection between I and S and the angle between the x and v’ -axis is 0.
Since in this case there will only be projective shortening in the x-direction by a factor cos & it
follows immediately that the relation between an angle § in S and an angle ¢ in I is given by

tan o = tan f / cos . (2.1)

To introduce tilt rotate the object plane around the z-axis (which is perpendicular to the image
plane), keeping the slant constant. The projected normal (and the projected v’ -axis) then rotates
away from the v-axis over an angle 7. Since the projected line still makes an angle o with the
projected normal it now follows that its angle o with the x-axis is given by o = oa” + T, or using
(2.1), we obtain

o = tan" (tanB /cos o) + 7 (2.2)

as the relation between a line at angle § with the .’ -axis in S and a line at angle « with the x-axis in
I Rewritten, we obtain the following as our geometric model of the imaging process.

_ tanp
tan (a—171) = s | (2.3)

If we are given an (orthographic) image of the two intersecting lines mentioned above then we
can measure o and a, with respect to an arbitrary x -axis in I If it so happens that we also know
the corresponding lines in S and their respective angles B, and B, with the ' -axis, then we can
recover (o, 7) of the object plane using the geometric model in the following way: Substitute (o, B1)
and (a5, B5) into Eq. (2.3). The result is two (nonlinear) equations in the unknowns o, 7. Eliminate
cos o between them and introduce the abbreviation

tan B¢ [_ tan (a;—T) ]

tan 8, tan (o~ T)

We then obtain the relation
tan (ay—7) = C tan (a;— 7). (2.4)
This equation could be solved analytically for resulting in a complicated expression.

Alternatively, we use an iterative approach. We have chosen this method because it has interesting
generalizations, as we will see below. Write Eq. (2.4) in one of two equivalent forms:

T= q; — tan” ![Ctan (a;~ 7)), (2.5)
T=ay— tan“l[lc-tan (=), (2.6)

These equations are now suitable for iteration as follows. Pick some initial value T, and substitute it
into the right hand side of either (2.5) or (2. 6). Next, calculate its left hand side 7, and substitute




this "improved” value back into the right hand side of the selected equation, and so on. Thus, in
iterative form, these equations become

1,41 = o — tan” [Ctan (ay—7;)], i=0,1,2,..., 2.7
Tipl ™ O3~ tan~ l[%tan (al-'ri )}, i=0,1,2,.... (2,8)
These are no longer equivalent; they calculate T-values in "reverse order”, Le if Tg, T o0 Ty Ty

is a sequence that can be generated by (2.7) then 7, 7,_, ..., T, Tp €an be generated by (2.8). We
will need to consider both forms. The iteration process should be continued until sufficient
convergence is reached (or abandoned if no convergence is obtained).



3. Convergence of the Iteration Process

In this section we present graphical arguments to gain insight into the convergence of the
iteration process. Consider Eq. (2.4). Fig. 1 shows the graphs of its left hand side and right hand
side in the two cases C <0 (Fig. 12) and C>0 (Fig. Ib). Intersections of these curves correspond to
solutions of Eq. (2.4). First consider C <0. If the asymptotes of the two tangent functions coincide
then there will only be one intersection in an interval of length 7. But this implies o = a5, so that
B = B, which is inconsistent with C'<<0. Hence an interval (a; — /2, a; + w/2), over which
tan (a;—7) is continuous is divided into two parts by an asymptote of Ctan(a,—7). In the left
interval tan (o;—7) and C tan (a,— ) cover the ranges (—, a] and [h, —=) for some values a and
b respectively. Since both are continuous there must be an intersection in this interval. A similar
argument shows that there must also be an intersection in the right interval. Hence an interval of
length 7 contains two intersections between the tangent curves, corresponding to two distinct
solutions of Eq. (2.4).

