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Abstract

A comparative study and survey of the state-of-the-art in model-based
industrial part recognition algorithms is presented. The goal of these methods
is to recognize the identity, position and orientation of randomly oriented
objects. In its most general form, this is commonly referred to as the "bin-
picking" problem in which the parts to be recognized are presented in a jumbled
bin. The paper is organized according to 2-D, 2 %D, and 3-D object
representations. Three central issues common to each category, namely
feature extraction, modeling, and matching, are examined in detail. An
evaluation and comparison of existing industrial part recognition systems and
algorithms is given, providing insights for progress toward future industrial
vision systems.

Index Terms: Machine vision systems, industrial part recognition, bin picking,
model-based image analysis, feature extraction, modeling, matching, 2-D, 2 %D,
and 3-D representations.
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1. Intreoduction

Extensive research and development has taken place over the last thirty
years in areas of scene analysis, image understanding, pattern recognition, and
artificial intelligence. Areas to which these disciplines have been successfully
applied include character recognition, medical diagnosis, military intelligence,
and satellite image analysis; however, machine vision for automating the
manufacturing process has not fully reached commercial reality. One reason
for the slow progress on machine vision for robotics and industrial automation is
that many manufacturing tasks require sophisticated visual interpretation yet
demand low cost, and high speed, accuracy, and flexibility. The following
delineates some of these requirements. ‘

s SPEED: The duration required for processing an image and recognizing
parts has to agree with the speed of execution of the specific task. Often,
the required rate is less than fractions of a second per part.

° ACCURACY: The percentage of successful recognition of parts and the
accuracy in deterrnining parts’ locations and orientations must be high.

s FLEXIBILITY: The system must be flexible enough for accommodating
changes in products and competent enough to analyze objects in
uncontrolled environments.

To be fully effective, machine vision systems must be able to handle
complex industrial parts. This includes the recognition of various parts and the
determination of their position and orientation in industrial environments. In
addition, machine vision systems must be able to extract and locate salient
features of parts in order to establish spatial references for assembly operations
and be able to verify the success of operations.

Most industrial part recognition systems are model-based systems in which
recognition involves matching the input scene with a set of pre-defined models.
The goal of such systems is to pre-compile a description of each of a known set
of industrial parts, and then to use these object models to recognize in an image
each instance of an object, and to specify its position and orientation relative to
the viewer. In an industrial environment, the following types of constraints and
properties are usually found:

s the number of parts in a given domain is usually small (1-50),

. parts may be exactly specified, with known tolerances on particular
features,

) parts often have distinctive features (e.g. holes and corners) which are
commonly found on many different types of parts,

° defective parts occur in many different (unmodelable) ways, and

) in scenes containing muiltiple parts, the possible allowable configurations is
very large (e.g. touching parts, overlapping parts, and parts at arbitrary
orientations with respect to one another and the image sensor).

A growing number of studies have been conducted investigating various
approaches to machine recognition of industrial parts. The body of literature
generated from this developing field is both vast and scattered. A number of
conferences and workshops have been dedicated to the topic of industrial
machine vision, for example [A.1]-[A. 14]. A few books have also been published
on this subject; see, for exarnple, [B.1]-[B.3]. Numerous journal publications
have discussed issues involved in industrial vision system design and
requirements. A significant number of research activities have been reported
on the development of prototype systermms for certain specific applications.
These studies are concerned with providing pragmatic solutions to current
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problems in industrial vision tasks. Some of them show the adequacy of image
processing techniques and the availability of technology needs for practical
autornation systems. Others are concerned with the development of various
part recognition algorithms that are needed in the future. This paper attempts
to provide a survey that looks at these current state-of-the-art machine vision
systems and algorithms for industrial part recognition. The goal is to provide
some fresh insights and up-to-date information for those interested in this new
technology.

2. Related Surveys

There are a number of survey papers and tutorials which have been
published recently which provide general information and updated summaries
on machine vision for industrial automation.

In [Ros‘?gb] Rosen examined the desired functions and industrial
requirements for machine vision which are applicable to sensor-controlled
manipulation. Industrial implementations as well as selected problems in the
research stage are described. Examples are grouped into bin picking, the
manipulation of isolated parts on conveyors, the manipulation in manufacturing
and assembly, and visual inspection. He also comments on the fact that
present machine vision techniques are sufficiently advanced to perrmit their uses
in factories in a cost-effe ctive way.

Myers [MyeBO] presents a survey of existing systems including operational
systems in manufacturing and feasibility dernonstrations. ‘He describes the
work done by the General Motors Research Laboratories, one of the first to apply
computer vision technology to a roduction line, as well as other inspection
systems. Yachida and Tsuji [YacBO]psurveyfmdustrial machine vision activities in
Japan. A number of successful vision systems that are now operational in
Japanese manufacturing were used to emphasize the commitment being made
by both government and industry to research and development in the fleld. Chin

[ChiBZa] presents a bibliography on industrial vision for discrete parts.

Kruger and Thompson [Kru8 1] presert a summary and survey of techniques
and. applications relevant to the field. They look at appropriate generic
examples in the areas of inspection, part recognition, and discrete component
assembly and discuss sample systems which exemplify the current state-of-the-
art. The authors also make economic projections and give recommmendations to
guide future investigations. The survey concludes with some comments on the
fact that the efficacy of the techniques in any application of machine vision
depends on both technical factors as well as economic considerations.

Foith et al. [FoiBl] discuss selected methods in image processing and
analysis related to industrial applications and point out why practical systems
perform binary image processing. A brief survey and some specific approaches
used in several state-of-the-art systems are presented.

Bolles [BolB1] reviews some possible applications of image understanding
research to industrial automation, and compares the characteristics of current
image understanding systems with that of industrial automation systems. He
points out a few ways in which current image understanding techniques may be
used in the future to enhance the capabilities of industrial systems.

Binford [BinBE] presents a survey and critique of the state-of-the-art in
model-based image analysis systems. Most of the surveyed systems Wwere
designed with the philosophy of general purpose vision systems. These systems
are anticipated to have a significant impact on practical industrial applications.



In a recently published paper, Kinnucan [Kin83] briefly looks at the
development of machine vision in the U.S. in the past twenty years and surveys
the current activities of several major research laboratories and industries. He
also examines current market activities of existing commercial machine vision
systems.

On automated visual inspection, Jarvis [JarB80] uses three practical
examples to illustrate the nature of the techniques and problems. Chin and
Harlow [Chi82b] present an extensive survey and discuss in detail the inspection
of printed circuit boards, photomasks, and IC chips. Porter and Mundy [Por80]
provide a comprehensive list of the types of visual inspection techniques
currently in use.

Other published surveys and overviews include [Pot83a), [Agi80], [Kin81],
Proaz],] [WesB2], [Wes83], [Ale83], [Cas83], [PugB2l, [Ros82], [Fu83], [Kel83b
KelB3a].

¥

3. Organization of the Paper

Tenenbaum, Barrow, and Bolles [Ten79] have identified a number of
weaknesses that limit the competence of current recognition systems for
complex industrial parts. One of the major limitations is the low dirnensionality
in spatial representation and description of parts. Simple objects presented
against a high contrast background with no occlusion are recognized by
extracting simple 2-D features which are matched against 2-D object models.
The lack of higher dimension spatial descriptions (for example, 3-D volumetric
tepresentations) and their associated matching and feature extraction
algorithms for industrial systems restrict the system's capabilities to a limited
class of objects observed from a few fixed viewpoints. The ability to recognize a
wide variety of rigid parts independent of viewpoint demands the ability to
extract view-invariant 3-D features and match them with features of 3-D object
models. Another problem is the lack of descriptions of surface characteristics
of industrial parts. Without using properties of the surface, many recognition
tasks cannot be accomplished by machine vision. It can be concluded that the
dimensionality of spatial description and representation is highly dependent on
both the particular application and its intended level of accomplishment. What
is needed are many levels of spatial description (2-D, 3-D, and intermediate
levels that fill the gap that exist between images and physical objects) to fulfill
various tasks.

Three central issues are common to the above-discussed problems: (1) How
does one extract features from 2-D, 3-D, or any intermediate level of spatial
description? (2) How does one utilize the extracted features to form models at
various levels of spatial description? (3) How should the matching be done
between pictorial features and models at various levels of spatial description?

In this paper, we will survey a variety of solutions to these problems and
issues. It is convenient to categorize all industrial part recognition systems into
several classes before focusing on their problems, requirements, limitations,
and achievements. The selected cases fall into three categories based on their
dimensionality of spatial description. To be rmore specific, we have grouped the
reported studies into three classes: 2-D, 2 %D, and 3-D representations,
presented in Sections 5, 6, and 7, respectively. It is natural to organize the
studies in this fashion since systems within each class usually use similar
assumptions. The grouping is also intended to provide the readers with an easy
understanding of the state-of-the-art technology related to industrial part
recognition. Associated with each category, issues related to feature extraction,
modeling, and matching are discussed in detail; examples are given to illustrate




their contributions and limitations. Figure 1 provides a graphical summary of
our organization.

3-D spatial descriptions define exact representations in "object space’ using
an object-centered coordinate system (either a single global coordinate frame
or multiple local coordinate frames may be defined). 3-D representations are
viewpoint-independent, volumetric representations that permit computations at
an arbitrary viewpoint and to an arbitrary precision of detail. 2-D spatial
descriptions are viewer-centered representations in 'image space’”. Each
distinct view is represented using, for the most part, shape features derived
from a gray-scale or binary image of a prototype object. This class of
representation is appropriate when the viewpoint is fixed and only a small
number of stable object positions are possible. 2 %D representations have
attributes of both 2-D and 3-D representations, using features defined in
"surface space’. These spatial descriptions are viewer-centered
representations, but depend on local surface properties of the object in each
view, for example range and surface orientation. '

The reported studies surveyed in this paper are by no means exhaustive -
and have been chosen because of their general interest and availability of
information. No effort has been made to include non-English references and
omissions are unintentional and do not reflect any judgement by the authors. In
most cases, the categorization of the cited publication into one of the categories
was relatively easy. In marginal cases, the authors assigned the paper to the
category they felt most appropriate. Mention should also be made that some
effort has been made to critically evaluate and compare various systems and
algorithms.