Next consider C >0. Now no intersections need to exist, but then Eq. (2.4) has no solutions
and this case is not of interest. As before, a; = a is also uninteresting. Therefore assume the
asymptotes again do not coincide. It is now easily shown that if there is one intersection between the
curves, there must be a second one in a given interval of length w. As an example consider the case
illustrated in Fig. 1b in which o, is to the right of a; and 0<C<1. An intersection can only take
place below the t-axis. On the left of it C'tan (ay—tau) is above tan (o= 7). A second intersection
must exist because the asymptote of C tan (a,— 7) is to the right of the asymptote of tan (o;— 7).
Similar arguments hold for the other three cases, when a; is to the left of o, with 0<C <1, and
when a, is to the left or right of a; with C>1. Hence, for any C #0 for which the two curves
intersect, Eq. (2.4) will have two generally distinct solutions; one of them will be the tilt T we want
1o recover.

The iteration process can also be described graphically. We will illustrate this using Eq. (2.7).
See Fig. 2. Pick some initial Ty and determine yo = Ctan (a9—Tg) on the corresponding curve.
Then move horizontally to the other curve, ie  yp= fan (ay—7) and determine
T= 1= o) — fan Ly, Next move vertically to find y; = Ctan (a;— 1), and continue this process
as shown. In this way we obtain a sequence Tg, Ty, To,.... If C<0, as in Fig. 2a, then consecutive
r-values alternate being greater than and less than the solution point 7,. The iteration thus forms a
"spiral”, which could be directed inward, toward the intersection, or outward away from it. On the
other hand, when C>0 as in Fig. 2b, the entire sequence lies on one side of 7, and the iteration
forms a "staircase”, which can either lead toward the intersection, or away from it. In either case in
which the sequence is directed towards 7,, it must converge unless it is possible for such a sequence
to "turn around” and move away from this intersection point.

Consider an interval around 7, that contains no asymptotes and assume that such a reversal is
possible. Take a subsequence 7, 7,5, -~ i which all 7's correspond to points on the same
tangent curve. In this case there exists some triple v, 7', 7'’ such that v'=7,, =T, and
T''=1,,4 for some j, in which v, 7" is directed towards 7, (|7'—7,| < |7'-7]), but 7, "
is directed away from 7, (|7"'—1,| > |¥'=1,|). Without loss of generality we can introduce a
scaling factor such that t =0 and 7, v/, 7" are all positive (they are known to lie on the same side
of 7,). Then v’<7 and 7'<7'’. Now consider the first three elements of the iteration sequence,
7o T and 7,. 7 and 7, are, of course, functions of the initial value 7;. Because the tangent curves
are monotonic and continuous on the given interval, it follows that the elements are continuous with
respect to 7g. Let 7 decrease continuously from 7’ to v'. Then T, must increase continuously from
7 to'". Hence, there must exist a 7, € (7, T') such that Ty=7,. This implies that the sequence
generated with initial value 7, has the form 7, Ty, T Tee 1~ and is neither converging nor
diverging. Graphically such a sequence corresponds to a rectangle.

We now derive the conditions for the existence of such an alternating sequence. Given an
initial value 7 it follows from Eq. (2.7) that




7, = a; — tan” ![C tan (ay—Tp)], 3.1
1= 1) = a — tan~ '[Ctan (ay;— 1)) (3.2)
Solving (3.2) for T, we obtain
T = ay— tan” l[—é:tan (o= 1)) (3.3)
Eliminating 7, between (3.1) and (3.3) leads to an equation in 7

0y~ @y = tan~ I[“étan ((Xl""To)J - tﬂﬂ_l[c tan (0(.2“" To)]

1
—tan (o= 171p) — Ctan - T,
iy (oey= ) (ety=70) (3.4)

1 + tan (o= Tp) tan (o, 7p)

= fan

Using the trigonometric identity
tan ((Xz_ To) - tan (0{,1"‘1‘0)

tan [(a;— 7g)— (o;— 7))

1 + tan (OLI—"T()) tan (0(2"' To) =

we obtain

tan (ay— o) [tan (ay—7p) — tan (o= Tg)] = tan (o~ ay) [zlj—tan (ay—Tp) = Ctan (ay— Tp)]-

One solution of the equation is a; = «y But this implies B; = B, and we know that these two
angles must be different. Another solution is | a;—ay | = ©/2. If we substitute this relation into
Eq. (2.4) the resulting equation is easily solved and we find 7, = oy + tan~'V—-C and
T, = o tan"!'V—C as the two intersections in this case. Assuming that |a;— o] = /2 does
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not hold tan(a,— &) can be canceled and the above equation becomes

tan (012"‘ To) — tan (OL]"' To) = %‘taﬂ ((Xl_ 70) — (Ctan (OLZ_ To). (35)

Eq. (3.5) is an identity when C=—1. From the definition of C it follows that B; = — B, in this case.
Also, Eq. (2.4) now takes the form: tan(a;—7,) = —tan(a;—7,). Again this equation is easily
solved and we obtain 7 = (a; + a,)/2 and 7, = (a; + @3)/2 + /2 as the two intersection points.
In both these cases, |a;— ay] = m/2 and B,= —p, the iteration leads to a sequence
Tg» Ty» Tgr T1» - for any initial value 7y, All spirals have degenerated into rectangles.

If C#+—1 we can put Eq. (3.5) into the form

tan (a;—7p) _ 1+C _
fan ((12““ To) 1+ 1/C

(3.6)

But this is equivalent to Eq. (2.4), which we are trying to solve. [f we happen to start the iteration
from a solution T, we should expect all values in the sequence to be equal; the spiral or staircase has
then contracted into a point.

Excluding the two exceptional cases it now follows that an iteration sequence entering the
mentioned interval around an intersection point T, while approaching 7, must continue in this
direction and converge to the solution 7= 7,. Now recall that Eq. (2.7) and Eq. (2.8) generate 7-
values in reverse order. Therefore, in such interval around an intersection either (2.7) or (2.8)
converges to that intersection.

Empirically we have found that both iteration schemes (2.7) and (2.8) converge independent of
initial value, each to a different solution. Also, it has been observed that, if 7, and 7. are the two



values satisfying (2.4), the relation

tan (o; — 7y ) tan B;
e = , i=12
tan B, tan (o; — 7,0 )
holds between them. This is consistent with the relation
tan (o= 7y ) tan(a;—7g) 5 tan? By
tan (a,—7¢) tan (ay—7yr) tan? B,

which can be derived from Eq (2.4) for the solutions 7, and

(3.7)

Tgr.  Since

tan B / tan (a—17,) = cos ¢ =< 1, it is easy to determine which of the two solutions corresponds to

the correct tilt 7.




4. Shape from Rectangles

The main limitation in Section 2 is that in general we do not know the B-angles of lines with
the v -axis in the object plane S. Hence we can’t determine the correct correspondence between the
o’s and B’s. However, if the object plane is known to contain a rectangle with known ratio m
between its sides, then we can calculate slant and tilt from the corresponding parallelogram in the
image plane without knowing the corresponding B-angles explicitly. Referring to Fig. 3. let the
angles between the rectangle’s sides and the ¥ -axis be denoted by B and ,. Hence B,—B, = w/2.
The angles between the diagonals and the ' -axis are B3 and B4. The relation between these angles is
most easily seen if we introduce the auxiliary angle 8 = B3— B, so that tan 3 = m, the ratio of the
lengths of the rectangle’s sides. The fourth angle can be written as B, = B;—3 and is not
independent from the other three (but will be used for computational reasons below). Obviously,
shape and orientation of the rectangle are completely determined by B, B, and B; (its absolute size
can never be obtained from just angles).

We now use Eq. (2.3) for the four lines defining the rectangle with the following substitutions:

tan B, = tan (B;—7/2) = —1/tan Py,

B+ tan By + m
tan = fan +8)= ——,
B3 (B1+2) 1 — mtan B,
(B~5) tan B, — m
tan = tan -9) = ———
By ! 1 + mtan B,

Then the four equations become:

t —-T)= t ’ .
an (C!l T) cos O an Bl (4 1)
1 1
t -T)= — ,
an (a7 7) cos o tan (4.2)
1 tan By + m
t e S
an (a3~ ) cosa 1 — mtan By’ (4.3)
1 tan By — m
t —-7) = :
an (a4~ ) coso 1+ mtan B, (44)
[t is easily derived from Eq. (4.1) and Eq. (4.2) that
cos® o = [~ tan (ay—7) tan (o= T7)]” L (4.9)
tan? B, = —tan (a;—~71) / tan (e~ T). (4.6)

Multiplying Eq. (4.3) and Eq. (4.4) gives

1 tan® By — m?