Many reported studies using the above image representations are worth
mentioning, but it is almost impossible to discuss all of them in detail. These
studies are included in the sections under "Other Studies". They are primarily
to provide an annotated bibliography on industrial part recognition algorithms
to make the survey complete. No attempt is made to critically evaluate these
listed studies.

Related topics that are largely or entirely omitted from this paper are: {a
industrial visual inspection applications, methodologies, and systems; (b

Modai -Based
Recognition
i
2-0 2-2- -0 3-D
Represantation Reprasantation Representation
Glodbal Scalar Globat Structural Rototional

Feature Feature Featurg Graoh

N /IN N \

Model Fegture Matching  Modei Fegtura Matching  Moadel feature Matchmg Modet Feature Matching  Modal Feature Matching

Figure 1. Organization of the survey.




machine vision applications and research activities in private industries that
have not been published; (c) the role of software and hardware implementation
in industrial machine vision as well as optics and imaging devices: (d) the
examnination of the econornic, social, and strategic elements which justify the
use of robot vision; (e) topics dealing with related subjects but too far removed
from the main subject of model-based industrial part recognition.

4. Models, Features, and Matching

A part recognition system can be broken down into a training phase and a
recognition phase as illustrated in Figure 2. The three major components of the
system are feature eztraction, object modeling, and matching.

Models: The use of models for image understanding bhas been studied
extensively (see, for example, [Ros79a] and [Bin82]). Most of the models that
have been investigated are relatively simple, however, and do not provide
adequate descriptions for recognizing industrial parts in complex scenes. While
many models of regions and images have been developed based on homogeneity
of gray level properties (e.g., texture and color), they have not been widely used
for industrial applications. For this reason, this type of model will not be
discussed further here. Alternatively, models based on geometric properties of
an object’'s silhouette are commonly used because they describe objects in
terms of their constituent shape features. i

INDUSTRIAL PART RECOGNITION
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..____.________..I_Bé_'h'.!Nﬁ__._._._______......___
T CLASSIFICATION
| Sensor Feutur‘e Matching p—s== Decision and
Extraction . i
Spatiai Information
Scene
with parts to be
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Figure 2. Components of a model-based recognition system.




2.D models have the advantage that they can be automatically constructed
from a set of prototype objects (from each possible viewpoint). (In general, it is
nontrivial to automatically construct 3-D representations from a set of 2-D
views.) They have the disadvantage that they do not make the full 3-D
description of an object explicit - their completeness depends on the
complexity of the object, and number and positions of the viewpoints used. In
industrial part recognition applications, however, it is frequently the case that
limited allowable viewpoints, limited possible stable configurations, and object
symmetries substantially reduce the number of distinct views which must be
considered.

Features: In many pattern recognition applications, the first problem is to
determine which feature measurements should be taken from the input
patterns. Features such as edge, corner, line, curve, texture, etc., define
individual feature components of an image. These features are then used to
segment the image into regions and to generate object descriptions. They are
less sensitive with respect to the encountered variations of the original noisy
gray-scale images. Usually, the decision of what to measure is rather subjective
and dependent on the practical situations.

The features important for industrial image analysis are largely boundaries
and measurements derived from boundaries. These features can be roughly
categorized into three types [FoiB1] : global scalar, global structural, and
relational features. Examples for global scalar features are perimeter,
centroid, distance of contour points from the centroid, curvature, area, and
moments of inertia. Global scalar features are relatively easy to extract and
recognition schemes associated with this type of feature are usually straight
forward feature classifiers. All properties are derivable directly from a single
image and their number and order in the feature list is unimportant. Examples
of global structural features include line segment, arc segment with constant
curvature, and corner, defining the object’s boundary. They allow the use of
syntactic pattern recognition approaches in the matching process in which
structural elements are transformed into primitives forming a siring grammar;
recognition is performed by parsing. Examples of relational features include a
variety of distance and relative orientation measurements inter-relating
substructures and regions of the object. These features are usually configured
in a graph structure forming a relational object graph in which nodes represent
local features and arcs the spatial relations between these features. The
matching process involves variations on subgraph isomorphism. This type of
feature also provides local cues for the recognition of parts that are overlapping
each other.

Most existing industrial vision systems and algorithms restrict their
applications to industrial parts against a high contrast background with
controlled lighting to eliminate shadows, highlights, and noisy backgrounds. The
process of feature extraction usually begins by generating a binary image from
the original gray-scale image using simple thresholding, or simply by using a
sensor that produce binary images. The use of a binary representation reduces
the amount of data that must be handled, but it places a serious limitation on
the flexibility and capabilities of the system. After thresholding , the process
continues by extracting 2-D features from the binary image. In these systems,
features are functions of silhouettes. A tutorial on binary image processing to
robot vision applications was given by Kitchin and Pugh [Kit83].

Most pictorial feature extraction algorithms used in these binary imaging
systems are simple edge-detection and line-tracing algorithms. They detect
boundaries of simple planar objects but usually fail to detect low contrast
surface boundaries. Ar.other limitation is that they attempt to deal with 3-D



physical objects in terms of 2-D features. This simplification might meet the
cost requirement of many industrial applications, but it lacks the capability and
flexibility required by many other industrial vision tasks. Finally, current
systems seldom have representations of physical surface properties such as
surface reflectance and surface orientation (i.e. 2 %D representations). Such
information is lost in reducing the gray-scale image to a binary irnage or to a
piecewise constant image. Without using these properties of the surface, many
important industrial vision tasks that are easy for humans to perform, will
remain beyond the competence of vision systems.

There are a few current vision systems and algorithms that are capable of
extracting useful information from images of complex industrial parts with
considerable noise caused by dirt and unfavorable lighting conditions. These
systems process gray-scale images with reasonable dynamic range. The most
important drawback of gray-scale image processing is the slow processing rate
in extracting features. Most of these systems employ sophisticated feature
extraction methods, but, their matching procedures are still based on 2-D
models.

Matching: After the modeling procedure the system contains a set of
models that describe all aspects of parts that are to be recognized. The process
of recognition then consists of matching the extracted data from the scene with
those of the models. The general problem of matching may be regarded as
finding features in the given image that match one model's features. Some of
these methods rely on total image matching using cross-correlation type of
measures applied to image intensities or coefficients of some mathematical
expansions (e.g. orthogonal expansion). They can be formulated using global
optimization to achieve great reliability, but are computationally intensive. In
practice, however, recognition speed is of ultimate importance. Moreover, the
image will be noisy, and parts within the image will be occluded, and they will be
located at random positions. Matching algorithms of this type have little value
in industrial part recognition systems.

Matching techniques using global, local, or relational features, or 2
combinational of these features provide a way to recognize and locate a part on
the basis of a few key features. Matching by features becomes 2 model-driven
process in which model features control the matching process. Several model-
driven matching techniques have been developed. Most of them are invariant to
translation and rotation, and are not too sensitive to noise and image distortion.

The choice of matching process is highly dependent on the type of model
used for object representation. Models using global scalar features, such as
area and perimeter, are usually associated with the classical feature-space
classification scheme. The features of each of the model parts may be thought
of as points in n-dimensional space, where n is the number of features
measurements. The recognition of an unknown part with an n-dimensional
feature vector involves comparing this feature vector with each of the model
feature vectors. Both parallel (e.g. the nearest neighbor rule [Dud73]) and
hierarchical/sequential decision rules (e.g. the decision-tree method) can be
used. The computational expense associated with the parallel classification
increases steeply with dimension, but optimal results are achievable. There are
numerous advantages to hierarchical classification. Most importantly, the
decision procedure can be designed to be both inexpensive and effective, but the
overall accuracy is not as great as with the classical decision rules.

Models can be constructed using abstracted and precise geometric
representations such as arcs and lines. (In this paper, this type of features is
referred to as the global structural feature.) Recognition uses a hypothesis-
verification procedure. The structural features are used to predict where
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objects are located in the scene. Then, additional features are measured, based
on the prediction hypothesized by the model, in order to verify and fine tune the
match.

Objects can be represented structurally by graphs. Under this model type,
geometrical relations between local features (e.g. corner and hole) are of
particular interest. The relational structure can be represented by a graph in
which each node represents a local feature, and is labeled with a list of
properties (e.g. size) for that feature; and arcs link pairs of nodes and are
labeled with lists of relation values (e.g. distance and adjacency). Recognition of
the object becomes a graph-matching process. This type of matching can be
used to handle overlapping parts where a partially visible part corresponds to a
subgraph. The matching reduces to one of finding the subgraph. Most of the
techniques of this type involve tree-searching techniques which are exhaustive
in nature leading to expensive implementation. An alternate graph-matching
technique is the hierarchical approach by Barrow and Tenenbaum [Bar81] where
the model is decomposed into independent components. This technique was
designed to reduce the complexity of the matching process.

5. 2-D Image Representations

In this section we review recognition algorithms that are based on 2-D
image representations. They represent objects by a set of one or more distinct
views. These viewer-centered representations treat each view independently,
reducing the problem to 2-D using image relations and image observables as
primitives. For each viewpoint, a sufficient set of image-space-derived features
and relations are extracted for describing the object.

We will classify image space models into three types based on the kinds of
features which are predominantly used to define an object model. The first class
of representations uses global scalar features of an object’s size and shape (e.g.
perimeter and area) organized in geometric property lists. The second type of
representation uses global structural features which describe more complex
properties of the object, usually in terms of lines and curves defining the
object's boundary. The third type uses local shape features which are organized
in a relational object graph. Nodes describe local features and arcs have
associated properties which describe the relationship between the pairs of
features that they connect.

This division of models based on their constituent feature types also
coincides with the kinds of matching algorithms which are appropriate in each
case. Global features describe a significant portion of an object’s boundary or
interior and thus because there are very few of them, there is relatively little
"combinatorial’’ processing to find matches between image and model features.
Of course, we are more likely to miss finding such global features because they
are so large {e.g. due to occlusion). Alternatively, when many local features are
used to describe an object more care must be taken in defining the search
procedure used for matching image features with model features. The
sequential approach is to tentatively locate local features and then use this to
constrain the search for other features.

The remainder of this section covers each of these three representations in
detail.