tan (o3~ 7) tan (ay—T) = - ﬂ
cos’ ¢ 1 — m’tan? By

If we now substitute Eq. (4.5) and Eq. (4.6) into this expression we arrive at an equation only in

tan (ay—17) + m %tan (ay~ 1)

tan (a3— ) tan (o~ 7) = tan (a;—7) tan (a;—7) (4.7

tan (ay—7) + m?tan (o= )

This can be written in iterative form:



_|tan (ay—7;) tan (ay—7;) tan(ay—7 )+ m 2tan (o= 7; )

(4.8)

1"._*_1 = Q3 tan
i tan (a4~ 7;) tan (o~ 7; ) + m 2tan (oq— ;)

The use of the dependent Eq. (4.4) is now clear -- without it the iteration equation would
contain square roots. As T varies through its sequence, arguments may become negative and we
would have to consider imaginary angles. Note that if the rectangle happens to be a square, i.e,
m=1, the second factor inside the brackets evaluates to 1 and a much simpler formula results.

Given an image plane with a parallelogram that is known to be the orthographic projection of a
rectangle with known ratio of sides m, all we need to do is measure the angles o, oy, a3 and oy
with respect to an arbitrary x-axis. Substituting these values into Eq. (4.8) we obtain the tilt T of the
object plane by means of the given iteration formula. Note that Eq. (4.7) is of the form of Eq. (2.4)
with the constant C in (2.4) replaced by a function of 7. Thus, the iteration process too may be quite
similar to the one studied in the previous section. Convergence of Eq. (4.8) is not garanteed, but the
results of the previous section will still be helpful in analyzing its behavior.

We have observed that the two non-converging cases of the previous iteration, |oy=— oy |=m/2
and B=—P, are also non-converging here. The first mentioned corresponds to a pure rotation, that
is the slant is zero and no tilt can be defined. In the last mentioned case it follows that |B|=m/4,
since B,— B=/2, hence |tan B;|=1. Substituting this value into Eq. (4.6) we obtain an equation
that, changed into an iteration formula, was shown in the previous section not to converge but is
easily solved directly. In all other cases we found that either Eq. (4.8) or a similar iterative formula,
with a3 and a interchanged (that calculates a T-sequence in reverse order), converges to a solution.
Depending on the initial 7, value, the same formula was observed to converge to two distinct values
that differ by w/2. It is easily verified that if 7, satisfies Eq. (4.7) then 7, + w/2 will also satisfy this
equation. The correct tilt can be determined by means of the criterion — tan (o~ 7) tan (ay—-T) = 1,
which immediately follows from Eq. (4.5) and which can only be satisfied by one of these solutions
Eq. (4.5) is then used to calculate the slant o.

When modeling objects which consist of multiple planar faces, this method can be used to
quantitatively recover the angles between the faces from their projected image planes. For two object
planes separated at angle ~y this angle can easily be determined from their normal directions (P1rq1-1)
and (p,,4,,1) by means of

[(p2+ g2+ D2+ at+ 1)

We need to express (p,q) in terms of (o,7). Since the angle between image plane and object plane is
o, the length of the projected normal follows as v p? + ¢? = tano. Also, this projection makes an
angle T with the x-axis. Therefore, ( p,q) = (tan o cos 7, tan ¢ sin 7). There is a complication in
the sense that T can only be determined from the geometric model modulo 7 and the assignment
(p,q) = (—tan o cos 7, — tan o sin T) is also correct. This, of course, does not influence the
direction of the projected normal, but if we try to restore the three-dimensional normal direction
(p.q,1) then the assignment of the sign makes a difference. This problem is of course inherent to
orthographic projection, where information about the z-direction is lost.

cos y = o (4.9)

However, it is possible to determine vy if we also use the properties of the gradient space (p,q ).
As is well known, if G{=(p1, ¢1) and G = (P2 4,) correspond to two intersecting planes, then the
line through G, and G, in gradient space is perpendicular to the edge between the corresponding
planes in the image space. Using this fact we can find a consistent pairing (p1, ¢1) and (P2 42)-
They both may have the wrong sign, but that does not affect Eq. (4.9). If the convexity of the edge is
known, we can also determine the signs of (p, ¢1) and (P2 99)-