5.1. Global Scalar FFeatures

The predominant model used to date, especially in commercial systems, is
the use of a set of 2-D, global shape features describing each possible stable
object view. In these systemns, each feature is usually translation- and rotation-



invariant, but not scale-invariant. That is, objects may be placed at any position
and orientation, but the camera geometry is fixed so that the object is of known
size. Furthermore, objects are not allowed to touch or overlap one another,
allowing simple geometric features of the boundary of each component in an
image to be extracted and compared with the models.

5.1.1. Hodels

The prototype system using a list of simple, global scalar features is the SRI
Vision Module [Gle78). The user interactively selects a set of features which are
used to construct an object model. This modeling task is termed as the
"training by showing'’ process. This type of model is compact and facilitates fast
matching operations because of the limited number and size of the feature
vectors which are extracted from a given image.

The major limitations of this type of model are (1) each possible 2-D view of
an object must be described by a separate model, (2) all objects in an image
must be extracted by a single predefined threshold (hence lighting, shadows and
highlights must be controlled), and (3) objects may not touch or overlap one
another, nor may objects have significant defects. (A defective object which is

not sufficiently similar to any model can be recognized as a reject, but this may
not be adequate in many applications.) :

Many other systems have been developed which use variations on the global
feature list approach to modeling, A method for modeling industrial parts and
programs to compute stable orientations and their views have been developed
by Lieberman [Lie?g]. A 3-D, CAD system is used to form representations of
parts using polyhedrons. Stable positions of the part are determined and their
2-D projections with respect to the camera's viewpoint are computed. A set of
outlines are in turn extracted forming the polyhedral model. Figure 3 shows a
set of stable orientations of a part and their corresponding rmodels.

Birk, Kelley and Martins [Bir81] model objects by a set of coarse shape
features for each possible viewpoint. For a given viewing position, the
thresholded object is overlaid with a 3 by 3 grid (each grid square’s size is
selected by the user) centered at the object’s centroid and oriented with
respect to the minimum moment of inertia. A count of the number of above
threshold pixels in each grid square is used to describe the object. ’

CONSIGHT-I [Hol79] avoids the problern of threshold selection for object
detection by employing a pair of line light sources and a line camera focused at
the same place across a moving conveyer belt of parts. Part boundaries are
detected as discontinuities in the light line as shown in Figure 4. Features such
as centroid and area are computed for each object as it passes through the line
of light.

5.1.2. Features

Features and feature extraction procedures for 2-D global scalar feature
representations are common to many recognition systems. The image is first
analyzed and outlines of connected components (blobs) within the fleld of view
are extracted so that each region can be analyzed. The information in a
connected component is sufficient to derive a number of global scalar features -
such as shape and size descriptors characterizing the industrial part. For some
systems, the feature set also includes position and orientation descriptors such
as center of gravity, and moments of inertia which provide useful information
for part manipulation.

Computation of these global scalar features using binary image processing
techniques are relatively inexpensive. They can be computed "on the fly" from,

10




3. A set of stable orientations for a part and the corresponding
silhouettes calculated for each of the orientations when viewed from directly

overhead.

11



Light f Linear Array
Source i Camaeara
\\ g‘
\\ N '
\ON }
\ H P
\ 4
\ !
NN ;
\\ 'l
\: > G
Without With
@ \ Conveyor . Part Part
\ Belt
\
Al

4. Basic lighting principle of the CONSIGHT-] system and the computer’s
view of a part.

for example, a run length encoding of the image. This is one of the major
advantages of using this feature type.

In the SRI Vision Module system [Gle79], a connectivity analysis procedure
generates a description of each blob on the fly as the image is processed. At the
same time are computed such features as number of holes, area, perimeter,
boundary chain code, compactness, number of corners, and moments of inertia.
No feature is calculated if it is not needed for a particular application.

Kelley et al. [Kel82] have developed an experimental system to recognize
randomly oriented cylindrical workpieces piled in a bin. A number of features
are measured to select a holdsite location of the workpiece for manipulation by
a mechanical jaw gripper. A global, coarse size descriptor is extracted by a
shrinking operator applied to successive images to reduce the binary data into
small clusters of pixels. These clusters dre then sorted in order by size, and the
largest cluster is selected as the holdsite location. Position and orientation
features of the selected cluster are computed to determine the location and
direction of the gripper relative to the image. An additional feature
measurement, the ratio of eigenvalues, is also computed to determine the
inclination of the cylinder with respect to the image plane so as to determine
the appropriate gripper opening distance. The ‘i-bot’ system is based on this
technique and is now commercially available [ZueB3]. This system computes the
locations and orientations of a maximum of three workpieces from a bin in two
seconds.

Fourier descriptors [Zah72] have been suggested as shape descriptors for
industrial part recognition by Persoon and Fu [Per77]. A finite number of
harmonics of the Fourier descriptors are computed from the part boundary and
compared with a set of reference Fourier descriptors. A minimum-distance
classification rule is used for the recognition of various classes of parts.

In gray-scale image processing, segmentation is usually the first step to find
regions of fairly uniform intensity which would greatly increase the degree of
organization for generating higher level descriptions such as shape and size.
Perkins [Per80] has developed a region segmentation method for industrial
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parts using edges. An expansion-contraction technique is used in which the edge
regions are first expanded to close gaps and then contracted after the separate
uniform regions have been identified. The process is performed iteratively to
preserve small segments. ;

Baird [Bai77] has used a similar method to separate automotive parts on
noisy conveyors. His method involves a smoothing and gap-filling procedure
which is essentially a series of edge expansions.

5.1.3. Hatching

When models are defined as feature lists, the use of a hierarchical decision
tree provides a fast, convenient method for matching that can also take into
account feature observation reliability and feature importance.

The SRI Vision Module uses a decision tree method for matching based on
the list of global features associated with each model [Agi77]. The tree is
automatically constructed from the models as follows. The feature values with
the largest separation for a given feature and pair of object models are found
and this feature is used to define the the root node of the tree. That is, a
threshold is selected for this feature which distinguishes between these two
models. Next, two children of the root node are constructed such that all
models which have feature value less than or equal to the threshold are
associated with the left child; the right child is assigned all models with feature
value greater than the threshold. This procedure is repeated recursively,
dividing a set of model candidates associated with a node into two disjoint
subsets associated with its two children. A terminal node in the tree is cne that
contains a single model. Figure 5 illustrates such a decision tree.

The decision tree method has the primary advantage of speed, but has the
disadvantage of not allowing similar models to be explicitly compared with a
given list of image features.

MEASURE
FEATURE 1
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LESS \Qy
: SCREW-
DRIVER

Figure 5. A decision tree classifier [AgigO].
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Alternatively, the best matching model to a given list of global features
extracted from a component in an image is computed using a nearest-neighbor
classification method in feature space, as illustrated in Figure 8. That is, if n
features are used to deseribe all models, then each model is represented by &
point in n-dimensional feature space. Given a new feature list extracted from an
image, the component is recognized as being an instance of the model which is
closest in feature space.

5.1.4. Other Studies

Several systems based on the SRI Vision Module are now commercially
available including Machine Intelligence Corporation’s VS-100 system,
Automatix’'s Autovision system, Unimation’s Univision [, Control Automation’s V-
1000, Intelledex V-100 Robot Vision Systemn, and Octek’s Robot Vision Module.
The VS-100 system (and the related system for Puma robots, Univision I) accepts
images up to 256 by 256 and thresholds them at a user specified gray level. Up
to twelve objects can be in an image and up to thirteen features can be used to
model each part. Recognition times of from 250 msec (one feature) to 850 msec
(eleven features) per object are typical [Ros81]. The Autovision 4 system
processes images up to 512 by 256 and recognition performance is listed at
"over ten parts per second for simple parts" [vilea].

An industrial vision system, S.AM., has been developed by Tropf et al.
[TroBZ] using binary image processing to extract global scalar features for
inspection and part recognition. The system is now commercially available for
flexible manufacturing assermnbly systems [Bru83]. A development system for
machine vision based on the Machine Intelligence Corp. VS-100 has been
developed and marketed [Che82]. Performance evaluation of the above vision
system has also been done by Rosen and Gleason [RosB1].

An experimental system has been developed by Page and Pugh [Pag81] to
manipulate engineering parts from random orientation. Simmple global scalar
features are used to identify gripper locations. Typical recognition times are in
the range 0.5t0 3 seconds.
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Figure 6. A nearest neighbor classifier [AgiBO].
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5.2. Global Structural Features

The systems described in the previous section included global shape and
size features which consisted of, for the most part, simple integral or real-
valued descriptors. In this section we describe models which include more
complex features, for the most part structural descriptions of object
boundaries. Since a boundary-based feature often includes all or a major
portion of an outer or hole border, we have included it here as a global
structural feature.

5.2.1. Hodels

Perkins [Per78] constructs 2-D models from the concurve features
extracted from training images of each stable view of each part (see Section
5.2.2 for the feature extraction algorithms). These features include both global
structural (e.g. the complete outer border of the object) and local (e.g. a small
hole border in the object) descriptions of the object’s borders. The list of '
concurves is not ordered, but it does comprise a more structural approach to
describing objects which is not as sensitive to noise (see Section 5.2.3 for the
matching algorithm).

An object-centered coordinate system is used in which the origin is defined
by either 8a) the center of area of the largest closed concurve, or (b) the center
of a small closed concurve if it is sufficiently close to the center of the largest
closed concurve. The axes are defined in terms of the direction of the least
moment of inertia of the largest concurve.

For each concurve in the model, a property list is computed including type
(circle, arc, line segment, complex curve, etc.g'. total length or radius of arcs,
magnitude of total angular change, number of straight lines, number of arcs,
bending energy, and compactness. In addition, rotational symmetries of the
concurve and the complete object are computed as additional descriptors.
Rotational symmetry is computed using a correlation-like technique which
determines if a sufficient percentage of concurve "multisectors” intersect the
rotated concurve. Multisectors are short line segments which are placed at
equal intervals along the concurve and at orientations perpendicular to the
tangent directions at these points.

Stockman et al. [Sto82] define models of 2-D objects by a set of vectors
(with an object-centered coordinate system), where each vector is constructed
from the linked output of straight edge detectors, curved edge detectors, circle
detectors, and intersection detectors. The vectors comprise points which are of

four types, and rules are used to perrnit only certain combinations of points to
be linked.

Foith ef al. [FoiB81] describe the object boundary with respect to the
centroid of the "dominant blob” defining the 2-D binary object. Circles of
prespecified radii are centered on the centroid, their intersections with the
object boundary are marked, and line segments are then drawn between these
intersections and the centroid. The sequence of angles between successive line
segments is used as a rotation-invariant model of the object boundary.

Shirai [Shi78] models objects using a hierarchy of features consisting of
edges represented by a description of their curvature and endpoints.

5.2.2. Features

The vision system developed by Perkins [Per78] extracts concurve features
in the form of line drawings from noisy gray-scale scenes. The line drawing is a
compact representation that describes boundaries of complex 2-D industrial
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objects. First, a gray-scale image is transformed into an edge map by the
Hueckel edge operator [Hue74]. Next, these edges are thinned and connected
together into a highly organized chain structure by using knowledge of
proxirnity, directional continuity, and gray-scale continuity. In the linking
process, both local and globel criteria are used.

Finally, the chains are transformed into a group of concurves. A concurve
is defined as an ordered list of shape descriptions which are generated by fitting
the chain data to straight lines, or circular arcs, or a combination of both. This
curve-fitting step is quite similar to the one used by Shirai [Shi75] in his feature
extraction algorithm. The fitting procedure first examines the curvature of the
chain data, i.e. connected edge points. Next, it looks for abrupt changes in
curvature and picks out end points (critical points) to set the bounds of each
grouping. The chain of edge points in each group is fitted with a circular arc or
straight line by Newton's method. An additional step is included which verifies
and corrects for a poor fit. Figure 7 shows the various stages of extracting
concurves from a visually noisy scene.

) ’ \k‘/'&/ﬁ;

(2 1))

Figure 7. Concurve extraction. (a) Digitized picture. (b) Edge points. (c) Chains
with critical points at the end of open chains. (d) Concurves.
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In the system developed by Shirai [Shi78], recognition is based on edge
cues. The system first extracts edges using a conventional gradient operator.
The extracted edges are classified into three types according to their intensity
profiles. Next, an edge kernel is located by searching for a set of edge points of
the same type which have similar gradient directions. A tracking algorithm is
applied in both directions of the kernel to find a smoothly curved edge and its
end points. Several passes are applied to locate all sets of smoothly connected
edges in the scene. Finally, straight lines and elliptic curves are fit to each
segment and segments are merged together, if possible.

Stockman et al. [Sto82] use directed edge elements (vectors) as the
primary features in their part recognition experiments. Straight edges are
detected using the Hough transform and holes are detected by a set of circular
masks. Details of the extraction procedures are presented in [Sto80]. A set of
simulated carburetor covers and T-hinges are used to demonstrate the method.
Matching is performed by registering the detected vectors with the model
vectors.

5.2.3. Matching

In Perkin's model-based recognition system [Per78] the matching process
is performed in three steps. First, global scalar features (length, area, ete.)
extracted from the model and image concurves are compared:. The comparison
is an exhaustive matching procedure applied to all possible pairings between the
model concurves and the image concurves, and the results, given in terms of
likelihood measures, are arranged in an ordered list. Second, one model
concurve is matched against one image concurve to determine a tentative
transformation (x.y,8) from model to image coordinates. The pair with the
highest likelihood is used first; successive pairs are compared until a tentative
transformation is found. In cases when the model concurve is symmetric, two
matching pairs are required to determine the transformation. Third, a global
check of the tentative transformation is performed by matching the complete
model with the image. In this step, a set of model multisectors is first
transformed using the tentative transformation determined in the previous
step. The transformed multisectors of the model are then superimposed on the
image for a final comparison by intersecting each multisector with the image
concurves. This matching process is shown to be very successful with closed
concurves and has been tested with images containing partially overlapping
parts.

Stockman ef al. [Sto82] match images to models using clustering
approaches. The procedure matches all possible pairs of image features and
model features on the basis of local evidence. A rotation, scaling, and
translation transformation is derived to extract parameters from all possible
pairs of features. Clustering is performed in the space of all possible
transformation parameter sets. This method is believed to be more robust
because the clustering procedure integrates all local information before any
recognition decision is made. The reported results indicate that their method
works well with isolated objects but the success rate for recognizing overlapping
parts is low.

Shirai [Shi78] performs recognition of objects using a hierarchy of features
where most of the features consist of linked edges represented by an equation
and end points. The recognition involves three steps. First, the main feature is
located to get clues for the object. Next, a secondary feature is searched for to
verify the main feature and to determine the range of the object. Finally, the

other lines of the object are located to confirm the recognition.
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5.2.4. Other Studies

In a model-driven recognition experiment [Hat82], contour elements
described in terms of straight lines are used as the global structural features.
Matching is done by iteratively constructing the model contour from image data.

eriments on occluded part recognition have been performed by Turney et al.
[Tur83] using edges as the features. Recognition is based on template matching
between the model edge template and the edge image in the generalized Hough
transform space [Bal81a]. This algorithm is shown to be more efficient than
direct template matching. Dessimoz et al. [Des78a], [Des78b] recognize
overlapping parts by first mapping the objects’ boundaries into a set of curves
and then matching the curves with those in the model. Tropf [Tro80], [Tro81]
has developed a recognition system for overlapping workpieces using corner and
line primitives and semantic labeling. Structural knowledge of workpieces is
used to construct models. Recognition uses heuristic search to find the best
match based on a similarity measure. Ayache [Aya83] uses binary images and
polygonal approximations to each connected component. Models are
automatically constructed by analyzing a prototype part in its different stable
positions. The matching is done first by generating a hypothesis of the object
location and then by matching model segments to scene segments. The model
location is sequentially adjusted by evaluating each match until the best match
is found.

Bhanu [BhaBl] has developed a hierarchical relaxation labeling technique to
do shape matching and has done experiments using 2-D occluded industrial
parts [BhaB83]. 2-D shapes are used as the global structural features and they
are represented by a polygonal approximation. The technique involves the
maximization of an evaluation function which is based on the ambiguity and
inconsistency of classification. Ayache and Faugeras [AyaB2] extended the
relaxation labeling technique to match polygonal representations of object
boundary segments. Umetani and Taguchi Ume79] use "general shapes”,
defined as artificial and non-artificial shapes, to study the properties and
procedures for complex shape discrimination. Feature properties based on
vertices, symmetry, complexity, compactness, and concavity have been
investigated. These features are chosen based on some psychological

experiments and a procedure to discriminate random shapes has been proposed
[Umes2].

Vamos [Vam77] has proposed the use of syntactic pattern recognition for
modeling machine parts from picture primitives: namely straight line, arc, node
and undefined. A set of syntax rules are inferred to characterize the structural
relationships of these strings of primitives describing the part. The matching
process is a syntax analysis or parsing procedure involving the use of similarity
measures between two grammar strings, or two graphs. Takubowski [Jak77],
[Jak83] has conducted a similar study using straight lines or curves as
primitives to model machine part shapes and to generate part contours.

Takeyasu et al. [Tak77], [Kas77] have developed an assembly system for
vacuum cleaners using integrated visual and tactile sensory feedback. First,
global scalar features of various parts of the vacuum cleaner are used to locate

the cleaner. Then, structural features such as circles and arcs are used in a
template matching step for the assembly operation.

' 5.3. Relational Feature Graphs

This class of models is based on a structural description of a part in terms
of locally detectable primitive features and the geometric relations between
pairs of these features. Models which are based on local rather than global
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features have the following advantages: (a) local features may be cheaper to
compute because they are simpler and can be selectively (sequentially)
detected, (b) models are less sensitive to minor differences in instances of a
given object type, (c) if a few local features are missing (due to noise or
occlusion) it may still be possible to recognize the object on the basis of the
remaining features associated with the model, and (d) since a few types of local
features are often sufficient to describe a large number of complex objects, it is
possible to specify only a few types of local feature detectors which are applied
to the image. A disadvantage with this type of model is the fact that a large
number of features must be detected and grouped together to recognize an
object. Thus the combinatorial explosion issue must be handled by the
matching algorithm.

5.3.1. Hodels

Yachida and Tsuji [Yac77] use a simple kind of feature graph representation
plus the use of a two level model (for coarse-to-fine processing) to speed the
search process. Each object is described by a set of models, one for each
possible viewpoint. Fach model contains a coarse representation of the object
using global features such as area and elongatedness, plus a description of the
outer boundary (in polar coordinates). Each component extracted from an
image is compared with each coarse model to determine if it is sufficiently

similar to warrant further comparison. Object boundaries are compared by
using the cross correlation as the measure of shape match.

The fine level of representation of each model is based on a higher
resolution image and consists of a list of features such as outer boundary, holes,
edges and texture. Associated with each feature is an attribute list, location
(relative to the object’s centroid), and the expected likelihood that the feature
can be extracted reliably. Features are ordered in the model by their reliability
value.

Chen et al. [Che80] also model objects using local feature graphs. Each
node is a (feature type, position) pair and arcs connect pairs of nodes when an
edge connects this pair of features on the part. Feature types are corners and
small holes. Feature position is specified using an object-centered coordinate
systerm.

Bolles and Cain [Bol82] have developed a sophisticated modeling system for
2-D objects called the local-feature-focus method. Two types of local features
are used: corners and regions. An object model consists of three parts. First, a
polygonal approximation of the object's borders. Second, a list of local features,
where each is specified by a unique name, its type, position and orientation
relative to the object’s centroid, and rotational symmetries about the centroid.
Position and orientation values also have associated allowable tolerances. Third,
for each distinct feature type, an unambiguous description of each possible
instance of this feature type in all the models is determined. In this way each
possible feature type can be used as a 'focus feature.” Each structurally
different occurrence of a given feature type has an associated feature-centered
subgraph description containing a sufficient set of "secondary’ features (and
their relative locations) to uniquely identify the given focus feature and
determine the position and orientation of the object.