4.1. Examples

4.1.1. A Cube

Suppose we are given an image of a cube as shown in Fig 4. The three visible faces are
labeled 1, II, and IIL, and we will determine (o, 7) for each of them. First, we measure the four a-
angles for each face (Fig. 4 shows the set corresponding to face I). Next, the tilt for each face can be
calculated by means of a simplified version of iteration formula (4.8) obtained by setting the ratio of
the sides m equal to 1. After the tilt has been computed, we calculate the slant from Eq. (4.5) and
these two angles are then used to determine the direction (p,q) of the projected normal to each face.
The results are summarized in Table 1.

face | @y o, a3 a4 |ttt | slanto (p, q)
[ 9 6 39 51 -31 54.7 | (0.89, -1.10)
o’ |6 -51 -81 9 9 54.7 | (1.39,0.22)
I 9 -51 69 21 69 54.7 | (0.51, 1.32)

Table 1. The a-set, slant, tilt, and direction of the projected normal of each face of the cube in
Fig. 4. All angles are expressed in degrees in the appropriate intervals.

In order to verify that the faces of the cube are indeed perpendicular, we need to substitute the
(p,q) pairs with the appropriate signs into Eq. (4.9), i.e. we need to restore the three-dimensional
pormal direction (p, ¢, 1). We will determine these signs by means of Fig. 5 in which (p, q)
coordinates are superimposed on the (1, y) coordinates of the image. The gradients in Table 1 are
denoted by the points G;, G, and G,; (with the indices corresponding to the faces); their
counterparts with opposite signs are shown as G/, G and Gy, To find the correct combinations,
connect each G;, i=1[,I,lIl, either with G; or with G j depending on which connecting line is
perpendicular to the edge between the adjacent faces i and j. Two possible solutions are obtained --
one corresponds to a cube with convex edges and the other corresponds to a "cubical hole” with
concave edges. Table 2 shows the corresponding (p, ¢, 1) assignments in each case. It is now
readily verified by means of Eq. (4.9) that each pair of faces belonging to the same set is indeed

perpendicular.

face (p,gq,1) (prq, 1)
convex case concave case

I (0.89, -1.10, 1) | (-0.89, 1.10, 1)
o | (1.39,-0.22,1) | (1.39,0.22,1)
11 (0.51, 1.32,1) | (-0.51, -1.32, 1)

Table 2. The three faces of the cube and their three-dimensional gradients in the convex and con-
cave cascs.

4.1.2. A Paper-Folding

We consider an object consisting of a square piece of paper which is folded in the middle,
forming two rectangles cach with a ratio of its sides equal to 0.5. In orthographic projection one



view is shown in Fig. 6. We will calculate the angle between the two folds of paper from this image.
The procedure is as before -- we measure the four o angles of each plane sheet in the image and
calculate the tilt from Eq. (4.8) with m = 0.5. Then the slant follows from Eq. (4.5) and the
gradient (p, ¢) is calculated from (o, 7). The results are summarized in Table 3.

face | oy oy oy oy tilt v | slant o (p, 4)

I 8.0 -56.0 134 -21.0 | 653 64.7 | (0.88,1.92)
II -8.0 653 147 -37.3 | -69.9 42.8 | (0.40, -0.80)

Table 3. The a-set, slant, tilt, and gradient of the two faces of the paperfold in Fig. 6. All angles
are expressed in degrees.

It is easily verified that the resulting gradients correspond to a line G, G in (p, q) space

which is approximately perpendicular to the fold in (x, v) space (a small deviation is due to
inaccuracy in the measurement of the a’s). It now follows from Eq. (4.9) that the angle between the

two normals is about 93 °, so the fold is approximately 87 °.
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5. Shape from Arbitrary Point Patterns

In this section we derive how slant and tilt can be recovered from an image of a known point
pattern in the object plane. The method can be applied to any planar pattern of points. In aerial
image understanding applications such points may correspond to landmark points from a map
database. In robotics applications these points might be corner features derived from a CAD
database. In general, given any pattern of n points we will first translate it into a set of » angles and
then apply our geometric model. In order to do this we need an origin and a direction of the x' -axis.
A natural choice of origin is the centroid of the pattern. Suppose the points have coordinates
(x,.', y,.'), i=1,...,n, with respect to some coordinate system, then their centroid is given by
, n . , 1 H ,