A semi-automatic procedure is currently used to construct these focus
feature tables. TFirst, all possible distinguishable local feature types are
determined over all stable viewpoints of all objects. The extraction of features is
automatically performed by analysis of computer-aided design (CAD) models of
the objects. Next, rotational and mirror symmetries are determined in order to
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identify all structurally equivalent features. For each structurally different
feature, select a set of nearby features which uniquely identifies the focus
feature, and construct a graph description of these features and their relations.
Feature types are ranked by the size of their associated feature graphs, i.e., in
increasing order of the sum of the number of secondary features needed to
describe all instances of the given focus feature. ‘

An automatic system for transistor wire bonding has been implemented at
Hitachi [Kas76]. The model consists of three sets of three 12 by 12 binary
templates which are selected by the user from three different orientations of a
given prototype chip. For each triple of patterns in a set, an associated distance
and direction (relative to the image’s x-axis) pair are computed from the same
binary image of the chip used to define the templates. Chips are assumed to be
of a fixed size (camera position above table is fixed); orientation of a chip is fixed
with a tolerance of up to fifteen degrees in either direction. Empirically it was
determined that a triple of templates is a reasonable model for rotations of up
to seven degrees from the normal orientation. Therefore, in order to meet
system orientation specifications, three sets of templates are selected by the
user with the prototype chip positioned at orientations -10, 0, and 10 degrees
from the normal orientation.

The SIGHT-]I system also locates integrated circuit chips by using a set of
local templates [Bai78] This model consists of the specification of the possible
relative positions of the four corners of a chip, and a set of four 4 by 4 templates

is used to evaluate the probability that a corner is present at a given position.

5.9.2. Features

The feature extraction process in the system developed by Yachida and
Tsuji [Yac?7] is divided into several stages using the idea of "planning”, that is,
knowledge of the structure of an object guides the feature extraction module in
a top-down manner. Simple features are detected first in a coarse resolution
image and then more complex features are sought based on the locations of the
coarse features. Industrial parts used in their demonstration are parts of a
gasoline engine. In the preprocessing stage, a low resolution version of the
image is analyzed and outlines of objects are detected by thresholding. Each
outline is then analyzed separately, using a high-resolution image of the region
of interest to extract a finer outline of the object. Local histogramming and
dynarnic threshol ing based on 11 by 11 windows using the method in [Chow and
Kaneko] are used in this step. Next, the object’s gross properties, such as size,
thinness ratio, and shape are computed. This coarse description of the object is
used to select candidate models for matching and to guide the extraction of
finer features for final recognition. There are four features extracted in the
fine-resolution processing stage and they include circle, line, texture, and small
hole. Each feature is extracted from a search region around the expected
location in the gray-scale image. The circle detector uses thresholding as in the
preprocessing step; the line finder, using dynamic pro gramming, searches for
the optimum sequence of edge points in the region that maximizes a measure of
goodness; the texture detector measures edge strength per unit area and
average edge direction; the small-hole detector uses neighbor merging to locate
circular objects.

In [Che80] Chen et al. estimate the pose of workpieces using the 3-D
locations of at least three noncollinear feature points. The location of features
is computed using trigonometric relations between corresponding features from
two stereo views of the workpiece. Local image features include small holes and |
corners. Corner and small hole detection are based on the diameter-limited
gradient direction histograms [Bir79] in which intensity variations in several
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directions and various heuristic thresholds are examined. Detected features
from the image are evaluated to eliminate redundant features. The resultant
corner points are fine-tuned for accuracy by fitting a pair of lines in an 11 by 11
window. The intersection of the two lines yields the final corner location.
Finally, the interfeature distances between every pair of features are computed.
Workpiece examples used in the experiments include simple planar industrial
parts and 3-D block objects.

In the recognition system developed by Bolles and Cain [Bol82] a few key
features, such as hole and corner are used. The system locates holes by finding
small regions in the binary image and extracts corners by moving a jointed pair
of chords around the boundaries and comparing the angle between the chords to
the angles defining the different types of corners. This corner finder is believed
to have difficulties with rounded corners. Relational features such as distances
between features are used to describe position and orientation of objects.
Another set of useful features used in this system is the symmetries of the
object. Both the rotational and mirror symmetries of binary patterns are
extracted automatically, using the method in [Bol79a). They are useful in the
reduction of the number of features to be considered, since symmetrical objects
usually have duplicate features.

In most of the recognition systems for IC alignment and bonding, multiple
template matching procedures are used. Features used for template matching
are distinct patterns such as corners and bonding pads. Relational features
such as the distance and angle between pairs of successfully matched templates
are also used. In most cases these features are extracted by thresholding; e.g.,
see Hitachi’s transistor wire-bonding system [Kas76].

In the SIGHT-I system developed by Baird [Bai78], a coarse processing stage
is applied to the gray-scale image before the relational template matching step.
In this step, the approximate orientation of the chip is determined by analyzing
the edge-orientation histogram to find the most prominent edge orientation.
This enables the matching stage to search for corners in known orientations.

5.3.3. Matching

Yachida and Tsuji [Yac77] have developed a matching process which
examines the current information obtained from the scene and the structural
models of objects to propose the next matching step. The model relates
features at a coarse resolution with more detailed features at a fine resolution
enabling the matching to be performed usir simple features as cues. Given a
tentative match between an image component and an object model based on the
coarse model features, the fine model features are then successively compared.
The object boundary matched at the coarse level determines a tentative match
angle of rotation. For a given feature extracted from the image, a measure of
the dissirnilarity between it and each of the model features is computed. A
curnulative dissimilarity measure is kept for each active model. When a model’s
dissimilarity exceeds a threshold, the model is rejected as a possible match.
After the current feature has been compared with each of the remaining
candidate models, a next-feature proposer analyzes the features described in
these candidate models and proposes the most promising feature among them
as the feature to be examined next for recognizing the input object.

Chen et al. [Che80] estimate workpiece pose using a sequential pairwise
comparison algorithm in which a feature point is matched in turn to all model
feature points of the same type. The matching process starts with the selection
of the feature point which has the highest confidence. The remaining feature
points are then matched with all model points. In this step, feature type,
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interfeature distance, and edge information are used as matching criteria, and
redundant matched points are deleted. If enough feature points are
successfully matched with the model points, and a transformation test, used to
eliminate problems due to symmetry, is passed, a match is considered to be
found. Finally, the pose of the workpiece is computed from the correspondence
between workpiece features and model features.

The matching procedure of the Local-Feature-Focus method [Bol82] uses a
graph-matching technique to identify the largest cluster of image features
matching a cluster of model features. The procedure first retrieves models of
industrial parts together with the list of focus features and their nearby
features. Figure 8 shows an example of a focus feature. Then, for each image,
the system locates all the potentially useful local features, forms clusters of
them to hypothesize part occurrences, and finally performs template matches
to verify these hypotheses.

After locating all the features found in the image, the system selects one
feature (the focus feature) around which it tries to find a cluster of consistent
secondary features. If this attempt fail to lead to a hypothesis, the system
seeks another potential focus feature for a new attempt. As it finds matching
features it builds a list of possible model-feature-to-image-feature assignments.
This list is transformed into a graph that is analyzed by a Figure 9 shows the
possible assignments and the resulting graph. The result from the maximal-
clique algorithm is used to hypothesize an object. At the final stage, two tests
are used to verify the hypotheses by looking at other object features and
checking the boundary of the hypothesized object. Figure 10 shows a
recognition example.

In the transistor wire bonding system developed by Kashioka et al. [Kas78],
a multiple template matching method is used to locate the position of the chip.
A set of characteristic 12 by 12 binary templates is used. In the matching
process, the system searches a 180 by 120 image for the local region which best
matches the first template. It then searches for the best match to a second

8. An example of a focus feature on a hinge. Nearby feature found
around a hole and their lists of possible model features.
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Figure 10. Image of five hinges and the recognition resuit.

template. From these positions, a distance and a direction angle are computed
and compared to the values predetermined from the geometry of the chip. If
the measurements are not close to the predefined values, a third local template
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is used, and measurements are again computed. Locations of bonding pads are
computed using the measurements obtained from the multiple local template
matching. Figure 11 shows the set of templates and the matching process.

5.3.4. Other Studies

Cheng and Huang [Che82] have developed a method for the recognition of
curvilinear objects by matching relational structures. The boundary of an
object is segmented into curve segments and then into chords. Attributes
(parallel, symmetric, adjacent, etc.) associated with the chords are used as the
nodes in the relational structure representation of the object. The matching is
based on a star structure [Ches1] representation of the object. The recognition
of overlapping tools has been shown.

Segen [Seg83] has developed a method to recognize partially visible parts
by using local features computed from an object boundary. The local features
used are defined at points of local maximum and minimurm of contour curvature.
A local feature from the image is matched with a feature from the model, and
they determine a transformation (rotation and translation). All features are
used in the matching and a set of transformations are generated. The algorithm
then clusters together features that imply similar transformations. The center
of each cluster is used to define a candidate transformation that may possibly
give a partial match. Finally, these candidate transformations are tested with a
point by point matching of the image contour and the transformed meodel
contour. -

Westinghouse’s gray-level robot vision system uses a very simple form of
relational feature graph approach. In one of their reported studies [Sch83],
edges are used to form corners where a corner is defined as two intersecting
edge vectors. The matching algorithm searches for four edge vectors forming
two opposing corners such that the center of the line segment joining the corner
pair coincides with the part center. The assurnption that the object center and
the two opposing corners are collinear restricts the applicability of the
algorithm to a limited type of industrial parts.
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Figure 11. Nine corner templates and the recognition of the circuit position by
evaluating relations between pairs of matched templates.
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In semiconductor chip manufacturing, each die is being visually inspected
for the bonding of the die onto the package substrate and the bonding of wires
from the die pads to the physically larger package leads. The process involves
the recognition of the chip boundary, the determination of the chip position and
orientation, and the recognition of bonding pads. Conventionally, human
operators have to perform all of these functions. Until recently, there exists a
number of automatic die-bonding and wire-bonding systems operating the
production lines. Most of these systems are based on relational features and
associated matching algorithms. Some other IC location recognition systems
include [Mes77], [1ga79]. [Hor75a], [Kaw79]., [Hsi79].

8. 23D Surface Representations

The previous section presented methods based on image intensities,
deriving features from gray level or binary images to represent the projection of
an object in two dimensions. In this section we present another class of methods
which is also viewer-centered, but which is based on physical scene
characteristics of a single view of an object. This representation maintains
information in register with the original gray-scale image, and includes
mntrinsic images' [Bar78], "2 }D sketch" %Mar?&]. "needle map” [Hor79],
"parameter images" [Bal8ib], and "surface orientation map" [Bra82]. Intrinsic
scene parameters include surface range, orientation, discontinuities,
reflectance, illumination, color, and velocity. Since this local information is
obtained over a whole region within some boundaries, it is more robust than the
edge-based techniques used with many of the 2-D representations presented in
the previous section.

All of the methods in this section use scene surface properties derived from
a single viewpoint to define features and construct models. Hence if multiple
views of an object are required, each is modeled independently. We have
included range maps as part of this class of representation despite the fact that
3.D data are used. This is because the models which use these data are viewer-
centered and emphasize the description of observable surface features from a
single viewpoint. Models which describe a complete (viewpomt-msensitive) 3D
object are included in the next section as 3-D representations.

Most current research is focusing on the problem of how to compute these
intrinsic surface maps. See [Bra82j, [BalBZf [Mar82b], [Bar78], [Jar83], for
example, for surveys of many applicable techniques. This survey will not
consider this "preprocessing” step.

Of particular interest for applications in industrial part recognition is the
computation and use of range maps and local surface orientation {needle) maps.
Jarvis [Jar83a] and Poje and Delp [Pojg2] give recent overviews of range finding
techniques using both active and passive methods. Active methods include
ultrasonic and light time-of-flight measurement, and structured light projection
using a plane or grid of light. While early methods of these types have been slow,
expensive, and low accuracy, many recent improvements have been made; see,

for example, [Jar83b], [Kan81], [Aif81], [Agig2], [Pip83].

Instead of extracting a range map, other researchers are focusing on
obtaining local surface orientation as a descriptor of surface shape. This
includes such methods as shape from shading [Hor75b}, shape from texture (e.g.
[Ken80], [Wit81]), and shape from photometric stereo [Woo78].

One method of computing surface orientation which shows considerable
promise for industrial part recognition is called photometric stereo [Woo78].
Local surface orientation is computed using a reflectance map for each of three
different incident illumination directions but from a single viewing direction.
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Since an object point corresponds to the same pixel in each of these three gray
level images, the surface orientation at this point can be obtained from the
intersection of isobrightness contours in the reflectance maps associated with
each light source. The method has been implemented very efficiently by
inverting the reflectance maps into a lookup table which gives surface
orientation from a triple of gray levels [Sil80]. So far the technique has been
defined for objects containing Lambertian and specular surfaces [Woo78],
[IkeB1a), and error analysis has been performed [Ray81].

To date researchers have developed only a few model-based recognition
systems which are based on features derived from one or more surface maps.
Hence applications to industrial part recognition have yet to be extensively
investigated. In the remainder of this section we present most of the techniques
which have been studied. All of these methods are based on features derived
from either a range map or a needle map. We expect that considerable future
work will be devoted to expanding this class of techniques.

8.1. Models

Oshima and Shirai [Osh83] construct a relational feature graph in which
nodes represent planar or smoothly curved surfaces extracted from a range
map, and arcs represent relations between adjacent surfaces. Surface types
include planar, ellipsoid, hyperboloid, cone, paraboloid, cylinder, and others.
For each pair of adjacent regions the type of intersection {convex, concave,
mixed, or no intersection), angle between the regions, and relative positions of
the centroids is stored. Figure 12 illustrates this relational graph description
for a scene containing three objects. If objects may be viewed from multiple
viewing positions, then a separate relational graph must be constructed for each
view and these models are treated independently by the matcher. Partial

Figure 12. Relational graph description of planar and curved surfaces derived
from a range map. .
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occlusion of certain secondary planar surfaces is allowed, although the extent is
dependent on the predefined thresholds used by the matcher. Currently,
curved surfaces may not be occluded in the scene.

Nevatia and Binford [Nev?7] construct a relational graph description of
each view of an object using a set of "generalized cones” corresponding to
elongated subparts of the object. In particular, cones are represented as
“ribbon-like" descriptors [Bro79] containing 2-D cross-sections of range
discontinuity points. Given a set of these ribbons defining an object, a set of
"joints" are constructed indicating which ribbons are adjacent to each other. A
joint description includes an ordered list of ribbons connected to it and a
designated dominant ribbon having the largest width. A relational graph is
constructed in which joints are represented by nodes and ribbons by arcs.
Figure 13 shows the spines of the ribbons detected in a scene containing a
reclining doll and the resulting relational graph description. In addition, a set of
coarse descriptors are associated with this object graph, including number of
ribbons, number of elongated ribbons, number of joints, bilateral symmetries,
and a set of "distinguished” ribbons having the largest widths. For each
distinguished piece of an object & three bit description code is used to permit
efficient organization and search of the set of models. The three descriptors
which are encoded are the part's connectivity, type (long or wide part), and

Figure 13. (a) Spines of ribbons detected in a range map for a scene containing
a reclining doll. Range discontinuities detected define the boundary of the ob-
ject. (b) The relational graph constructed from (a).




whether it is conical or not. Models are sorted by their description code and
secondarily by the maximum number of parts attached at either end of the
distinguished piece.

8.2. Features

Many researchers, including Agi72], [Shi72], [Osh79], [Pop75]. [Hen8R2a],
[Hen82b], [Mil80], [Dud79], [Bol8l], have investigated using range maps as the
basis for segmenting an image into regions, grouping points into planar
surfaces, cylindrical surfaces, surfaces on generalized ¢ linders, and other
smoothly curved surfaces. For example, Oshima and Shirai Osh79] group points
into small surface elements, then the equation of the best plane surface through
each of these elements is computed, and finally these surface elements are
merged together into maximal planar and curved regions.

Alternatively, range maps can be segmented by locating discontinuities in
depth. For examnple, Sugihara [Sug79] segments a range map by finding such
edges. To aid this process, a "junction dictionary" is precomputed listing all
possible ways junctions can occur in range maps for scenes containing only
trihedral objects. ‘The dictionary is then used to guide the search in the range
map for edges of the appropriate types.

For the most part, however, the resulting surface and boundary
descriptions have not been used to define object models. In addition to the
following methods which have defined 2 %D models, several of the methods
presented as 3-D multi-view feature models (see Section 7) could also be
included here when considering only a single view.

Oshima and Shirai [0Osh83] compute features of each region including
surface type (planar, ellipsoid, cone, cylinder, ete.), number of adjacent regions,
area, perimeter, compactness, occlusion, minimum and maximum extent, and
mean and standard deviation of radius.

As an alternative to extracting planar and curved surfaces from range
maps, some researchers have developed techniques for detecting surface
boundaries by detecting and linking points at which range discontinuities occur.
Nevatia and Binford [Nev77] use a range map to derive a boundary description of
a given view of an object. Rather than use this global structural feature to
describe an object, the imrmediately construct a relational graph using
“ribbon-like” primitives {Bro?g] to describe subparts. A ribbon is the 2-D
specialization of a 3-D generalized cylinder [Bin71]. Ribbons are specified by
three components: spine, cross-section, and sweeping-rule. By sweeping a
planar cross-section at a constant angle along a spine according to the
sweeping-rule, a planar shape is generated. They first construct a set of local
ribbons restricted to having straight axes in eight predefined directions and
smoothly varying cross sections. This is done by linking midpoints of cross
sections (runs of object peints perpendicular to the axis direction) which are
adjacent and have similar cross sections. These local ribbons are then extended
by extrapolating the axes of the local ribbons and constructing new cross
sections. This process allows the resulting axis to curve smoothly. In general, a
single part of an object may be described by (parts of) several overlapping
ribbons. To reduce this redundancy., ribbons are deleted which are not as
elongated or rectangular as another ribbon which overlaps it. Associated with
each ribbon is a crude description of its shape given by its axis length, average
cross section width, elongatedness, and type (conical or cyl’mdrical).




8.3. Matching

Oshima and Shirai [OshBB] match an observed relational graph of surface
descriptions with a set of graphs for each viewpoint of each object modeled.
First, regions corresponding to maximal smooth surfaces are extracted from the
range map of a given scene. A "kernel” consisting of either a single region or a
pair of adjacent regions is then selected from the surface descriptors of the
given scene in order to guide the search for matching model graphs. The kernel
represents regions with high confidence of being found; criteria include no
occlusion, planar surfaces, and large region area. Next, an exhaustive search of
all model graphs is performed, selecting as candidate models all those which
contain regions which match the kernel. Finally, the system performs a depth-
first search which attempts to determine the correspondence between each
remaining region in the current candidate model and the regions extracted
from the scene. A model region and a scene region match if their region
properties are similar, all adjacencies to previously matched regions are
consistent, and the properties of all new relations between regions are similar.
This process is repeated for other kernel regions in the scene until a globally
consistent interpretation is achieved in which each scene region is found to
correspond to exactly one model region. If multiple consistent interpretations
are possible, then the system returns each one. Figure 14 ijlustrates this
matching process.

Nevatia and Binford [Nev77] match a relational graph extracted from a
scene with each relational graph describing a model. First, a set of candidate
models is determined by comparing the properties of the distinguished ribbons
in the scene with those distinguished ribbons associated with each of the
models. For each such candidate model a finer match is performed by
comparing other ribbons, pairing a model ribbon with a scene ribbon if their
properties are similar and all connectivity relations are consistent in the

a scene lo be recognized object models
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Figure 14. Matching kernel surfaces in a scene with model surfaces is used to
select candidate models in [Osh83]. Neighboring surfaces are then matched in
order to verify a candidate model.
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current pair of matched subgraphs. The scene graph is allowed to match a
model graph even if not all model ribbons are present in the scene graph (hence
partial occlusion is permitted), but the scene graph may not contain extra
ribbons which are not matched by any ribbon in the model graph.

7. 3D Object Representations

If we assume that an object can occur at an arbitrary attitude, then the
model must provide an explicit description of the object from all viewing angles.
Image-space (2-D) and surface-space (2 %D) representations are viewer-
centered and each distinct view is represented independently. Thus when
multiple views of complicated objects are permitted (as in the general bin
picking problem), a viewpoint-independent, volumetric representation may be
preferred [Mar?B]. In contrast to the previous representations, a single model is
used to represent all possible viewing positions around a given object. In
addition, in an industrial automation setting in which the vision systemn must be
integrated with objects represented in CAD databases, an object-space model
may be convenient because of its compatibility.