X ==35 . ¥V==3y. (5.1)
i=1 =1

The orthographic projection is simplest when t=0. Then ' -coordinates are shortened by a factor
cos o while ¥ -coordinates remain unchanged. It immediately follows from Eq. (5.1) that the
centroid of the pattern in the object plane projects into the centroid of the projected pattern in the
image plane. This remains true when 7# 0 since a change in 7 corresponds to a rotation of the entire
pattern. Thus, we will use the centroid of each pattern as the origin in the corresponding plane.

The direction of the ¥ -axis in the object plane is always such that its projection and the
projection of the normal direction of the object plane onto the image plane are parallel. So the £’ -
axis has a fixed direction, but this direction is not known. To remedy this problem we do the
following,. Connect all points in the object plane with their centroid. The angles between these
connection lines are now computed. Select one of these lines and determine the angles between this
one and all others; denote this set by B, B3, ..., B,. Now take the position of the ' -axis into
account by adding an unknown angle v to the entire set. Thus, the n points in the object plane
correspond to 1 angles v, v+ By, ..., v+B,. The geometric model now takes the form:

tan (a; - 7) 1

==

an (B, +v) = s o’ 1,....n, (5.2)
with B;=0, and contains the three unknowns o, 7 and v. Obviously, the pattern must consist of at
least three points in order to determine these unknowns. Since generally there will be many more
than three points in the model pattern, we will base our equations on any four of them. As before
the a’s are known because they can be measured in the image with respect to some .-axis. At this
point we will also assume that we know how to match the o’s and B’s. (We will remove this
restriction later.) Then we can take the four selected pairs (ay, Bq), -.-» (a4, B4) and substitute each
of them into Eq (5.2). The result is four equations in which we can eliminate cos o pairwise and
obtain:

tan (a;—7) tan (o T)

tan (B,+v)  tan(B,+v)’

(5.3)

tan (og— : -
(a3~ 17) _ tan (04— T) . (5.4)

tan (B3+v) tan (B 4+ v)
These equations cannot be solved explicitly for 7 and v, but note that they are similar to Eq. (2.4) if
we replace C in that equation by a quotient of tangent functions. We will again try to find a solution
by means of iteration. Since there are two unknowns that appear in both equations, the iteration
formulas will be coupled and both v and T must converge simultaneously for the entire process to
succeed.

Using Eq. (2.4) there were two iteration schemes and only one of them converged to the
correct tilt. Here there are four pairs; for example, one of them is:
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tan (B1+v;)

tan (32"}- v;) an (OLZ- i ) ]’ (5-5)

— — -1
'Tl-+l'—a1 tan l:

_ _ |tan (o3~ Ti41) o

Vil B3 + tan [Wtan e ) tan (B4+v;) |, i=0,1,2,.... (5.6)
The other three are obtained by interchanging the (o, B) pairs in Eq. (5.5) but not in Eq. (5.6), or
interchanging them in Eq. (5.6) but not in Eq. (5.5), or interchanging them in both equations. We
do not know in advance which iteration schemes converge to the correct (7, v) and we may have to
consider all four of them to find the solution. Convergence is not guaranteed. We have observed
that no convergence occurs when a solution is close to an asymptote of one of the tangent functions.
When n>4 choosing a different set (o, B1), ..., (cg, B4) can solve this problem. Empirically we
have found that convergence was achieved in almost all cases using the first set of pairs selected. We
did not encounter any special cases here, for which a lack of convergence could be predicted from the
given set of angles. One of our experiments is described in Section 5.1.

If a pair (7, v,) is a solution to Eq. (5.3) and Eq. (5.4), then the pair (t,+ /2, v,+w/2)is
also a solution, as immediately follows from these equations. It has been observed that the same
iteration scheme converged to either (1., v,) or (7,+ m/2, v +7/2), depending on the initial value
To- Eq. (5.2) enables us to distinguish between these solutions because, in general, only one set also
satisfies cos o=<1. However, an additional complication here is that the other three iteration schemes
often converge to unwanted values.