Researchers have investigated two main types of 3-D representations.
These are (1) ezact representations using surface, sweep, and volume
descriptions, (2) multi-view feature representations in which a set of 2-Dor 2 %
D descriptions are combined into a single composite model. This includes the
specification of a set of topologically-distinct views or a uniformly sampled set of
2-D viewpoints around an object. The first representation method completely
describes an object’s spatial occupancy properties, whereas the second
representation only represents selected visible 2-D or 2 %D surface features
(and sometimes their 3-D spatial relationships).

Ezact representations include the class of complete, volumetric methods
based on the exact specification of a 3-D object using either surface patches,
spines and sweeping rules, or volume primitives. Object-centered coordinate
systems are used in each case. See, for example, [Req80] [Bad78], [BalB2] for a
general introduction to this class of representations. Surface model
descriptions specify an object by its boundaries or enclosing surfaces using
primitives such as edge and face. Baumgart's "winged edge" representation for -
planar polyhedral objects is an elegant example of this type of model [Bau72].
Volume representations describe an object in terms of solids such as
generalized cylinders, cubes, spheres, rectangular blocks, etc. The main
advantage of this class of representations is that it provides an exact
description which is object-centered. The main disadvantage is that it is difficult
to use in a real-time object recognition system since the processing necessary
to perform either 2.D to 3-D or 3-D to 2-D projections (for matching 2-D observed
image features with a 3-D model) is very costly. For example, in ACRONYM
[Bro81] camera constraints are built in so as to limit the number of 3-D to 2-D
projections which must be hypothesized and computed at run-time.

The second type of 3-D representation method is based on the
representation of observable features in each of several views of an object. In
the limiting case this includes the work on-storing 2-D descriptions for each
stable configuration of an object. We restriction our discussion here to
coordinated representations of multiple views which permit the specification of
efficient matching procedures which fake advantage of intra-view and inter-view
feature similarities.

One class of multi-view representations is based on the description of the
characteristic views of an object. This requires the specification of all
topologically-distinct views. Koenderink and vanDoorn [Koe76a], [Koe76b],
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[Koe79] are studying the properties of the set of viewing positions around an
object, and the qualitative nature of how most viewing positions are stable. That
is, small changes in viewing position do not affect the topological structure of
the set of visible object features (i.e., point and line singularities). Based on the
topological equivalence of neighboring viewpoints, they define an "aspect graph”
of feature-distinct viewpoints (see Figure 15).

Fuchs et al. [Fuc80] have also used this idea to perform a recursive
partitioning of a 3-D scene using the polygons which describe the surfaces of the
constituent 3-D objects. That is, a 'binary space partitioning” tree is
constructed in which each node contains a single polygon. Polygons associated
with a node’s left subtree are those contained in one half-space defined by the
plane in which the current polygon lies; the polygons in the right subtree are the
ones in the other half-space. Using this structure they perform hidden surface
elimination from a given viewpoint by a simple inorder tree traversal in which
subtrees are ordered by their "visibility” from the given viewpoint. In this
representation each leaf defines a characteristic view volume; hence the set of
leaf nodes define a partition of 3-space into distinct viewing positions.

Another type of multi-view representation is to discretely sample the
"viewing sphere' of all possible viewpoints (at a fixed distance) around an object,
storing a viewer-centered description for each sample viewpoint. This discrete
view-sphere Tepresentation has the advantage that it can be pre-computed from
a complete 3-D volumetric description and provides a description which is
compatible with the features extracted from a test image at run-time. Thusit is
a more convenient representation, and yet provides sufficient accuracy of
description except at pathological viewing positions.

Figure 15. The aspect graph for a tetrahedron. Nodes are of three types
representing whether one, two, or three faces are visible. Arcs connect adjacent
viewing patches.
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7.1. Hodels

Shneier [Sbn79], [Shn8 1] constructs 3-D surface models from a set of light
stripe images of the object to be modeled. Each distinctly different plane
surface which is extracted is represented by a ‘unique node in a "graph of
models" which describes all models to be recognized. Associated with each noede
is a set of properties which describes the surface's shape, and a set of pointers
to the model names in which this primitive shape is a part, Thus if two surface
shape descriptions are similar in the same or different objects, they are
represented by a single node in the graph. Arcs connect pairs of nodes using a
set of predefined relation schemata, for example the "is adjacent to” relation.
Arguments to relation schemata are surface descriptions, not actual surfaces.
Relation schemata also index the models in which they occur and the primitives
that form their arguments. Thus nodes and arcs in the graph of models may be
shared within models and across models. This integration of multiple object
models into a single graph has the advantages of being very compact and
enabling a rapid indexing scheme to be used. '

Goad [GoaB3] builds a maultiview feature model of an object by
constructing a list of object features and the conditions on when each is visible.
The single object feature used is a straight line segment representing a portion
of the object’s surface at which either a surface normal or a reflectivity
discontinuity occurs.

The set of possible viewing positions is represented by partitioning the
surface of a unit "viewing sphere” into small, relatively uniform size, patches.
The current implementation uses 218 patches. To represent the set of positions
from which a given edge feature is visible, a bit map representation of the
viewing sphere is used to encode whether or not the feature is wholly visible
from each patch on the sphere (i.e., a line's projection is longer than a
threshold). Thus each feature is stored as a pair of endpoint coordinates plus
218 bits to describe its visibility range.

The matching procedure used with this model requires 2a sequential
enumeration of model edges which are successively matched with image edges.
In order to improve the run-time efficiency of the search for a consistent set of
matches which determines a unique view position, it is important to select an
order which presents edges in decreasing order of expected utility. This can be
done by preprocessing the list of features in the model using each edge’s (a)
likelihood of visibility, (b) range of possible positions of the projected edge, and
(c) focusing power (ie. if a match is made, how much information about
restrictions on the camera position becomes known). Combining these factors
for a given model results in a predetermined ordering of the best edge to match
next at any stage of the search.

Horn [Hor82] and his colleagues use a maultiview feature model in which
features are derived from the needle map for an object. That is, they model
each viewpoint of an object by the distribution of its surface orientation normals
on the Gaussian sphere, ignoring positional information by moving all surface
normals to the origin. By associating a unit of mass with each point on the unit
sphere, we obtain a distribution of mass called the "Extended Gaussian Image”
[Smi79]. Segments of developable surfaces such as planes and cylinders map
into high concentrations of points in known configurations. Figure 186 illustrates
this representation for two convex objects. Ikeuchi [IkeB1b], [ke82], [1xe83al,
[Ike83b] models an object by a set of 240 (normalized) extended Gaussian
images, one for each possible viewing direction on a uniformly sampled viewing
sphere. More specifically, a two dimensional table is constructed for each
possible viewpoint, mass distribution pair; an element in this table stores the
mass (surface area) corresponding to the total surface description for the given
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Cylinder : Ellipsoid

Figure 16. Two views of the extended Gaussian images for a cylinder and an el
lipsoid.

viewpoint. Figure 17 shows the normalized extended Gaussian images for four

viewpoints of an object. If multiple objects are to be recognized then a table is
constructed for each object.

Brooks’ ACRONYM system [Brog8i], [Bro83a], [Bro83b] constructs sweep
models using part/whole hierarchical graphs of primitive volume elements
described-by generalized cylinders. A generalized cylinder (GC) describes a
volume by sweeping a planar cross section along a space curve spine; the cross
section is held at a constant angle to the spine and its shape is transformed
according to some sweeping rule. The user constructs a tree for each object,
where nodes include GC descriptions and arcs indicate the "subpart’' relation.
The tree is designed to provide a hierarchical description of an object, where
nodes higher in the tree correspond to more significant parts in the description.
For example, the root of an "electric motor” tree describes the cylinder for the
large cylindrical body of the motor. Arcs from this node point to nodes
describing cylinders for the small flanges and spindle which are part of a lower
priority level of description of the motor.

Each GC has its own local coordinate system and additional affixrnent arcs
between nodes specify the relations between coordinate systems. If multiple
parts of the same type are associated with a single object, they are represented
by a single node in the tree with a quantity value and a set of coordinate
transformations specifying the location of each part. Furthermore, in order to
allow variations in size, structure, and spatial relationships in GC descriptions,
any numeric slot in a node's description may be filled by an algebraic expression
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17. Four of the normalized extended Gaussian images for an object.
From each such image a mass distribution feature is stored in a lookup table to
represent the given viewpoint.,

ranging over numeric constants and variables. Classes of objects are specified
by constraints, iL.e., inequalities on algebraic expressions which define the set of
values which can be taken by quantifiers.

A scene is modeled by defining objects and affixing them to a world
coordinate system. A camera node is also included specifying bounds on its
position and orientation relative to the world coordinate system.

To aid the matching of models with image features, the user constructs
from the static object graph a model class hierarchy called the restriction
graph. That is, the sets of constraints on quantifiers in the object graph are
used to build a specialization hierarchy of different classes of models. The root
node represents the empty set of constraints for all restriction graphs. A node
is added as the child of another node by constructing its constraint list from the
union of its parent's constraints and the additional constraints needed to define
the new node's more specialized model class. A pointer is also added to a node
in the object graph which defines the volumetric structure of the new node's
model (as specialized. by the given constraints). Thus an arc in the graph always
points from a less restrictive model class (larger satisfying set of constraints) to
a more restrictive one (smaller satisfying set). Figure 18 illustrates a
restriction graph for classes of motors and Figure 19 shows three instances
associated with the leaf nodes' sets of constraints. During the matching process
other nodes are also added to the restriction graph in order to further
specialize a given model for case analysis, or to specify an instance of a match of
the model to a set of image features.

Bolles et al. [Bol83] use a surface model as the primary structure for
generalizing their "ocal-feature-focus" method to 3.D. A model consists of two
parts: an augmented CAD model and a set of feature classification networks. The
augmented CAD model is similar to Baumgart's [Bau72], describing edges,
surfaces, and vertices and their relations with one another. The feature
classification network classifies observable features by type and size. For
example, surface elements that have the same normal direction, and cylinders
that have a common axis. Each feature contains a pointer to each instance in
all of the augmented CAD models. Figure 20 illustrates this modeling method.
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Figure 18. The restriction graph for classes of electric motors used in

[Bro81].

Figure 19.

Three instances of the model classes associated with

the three leaf nodes in Figure 18.
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Figure 20. Bolles [Bol83] augmented CAD model and feature classification net-
work.