Before discussing how the correct tilt can be distinguished from other candidate solution points
that may result from the iteration, let us consider the more fundamental (but related) question of
determining the correct match between a set of B-angles in the object plane and their projections, the
a-angles in the image plane. Let us first study this projection in the simple case in which both T and
v are zero. Then the relation

tan §3;

tan o; = g i=1,..,n (5.7
o

holds between the two sets of angles. Excluding the trivial case when o=0, it is seen that
|tan o; | > |tanB; | and |o; | > |B; | since the tangent function is monotonically increasing on the
interval (- n/2, w/2). Fig 7 illustrates the transformation. The set of a-angles tend to populate the
region around the origin more thinly and the region near the asymptotes more densely than the set of
B-angles. The "gap" around the origin and the "clustering” near the asymptotes will be more
pronounced for larger slants. Reintroducing the angles v and T into the geometric model is
equivalent to a shift in the entire set of B-angles and «-angles, respectively, and does not affect the
properties of the transformation otherwise. It is evident from Eq. (5.7) and Fig. 7 that the
transformation cannot change the ordering of the angles. That is, if both sets have increasing order
on the interval (—m/2, w/2] and the two angles B, and «, have been matched, then the entire
correspondence is specified by the pairs (assuming addition modulo n): (a1;s Byt ) = 0,...,n—1.

The correct correspondence is most easily determined when the slant is small. When cos o= 1
the difference between consecutive B-angles will be approximately preserved by the transtormation
and we match accordingly. When the slant is larger this will no longer be the case, but still the
smallest difference between the B-angles will often be transformed into the smallest difference
between the a-angles. We will pair the o’s and B’s using this heuristic to obtain our first candidate
match. Next we choose any four pairs (e, By)s --.» (as, B4) from the n possible and use these for
our iteration schemes. If no convergence is reached at all, we assume that the match was incorrect
and we form the next candidate match by assuming that the smallest difference between the B’s is
transformed into the next smallest difference between the a’s. Otherwise, if convergence to (1,, v,)
is obtained, we must verify the correctness of this solution. This is done using Eq. (5.2). From the
candidate match (o;, B;) and the candidate solution (7, v,) we compute the expressions
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tan (o;— 7, ) and tan (B; +v,) for each i=1.....n. It follows from Eq. (5.2) that the correct match
of angles and correct shifts v, 7, implies that the quotient of these expressions will be the same for all
i. This will be our verification step for both the matching of angles and the solution point obtained
from an iteration. We must continue to match the smallest difference between the B-angles with the
next smallest difference in the a-angles, and try all four iteration schemes in each case until the
verification test passes. In the worst case 4n iteration schemes need to be tried.

5.1. An Example

We have used the algorithm described in Section 5 to recover slant and tilt of a number of
model patterns. We have chosen one of these as a representative and report on this experiment in
some detail here. The actual pattern in the object plane and the line segments that generate the B-
angles are shown in Fig. 8. Because all angles between lines are approximately equal, this example is
among the more difficult patterns to match. In any event, our method works on any point pattern,
regardless of symmetries or other structural features of the pattern.

In the extreme case in which the object plane is parallel to the image plane the image will show
a pure rotation of the pattern. The magnitude of the rotation is given by v+ 7, which equals a; —B;
for any i, as immediately follows from Eq. (5.2) after substitution of cos o = 1. Evidently, the
angles v and 7 can not be determined separately, and the iteration cannot converge in this case. It
follows that for small slants very slow convergence should be expected. To handle small slants while
avoiding extremely lengthy iteration sequences, the following can be done. Recall that when
cos o = 1 the transformation is almost linear. Conversely, when we discover an almost linear
relation between the two sets of angles we may conclude that the slant is small. We can then use this
linear property to derive the approximation

cos o =

Bl +1 Bl ( 5 8)
Qg1 ™ O
from Eq. (5.2). The set (a;, B;) is assumed to be correctly matched and the result will be most
accurate if i is chosen such that B, and B; straddle the v -axis (because the projective effect is
most strongly felt near the normal direction). These angles are easily recognized because a small gap
is formed between B, and B; ., (as shown in Section 5) and the linear property will hold least for this
particular pair. Thus the two sets of angles are first checked for a linear relation. If they are nearly
linearly related, an approximate slant is calculated using Eq. (5.8). We will still try to iterate, but
only for one candidate match. The justification is that when the transformation is almost linear the
first match will generally be correct. If the iteration fails (because it has not converged within a fixed
number of steps), the program will not waste time trying any other possible matches.