Silberberg et al. [Sil83] model an object using a multi-view representation
to define a Hough space of possible transformations of a set of 3-D line segments
(edges) which are observable surface markings on the given object in a given
viewpoint.

Chakravarty and Freeman [Cha82] define a multi-view model using
characteristic views for recognizing curved and polyhedral objects. For a given
object, they define a finite set of equivalence classes called “characteristic view
partitions,” which define a set of "vantage-point domains” on the sphere of
possible viewpoints. Each topologically-distinct patch is described by a list of
the visible lines and junctions in the given object. In order to reduce the
number of patches in the partition of the view-sphere, they assume objects will
occur in a fixed number of stable positions, and the set of possible camera
positions is also limited. With these restrictions, two viewpoints are part of the
same patch if they contain the same image junctions and lines with the same
connectivity relationships, although the lengths of the lines may differ. A linear
transformation describes features within a patch. An object is now modeled as a
list of patch descriptors, where each list specifies the number of visible
iunctioizs of each of the five possible distinct types for this class of objects

Cha79].

7.2. Features

The principle features used in most 3-D recognition systems are based on
surface properties such as faces, edges and corners. The references given in
Section 6.2 for grouping range data into planar, cylindrical, and other smoothly
curved surfaces are also used for 3-D surface description and modeling.
Potmesil [Pot83b] constructs 3-D surface models from a series of partially
overlapping range images by an iterative merging algorithm which first groups
local surface patches into locally smooth surface sheets (using a quadtree
representation) and then merges partially overlapping surface representations
using a heuristic search procedure.
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Goad [Goa83] restricts his model-based vision system to detect straight line
segments (straight edges on an object). The edge detection algorithm is based
on a program developed by Marimont [Mar82a). The algorithm convolves the
image with a lateral inhibition operator, detects zero-crossings in the convolved
image, and then performs linking following by a simple segmentation
thresholding. Three different types of objects, a universal joint casting, a
keyboard key-cap, and a connecting rod, have been used in the experiments.
Silberberg et al. [Sil83] also use line segments as the basis for constructing 3-D
object models.

Tkeuchi [IkeB3a] uses the complete surface orientation map in the form of
the normalized Extended Gaussian Image as a global feature descriptor.

ACRONYM [Bro8la] uses nribbons’ and ellipses as low level features
describing a given image. In this implementation only simple ribbons were used;
a simple ribbon is defined by sweeping a symumnetric width element normally
along a straight spine while changing the width linearly with distance swept.
Ellipses are used to describe the shapes generated by the ends of GCs. For
example, ellipses describe ends of a cylinder and ribtons describe the
projection of the cylinder body.

The extraction of these features is performed by the descriptive module of
the ACRONYM system [Bro79]. First, an edge linking algorithm creates sets of
linked edges (contours) from the image data. Linking edges into a contour is
formulated as a tree searching problem searching for the best edge direction at
a given point. A contour is retained only if it satisfies certain global shape
criteria. Next, an algorithm fits ribbons and ellipses to the sets of contours by
extracting potential boundary points of a ribbon from a histogram of the angles
of the edge elements making up the contour. Finally redundant ribbons in a
single area of the image are disarnbiguated. A graph structure, the observation
graph, is the output of the descriptive module. The nodes of the graphs are
ribbon and ellipse descriptions and the arcs linking the nodes together are
relations between ribbons. :

Bolles uses range data to detect surface discontinuities in an image. Two
methods are used: detecting discontinuities occurring in 1-D slices of the range
finder, and finding zero-crossings in the complete range map.

Chakravarty [Cha82] uses a list containing the number of occurrences of
each of eight generalized junction types possible for planar and curved-surface
objects. Lists are ordered by decreasing significance for recognition and
organized into a hierarchical decision tree.

7.3. Matching

Shneier [Shn79] matches a set of observed planar surfaces with the graph
of models for all possible objects by a two step procedure. First, for each
observed surface which is sufliciently similar to a node in the graph of models, a
node is created in the "scene graph' indicating this match. Since each node in
the graph of meodels corresponds to one or more surfaces in one or more
objects, each possibility is tested using a predefined set of procedures for
deciding if an interpretation is possible for the observed surface, and for
assigning confidences to these interpretations. A subgraph of the scene graph is
created for each possible interpretation, and each surface/model-node pair is
assigned to one or more such subgraphs. Next, the scene graph is traversed,
deleting surfaces that are insufficiently substantiated and propagating
constraints in order to remove multiple interpretations for a single surface.

Goad [GoaB83] uses an elaborate sequential matching procedure with
backtracking in his model-based vision system. The matching involves a search

37



for a match between image and model edges. At any given time in the search, a
hypothesis about the position and orientation of the object relative to the
camera is used to restrict the search area to some reasonable bounds. The
hypothesis is refine sequentially during the matching process.

The procedure starts with predicting the position and orientation of the
image projection based on the current hypothesis. Then, a model edge is
selected to match with image edges. If a match is found, the measured location
and orientation of the new edge are used to update the hypothesis. The
algorithm repeats the searching and updating until a satisfactory match of an
object is found. If the algorithm fails to locate a predicted edge, the algorithm
backtracks to use another image edge that has also been predicted as a good

match.

‘Ikeuchi [IkeB83a], [Ike83b] matches an observed extended Gaussian image
(EGI) with each model EGL To constrain the set of match tests which must be
made for each pair, the observed ECI and model EGI mass centers are aligned,
constraining the line of sight. Next, the observed and model spheres are rotated
about the candidate line of sight so as to align their directions of minimum EGI
mass inertia. These two constraints completely specify the alignment of the
observed EGI with a model EGL. A match measure for a given pair of normalized
EGI's is specified by comparing the similarity in their mass distributions; the
model which maximizes this measure is the estimate of the observed line of
sight. When multiple objects are present in a single scene, it is necessary to
first segment the surface orientation map into regions corresponding to
separate objects.

ACRONYM [Bro81a] predicts appearances of models in terms of ribbons and
ellipses which can be observed in an image. Rather than exhaustively make
predictions based on all possible viewing positions, viewpoint-insensitive
symbolic constraints are used which indicate features which are invariant or
quasi-invariant over a large range of viewing positions. To generate predictions
a rule-based module is used to identify contours of model faces which may be
visible. Case analysis is used to further restrict predictions and produce
predicted contours in the viewer's coordinate system.

As a result of this constraint manipulation process a "prediction graph' is
built in which nodes represent either specific image features or join prediction
subgraphs containing lower level features. Arcs of the graph denote image
relations between features, relating multiple feature shapes predicted for a
single GC. Arcs are labeled either "must be,” "should be,” or "exclusive."
Associated with a prediction graph is a node in the restriction graph which
specifies the object class being predicted.

Matching is performed at two levels. First, predicted ribbons must match
image ribbons, and second, these "local” matches must be globally consistent.
That is, relations between matched ribbons must satisfy the constraints
specified in the arcs of the prediction graph, and the accumulated constraints
for each maximal subgraph matched in the observation graph must be
consistent with the 3-D model constraints in the associated restriction node.
Local matches of predicted ribbons with image ribbons also provides additional
"back constraints” which are used to further restrict model pararneters.
Finally, matching is first done for GCs of highest priority in each model's object
graph hierarchy in order to limit the search initially to include only the most
important parts. Figure 21 illustrates the results of this method.

Bolles et al. [Bol83] use a matching scheme similar to that used for the
"ocal-feature-focus” method [Bolg2]. First, the system searches for features
which match some model's feature, e.g., @ cylinder with a given radius. This is
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Figure 21. Results of Brooks’ matching procedure. The first figure shows the
output of the edge detector, the second figure shows the output of the ribbon
finder. The final figure is the output of the.matcher.

accomplished by grouping edges which lie in the same plane, partitioning each
such set of points into line segments and arcs of circles, and associating
properties with each line or arc based on the relations between the surfaces
which meet to form the given segment. Second, objects are hypothesized by
determining if a pair of observed segments are consistent with a given model’s
features.

Silberberg et al. [Sil83] use a generalized Hough transform to match a set
of observed line segments with model lines for each viewpoint. A 3-D Hough
space is used to represent a viewpoint (two dimensions for position on the view-
sphere, one dimension for orientation at a viewpoint). For each viewpoint and
pair of line segments, one from a model and one from the image, the model line
is projected onto the image plane, incrementing the corresponding bin in Hough
space if the pair of lines match. This procedure is first used with a coarsely
quantized Hough space to select those viewpoints which correspond to peaks in
Hough space after the voting procedure are successively refined to provide a
finer resolution estimate of the exact viewing position.
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Bhanu [Bha82] uses a relaxation labeling technique for identifying which
model face is associated with each observed image face. Range data are first
merged into planar faces using the technique in [HenB82a]. A two stage
relaxation procedure is then used. In the first stage compatibilities between
pairs of adjacent faces are used: in the second stage compatibilities between a
face and two of its neighboring faces are used. The compatibility of a face in an
unknown view with a face in a model is computed by finding transformations
(scale, rotation, translation), applying them and computing feature value
mismatches. The initial probabilities for a face are computed as a function of
global features of the face, including area, perimeter, number of vertices, and
radius.

Chakravarty [ChaB2] use a multi-stage matching procedure for a given
observed set of lines and junctions. First, all viewing patches having similar
boundaries to the given observed image boundary are selected; second, patches
which don't contain matching junction types are removed; finally, a projection is
computed based on the correlated junctions, and this transformation Is verified
with the original image data.

8. Concluding Remarks

An extensive review of robot vision techniques for industrial part
recognition has been presented. The major motivation for using industrial
machine vision is to increase flexibility and reduce cost. At the present time
only very simple techniques based on 2-D global scalar features have been
applied in real-time manufacturing processes. More sophisticated techniques
will have to be developed in order to adequately deal with less structured
industrial environments and permit more task versatility. These techniques will
incorporate higher level modeling (e.g. highly organized graph models
containing 2 %D and 3-D descriptions), more powerful feature extraction
methods (e.g. global structural features of object boundaries, surfaces and
volumes), and more robust matching procedures for efficiently comparing large
sets of complex models with observed image features. A survey of the current
state-of-the-art on these research topics has been presented for the task of
industrial part recognition.
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