Accuracy of the solution depends on the termination criterion of the iteration process. We
terminated when the difference between consecutive iteration values was less than 10~ 4. The slower
the convergence the less accurate the result will be. There is also an upper bound on the number of
iterations in one scquence. We generally abandoned an iteration sequence if no sufficient
convergence was reached after 150 steps. This number was raised to 300 steps in the case of an
almost linear transformation.

The results are shown in Table 4 for increasing o and an arbitrarily chosen tilt for each slant.
The actual slant and tilt were known in this experiment and are listed in the first two columns.
Columns 3 and 4 contain the calculated slant and tilt. No convergence was reached (within the
bound limit) when 0=10°. Column 5 shows the approximated slant values in those cases where an
almost linear transformation was detected. Column 6 lists the total number of iterations required for
those cases which terminated successfully. This number depends of course on the initial values
chosen and is only shown to give a rough impression. We always started each iteration from =0
and v=0. Column 6 shows the number of matches between the o’s and B’s that were tested before
the correct correspondence was found. The last column shows the execution times (in seconds) on a
VAX 11/750.
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actual actual calculated calculated linear no. of no. of time
slant tilt slant tilt approx.  iterations matches  (in secs)
slant
10 15 - - 9.63 - - 22
20 25 19.90 24.85 19.95 159 1 9
30 -65 29.97 -65.09 26.98 96 1 8
40 0 40.02 0.01 - 29 2 14
50 10 49,97 10.15 - 100 5 44
60 -15 60.00 -15.02 - 46 1 4
70 85 69.98 85.00 - 37 7 53
80 -20 80.01 -20.00 - 55 6 40
85 30 85.00 30.00 - 32 ! 4
Table 4. Results for nine different orientations of the point pattern in Fig. 8.
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6. Concluding Remarks

We have developed an iterative matching procedure for computing shape from contour using
known planar models such as rectangles and point patterns. There are no restrictions on the types of
polygonal contours or point sets which can be used with this technique. [n most of our experimental
results using point patterns, convergence was obtained very rapidly using four randomly selected pairs
of points and our match heuristics for ordering the pairings of a- and §-angles.

Extensions of our technique can easily be defined for modeling each face of a three-dimensional
planar-faced object. It remains to be investigated how multiple models can be efficiently used with
images containing multiple objects. Another possible extension of interest is a study of the robustness
of the procedure under distortions in either the model or image data. We found in the shape from
rectangle experiments that if the actual ratio of sides was only approximately equal to the modeled
value, convergence was still obtained in many cases with corresponding inaccuracies in the resulting
surface orientation. The conditions under which solution accuracy can be traded off for solution
speed (i.e. number of iterations) is also an open question. Future research includes studying this type
of problem and developing methods for dealing with noisy data and images containing multiple,
partially-occluded objects.
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Fig. 1.  (b) The two intersections of the tangent curves when 0<C <1.

-T




Fig. 2.
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(a) An inward-directed spiral for the case C <0.
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Fig. 2. (b) An inward-directed staircase for the case C >0.



Fig. 3. The assignment of angles specifying a rectangle in the object plane S. The ratio of the
sides is such that tan § = m.



Fig. 4. The labeling of the three visible faces of a cube. The a-set shown is for face L.




Fig. 5.

Gradient space (p, ¢) superimposed onto coordinate space (x, y). Shown are the three
faces of the cube and -their two possible projected gradient directions. G,, G;; and G
define the convex corner. G,,G,; and G,;; define the concave corner.



Fig. 6. A square piece of paper folded in the middle. Gradient space is superimposed on the
image and the points G; and G/, corresponding to the gradients of the two folds of paper
are shown. The line connecting the gradient points is approximately perpendicular to the
fold line.
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as given by Eq. (5.7).

The transformation B8; - «;

Fig. 7.



Fig. 8. A point pattern in the object space plane with the corresponding line segments generating
the set of B-angles.




